Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Исследование Марса. Реферат марс


Реферат - Все про Марс

РЕФЕРАТ

ПО АСТРОНОМИИ

ПЛАНЕТЫ ЗЕМНОЙ ГРУППЫ

Выполнила:

уч. 11 класса «Г»

лицея №7

Гузенко Анна

Красноярск 2002

Еще в глубокой древности люди обратили

внимание на ярко-оранжевую звезду, которая время от времени сияла на небосклоне. Древние египтяне и жители Вавилона называли ее просто красной звездой. Пифагор предложил именовать ее Пирей, что значит «пламенный».

Древние греки посвящали все планеты богам. И конечно, для бога войны Ареса не нашлось более подходящего символа, чем красноватая звезда в черном небе. В римской мифологии Аресу соответствовал бог Марс. Так планета обрела свое нынешнее имя. Впрочем, на Руси вплоть до XVIII в. использовались греческие названия планет и Марс именовали Аррисом или Ареем.

Когда в 1977 г. американский астроном Асаф Холл открыл два спутника, он дал им греческие имена Фоьос и Деймос, которые переводятся как «страх» и «ужас». Страх и ужас – вечные спутники войны, но кого могут испугать два крохотных безобидных спутника? Многие писатели-фантасты населяли красную планету воинственными чудовищами или человекообразными существами, стремящимся уничтожить землян. В наши дни журналисты прозвали Марс Бермудским треугольником Солнечной системы: слишком уж часто космические миссии, направляющиеся к нему, заканчиваются неудачами…

Какой же предстает перед нами сейчас красная планета, породившая столько иллюзий?

МАРС КАК ПЛАНЕТА

Исследовать Марс удобнее всего тогда, когда Земля окажется точно между ним и Солнцем. Такие моменты (они называются противостояниями ) повторяются каждые 26 месяцев. В течение того месяца, когда происходит противостояние, и в последующие три месяца Марс пересекает меридиан близ полуночи; он виден на протяжении всей ночи и сверкает как звезда –1-й звездой величины, соперничая по блеску с Венерой и Юпитером.

Орбита Марса довольно сильно вытянута, поэтому расстояние от него до Земли от противостояния к противостоянию заметно меняется. Если Марс попадает в противостояние с Землей в афелии, расстояние между ними превышает 100 млн. километров. Если же противостояние происходит при наиболее благоприятных условиях, в перигелии марсианской орбиты, это расстояние уменьшается до 56 млн. километров. Такие «близкие» противостояния называются великими и повторяются через 15-17 лет. Последнее великое противостояние произошло в 1988 г.

Марс имеет фазы, но, поскольку он расположен дальше от Солнца, чем Земля, полной смены фаз у него (как и у других внешних планет) не бывает – максимальный «ущерб» соответствует фазе Луны за три дня до полнолуния или спустя три дня после него.

Ось вращения Марса наклонена относительно плоскости его орбиты на 22º, т.е. всего на 1,5º меньше, чем ось вращения Земли наклонена к плоскости эклиптики. Перемещаясь по орбите, он поочередно подставляет Солнцу то южное, то северное полушарие. Поэтому на Марсе тек же, как и на земле, происходит смена времен года, только тянутся они почти в 2 раза дольше. А вот марсианский день мало отличается от земного: сутки там длятся 24 ч 37 мин.

Вследствие малой массы сила тяжести на Марсе почти в 3 раза ниже, чем на Земле. В настоящее время структура гравитационного поля Марса детально изучена. Она указывает на небольшое отклонение от однородного распределения плотности в планете. Ядро может иметь радиус до половины радиуса планеты. По-видимому, оно состоит почти из чистого железа или из сплава Fe-FeS (железо-сульфид железа) и, возможно, растворенного в них водорода. По-видимому, ядро Марса частично или полностью пребывает в жидком состоянии. Наличие у планеты собственного, хотя и очень слабого, магнитного поля, обнаруженного с помощью космических аппаратов серии «Марс», подтверждает это.

Марс должен иметь мощную кору толщиной 70-100 км. Между ядром и корой находиться силикатная мантия, обогащенная железом. Красные окислы железа, присутствующие в поверхностных породах, определяют цвет планеты.

Сейчас Марс продолжает остывать. Сейсмическая активность планеты слабая. Сейсмограф на американском посадочном аппарате «Викинг-2» за год работы зафиксировал только один легкий толчок, и то скорее всего вызванный не тектоническими процессами, а падением крупного метеорита.

Тектонический режим Марса отличается от режима тектоники плит, характерного для Земли. Ведь для последнего необходимо, чтобы основная масса выплавляющего материала снова затягивалась в мантию вместе с океанической корой. На Марсе же мантийная конвекция не выходит на поверхность и выплавляющая базальтовая магма идет на наращивание коры. Эти отличия объясняются прежде всего малой массой Марса (в 10 раз меньше земной) и, конечно, тем, что он сформировался дальше от Солнца, вблизи гигантского Юпитера, оказавшего значительное влияние на процесс его образования.

ПОВЕРХНОСТЬ МАРСА

На первый взгляд поверхность Марса напоминает лунную. Однако на самом деле рельеф отличается бóльшим разнообразием. На протяжении долгой геологической истории Марса его поверхность изменяли извержения вулканов и марсотрясения. Глубокие шрамы на лице бога оставили метеориты, ветер, вода и льды.

Поверхность планеты состоит как из двух контрастных частей: древних высокогорий, покрывающих южное полушарие, и более молодых равнин, сосредоточены в северных широтах. Кроме того, выделяются 2 крупных вулканических района – Элизиум и Фарсида. Разница высот между горными и равнинными областями достигает 6 км.

Высокогорная часть сохранила следы активной метеоритной бомбардировки, происходившей около 4 млрд. лет назад. Метеоритные кратеры покрывают 2/3 поверхности планеты. На старых высокогорьях их почти столько же, сколько на Луне. Но многие марсианские кратеры из-за выветривания успели «потерять форму». Некоторые из них, по всей видимости, когда-то были размыты потоками воды.

Облик северного полушария определила вулканическая деятельность. Некоторые из равнин сплошь покрыты древними извержёнными породами. Потоки жидкой лавы растекались по поверхности, застывали, по ним текли новые потоки. Эти окаменевшие «реки» сосредоточены вокруг крупных вулканов. На окончаниях лавовых языков наблюдаются структуры, похожие на земные осадочные породы. Вероятно, когда раскаленные изверженные массы растапливали слои подземного льда, на поверхности Марса образовывались достаточно обширные водоемы, которые постепенно высыхали. Взаимодействие лавы и подземного льда привело также к появлению многочисленных борозд и трещин. На далеких от вулканов низменных областях северного полушария простираются песчаные дюны. Особенно много их у северной полярной шапки.

Ученые считают, что поверхностные воды хранятся в виде захороненных в грунте ледяных глыб, особенно в полярных областях. Полярные шапки Марса многослойны. Нижний, основной слой толщиной в несколько километров образован обычным водяным льдом, смешанным с пылью, который сохраняется и в летний период. Это постоянные шапки. Наблюдаемые сезонные изменения полярных шапок происходят за счет верхнего слоя толщиной менее 1 метра, состоящего из твердой углекислоты, так называемого «сухого льда». Покрываемая этим слоем площадь быстро растет в зимний период, достигая параллели 50 градусов, а иногда и переходя этот рубеж. Весной с повышением температуры этот слой испаряется и остается лишь постоянная шапка.

В конце XIX века итальянские астрономы А. Секки и Дж. Скиапарелли сообщили, что неоднократно видели тонкие длинные темные линии, напоминающие сеть каналов, как бы связывающих полярные и умеренные зоны планеты. Американский астроном П. Ловелл предположил, что каналы имеют искусственное происхождение. Однако не все астрономы разделяли это мнение. Дело в том, что эти линии находились на пределе разрешения. В таких случаях отдельные пятна зрительно объединяются в линии. На фотографиях поверхности Марса, полученных с помощью космических станций, видно множество долин и трещин, однако совместить их с каналами, показанными на картах Скиапарелли, не удалось.

Для поверхности Марса характерна глобальная асимметрия в распределении пониженных участков — равнин, составляющих 35% всей поверхности и возвышенных, покрытых множеством кратеров областей. Большая часть равнин расположена в северном полушарии. Граница между ними в ряде случаев представлена особым типом рельефа — столовыми горами, сложенными плосковершинными горками и хребтами.

Вблизи экватора Марса, в районе называемом Тарсис, расположены вулканы колоссальных размеров. Тарсис — название, которое астрономы дали возвышенности, имеющей 400 км в ширину и около 10 км в высоту.

На этом плато расположено четыре вулкана, каждый из которых просто гигант в сравнении с любым земным вулканом. Самый грандиозный вулкан Тарсиса, Гора Олимп, возвышается над окружающей местностью на 27 км. Около двух третей поверхности Марса представляет собой горную местность с большим количеством кратеров, возникших от ударов и окруженных обломками твердых пород. Вблизи вулканов Тарсиса змеится обширная система каньонов длинной около четверти экватора. Четыре гигантских потухших вулкана возвышаются над окружающей местностью на высоту до 26 км. Самый крупный из них — гора Олимп, расположенный на западной окраине гор Фарсида, имеет основание диаметром 600 км и кальдеру на вершине поперечником 60 км. Три вулкана: гора Аскрийская, гора Павлина и гора Арсия расположены на одной прямой на вершине гор Фарсида, высотой около 9 км. Сами вулканы возвышаются над Фарсидой еще на 17 км. Более 70 потухших вулканов найдено на Марсе, но они гораздо меньше и по занимаемой площади и по высоте.

Под поверхностью Марса в отдельных областях находится слой вечной мерзлоты толщиной в несколько километров. В таких районах на поверхности у кратеров видны необычные для планет земной группы застывшие флюидизированные потоки, по которым можно судить о наличии подповерхностного льда. За исключением равнин поверхность Марса сильно кратерирована. Кратеры, как правило, выглядят более разрушенными, чем на Меркурии или Луне. Следы ветровой эрозии можно видеть повсюду.

«Волна потемнения» участков поверхности, наблюдаемая со сменой сезонов, объясняется изменением направления ветров, постоянно дующих в направлении от одного полюса к другому. Ветер уносит верхний слой сыпучего материала — светлую пыль, обнажая участки более темных пород. В периоды, когда Марс проходит перигелий, нагрев поверхности и атмосферы усиливается и нарушается равновесие марсианской среды. Скорость ветра усиливается до 69 км в час, начинаются вихри и бури. Более миллиарда тонн пыли поднимается и удерживается во взвешенном состоянии, при этом резко меняется климатическая обстановка на всем марсианском шаре. Продолжительность пылевых бурь иногда достигает 50 – 100 суток.

АТМОСФЕРА И ВОДА НА МАРСЕ.

Атмосфера на Марсе разрежена (давление порядка сотых и даже тысячных долей атмосферы), и состоит, в основном, из углекислого газа (около 95%) и малых добавок азота (около 3%), аргона (примерно 1,5%) и кислорода (0,15%). Концентрация водяного пара невелика, и она существенно меняется в зависимости от сезона.

Есть все основания полагать, что воды на Марсе немало. На такую мысль наводят длинные ветвящиеся системы долин протяженностью в сотни километров, весьма похожие на высохшие русла земных рек, причем перепады высот отвечают направлению течений. Некоторые особенности рельефа явно напоминают выглаженные ледниками участки. Судя по хорошей сохранности этих форм, не успевших ни разрушиться, ни покрыться последующими наслоениями, они имеют относительно недавнее происхождение (в пределах последнего миллиарда лет). Где же теперь марсианская вода?

Высказываются предположения, что вода существует и сейчас в виде мерзлоты. При весьма низких температурах на поверхности Марса (в среднем ок. 220º К в средних широтах и лишь150º К в полярных областях) на любой открытой поверхности воды быстро образуется толстая корка льда, которая, к тому же, через короткое время заносится пылью и песком. Не исключено, что благодаря низкой теплопроводимости льда под его толщей местами может оставаться и жидкая вода и, в частности, подледные потоки воды продолжают и теперь углублять русла некоторых рек.

ФОБОС И ДЕЙМОС – СПУТНИКИ МАРСА

Спутники Марса были открыты в 1877г. во время великого противостояния американским астрономом А. Холлом. Их назвали Фобос (в переводе с греческого Страх) и Деймос (Ужас), поскольку в античных мифах бог войны всегда сопровождался своими детьми страхом и ужасом.

За 160 лет до этого английский писатель Джонатан Свифт в “Путешествия Гулливера” писал:”…они открыли две маленькие звезды или спутника, обращающихся около Марса, из которых ближайший к Марсу удален от центра этой планеты на расстояние, равное трем её диаметрам, а более отдаленный находится от неё на расстояние пяти таких же диаметров. Первый совершает свое обращение в течение десяти часов, а второй в течение двадцати одного с половиной часа…”

Спутники очень маленькие по размерам и имеют неправильную форму. Размеры Фобоса 28х20х18 км, а Деймоса 16х12х10 км. КА «Маринер 7» случайно сфотографировал Фобос на фоне Марса в 1969г., а КА «Маринер 9» передал множество снимков обоих спутников, на которых видно, что поверхности спутников неровные, обильно покрытые кратерами. Несколько близких подлетов к спутникам совершили КА «Викинг» и «Фобос 2». На самых лучших фотографиях Фобоса видны детали рельефа размером в 5 метров.

Орбиты спутников – круговые: Фобос обращается вокруг Марса на расстоянии 6000 км с периодом 7 час. 39 мин. Деймос находится почти в 2,5 раза дальше, а период его обращения составляет 30 час. 18 мин. Период вращения вокруг оси каждого из спутников совпадает с периодом обращения вокруг Марса. Большие оси спутников всегда направлены к центру планеты. Фобос восходит на западе и заходит на востоке по 3 раза за марсианские сутки. Средняя плотность Фобоса — менее 2 г/см3, а ускорение свободного падения составляет 0,5 см/с2. Человек весил бы на Фобосе несколько десятков грамм, поэтому с Фобоса, подпрыгнув, легко улететь в космос. Самый крупный кратер на Фобосе имеет диаметр 8 км, сопоставимый с наименьшим поперечником спутника. На Деймосе наибольшая впадина имеет диаметр 2 км.

Небольшими кратерами поверхности спутников усеяны примерно также как и Луна. При общем сходстве, обилии мелко раздробленного материала, покрывающего поверхности спутников Фобос выглядит более «ободранным», а Деймос имеет более сглаженную, засыпанную пылью поверхность. На Фобосе обнаружены загадочные борозды, пересекающие почти весь спутник. Борозды имеют ширину 100-200 м и тянутся на десятки километров. Глубина их от 20 до 90 метров. Есть несколько гипотез, объясняющих происхождение этих борозд, но пока нет достаточно убедительного объяснения, как впрочем, и объяснения происхождения самих спутников. Скорее всего это захваченные астероиды.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

1. ЭНЦИКЛОПЕДИЯ ДЛЯ ДЕТЕЙ. Т.8. Астрономия. Э68 /Глав. ред. М.Д. Аксёнова. – М.: Аванта+, 1997. – 688с.: ил.

2. Справочник. ЧТО МОЖНО УВИДЕТЬ НА НЕБЕ. И.Г. Колчинский, М.Я. Орлов, Л.З. Прох, А.Ф. Пугач. КИЕВ НАУКОВА ДУМКА 1982.

3. Маров М.Я. ПЛАНЕТЫ СОЛНЕЧНОЙ СИСТЕМЫ. – М.: Наука. Главная редакция физико-математической литературы, 1981. – 256с., илл.

www.ronl.ru

Реферат Марс

М А Р С

Марс – от греческого Mas – мужская сила – бог войны, в римском пантеоне почитался как отец римского народа, охранитель полей и стад, позднее – покровитель конных состязаний.

Марс – четвертая планета Солнечной системы. Сияющий кроваво-красный диск, увиденный в телескоп, наверняка ужаснул астронома, открывшего эту планету. Поэтому ее так и назвали. И у спутников Марса названия соответствующие – Фобос и Деймос («страх» и «ужас»).

Ни одна из планет Солнечной системы не притягивает столько внимания и не остается столь загадочной. «Тихая» по своим данным планета более «агрессивна» к вторжению извне, чем Венера – планета с самыми жесткими условиями (среди планет данной группы).

Многие называют Марс «колыбелью великой древней цивилизации», другие – просто еще одной «мертвой» планетой Солнечной системы.

«Красная планета»

Исследовать Марс удобнее всего тогда, когда Земля окажется между ним и Солнцем. Такие моменты называются противостояниями, они повторяются каждые 26 месяцев. В течение того месяца, когда происходит противостояние, и в последующие три месяца Марс пересекает меридиан близ полуночи, он виден на протяжении всей ночи и сверкает как звезда – 1-й звездной величины, соперничая по блеску с Венерой и Юпитером.

Орбита Марса довольно сильно вытянута, поэтому расстояние от него до Земли от противостояния к противостоянию сильно меняется. Если Марс попадает в противостояние с Землей в афелии, расстояние между ними превышает 100 млн. километров. Если же противостояние происходит при наиболее благоприятных условиях, в перигелии марсианской орбиты, это расстояние уменьшается до 56 млн. километров. Такие «близкие» противостояния называются великими и повторяются через 15-17 лет. Последнее великое противостояние произошло в 1988г.

Марс имеет фазы, но поскольку он расположен дальше от Солнца, чем Земля, полной смены фаз у него (как и других внешних планет) не бывает – максимальный «ущерб» соответствует фазе Луны за три дня до полнолуния или спустя три дня после него.

Ось вращения Марса наклонена относительно плоскости его орбиты на 22, т.е. всего на 1,5меньше, чем ось вращения Земли наклонена к плоскости эклиптики. Перемещаясь по орбите, он поочередно подставляет Солнцу то южное, то северное полушарие. Поэтому на Марсе так же, как и на Земле, происходит смена времен года, только тянутся они почти в два раза дольше. А вот марсианский день мало отличается от земного: сутки там длятся 24ч. 37 мин.

Вследствие малой массы сила тяжести на Марсе почти в три раза ниже, чем на Земле. В настоящее время структура гравитационного поля Марса детально изучена. Она указывает на небольшое отклонение от однородного распределения плотности в планете. Ядро может иметь радиус до половины радиуса планеты. По-видимому, оно состоит из чистого железа или из сплава Fe-FeS (железо-сульфид железа) и, возможно, растворенного в них водорода. По-видимому, ядро Марса частично или полностью пребывает в жидком состоянии.

Марс должен иметь мощную кору толщиной 70-100 км. Между ядром и корой находится силикатная мантия, обогащенная железом. Красные окислы железа, присутствующие в поверхностных породах, определяют цвет планеты.

Сейчас Марс продолжает остывать. Сейсмическая активность планеты слабая.

Поверхность Марса, на первый взгляд, напоминает лунную. Однако на самом деле его рельеф отличается большим разнообразием. На протяжении долгой геологической истории Марса его поверхность изменяли извержения вулканов и марсотрясения. Глубокие шрамы на лице бога войны оставили метеориты, ветер, вода и льды.

Поверхность планеты состоит как бы из двух контрастных частей: древних высокогорий, покрывающих южное полушарие, и более молодых равнин, сосредоточенных в северных широтах. Кроме того, выделяются два крупных вулканических района – Элизиум и Фарсида. Разница высот между горными и равнинными областями достигает 6 км. Почему разные районы так сильно отличаются друг от друга до сих пор неясно. Возможно, такое деление связано с очень давней катастрофой – падением на Марс крупного астероида.

Высокогорная часть сохранила следы активной метеоритной бомбардировки, происходившей около 4 млрд. лет назад. Метеоритные кратеры покрывают 2/3 поверхности планеты. На старых высокогорьях их почти столько же, сколько на Луне. Но многие марсианские кратеры из-за выветривания успели «потерять форму». Некоторые из них, по всей видимости, когда-то были размыты потоками воды. Северные равнины выглядят совершенно иначе. 4 млрд. лет назад на них было множество метеоритных кратеров, но потом катастрофическое событие, о котором уже упоминалось, стерло их с 1/3 поверхности планеты и её рельеф в этой области начал формироваться заново. Отдельные метеориты падали туда и позже, но в целом ударных кратеров на севере мало.

Облик этого полушария определила вулканическая деятельность. Некоторые из равнин сплошь покрыты древними изверженными породами. Потоками жидкой лавы растекались по поверхности, застывали, по ним текли новые потоки. Эти окаменевшие «реки» сосредоточены вокруг крупных вулканов. На окончаниях лавовых языков наблюдаются структуры, похожие на земные осадочные породы. Вероятно, когда раскаленные изверженные массы растапливали слои подземного льда, на поверхности Марса образовывались достаточно обширные водоемы, которые постепенно высыхали. Взаимодействие лавы и подземного льда привело также к появлению многочисленных борозд и трещин. На далеких от вулканов низменных областях северного полушария простираются песчаные дюны. Особенно много их у северной полярной шапки.

Обилие вулканических пейзажей свидетельствует о том, что в далеком прошлом Марс пережил достаточно бурную геологическую эпоху, скорее всего она закончилась около миллиарда лет тому назад. Наиболее активные процессы происходили в областях Элизиум и Фарсида. В свое время они буквально были выдавлены из недр Марса и сейчас возвышаются над его поверхностью в виде грандиозных вздутий: Элизиум высотой 5 км, Фарсида - 10 км. Вокруг этих вздутий сосредоточены многочисленные разломы, трещины, гребни – следы давних процессов в марсианской коре. Наиболее грандиозная система каньонов глубиной несколько километров – долина Маринера – начинается у вершины гор Фарсида и тянется 4 тыс. километров к востоку. В центральной части долины ее ширина достигает нескольких сот километров. В прошлом, когда атмосфера Марса была более плотной, в каньоны могла стекать вода, создавая в них глубокие озера.

Вулканы Марса – по земным меркам явления исключительные. Но даже среди них выделяется вулкан Олимп, расположенный на северо-западе гор Фарсида. Диаметр основания этой горы достигает 550 км., а высота – 27 км., т.е. она в три раза превосходит Эверест, высочайшую вершину Земли. Олимп увенчан огромным 60-километровым кратером. К востоку от самой высокой части гор Фарсида обнаружен другой вулкан – Альба. Хотя он не может соперничать с Олимпом по высоте, диаметр его основания почти в три раза больше.

Эти вулканические конусы возникли в результате спокойных излияний очень жидкой лавы, похожей по составу на лаву земных вулканов Гавайских островов. Следы вулканического пепла на склонах других гор позволяют предположить, что иногда на Марсе происходили и катастрофические извержения.

В прошлом огромную роль в формировании марсианского рельефа играла проточная вода. На первых этапах исследования Марс представлялся астрономам пустынной и безводной планетой, но когда поверхность Марса удалось сфотографировать с близкого расстояния, оказалось, что на старых высокогорьях часто встречаются словно бы оставленные текущей водой промоины. Некоторые из них выглядят так, будто много лет назад их пробили бурные, стремительные потоки. Тянутся они иногда на многие сотни километров. Часть этих «ручьев» обладает довольно почтительным возрастом. Другие долины очень похожи на русла спокойных земных рек. Своим появлением они, вероятно, обязаны таянию подземного льда.

Атмосфера Марса более разрежена, чем воздушная оболочка Земли. По составу она напоминает атмосферу Венеры и на 95% состоит из углекислого газа. Около 4% приходится на долю азота и аргона. Кислорода и водяного пара в марсианской атмосфере меньше 1%.

Средняя температура на Марсе значительно ниже, чем на Земле около -40С. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20С – вполне приемлемая температура для жителей Земли. Но зимней ночью мороз может достигать -125С. Такие резкие перепады температуры вызваны тем, что разреженная атмосфера Марса не способны долго удерживать тепло.

Над поверхностью планеты часто дуют сильные ветры, скорость которых доходит до 100 м/сек. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли. Иногда довольно обширные области на Марсе бывают охвачены грандиозными пылевыми бурями. Глобальная пылевая буря бушевала с сентября 1971 по январь 1972г., подняв в атмосферу на высоту более 10 км около миллиарда тонн пыли.

Водяного пара в атмосфере Марса совсем немного, но при низких давлении и температуре он находится в состоянии, близком к насыщению, и часто собирается в облака. Марсианские облака довольно невыразительны по сравнению с земными, хотя имеют разнообразные формы и виды: перистые, волнистые, подветренные (вблизи крупных гор и под склонами больших кратеров, в местах защищенных от ветра). Над низинами, каньонами, долинами – и на дне кратеров в холодное время суток часто стоят туманы.

Смена времен года на Марсе происходит так же, как на Земле. Ярче всего сезонные изменения проявляются в полярных областях. В зимнее время полярные шапки занимают значительную площадь. Граница северной полярной шапки может удалиться от полюса на треть расстояния от экватора, а граница южной шапки преодолевает половину этого расстояния. Такая разница вызвана тем, что в северном полушарии зима наступает, когда Марс проходит через перигелий своей орбиты, а в южном – когда через афелий (т.е. в период максимального удаления от Солнца). Из-за этого зима в южном полушарии холоднее, чем в северном.

С наступлением весны полярная шапка начинает съёживаться, оставляя за собой постепенно исчезающие островки льда. По-видимому, ни одна из шапок не исчезает полностью. До начала исследований Марса при помощи межпланетных зондов предполагалось, что его полярные области покрыты застывшей водой. Более точные исследования обнаружили в составе марсианского льда также замерзший углекислый газ. Летом он испаряется и поступает в атмосферу. Ветры переносят его к противоположной полярной шапке, где он снова замерзает. Этим круговоротом углекислого газа и разными размерами полярных шапок объясняется непостоянство давления марсианской атмосферы. В целом у поверхности оно составляет приблизительно 0,006 давления земной атмосферы, но может подниматься и до 0,01.

«Страх» и «Ужас» на орбите.

«…Кроме того, они открыли две маленькие звезды, или два спутника, обращающиеся около Марса. Ближайший из них удален от центра этой планеты на расстояние, равное трем ее диаметрам, второй находится от нее на расстоянии пяти таких же диаметров». Это строки из романа Джонатана Свифта о приключениях Гулливера, написаны они были в 1726 году, когда никто спутников Марса не видел даже в телескопы, не говоря уже о том, чтобы довольно точно предсказать параметры этих небесных тел. Так, период обращения одного из спутников Марса Свифт угадал с точностью до одной четверти, а другого - до 40 процентов.

Между прочим, Свифт не был единственным великим писателем XVIII столетия, кто «открыл» спутники Марса. Франсуа Мари Вольтер – властитель дум блистательного века Просвещения, сочиняя в 1752г. фантастическую повесть «Микромегас», тоже упомянул «две луны Марса». Но мельком, без тех подробностей, которые перечислил Свифт, единственным «доказательством» служит такое соображение: одной луны было бы недостаточно, чтобы освещать по ночам столь далекую от Солнца планету!

Однако до подлинного, а не «научно-фантастического» открытия спутников Марса человечеству пришлось ждать еще полтораста лет, до 1877г., который стал поистине «марсианским». Джованни Скиапарелли в это время буквально поставил на ноги весь астрономический мир, сообщив о существовании на Красной планете «каналов» и «морей». Эта «марсианская горячка» имела под собой и объективную основу: 1877-й год был годом великого противостояния, при котором Марс и Земля очень близко подходят друг к другу. Такими благоприятными условиями не мог пренебречь опытный астроном Эсаф Холл (1829-1907), уже заслуживший себе немалый авторитет как один из лучшихнаблюдателей и вычислителей в Гарвардской обсерватории и профессор математики в Морской обсерватории (Вашингтон), которому и принадлежит открытие двух марсианских лун.

Узнав об открытии из газет, одна английская школьница предложила Холлу названия для новых небесных тел: богу войны в античных мифах вечно сопутствуют его детища – Страх и Ужас, так пусть внутренний из спутников именуется Фобосом, а внешний Деймосом, ибо так эти слова звучат в древнегреческом языке. Названия оказались удачными и закрепились навсегда.

В 1969г., том самом, когда люди высадились на Луне, американская автоматическая межпланетная станция «Маринер-7» передала на Землю фотографию, на которой случайно оказался Фобос, причем он был четко различим на фоне диска Марса. Более того, на фотографии была заметна тень Фобоса на поверхности Марса, и эта тень была не округлой, а вытянутой! Через два с лишним года Фобос и Деймос были специально сфотографированы станцией «Маринер-9». Были получены не только телеснимки с хорошим разрешением, но еще и первые результаты наблюдений при помощи инфракрасного радиометра и ультрафиолетового спектрометра.

«Маринер-9» подошел к спутникам на расстояние 5000 км, поэтому на снимках различались объекты с поперечником в несколько сотен метров. Действительно, оказалось, что форма Фобоса и Деймоса чрезвычайно далеко от правильной сферы. Их форма напоминает вытянутую картофелину. Телеметрическая космотехника позволила уточнить размеры этих небесных тел, которые теперь уже существенным изменениям не подвергнутся. По новейшим данным большая полуось Фобоса составляет 13,5 км, а Деймоса – 7,5 км, малая же – соответственно 9,4 и 5,5 км. Поверхность спутников Марса оказалась крайне пересеченной: они практически все испещрены гребнями и кратерами, имеющими, очевидно, ударное происхождение. Вероятно, падение метеоритов на незащищенную атмосферой поверхность, продолжавшееся чрезвычайно долгое время, могло привести к такой её изборожденности. Представляет интерес еще одна черта топографии Фобоса. Речь идет о каких-то загадочных бороздах, как бы нанесенных пахарем, неведомым, но очень аккуратным. При этом, хотя они и покрывают собой более половины поверхности спутника, все такие «гряды» сосредоточены только в одном районе Фобоса в северной его части.

Борозды тянутся на десятки километров, ширина их на разных участках колеблется от 100 до 200 м, глубина тоже неодинакова в различных местах. Как эти борозды образовались? Одни ученые во всем винили притяжение Марса, которое могло исказить лицо спутника такими морщинами. Но известно, что в начальную эпоху своего существования Фобос находился дальше от своего центрального тела, чем ныне. Лишь примерно один миллиард лет назад, постепенно сближаясь с Марсом, он стал реально ощущать его приливную силу, Следовательно, борозды могли возникнуть не раньше, а это противоречит данным, согласно которым возраст борозд много больше и, может быть, составляет 3 миллиарда лет. Кроме того, гравитационное воздействие Марса на Фобос продолжается и сегодня, значит, на его поверхности должны бы существовать совсем свежие борозды, однако их там нет.

Другие ученые считали, что борозды нанесены на поверхность спутника обломками породы, выброшенными из какого-то еще неизвестного крупного кратера.

Но далеко не все ученые с этим согласились. Часть специалистов считает более правдоподобной другую гипотезу, согласно которой вначале была единая большая протолуна Марса. Потом этот «родитель» обоих «братьев»- Фобоса и Деймоса – раскололся на два нынешних спутника, и борозды следы такого катаклизма.

Анализ фотографий, присланных на Землю орбитальным отсеком «Викинга-2», на которых поверхности спутников Марса окрашены в темные цвета, показал, что такая окраска чаще всего бывает свойственна породам, содержащим много углеродистых веществ. Но в тех относительно близких областях Солнечной системы, где пролегает орбита Марса с его спутниками, углеродистые вещества в обильных количествах не образуются. Значит, Фобос и Деймос , скорее всего «пришельцы», а не «туземцы».

Если они, действительно, сформировались где-то в сравнительно далеком уголке Солнечной системы, то к моменту, когда их захватило поле тяготения Красной планеты, они, по всей видимости, представляли собой единое тело, которое потом раскололось на несколько обломков. Часть этих обломков упала на поверхность Марса, часть ушла в космос, а два обломка стали спутниками планеты.

Однако следует прислушаться и к оппонентам, отвергающим возникновение спутников Марса путем захвата ранее самостоятельного тела и разлома его.

Крупнейший космогонист академик О.Ю.Шмидт разработал в свое время гипотезу образования Солнечной системы, согласно которой планеты возникли путем аккреции (слипания) твердых и газообразных частиц, первоначально составляющих протопланетное облако. Советские последователи О.Ю.Шмидта считают, что и спутники планет образовывались аналогичным путем. Весомым подтверждением их правоты служит подробная математическая модель, показывающая, как именно могут происходить такие процессы. Захват же планетами особенно крупных небесных тел эти исследователи считают весьма маловероятным событием.

Кратеры на Фобосе и Деймосе по размерам чуть ли не равны самим спутникам. Значит, столкновения были для них катастрофическими событиями. Форма спутников очень неправильная: иначе как обломочной, ее не назовешь. Следовательно, Фобос и Деймос в принципе, могут быть фрагментами некогда существовавшего более крупного тела.

Удалось даже прикинуть приблизительные размеры этого тела. Если бы его радиус достигал примерно 400 км, то «бомбардировка» метеоритов не привела бы к его разрушению и вокруг Марса сегодня обращались бы тела размером не в десять-пятнадцать, а в сотни километров.

Есть и еще одна гипотеза, связанная с поясом астероидов. Не исключено, что в далекие времена какой-то астероид залетел в атмосферу Марса, затормозился ею и превратился в его спутник. Однако очень уж плотна должна была бы быть для этого марсианская атмосфера.

Сторонники противоречащих друг другу гипотез возникновения спутников Марса обладают весомыми аргументами, и дело времени решать, кто же из них прав.

Одним из важнейших открытий космической эры является подтверждение существования солнечного ветра. Это могучие потоки заряженных частиц, извергаемые Солнцем. Со сверхзвуковой скоростью несутся они в космическом пространстве, обрушиваясь на все, что встретится на их пути. И только те небесные тела, которые подобно нашей Земле, обладают достаточно сильным магнитным полем, служащим прочным щитом от такого магнитного потока, не подвергаются в полной мере воздействию солнечного ветра.

Советские межпланетные станции «Марс-2» и «Марс-3» запущенные в 1971-1972гг. проводили наблюдение за тем, как солнечный ветер взаимодействует с «Красной планетой». Станции прислали на Землю сведения, согласно которым солнечный ветер не доходит до поверхности Марса, а натыкается на преграду и начинает обтекать планету со всех сторон. Это обтекание начиналось то ближе к Марсу, то дальше от него (в зависимости от силы «нападающих» частиц и сопротивления «обороняющегося» магнитного поля планеты), но в среднем расстояние от центра планеты составляло около 4800 км. Дальнейшие исследования показали, что в определенной области околомарсианского космического пространства скопление ионов в десять с лишним раз меньше, чем в других. Да и энергетический спектр этих заряженных частиц совсем иной. Странная область не оставалась на одном месте. Когда ее перемещения были исследованы, оказалось, что она движется вместе с Деймосом, все время прячась за его спиной на расстоянии около 20 000 км. Советский астрофизик А.В.Богданов высказал предположение, что очевидно, с поверхности Марса идет сильно выделение газов, которые взаимодействуют с окружающим его пространством. Когда Деймос проходит непосредственно между Марсом и Солнцем, область столкновения солнечного ветра с магнитосферой Марса удаляется от планеты, как будто «обороняющаяся» сторона, получив подкрепление, может отогнать «наступающих», и размер марсианской магнитосферы становится значительно больше. А ведь до сих пор считалось, что малые тела нашей Солнечной системы, такие, как например, астероиды или небольшие спутники планет, подобные Деймосу, на мощный поток солнечного ветра воздействовать бессильны.

Еще одна странность, на которую обратили внимание исследователи спутников Марса: крупные кратеры, диаметр которых превышает 500 м, на Деймосе встречаются примерно так же часто, как и на Фобосе. А вот мелких кратеров, которыми Фобос просто усыпан, на Деймосе весьма мало. Дело в том, что поверхность Деймоса усеяна мелкораздробленными камнями и пылью, и мелкие кратеры засыпаны до краев, поэтому поверхность Деймоса выглядит более гладкой. Возникает вопрос: почему же никто, фигурально выражаясь, не засыпает котлованы на Фобосе? Существует гипотеза, что Фобос и Деймос подвергаются мощной метеоритной бомбардировке – ведь атмосферы, которая послужила бы надежным щитом, у них нет. При ударе метеоритного тела о поверхность Фобоса образующаяся пыль и мелкие камни в большей части улетают с его поверхности: сильно тяготение сравнительно близкого Марса «отбирает» их у спутника.

А Деймос находится от планеты куда дальше, поэтому выброшенные при падении на его поверхность метеоритные камни и пыль в значительной мере зависают на орбите Деймоса. Возвращаясь в прежнюю точку орбиты, «Ужас» постепенно снова собирает осколки и пыль, они оседают на его поверхности и погребают над собой многие свежие кратеры и в первую очередь те, что помельче.

Верхний рыхлый слой Луны, Марса, его спутников, та часть их поверхности, которой на Земле соответствует почва, именуется реголитом. Теперь можно считать установленным, что реголит марсианских лун сходен с тем, что наблюдается на нашей «земной» Луне. Вообще-то присутствие реголита на Фобосе и Деймосе ученых сначала удивило. Ведь вторая космическая скорость, по достижении которой любой предмет уходит в межпланетное пространство, на таких мелких небесных телах составляет всего каких-нибудь 10 м/c. Поэтому при ударе метеорита любой булыжник становится здесь «космическим снарядом».

Подробные снимки Деймоса позволили обнаружить пока еще необъяснимый факт: оказывается, некоторые кратерные валы и примерно десятиметровые каменные глыбы, рассеянные по поверхности Деймоса, украшены длинным шлейфом. Эти шлейфы выглядят как довольно длинная полоса, образованная как бы выброшенным из глубины мелкозернистым материалом. Нечто подобное есть и на Марсе, но, кажется, там эти полосы выглядят несколько иначе. Во всяком случае, специалистам опять есть над чем поломать голову….

В 1945 году астроном Б.П.Шарплесс пришел к убеждению, что у Фобоса в его движении вокруг Марса существует вековое ускорение. А это значило, что спутник движется все скорее по очень-очень пологой спирали, постепенно тормозясь и все ближе подходя к поверхности планеты. Подсчеты Шарплесса показали, что если ничего не изменится, то за какие-нибудь 15 миллионов лет Фобос упадет на Марс и погибнет.

Но вот наступил космический век, и человечеству стали ближе проблемы астрономии. О процессах торможения искусственных спутников в атмосфере Земли узнали широкие массы. Ну, а так как атмосфера есть и у Марса, правда очень разреженная, то не может ли она своим трением вызывать вековое ускорение Фобоса? В 1959 году И.С.Шкловский выполнил соответствующие вычисления и сделал вывод, вызвавший брожение как в умах ученых, так и в умах широкой публики.

То вековое ускорение, которое мы наблюдаем в условиях разреженной верхней атмосферы Марса, может быть объяснено только, если предположить у Фобоса очень малую плотность, такую малую, которая не позволила бы спутнику развалиться на куски, если он… полый. Как и подобает ученому, И.С.Шкловский не делал никаких безапелляционных утверждений; он и сам считал поставленный им вопрос «весьма радикальным и не совсем обычным» предположением.

В 1973 году ленинградский ученый В.А.Шор и его коллеги в Институте теоретической астрономии АН СССР завершили обработку свыше пяти тысяч исчерпывающих по полноте данных, собранных почти за целый век со дня открытия Фобоса и Деймоса. Выяснилось, что Фобос все-таки ускоряется. Правда, значительно слабее, чем считал Шарплесс.

А раз ускорение есть, мы можем предсказать судьбу Фобоса: не более чем через 100 миллионов лет он так сблизится с Марсом, пересечет гибельный предел Роша и будет растерзан приливными силами. Часть обломков спутника упадет на Марс, а часть, вероятно, представится нашим потомкам в виде красивого кольца, подобно тому, которым ныне славится Сатурн.

Что касается Деймоса, то здесь ни у кого нет сомнений: вековым ускорением он не обладает.

А нет ли у Марса еще каких-нибудь спутников, доселе неизвестных? Этот вопрос поставил перед собой Дж.П.Койпер, директор Лунно-планетной обсерватории при Университета штата Аризона. Для того чтобы ответить на этот вопрос, он разработал специальную фотографическую технику, позволяющую фиксировать даже очень слабо светящиеся объекты. Все его исследования не привели к открытию нового спутника Марса.

Затем поиски неведомого спутника Марса проводил сотрудник Эймсовского исследовательского центра НАСА в Калифорнии Дж.Б.Полак. Его исследования также не увенчались успехом. Так что по-прежнему можно считать, что лишь Страх и Ужас сопутствуют небесному воплощению бога войны.

Марсианские программы.

За последние 20 лет к Марсу и его спутникам было совершено множество полетов. Исследования проводили русские и американские станции. Но большинство программ были сорваны. Вот их хронология:

Ноябрь 1962г. АМС «Марс-1» прошел в 197000 километров от «красной» планеты. После 61 сеанса связь потеряна.

Июль 1965г. «Маринер-4» прошел на расстоянии 10 тысяч км. от Марса. Было получено множество фотографий поверхности этой планеты, были обнаружены кратеры, уточнена масса, состав атмосферы.

1969г. «Маринер-6» и «Маринер-7» находились на расстоянии 3400 км. от поверхности. Было получено несколько десятков снимков с разрешением до 300м.

Май 1971г. Запускаются «Марс-2» и «Марс-3» и «Маринер-9».

«Марс-2,-3» вели исследования с орбит искусственных спутников, передавая данные о свойствах атмосферы и поверхности Марса по характеру излучения в видимом, инфракрасном и ультрафиолетовом диапазонах спектра, а также в диапазоне радиоволн. Была измерена температура северной шапки (ниже -110С); определены протяженность, состав, температура атмосферы температура поверхности, получены данные о высоте пылевых облаков и слабом магнитном поле, а также цветные изображения Марса. После проведенных исследований обе станции были потеряны.

«Маринер-9» передал на Землю 7329 снимков Марса с разрешением 100м, а также фотографии его спутников.

1973г. Космические аппараты «Марс-4,-5,-6,-7» достигла окрестностей Марса в начале 1974г. Из-за неисправности бортовой системы торможения «Марс-4» прошел на расстоянии около 2200 км от поверхности планеты, выполнив только ее фотографирование. «Марс-5» проводил дистанционные исследования поверхности и атмосферы с орбиты искусственного спутника. «Марс-6» совершил мягкую посадку в южном полушарии. На Землю были переданы данные о химическом составе, давлении и температуры атмосферы. «Марс-7» прошел на расстоянии 1300 км от поверхности, не выполнив своей программы.

1975г. Запущены два американских «Викинга». Посадочный блок «Викинга-1» совершил мягкую посадку на Равнине Хриса 20 июля 1976г., а «Викинга-2» – на Равнине Утопия 3 сентября 1976г. В местах посадок были проведены уникальные эксперименты с целью обнаружения признаков жизни в марсианском грунте.

1988г. Советские станции «Фобос-2,-3», которые должны были исследовать Марс и его спутник Фобос, не смогли, к сожалению, осуществить основную программу. Связь была потеряна 27 марта 1989г.

1992г. Американский космический аппарат «Марс-Обсервер» также не выполнил своей задачи, связь с ним была потеряна 21 августа 1993г.

ИЮЛЬ 1997г. «Mars Pathfinder» – самая интересная из программ исследования Марса, о ней стоит рассказать подробнее.

4 июля 1997 года на поверхность Красной планеты опустился автоматический аппарат землян «Патфайндер» (Следопыт). Весь путь к Марсу протяженностью полмиллиарда километров «следопыт» преодолел со скорость более ста тысяч километров в час. Американские специалисты, создавшие межпланетный зонд и отправившие его в столь длительное и опасное путешествие, проявили чудеса изобретательности, чтобы «Следопыт» добрался до места в целости и сохранности. Особенно тревожились они за последний этап – посадку зонда на поверхность.

Наибольшую опасность для зонда представляли неистовые бури на Марсе. Перед посадкой был замечен неистовый шторм примерно в тысячи километрах от точки приземления.

«Следопыт» впервые должен был достигнуть Красной планеты без выхода на орбиту. Для этого включились тормозные ракеты, и зонд вошел в атмосферу Марса на сниженной скорости 7,5 км. в секунду. Для дальнейшего торможения спуска был выпущен парашют с гирляндой надувных баллонов. Парашют уменьшил скорость до 100 метров в секунду. За 8 секунд до посадки заполнились газом баллоны. Непосредственно перед касанием скального грунта был «отстрелян» парашют, баллоны ударились о почву, спружинив, подскочили на высоту 15 метров. И так, подпрыгнув несколько раз, весь комплекс замер лишь в 20 километрах от запланированного места.

И здесь случилась небольшая неполадка: один из надувных баллонов зацепился за край «лепестка» (секции раскрытой солнечной батареи) и помешал выходу из чрева аппарата самоходного шестиколесного робота «Соджорнер» («Попутчик»). Пришлось по команде с Земли поднять секцию солнечной батареи на 45 градусов и держать ее в таком положении 10 минут. За это время баллон был приспущен, что дало возможность «Попутчику» выкатиться на скальный грунт и приступить к исследованиям.

Через 90 минут после посадки зонда специалисты НАСА получили первые слабые радиосигналы с антенны, закрепленной на одном из лепестков. Это значило, что посадка прошла успешно. Сигналы передавались в мертвой тишине при температуре минус 220 Цельсия! Предстояло длительное ожидание в течение нескольких часов марсианского восхода солнца для возможности подзарядки солнечных батарей. Тогда пойдут сигналы от более мощной антенны, а вместе с ними и снимки поверхности планеты.

Первые же полученные стереоскопические снимки показали, что посадка совершена в районе древнего канала Арес Валлис, который некогда переносил в тысячи раз больше воды, чем наша нынешняя Амазонка. Как известно, «каналы» были обнаружены с Земли сто лет назад и вызвали к жизни гипотезы о разумных марсианах, развернувших на своей планете мощную ирригационную систему.

Специалисты по метеоритам, увлеченные поисками следов жизни на Марсе, заявили, что на снимках представлено большое разнообразие скальных пород, заслуживающих серьезного внимания геологов. Некоторые скалы несут явные следы былых воздействий водных масс.

Межпланетный зонд «Следопыт» является предшественником амбициозной серии дальнейших марсианских экспедиций. Особый интерес к ним разожгли прошлогодние находки следов примитивных форм жизни в марсианском метеорите, упавшем на Землю более 1300 лет назад.

В конце этого года ожидается выход на марсианскую орбиту автоматического зонда «Марс Глобал Сервейор», запущенного одновременно со «Следопытом». Следующий аппарат с выходом на марсианскую орбиту планируется запустить в будущем году. В плане исследователей запуски беспилотных зондов в 2001, 2003 и, наконец, в 2005 году, когда марсианские пробы грунта будут доставлены на Землю.

Кто вы жители Марса?

Всего двадцать лет назад было трудно найти человека, который хотя бы раз не присутствовал на лекции «Есть ли жизнь на Марсе?». За срок примерно в полвека (рекорд выживаемости для научно-популярных лекций) название успело слегка поднадоесть людям, озабоченным более земными проблемами.

Еще в конце прошлого века астрономом Скиапарелли были открыты на Марсе линии, пересекающиеся под разными углами. Первооткрыватель назвал линии каналами и тем самым подложил бомбу под самого себя: в итальянском языке слово «canali» обозначает «пролив, проток», во всех остальных языках – «искусственно прорытое русло». Обыватели намек поняли, конечно, буквально. Что касается профессионалов-астрономов, то эти сугубо мирные люди раскололись на два враждебных лагеря: на сторонников Скиапарелли, считающих “canali” оптическим обманом и игрой воображения, и на приверженцев Персиваля Ловелла, который объяснил причину возникновения каналов строительной деятельностью обитателей Марса. Они-де специально построили каналы для перекачки воды из полярных шапок в засушливые экваториальные районы. И действительно, каждую марсианскую весну районы вокруг каналов начинали зеленеть.

Хотя в искусственное происхождение каналов, обнаруженных Скиапарелли, верили немногие ученые, проблема существования растительной жизни на Марсе обсуждалась совершенно серьезно. Возникла даже специальная наука – астроботаника, которая объясняла изменения в каналах и темных областях наличием растительности. Людям так хотелось в это верить, что все другие гипотезы просто отбрасывались. «Если это не растения, тогда что?” – спрашивали они. И действительно, казалось, что другого объяснения странному поведению темных областей и каналов найти невозможно.

В 1965 году были переданы на Землю первые фотографии с Марса, сделанные с небольшого расстояния. Увы, эти изображения не помогли раскрыть тайну марсианских каналов. Каналов на них просто не было! И все последующие исследования не обнаружили никаких признаков растительности или искусственных сооружений. Спускаемые аппараты «Викинг-1» и «Викинг-2» передали изображения безжизненных марсианских пейзажей, подобные которым на Земле можно найти разве что в пустынях: камни и песок под красноватым небом. Но люди продолжали надеяться. Если не растения, то, может быть, хотя бы бактерии?!

На “Викингах” были запланированы специальные биологические эксперименты. Они основывались на естественном предположении, что если на Марсе есть жизнь, то по своей химической природе она не может сильно отличаться от земной. Первый эксперимент был направлен на поиски следов фотосинтеза в марсианском грунте, второй должен был выявить изменение химического состава грунта в процессе жизнедеятельности микроорганизмов, в третьем грунт помещали в питательный бульон и фиксировали изменения в нем. Все три эксперимента показали, что скорее всего даже микроорганизмы на Марсе отсутствуют, хотя из-за некоторых химических сложностей дать совершенно четкий ответ на вопрос: «есть ли жизнь на Марсе?» на этот раз не удалось.

Космические аппараты прислали на Землю фотографии безжизненной поверхности, изъеденной такими же как на Луне, кратерами. Астрономы вздохнули и помирились, поводов для спора больше не было. Разочарование было на столько большим, что вновь вытаскивать на свет божий старый вопрос стало считаться дурным тоном. Но вскоре оптимизм сторонникам существования жизни на Марсе внушили те же фотоснимки, которые так недавно похоронили их мечты. Широкую известность получил лишь один из них - «фотопортрет» странного марсианского образования, весьма напоминающего женское лицо.

В 1979 году разочарование и уныние, навеянное безжизненными пейзажами, у операторов в Центре управления полетами было столь велико, что они почти с полным равнодушием оформили и этот, поступивший с «Викинга» снимок номер 35А72. С поверхности далекого Марса на операторов смотрело огромное женское лицо. Ну и что? На памяти все еще был пример с «каналами», привиделись же прямые линии на красной планете, теперь вот привиделась женщина, видимо, по причине усталости.

Прошло совсем немного времени, «снимок с оптическим обманом» выкупил некий западногерманский программист, который недолго думая, ввел его параметры в компьютер с целью приблизить изображение, взглянуть на него не с высоты орбиты в сотни километров, а всего лишь с полутора километров. Когда ЭВМ распечатала результат, он был поражен – оптический обман полностью исчез, на него действительно смотрела женщина! За неморгающий, устремленный в небо, взгляд и за характерную «древнеегипетскую прическу» это изваяние полущило прозвище «марсианский сфинкс».

Сенсация просто не могла не попасть на страницы прессы, после чего, как всегда, немедленно появились опровержения. Руководитель программы «Викинг» К.Снайдер, тот самый, что допустил утечку ценной фотографии, не скрывая раздражения, заявил, что «обнаруженное изображение – всего лишь скальные образования, принявшие причудливые очертания в результате игры света и теней».

Не воздержались от изучения фотографии и в Институте геохимии и аналитической химии им.Вернадского. По мнению кандидата географических наук Р.Кузьмина, «все дело в косом освещении, свет низко расположенного Солнца, отбрасывает тени от обычных бугорков, а что касается ноздрей и ожерелья на лице, то это обычные помехи, возникшие при передаче изображения на Землю!»

Действительно, по закону теории вероятностей коварная игра света и тени вполне могли вдруг составить любое изображение, но если это не настоящее изображение, то стоит только поменять направление освещения как весь это эффект немедленно пропадет. Но надо отдать должное упоминавшемуся Снайдеру, работники НАСА отыскали еще один, ранее забракованный снимок, сделанный на другом витке и, следовательно, в другое время. Сфинкс хоть и был слегка виден, но тем не менее не исчез.

Получив в свои руки два снимка, американские специалисты приступили к компьютерной постройке стереоизображения. Ноздри, ожерелье, другие точки, считавшиеся помехами, на новом изображении почему-то не исчезли, зато ЭВМ уверенно вырисовывала только ею увиденные зрачки глаз и даже зубы в приоткрытом рту!

Теперь стало возможным оценить примерные размеры исполина. Длина от подбородка до волос – 1,5 км, ширина – 1,3 км, высота от поверхности пустыни до кончика носа 0,5 км! Если изображение женского лица как-то сразу бросилось в глаза, то на сооружения, отстоящие от сфинкса на 7 км, обратили внимание несколько позже. Самые мощные на сегодняшний день компьютеры показывают трехмерное изображение Ацидалийской равнины на Марсе. Обнаружены 19 пирамид и строений, дороги и странная круглая площадка. Дороги явно проложены не случайным образом, две из них подходят к пирамидам, сразу три сходятся в кругу, в центре города. Размеры и здесь поражают воображение: самая большая центральная пирамида почти в десять раз превосходит знаменитую пирамиду Хеопса в Египте. Если пирамиды нам хоть как-то близки и понятны, то о назначении круга диаметром в километр можно спорить до бесконечности: космодром, полигон, лаборатория типа ускорителя, центральная площадь города. Судя по обилию проходящих дорог, последний вариант наиболее предпочтительный. Нет никаких сомнений, что город построен очень давно и в настоящее время необитаем. Откуда это известно? Посудите сами: крупные метеориты не так уж часто падают на поверхность планеты, на снимках городах видны по крайней мере два попадания крупных метеоритов в левую большую пирамиду и в перекресток дорог. Ни то, ни другое не восстановлено, вероятно, потому что восстанавливать уже некому. Если раньше на Марсе была вода, воздух, текли реки, была жизнь, то в настоящее время никаких условий для жизни человека на Марсе нет: чрезвычайно разреженная атмосфера (всего 0,6 процента от земной), атмосфера из углекислого газа, отсутствие воды, температура от –139 до + 22 градусов Цельсия! Нет, люди должны были погибнуть здесь, либо уйти из этого мира.

Марс терял атмосферу очень и очень долго, он очень медленно превращался из планеты с реками и морями в планету с холодными пустынями. Не значит ли это, что город вымер миллионы лет назад? Нет! Мы не знаем из какого материала возведены сфинкс и пирамиды, и потому не можем сказать, что за такое большое время они должны были бы развалиться; зато мы точно знаем, что 5-10 тысяч лет из-за частных пылевых бурь от дорог могли остаться лишь воспоминания. Еще один аргумент в пользу сравнительной молодости города: некоторые дороги были построены явно в объезд метеоритных кратеров! Это значит, что люди строили дороги, уже когда метеориты не задерживались в разреженной атмосфере, т.е. люди-марсиане работали в атмосфере, такой какая у нас бывает на высоте до 20-40 км. В такой атмосфере не то что работать, просто находится можно считанные секунды! Получается, что марсиане работали в скафандрах с помощью роботов. Или может быть проще – они делали очень прочные дороги на возвышениях, так, чтобы их не засыпало песком?

И все же одна мысль, несмотря на все оговорки, так и не идет из головы. Несколько тысяч лет назад на красной планете жили люди, строили огромные сооружения, возвели рядом с живописными горами большой город Кидония, а затем город погиб вместе с планетой…. Может быть, по причине искусственно вызванной экологической катастрофы, а может быть гибель Марса вызвана вполне естественными причинами, марсиане лишь ускорили ход событий и не смогли спасти положение? В любом случае хотелось бы знать, что стало с жителями Кидонии? Они ушли из города как раз тогда, когда на Земле начала развиваться цивилизация, неужели все они перелетели на Землю и дали мощный толчок в развитии Землян (чтобы через тысячи лет уже здесь вновь подойти к угрозе экологической катастрофы)? Хотелось бы верить, что все они спаслись. Но отчего же тогда так печален лик марсианского сфинкса? И российские и американские компьютеры заметили и выделили на правой щеке небольшую точку (всего 50 метров). Слеза! Так по ком же плачет марсианская женщина, взгляд которой устремлен в небо?

Итак, историю поисков жизни на Марсе можно назвать историей разочарования. Человек с давних пор мечтал о встрече с братьями по разуму, и Марс представлялся наиболее вероятной родиной для них. Современные наблюдения обошлись с этой мечтой слишком безжалостно, но люди продолжают надеяться, что они не одни во Вселенной.

Реферат Есть ли жизнь на Марсе? «Есть ли жизнь на Марсе, нет ли жизни на Марсе - науке неизвестно» - это не просто удачный афоризм из популярной кинокомедии «Карнавальная ночь», который широко вошел в наш разговорный язык и стал ходячей шуткой. Главное здесь в том, что эта фраза очень долгое время отражала наш действительный уровень знаний о существовании жизни на красной планете.

Реферат Планета Марс Марс – от греческого Mas – мужская сила – бог войны, в римском пантеоне почитался как отец римского народа, охранитель полей и стад, позднее – покровитель конных состязаний. Марс – четвертая планета Солнечной системы. Сияющий кроваво-красный диск, увиденный в телескоп, наверняка ужаснул астронома, открывшего эту планету. Поэтому ее так и назвали.

Реферат Все про Марс внимание на ярко-оранжевую звезду, которая время от времени сияла на небосклоне. Древние египтяне и жители Вавилона называли ее просто красной звездой. Пифагор предложил именовать ее Пирей, что значит "пламенный". Древние греки посвящали все планеты богам. И конечно, для бога войны Ареса не нашлось более подходящего символа, чем красноватая звезда в черном небе.

Реферат Марс и его спутники Марс – от греческого Mars – мужская сила – бог войны, в римском пантеоне почитался как отец римского народа, охранитель полей и стад, позднее – покровитель конных состязаний. Марс – четвертая планета Солнечной системы, и у него 2 спутника – Фобос и Деймос. Ни одна из планет Солнечной системы не притягивает столько внимания и не остается столь загадочной.

Реферат Марс: красная планета Марс – загадочная планета, он издавна притягивал к себе взоры людей. В эпоху античности Марс ассоциировался с богом войны. В XIX-XX веках о Марсе много писали писатели-фантасты. Долгое время людей волновал вопрос: «Возможна ли жизнь на Марсе?». Да и сейчас он не утратил своей актуальности. Марс издавна окружён ореолом романтики и мифов.

Реферат Исследование Марса Ни одна из планет Солнечной системы не притягивает столько внимания и не остается столь загадочной. «Тихая» по своим данным планета более «агрессивна» к вторжению извне, чем Венера – планета с самыми жесткими условиями (среди планет данной группы).Многие называют Марс «колыбелью великой древней цивилизации», другие – просто еще одной «мертвой» планетой Солнечной системы.

nreferat.ru

Реферат Исследование Марса

скачать

Реферат на тему:

План:

    Введение
  • 1 Первые исследования Марса
  • 2 Модели Солнечной системы
  • 3 Первые наблюдения при помощи телескопов
  • 4 Картографирование Марса и географический период
  • 5 Марсианские каналы
  • 6 Пересмотр и уточнение планетарных параметров
  • 7 Исследование марса в XX веке
    • 7.1 Изучение с помощью орбитальных телескопов
    • 7.2 Исследование Марса космическими аппаратами. Марсианские миссии
      • 7.2.1 Успешно завершённые миссии
      • 7.2.2 Неудавшиеся миссии
      • 7.2.3 Текущие миссии
    • 7.3 Исследование марсианских метеоритов
  • 8 Дальнейшее изучение Марса
    • 8.1 Планируемые миссии
    • 8.2 Пилотируемый полёт на Марс
  • 9 Интересные факты
  • ЛитератураПримечания

Введение

Снимок Марса с телескопа Хаббл

Исследование и изучение Марса — это историко-научный процесс сбора, систематизации и сопоставления данных о четвертой планете Солнечной системы. Процесс изучения охватывает различные области знания, в том числе астрономию, биологию, планетологию и др.

Исследование Марса началось давно, ещё 3,5 тысячи лет назад, в Древнем Египте. Первые подробные отчеты о положении Марса были составлены вавилонскими астрономами, которые разработали ряд математических методов для предсказания положения планеты. Пользуясь данными египтян и вавилонян древнегреческие (эллинистические) философы и астрономы разработали подробную геоцентрическую модель для объяснения движения планет. Спустя несколько веков индийскими и исламскими астрономами был оценен размер Марса и расстояние до него от Земли. В XVI веке Николай Коперник предложил гелиоцентрическую модель для описания Солнечной системы с круговыми планетарными орбитам. Его результаты были пересмотрены Иоганном Кеплером, который ввел более точную эллиптическую орбиту Марса, совпадающую с наблюдаемой.

Первые телескопические наблюдения Марса были проведены Галилео Галилем в 1610 году. В течение XVII столетия астрономы обнаружили на планете различные оптические особенности, в том числе темное пятно моря Сырт и полярные ледяные шапки. Также был определен период вращения планеты и наклон её оси. Телескопические наблюдения Марса в первую очередь были сделаны, когда планета достигала оппозиции к Солнцу, то есть при наименьшем расстоянии между Марсом и Землей.

Улучшение качества оптики у телескопов в начале XIX века позволило провести картографирование постоянных оптических особенностей. Первая карта Марса была опубликована в 1840 году, а более точное картографирование началось с 1877 года. Позже астрономами были обнаружены спектральные подписи молекул воды в атмосфере Марса; из-за этого открытия среди широких слоев населения становится популярной мысль о возможности жизни на Марсе. Персиваль Лоуэлл считал, что увидел на Марсе сеть искусственных каналов. Эти наблюдения, как потом оказалось, были оптическими иллюзиями, а атмосфера у Марса оказалась слишком тонкой и сухой для поддержки климата земного типа.

В 1920-е годы был измерен диапазон температур у марсианской поверхности, и установлено, что поверхность Марса находится в экстремальных условиях пустыни. В 1947 году Джерард Койпер показал, что тонкая атмосфера Марса содержит большой объем двуокиси углерода. Первая стандартная номенклатура оптических особенностей Марса была принята в 1960 году на заседании Международного астрономического союза. С 1960-х годов началась отправка дистанционно управляемых спутников для изучения поверхности планеты с её орбиты. В настоящее время Марс по-прежнему находится под наблюдением наземных и космических инструментов, позволяющих исследовать поверхность планеты в широком диапазоне электромагнитных волн. Обнаружение на Земле метеоритов марсианского происхождения позволило исследовать химические условия на планете. Дальнейшее развитие исследования планеты связано с продолжением исследования планеты космическими аппаратами и осуществление пилотируемого полёта на Марс.

1. Первые исследования Марса

Прямое и попятное движение Марса относительно Земли

Существование Марса как блуждающего объекта в ночном небе было письменно засвидетельствовано древнеегипетскими астрономами в 1534 году до н. э. Ими же было установлено ретроградное (попятное) движение планеты и рассчитана траектория движение вместе с точкой, где планета меняет свое движение относительно Земли с прямого на попятное[1]. Среди обозначений Марса встречается название «Он движется в обратном направлении», отмечающее интервал попятного движения. Другое название Марса, «Красный Хор», с несомненностью указывает на то, что в основе названий лежат наблюдения. Марс был изображен на потолке гробницы Сети I и Рамессеума, однако пропущен в карте звездного неба, созданной древнеегипетским ученым и архитектором Сенмутом. Последнее может быть связано с соединением Марса и Солнца в то время[2].

В период Нововавилонского царства вавилонские астрономы проводили систематические наблюдения за положением и движением планет. Они установили, что Марс делает 37 синодических периода или 42 зодиакальных круга, каждые 79 лет. Ими также были разработаны арифметические методы с малыми поправками для прогноза позиции планеты. В вавилонской планетарной теории были впервые получены временные измерения планетарного движения Марса и уточнено положение планеты на ночном небе[3][4].

Китайские записи о внешнем виде и движении Марса уже появляются в период до основания династии Чжоу (1045 год до н. э.), также во время династии Цинь (221 год до н. э.). Китайские астрономы делали записи о планетарных союзах планет, в том числе о соединениях с Марсом. В 375 году н. э. было отмечено покрытие Марса Венерой. Более подробно период и орбита движения планеты были вычислены во время династии Тан (618 год н. э.)[5][6][7][8].

Астрономия в Древней Греции развивалась под влиянием месопотамской культуры и знаний. Из-за того, что вавилоняне отождествляли планету Марс с Нергалом — богом войны и эпидемии, греки отождествили планету с своим богом войны — Аресом (Марсом у римлян)[9]. В период становления греческой астрономии движение планет не представляет большого интереса для греков, и в учебнике Гесиода для древнегреческих школ Труды и дни (ок. 650 года до н. э.) нет упоминания о планетах[10].

2. Модели Солнечной системы

Геоцентрическая система мира Клавдия Птолемея

Гелиоцентрическая система мира Николая Коперника (первое печатное изображение Солнечной системы)

Греки использовали слово planēton для обозначения семи небесных тел, изменяющих свое положение относительно неподвижных звёзд. Они считали, что такие тела движутся по геоцентрической орбите вокруг Земли. Греческий философ Платон написал старейшие из известных записей о греческой астрономической традиции в области планет в своей работе «Государство» (616—617 годы до н. э.). Его список, в порядке от наиболее отдаленного до ближайшего к центру объектов, был таким: Сатурн, Юпитер, Марс, Меркурий, Венера, Солнце, Луна и в центре Земля. В своих диалогах Тимей Платон предположил, что вращение планет на небесной сфере зависит от расстояния, поэтому дальний объект движется медленнее всего[11].

Аристотель, ученик Платона, в 365 году до н. э. наблюдал покрытие Марса Луной. Из наблюдений он сделал вывод, что Марс должен находиться дальше от Земли, чем Луна. Он также указывал о других подобных феноменах: затмениях звёзд и планет, которые были отмечены у египетских и вавилонских астрономов[12][13][14]. Аристотель использовал эти данные в поддержку греческой последовательности планет в геоцентрической модели вселенной[15]. В своей работе «О небе» Аристотель предложил модель Вселенной, в которой Солнце, Луна и планеты движутся по окружностям вокруг Земли на фиксированном друг от друга расстоянии. Более сложная версия геоцентрической модели была разработана греческим астрономом Гиппархом. Он предложил модель, в которой Марс и другие планеты движутся вокруг Земли не по равномерной окружности, а по траектории, названной впоследствии эпициклом[16][17].

В Римском Египте во втором веке н. э. Клавдий Птолемей пытался разрешить проблему орбитального движения Марса. По наблюдениям Марс движется на 40 % быстрее в одной полуплоскости своей орбиты, чем другой — этот факт полностью опровергает аристотелевскую модель равномерного движения. Птолемей доработал модель Аристотеля, внеся в нее изменения, добавив к равномерному движению по круговой орбите смещение от центра этой орбиты. Модель Птолемея и его исследования по астрономии были подробно изложены в многотомном труде Альмагест, который стал авторитетным трактатом по астрономии в Западной Европе следующие четырнадцать веков[17].

В пятом веке н. э. в древнеиндийском астрономическом трактате Сурья-сиддханта угловой размер Марса был оценен как две угловые минуты, а расстояние от него до Земли в 10 433 000 км. (1 296 600 йоджана, где одна йоджана равна 8 км.). Поэтому диаметр Марса будет равен 6070 км. (754,4 йоджана), и это значение имеет погрешность в пределах 11 % от принятого в настоящее время значения 6788 км. Однако эта оценка была основана на неточной догадке об угловом диаметре планеты, по которой он должен быть равен в пределах двух угловых минут. Результаты, возможно, были получены под влиянием измерений Птолемея, который получил значение в пределах 1,57 угловых минуты. Эта величина близка к разрешению человеческого глаза, значительно больше, чем значения, которые были получены позже с помощью телескопа[18].

В 1543 году польский астроном Николай Коперник в своей работе «Об обращении небесных сфер» (лат. «De Revolutionibus coelestium orbium») представил гелиоцентрическую модель Солнечной системы. В его подходе Земля вращалась вокруг Солнца по круговой орбите между круговыми орбитами Венеры и Марса. Его модель успешно объяснила причины, по которым Марс, Юпитер и Сатурн находились на противоположной стороне небесной сферы относительно Солнца в середине их попятного движения. Коперник смог расставить положение планет вокруг Солнца в правильном порядке, основываясь исключительно на периоде их орбиты вокруг Солнца[19]. Его теория постепенно получила признание у европейских астрономов, в частности этому сильно способствовало опубликование в 1551 году «Прусских таблиц» немецкого астронома Эразма Рейнгольда, которые были рассчитаны с использованием модели Коперника[20].

13 октября 1590 года немецкий астроном Михаэль Местлин зафиксировал покрытие Марса Венерой[21]. Один из его студентов, Иоганн Кеплер, стал приверженцем системы Коперника. После завершения своего образования, Кеплер стал помощником датского дворянина и астронома Тихо Браге. Имея доступ к данным Тихо Браге по детальному наблюдению Марса, Кеплер провел работу по математической систематизации и замене прусских таблиц. После неоднократных провалов в наблюдении круговой орбиты Марса, в соответствии с требованиями теории Коперника, Кеплеру удалось теоретически обосновать наблюдения Тихо Браге, предположив, что Марс обращается не по круговой, а по эллиптической орбите, в одном из фокусов которой расположено Солнце. Его модель стала основой законов, описывающих движения планет, которые были опубликованы им в многотомной работе «Астрономия Коперника» (лат. «Epitome astronomia Copernicanae») в 1615—1621 годах[22].

3. Первые наблюдения при помощи телескопов

Телескопическое наблюдение и картографирование Марса

Доменико Тинторетто. Портрет Галилео Галилея, 1605—1607 гг.

Полярная шапка Марса

Итальянский ученый Галилео Галилей был первым человеком, использовавшим телескоп для астрономических наблюдений. В его записях указано, что он начал наблюдения Марса в телескоп в сентябре 1610 года с целью обнаружить у планеты фазы затмения, аналогичные наблюдаемым у Венеры и Луны. Хотя точно неизвестно об успехе обнаружения, Галилеем в декабре 1610 года было отмечено, что угловые размеры Марса уменьшились[23]. Изменение освещенности Марса было подтверждено только через тридцать пять лет польским астроном Яном Гевелием[24].

Альбедо Большого Сырта (снимок НАСА)

В 1644 году итальянский иезуит Даниэлло Бартоли сообщил о наблюдении двух темных пятен на Марсе. Наблюдая в 1651, 1653 и 1655 годах планету в оппозиции, когда она больше всего сближается с Землей, итальянский астроном Джованни Баттиста Риччиоли совместно со своим учеником Франческо Мария Гримальди также отметили пятна с различной отражательной силой[25].

Голландский астроном Христиан Гюйгенс первым составил первым карту поверхности Марса, отражающую множество деталей местности. 28 ноября 1659 года он сделал несколько иллюстраций Марса, на которых были отображены различные темные области, позже сопоставленные с морем Сырт и, возможно, одной из полярных шапок[26]. В том же году ему удалось измерить период вращения планеты, равный, по его расчетам, 24 земным часам[24]. Также он сделал грубую оценку диаметра Марса, предположив, что он равен около 60 % от диаметра Земли (эта оценка сопоставима с современным значением в 53 %)[27].

Предположительно, первые наблюдения о существовании у Марса ледяной шапки на южном полюсе были сделаны итальянским астрономом Джованни Доменико Кассини в 1666 году. В том же году он использовал при наблюдениях Марса маркировку поверхности, и определил период вращения, равный 24 ч. 40 м. (это отличается от правильного значения менее чем на 3 минуты). В 1672 году Христиан Гюйгенс заметил нечеткую белую шапочку и на северном полюсе[28]. Позже, в 1671 году, Кассини становится первым директором Парижской обсерватории, где он занимался решением проблемы о физическом масштабе Солнечной системы. Для этого из разных точек на Земле было измерено положение Марса на фоне звезд — суточный параллакс. Из-за перигельной оппозиции Марса к Солнцу, Марс в течение 1671 года находился в тесном сближении с Землей. Кассини и Жан Пикар наблюдали положение Марса в Париже, в это же время французский астроном Жан Рише сделал измерение положения в Кайенне (Южная Америка). Хотя эти наблюдения не были точны из-за качества астрономических инструментов, однако группа Кассини по результатам измерений получила значение, отличное от правильного не более чем на 10 %[29][30].

Английский астроном Джон Флемстид также провел эксперименты по измерению масштаба Солнечной системы и получил аналогичные результаты[31].

В 1704 году франко-итальянский астроном Жак Филипп Маральди провел систематические исследования южной шапки и заметил, что она претерпевает изменение с вращением планеты. Это свидетельствует о том, что центр шапки не расположен в полюсе планеты. Также он заметил, что шапки меняются в размерах с течением времени[25][32].

Немецко-английский астроном Уильям Гершель начал вести наблюдения Марса в 1777 году. Особенно его интересовали полярные шапки планеты. Через четыре года, в 1781 году, он отметил, что на юге шапка «очень большая», это он приписывал нахождению полюса на темной стороне планеты в течение последних 12 месяцев. В 1784 году южная шапка стала гораздо меньше, и это позволило предположить, что размер шапок зависит от сезона на планете и, следовательно, сами шапки состоят изо льда. В 1781 году Гершель вычислил два важных параметра: период вращения Марса, равный по его расчетам 24 ч. 39 м. 21 с., и наклон оси планеты от полюсов к плоскости орбиты, равный примерно 28,5°. Он отметил, что Марс «крупный, но с умеренным климатом, так что его жители, вероятно, попадают в ситуации во многом похожие на наши»[32][33][34][35].

Между 1796 и 1809 годами французский астроном Оноре Флаугергас заметил омрачение Марса, указав, что «вуаль цвета охры» закрыла поверхность. Возможно, это первый доклад о желтых облаках и пылевых бурях на Марсе[36][37].

4. Картографирование Марса и географический период

Версия карты Марса, опубликованная Ричардом Проктором в 1905 году

Атмосфера Марса

Фобос (сверху) и Деймос (снизу)

В начале XIX века повышение размера и качества оптики телескопов значительно сказалось на развитии астрономии и иных научных дисциплин. Наиболее заметным среди этих усовершенствований были двухкомпонентные ахроматические линзы с немецкой оптикой Йозефа Фраунгофера, которые по сравнению с предшественниками существенно устраняли кому — оптический эффект, который искажает внешний край изображения. В 1812 году Фраунгоферу удалось создать ахроматический объектив диаметром 190 миллиметров. Размер главной линзы является основным фактором, определяющим способность к фокусировке света (светосила) и разрешение телескопа[38][39].

В 1830 году во время противостояния Марса, два немецких астронома, Иоганн Генрих фон Медлер и Вильгельм Беер для детального изучения планеты использовали 95-миллиметровый рефрактор с оптической системой Фраунгофера. В качестве точки отсчета они выбрали характерную особенность рельефа, отстоящую южнее от экватора на 8° (позже получившую название Синус Меридиан и выбранную в качестве нулевого меридиана Марса). Во время своих наблюдений они установили, что большинство особенностей поверхности Марса являются постоянными, а точнее, не меняются в период вращения планеты. В 1840 году Медлер скомбинировал изображения, полученные за 10 лет наблюдений, и составил более точную карту поверхности. Вместо того, чтобы давать название различным маркерам, Беер и Медлер обозначали их буквами; например Меридиан-Бэй (Синус Меридиан) был обозначен буквой «А»[24][39][40].

В 1858 году, во время противостояния Марса, итальянский астроном отец Анджело Секки, работая в Ватиканской обсерватории, заметил на Марсе большие треугольные особенности голубого цвета, которые он назвал «Голубой Скорпион». Некоторые из этих сезонных облакоподобных образований обнаружил в 1862 году английский астроном Джозеф Норман Локьер, также они впоследствии были обнаружены и в других обсерваториях[41]. В 1862 году, во время оппозиции Марса, голландский астроном Фредерик Кайзер провёл его картографирование. Сравнивая свои иллюстрации с иллюстрациями Христиана Гюйгенса и Роберта Гука, он смог уточнить период вращения, составивший 24 ч. 37 м. 22,6 с. с точностью до десятых долей секунды[39][42].

В 1863 году Анджело Секки создает первые цветные иллюстрации Марса. Для обозначения особенностей рельефа он использовал имена знаменитых путешественников. В 1869 году он заметил два темных линейных объекта на поверхности, и назвал их «Canali», что по-итальянски обозначает «каналы» или «канавки»[43][44][45]. В 1867 году, на основе чертежей 1864 года английского астронома Уильяма Р. Дауэса, английский астроном Ричард Проктор создал более подробную карту Марса. Проктор назвал различные светлые и темные особенности рельефа Марса в честь астрономов прошлого и современности, которые внесли вклад в наблюдения планеты. В том же десятилетии, французским астрономом Камилем Фламмарионом и английским астрономом Натаниэлем Грином было произведено сопоставление различных карт и номенклатур[45].

В Лейпцигском университете в 1862-1864 годах немецкий астроном Иоганн Золлнер использовал для наблюдения Марса спектроскоп, разработанный для измерения отражательной способности Луны, планет Солнечной системы и ярких звёзд, и получил суммарное альбедо Марса, равное 0,27. Между 1877 и 1893 годами немецкие астрономы Густав Мюллер и Пауль Кемпф наблюдали Марс с использованием спектроскопа Золлнера. Они обнаружили малый коэффициент фаз — вариацию отражательной способности в зависимости от угла, и сделали вывод том, что поверхность Марса относительно гладкая и без больших изломов[46].

В 1867 году французский астроном Пьер Жансен и британский астроном Уильям Хаггинс использовали спектроскоп для изучения атмосферы Марса. Они обнаружили, что оптический спектр Марса практически совпадает со спектром Луны. В полученном спектре не были обнаружены линии поглощения воды, поэтому Жансен и Хаггинс предположили, что в атмосфере Марса присутствует водяной пар. Этот результат был подтвержден в 1872 году немецким астрономом Германом Фогелем и в 1875 году английским астроном Эдвардом Маундером, но позже он оказался под вопросом[47].

В 1877 году положение Марса вследствие противостояния было особенно благоприятно для наблюдения. Английский астроном Дэвид Гилл использовали эту возможность, чтобы с острова Вознесения оценить суточный параллакс Марса. С помощью этих измерений он смог более точно определить расстояние от Земли до Солнца, исходя из относительного размера орбит Марса и Земли[48]. Он также отметил, что из-за наличия атмосферы у Марса, которая ограничивает точность наблюдений, край диска наблюдаем нечетко, вследствие чего сложно определить точное положение планеты[49].

В августе 1877 года американский астроном Асаф Холл, используя 660-миллиметровый телескоп военно-морской обсерватории США, открыл два спутника у Марса[50]. Имена спутников, Фобос и Деймос, были выбраны Холлом на основе предложения Генри Мадана, научного инструктора Итонского колледжа в Англии[51].

5. Марсианские каналы

Карта Марса Джованни Скиапарелли

Марсианские каналы, зарисовка Персиваля Лоуэлла

В 1877 году, во время оппозиции Марса, итальянский астроном Джованни Скиапарелли использует 22-сантиметровый телескоп для составления подробных карт планеты. В частности, на этих картах в виде тонких линий были указаны каналы (которым он дал имена известных рек на Земле), однако впоследствии было показано, что это оптическая иллюзия[52][53]. В 1886 году английский астроном Уильям Ф. Деннинг отметил, что эти линейные объекты носили нерегулярный характер. В 1895 году английский астроном Эдвард Мондер убедился, что линейные объекты были просто суммированием многих мелких деталей[54].

В 1892 году французский учёный Камиль Фламмарион пишет о том, что эти каналы похожи на антропогенные, которые представители разумной расы могли бы использовать для перераспределения воды по умирающему марсианскому миру. Он выступает за существование таких жителей, и предположил, что они могут быть более развитыми, чем люди[55].

Под влиянием наблюдений Скиапарелли, востоковед Персиваль Лоуэлл основал обсерваторию с 30- и 45-сантиметровыми (12- и 18-дюймовыми) телескопами. Он выпустил несколько книг о Марсе и о жизни на планете, которые оказали большое влияние на общественное мнение[56]. Каналы также были обнаружены другими астрономами, такими как Генри Джозеф Перротен и Луи Толлон, с помощью 38-сантиметрового рефрактора, одним из крупнейших телескопов того времени[57][58].

Начиная с 1901 года А. Е. Дугласом были предприняты усилия по фотографию каналов Марса; эти усилия увенчались успехом, когда в 1905 году Карл Отто Лампланд опубликовал фотографии каналов[59]. Хотя эти результаты были широко приняты научным сообществом, их оспаривали некоторые учёные: французский астроном Эжен Антониади, английский натуралист Альфред Уоллес, и другие[54][60], так как «слабыми» телескопами каналы не наблюдались.

6. Пересмотр и уточнение планетарных параметров

В 1894 году американский астроном Уильям Кэмпбелл обнаружил, что спектр Марса идентичен спектру Луны, бросив сомнения на развивающиеся теории об схожести атмосферы Марса и Земли. Предыдущие обнаружения воды в атмосфере Марса были объяснены неблагоприятными условиями наблюдений[61]. Однако результаты, полученные Кэмпбеллом считались спорными и были подвергнуты критике некоторыми членами астрономического сообщества, пока не были впоследствии подтверждены американским астрономом Уолтером Адамсом в 1925 году[62].

Герман Струве использовал наблюдаемые изменения орбит спутников Марса для определения гравитационного воздействия планеты. В 1895 году он использовал эти данные для оценки диаметра планеты, и установил, что экваториальный диаметр на 1/190 больше полярного диаметра (в 1911 году он уточнил значение до 1/192)[32][63]. Этот результат был подтвержден американским метеорологом Вулардом в 1944 году[64].

Песочные демоны, сфотографированные марсоходом Opportunity (цифры в левом нижнем углу отображают время в секундах с момента первого кадра).

Поверхность, затемнённая желтыми облаками, была отмечена в 1870 году, при наблюдениях Скиапарелли. Ещё одно доказательство существования облаков было получено во время противостояний 1892 и 1907 годов. В 1909 году Антониади отметил, что наличие желтых облаков было связано с затемнением альбедо. Он обнаружил, что на поверхности Марса появлялось больше желтого в оппозиции, когда планета была ближе к Солнцу, и, следовательно, получала больше энергии. В качестве причины появления этих облаков он называл поднятые ветром песок и пыль[65][66].

Используя вакуумные термопары в 254-сантиметровом (100-дюймовом) телескопе Хукера в обсерватории Маунт-Вильсон, в 1924 году американские астрономы Сет Барнс Николсон и Эдисон Петтит смогли измерить тепловую энергию, излучаемую поверхностью Марса. Они определили, что температура колебалась от −68 °C (−90 °F) на полюсе до +7 °C (+45 °F) в середине диска (что соответствует экватору)[67]. В том же году измерением энергии Марса занялись американский физик Уильям Кобленц и американский астроном Карл Отто Лампланд. Результаты показали, что ночная температура на Марсе снизилась до −85 °C (−121 °F), что указывает на «огромные суточноые колебания» в температурах[68]. Температура марсианских облаков составляла до −30 °C (−22 °F)[69].

В 1926 году, путем измерения спектральных линий красного смещения орбитальных движений Марса и Земли, американский астроном Уолтер Сидни Адамс смог непосредственно измерить количество кислорода и водяного пара в атмосфере Марса. Он определил, что «экстремальные условия пустыни» были широко распространены и на Марсе[68]. В 1934 году Адамс и американский астроном Теодор Данэм-младший установили, что количество кислорода в атмосфере Марса было менее одного процента[70].

В 1920-е годы французский астроном Бернар Лио использовал поляриметр для исследования свойств поверхности Луны и планет. В 1929 году он отметил, что поляризованный свет, исходящий от марсианской поверхности, очень похож излучение с Луны, хотя и предположил, что некоторые его замечания могут быть объяснены холодом, или, возможно, растительностью. На основании количества солнечного света, рассеянного в атмосфере Марса, он оценил толщину атмосферы Марса в 1/15 толщины атмосферы Земли. Это ограничивало поверхностное давление до уровня не более 2,4 кПа (24 мбар)[71].

Используя инфракрасный спектрометр, в 1947 году голландско-американский астроном Джерард Койпер обнаружил двуокись углерода в атмосфере Марса. Он смог оценить, что количество углекислого газа в атмосфере вдвое больше, чем на Земле. Тем не менее, поскольку он переоценил давление на поверхности Марса, Койпер ошибочно заключил, что ледяные шапки не могут состоять из замерзшей углекислоты[72].

Основываясь на наблюдениях вблизи Земли астероида Эрос с 1926 по 1945 годы, немецко-американский астроном Евгений Константинович Рабе оценил массу Марса[73].

Первый стандарт наименований особенностей рельефа был внесен на рассмотрение Международного астрономического союза (МАС), и в 1960 году было принято 128 названий с карты Антониади (образца 1929 года). Рабочая группа по наименованиям в Солнечной системе (англ. Working Group for Planetary System Nomenclature, WGPSN) была создана в 1973 году для стандартизации наименований для Марса и других космических объектов[74].

7. Исследование марса в XX веке

Фотографии Марса, на которых видна пыльная буря (июнь-сентябрь 2001 года).

В 1969 году была создана Международная программа планетарного патрулирования (англ. International Planetary Patrol Program), как консорциум для постоянного наблюдения за планетарными изменениями. Часть этого международного сообщества сосредоточила своё внимание на наблюдении пылевых бурь на Марсе. Полученные изображения отражают марсианские сезонные изменения и показывают, что большинство марсианских пылевых бурь происходят, когда планета находится ближе всего к Солнцу[75].

7.1. Изучение с помощью орбитальных телескопов

Космический телескоп «Хаббл»

Современная топографическая карта Марса

Возможности космического телескопа Хаббл (HST, от Hubble Space Telescope, или КТХ — Косми́ческий телеско́п «Хаббл») были использованы для систематического исследования Марса[76], при этом были получены фотографии Марса с самым высоким разрешением из когда-либо полученных на Земле[77]. КТХ может создать образы полушарий, что позволяет промоделировать погодные системы. Наземные телескопы, оснащенные ПЗС, могут сделать фотоизображения Марса высокой чёткости, что позволяет регулярно проводить мониторинг планеты погоды в оппозиции[78].

Рентгеновское излучение с Марса, впервые обнаруженное астрономами в 2001 году с помощью космической рентгеновской обсерватории «Чандра», состоит из двух компонентов. Первая составляющая связана с рассеиванием в верхней атмосфере Марса рентгеновских лучей Солнца, в то время как вторая исходит от взаимодействия между ионами, в результате чего происходит обмен зарядами[79].

7.2. Исследование Марса космическими аппаратами. Марсианские миссии

С 1960-х годов к Марсу для подробного изучения планеты с орбиты и фотографирования поверхности были направлены несколько автоматических межпланетных станций. Кроме того, продолжалось дистанционное зондирование Марса с Земли в большей части электромагнитного спектра с помощью наземных и орбитальных телескопов, например в инфракрасном для определения состава поверхности[80], в ультрафиолетовом и субмиллиметровом диапазонах проводились наблюдения за составом атмосферы[81][82], и в радиодиапазоне проводились измерения скорости ветра[83].

Марсоход Опортьюнити на поверхности Марса

Марсоход Спирит (компьютерная графика, стереокартинка)

На Марс было послано много космических аппаратов. Самые известные из них: Викинги, Маринеры, Марс (серия советских космических аппаратов), Марс Глобал Сервейор, марсоходы Соджонер (1997 год), Спирит и Опортьюнити (оба — с 2004 года и до сих пор) и др.

Первым космическим аппаратом, посетившим Марс и исследовавшим его с пролётной траектории, стал американский Маринер-4. Первым космическим аппаратом, совершившим мягкую посадку, стал советский космический аппарат Марс-3 в 1971 году. Первым аппаратом, успешно работавшим на поверхности Марса и передавшим фотографии марсианского ландшафта, стал американский Викинг-1 в 1976 году.

«Викинг» в полёте

Советский КА Марс 1М

Основными задачами изучения Марса с орбиты искусственных спутников в 1970-е годы являлось определение характеристик атмосферы и фотографирование поверхности. Было предусмотрено изучение магнитного и гравитационного полей планеты, её тепловых характеристик, рельефа и прочего, для чего были запущены советские автоматические межпланетные станции «Марс-2» и «Марс-3»[84]. Параметры атмосферы было намечено изучать на участке спуска. В районе посадки станции предполагалось определение физических характеристик грунта определение характера поверхностной породы, экспериментальная проверка возможности получения телевизионных изображений окружающей местности, и так далее[84]. Однако, в непосредственной близости от поверхности Марса радиосвязь со спускаемым аппаратом прекратилась[84].

Спускаемый аппарат «Марс-3» совершил посадку на поверхность «красной планеты» между областями Электрис и Фаэтонтис в районе с координатами 45° ю. ш. и 158° з. д. На его борту был установлен вымпел с изображением герба СССР. Через 1 минуту 30 секунд после посадки АМС была приведена в рабочее состояние, и в 16 часов 50 мин. 35 сек. началась передача видеосигналов с поверхности планеты. Они были приняты и записаны на борту искусственного спутника «Марс-3» и затем в сеансах радиосвязи переданы на Землю. Принятые с поверхности Марса видеосигналы были непродолжительными (около 20 сек.) и резко прекратились[85].

В комплексе экспериментов, проводившихся на спутниках «Марс»-2 и 3, фотографированию планеты отводилась вспомогательная роль, связанная главным образом с обеспечением привязки результатов измерений в других спектральных интервалах. Вместе с тем, снимки, выполненные на «Марсе-3» с больших расстояний, позволили уточнить оптическое сжатие планеты (отличающееся от динамического), строить профили рельефа по изображению края диска на участках большой протяженности, получить цветные изображения диска Марса путём синтезирования фотоизображений, сделанных с различными светофильтрами[86].

Американские аппараты «Викинг» изучали Марс в течение нескольких лет (с 1976 года) как с орбиты, так и непосредственно на поверхности. В частности, были проведены эксперименты по обнаружению микроорганизмов в грунте, не давшие положительного результата. Впервые был сделан химический анализ грунта и переданы фотографии поверхности. Посадочные аппараты длительнрое время вели наблюдения марсианской погоды, а по данным орбитальных модулей была составлена подробная карта Марса.

Орбитальный зонд Марс Одиссей обнаружил, что под поверхностью Красной планеты есть залежи водяного льда. Позже это предположение было подтверждено и другими аппаратами, но окончательно вопрос о наличии воды на Марсе был решен в 2008 году, когда зонд «Феникс», севший вблизи северного полюса планеты, получил воду из марсианского грунта[87]. Также с помощью камеры THEMIS (Thermal Emission Imaging System — камера, создающая изображение на основании анализа теплового излучения) была получена самая точная карта Марса (пространственное разрешение карты составляет 100 метров для всей территории Красной планеты). Для ее составления ученые использовали 21 тысячу фотографий, сделанных зондом за восемь лет[88].

Орбитальный зонд Марс-экспресс представил доказательства в пользу гипотезы, предполагающей, что спутник Марса Фобос сформировался не из астероидов главного пояса, а из материала Красной планеты. Авторы новой работы изучали состав Фобоса при помощи фурье-спектрометра, расположенного на его борту. Помимо изучения состава Фобоса исследователи провели наиболее точное на сегодняшний день определение массы марсианского спутника и его плотности[89].

7.2.1. Успешно завершённые миссии
7.2.2. Неудавшиеся миссии
Миссия Год Страна (заказчик/изготовитель) Причина неудачи
Марс 1960А 1960 СССР Авария ракеты-носителя
Марс 1960В 1960 СССР Авария ракеты-носителя
Марс 1962А 1962 СССР Не сработала разгонная ступень
Марс-1 1962 СССР Утеряна связь
Марс 1962B 1962 СССР Не сработала разгонная ступень
Маринер-3 1964 США Не попал в район Марса
Зонд-2 1964 СССР Не попал в район Марса
Марс 1969А 1969 СССР Авария ракеты-носителя
Марс 1969В 1969 СССР Авария ракеты-носителя
Маринер-8 1971 США Авария ракеты-носителя
Космос-419 1971 СССР Не сработала разгонная ступень
АМС «Фобос-1» 1988 СССР Утеряна связь
АМС «Фобос-2» 1988 СССР Выведен на орбиту Марса. Утеряна связь
Mars Observer 1992 США Утеряна связь
«Марс-96» 1996 Россия Не сработала разгонная ступень
Нодзоми 1998 Япония Не удалось вывести на орбиту Марса
Mars Climate Orbiter 1999 США Авария при попытке вывода на орбиту Марса
Mars Polar Lander 1999 США/Россия Авария при посадке
Deep Space 2 1999 США Утеряна связь после входа в атмосферу
Бигль-2 (посадочный модуль Mars Express) 2003 ЕКА Отказ оборудования связи
7.2.3. Текущие миссии

Логотип КА Марс Одиссей

На орбите Марса находятся 3 активно работающие АМС:

  • Mars Reconnaissance Orbiter
  • ЕКА Марс Экспресс с радаром Marsis
  • Mars Odyssey

На поверхности планеты работают два марсохода:

  • марсоход Spirit
  • марсоход Opportunity

7.3. Исследование марсианских метеоритов

Метеорит ALH84001

Метеорит EETA79001

В 1983 году анализ метеоритов шерготит, нахлитов и шассиньи (сокращенно SNC — по первым букам названий населенных пунктов Shergotty (Шерготти) в Индии, Nakhia (Накла) в Египте и Chassigny (Шассиньи) во Франции, вблизи которых нашли метеориты соответственно в 1865, 1911 и 1815 гг.) показал, что они возникли на Марсе[90][91][92]. Найденный в Антарктиде в 1984 году метеорит ALH84001 значительно старше остальных и содержит полициклические ароматические углеводороды, возможно, имеющие биологическое происхождение. Считается, что он попал на Землю с Марса, поскольку соотношение изотопов кислорода в нём не такое, как в земных породах или не-SNC-метеоритах, а такое, как в метеорите EETA79001, содержащем стёкла с включениями пузырьков, в которых состав благородных газов отличается от земного, но соответствует атмосфере Марса[93]. В 1996 году было объявлено, что этот метеорит может содержать данные о микроскопических окаменелостях марсианских бактерий. Однако этот вывод остается спорным[94]. Химический анализ марсианских метеоритов показывает, что температура поверхности Марса, скорее всего, была ниже точки замерзания воды (0 °C) в течение большей части последних 4 миллиардов лет[95].

8. Дальнейшее изучение Марса

Дальнейшее изучение Марса связано с двумя основными направлениями: продолжением исследования планеты космическими аппаратами и осуществление пилотируемого полёта на Марс (и возможной колонизацией в дальнейшем).

8.1. Планируемые миссии

  • Фобос-Грунт — запуск к спутнику Марса Фобосу с посадкой на поверхность в 2011 году; впервые — с возвращением на Землю с образцами грунта.
  • Mars Science Laboratory — запуск назначен на 2011 год.
  • MAVEN — аппарат НАСА, планируемый к запуску в 2013 году, для изучения атмосферы[96].
  • Mars Science Orbiter — запуск назначен на январь 2016 года.

Также отправку миссий планирует Индийское космическое агентство (согласно первоначальным заявлениям от ноября 2006 года — в 2012—2013 годах[97], по заявлению от октября 2010 года — в 2030 году[98]).

8.2. Пилотируемый полёт на Марс

Пилотируемый полёт на Марс — запланированный полёт человека на Марс с помощью пилотируемого космического корабля.

Разработка этой программы ведётся давно, ещё с 1950-х годов. В СССР рассматривались разные варианты космических кораблей для пилотируемого полёта на Марс. Сначала был разработан проект марсианского пилотируемого комплекса (МПК) со стартовой массой в 1630 тонн. Собрать его предполагалось на низкой околоземной орбите за 20-25 пусков ракеты-носителя Н-1. Возвращаемая часть МПК имела бы массу 15 тонн. Продолжительность экспедиции должна была быть 2,5 года[99]. Затем последовала разработка тяжёлого межпланетного корабля (ТМК) в ОКБ-1 в отделе под руководством Михаила Тихонравова. Проектом занимались две группы инженеров: одной руководил Глеб Максимов, а второй — Константин Феоктистов[99]. 23 июня 1960 года ЦК КПСС был назначен день старта на 8 июня 1971 года с возвращением на Землю 10 июня 1974 года, но затем последовала «лунная гонка», во время которой закрыли проект полёта на Марс[100][101].

Пилотируемый полёт на Марс Роскосмос планирует осуществить после 2030 года. Такую дату в ноябре 2010 года назвал глава Роскосмоса Анатолий Перминов[102][103]. В рамках национальной космической программы до 2015 года на Земле будет проводиться имитация марсианского полёта под названием «Марс-500».

Экс-президент США Джордж Уокер Буш в начале 2004 года представил для НАСА долгосрочный план, основной задачей которого были пилотируемые миссии на Луну и Марс, что положило начало программе «Созвездие». В рамках этой программы первым шагом должно было стать создание до 2010 года космического корабля «Орион», на котором космонавты могли бы полететь сначала на Луну, а потом на Марс. Далее, с 2024 года, по планам НАСА, должна появиться постоянно обитаемая лунная база, которая стала бы подготовкой для полёта на Марс, и возможное путешествие к Марсу могло бы состояться, по оценкам НАСА, в 2037 году. 2 февраля 2010 года стало известно, что лунный пилотируемый полёт США из-за сокращения бюджета не состоится. Так как вследствие этого разработка необходимого космического корабля остановилась, то это затронуло и марсианскую пилотируемую миссию. Эти программы были не отложены, а полностью вычеркнуты без замены[104]. Однако позже НАСА вернулось к пересмотру программы «Созвездие» и не исключает её возобновление[105].

Также с 2010 года Исследовательским центром имени Эймса разрабатывается проект «Столетний космический корабль» (англ. Hundred-Year Starship). Основная идея проекта состоит в том, что бы отправлять людей на Марс безвозвратно. Это приведет к значительному сокращения стоимости полета, появится возможность взять больше груза и экипаж. По расчетам, послать на Марс четырех астронавтов и вернуть их обратно будет стоить столько же, сколько послать туда 20 человек и оставить их там. Вся экспедиция обойдется в $750 млрд. Ее можно уменьшить вдвое, если астронавтов не потребуется возвращать на Землю[106].

9. Интересные факты

  • При изучении этой планеты советские спутники «Марс»-2,3 и 5 стали искусственными спутниками «воинственной» планеты по причине разрядки солнечных батарей.
  • На самом деле попытки приблизиться к Марсу до 1971 года были предпритяты 14 раз, 10 из которых оканчивались провалом экспедиции, а 4 («Маринер»-4,6,7 и 9) передали данные с дистанционного расстояния.

Литература

  • Л. В. Ксанфомалити, Парад планет.-М.:Наука. Физмалит,1997.-с.92.-ISBN 5-02-015226-9
  • Марс: Великое противостояние / Ред.-сост. В. Г. Сурдин. — М.: Физматлит, 2004. — 224 с. ISBN 5-9221-0454-3 (Переиздание трудов по ареографии, изданных с 1862 по 1956 гг.)

wreferat.baza-referat.ru

Доклад - Марс - Астрономия

 

РЕФЕРАТ

по дисциплине концепции естествознания

Тема: О Марсе

            

 «Вперед — на Марс!» — это были любимые словаФридриха Артуровича Цандера (1887- 1933), нашего известного ученогои инженера, по­святившего себя работам в области ракетной тех­ники икосмических по­летов. Из интереса к звездам часто рождается мечта о космическихполетах. Так случилось и с Цандером. Он всю жизнь меч­тал о полетах на Марс.Но, к несчастью, умер, не увидев ни работы со­зданного им двигателя, ни полетасвоей ракеты…

А до запускапервого искусственного спутни­ка земли оставалось ме­нее четверти века. И уже впервые годы космиче­ской эры мечта о полетах к планетам Солнечной системы стала осуществляться. В начале 60-х годов нашиавтоматиче­ские межпланетные станции стартовали к Венере, к. Марсу.

И вот сегодня, спустя годы после первыхполетов к марсусовершенных нашими и американскимимежпланетными автоматическими стан­циями, готовятся новые полетык той же, все еще загадочной Красной Планете.

 Марс,вероятно, еще долго будет оставаться одной из главных целей межпланетныхполетов. Ведьэто единственная, кроме Земли, планета Солнечной системы на которой моглакогда-то возникнуть жизнь. Сейчас для землян на Марсе условия слишком суровые. Нам не подходят ни марсианский воздух ни климат, ни безводнаяпустыня. Но вполне вероятно, что в прошлом природа Марсабыла иной — более мягкий климат, полноводные реки, более обширная и подходящаядля живых существ атмосфера. Марс старше Земли. Поэтому, изучая его прошлое, мыможем что-то узнать о будущем на шеи планеты. Ученые и инженеры, которые го­товятсейчас к полетам новые марсианские ко­рабли, надеются полу­чить ответы намногие загадки Солнечной системы.

На орбитувокруг Марса планируют выве­сти искусственный спут­ник. Он станет вести ис­следованияповерхности планеты и околопланетного космического пространства. Кроме того,небольшие автоматиче­ские аппараты совершат посадку на поверхность Марса, тожедля иссле­дования планеты.

Года черездва после этого на Марс хотят до­ставить аппарат марсаход. Перемещаясь попланете, он будет иссле­довать разные участки поверхности. Подобные машины — луноходы — уже использовались при полетах на Луну наших станций «Луна-17»(1970-1971 годы) и «Луна-21» (1973 год). Марсаход — следующий шаг в развитиипланетоходной техники. Летом 1992 года проводились его испыта­ния на Заме. Дляэтого нужно было не только построить аппарат, но и найти местность, похо­жую намарсианскую. Подходящие пустынные районы есть и в Средней Азии, и в Калифорнии(США), и в Антарктиде.

ВыбралиМаесианскии холм в Долине Смерти, расположенной в центре пустыни Махаве (Кали­форния).Испытания прошли успешно.

Марсоходблагодаря своим удивительным ко­лесам легко преодолева­ет различные препятст­вия(камни, крутые уступы и.т.п. Колес у него шесть, и каждая приводится в движениесобственным двигателем. Умная машина передвигается, приспосабливаясь к любымсюрпризам на местности.

Ученныеразрабатывают новые фантастические проекты полетов на Марс — с  участием людей.Российские и американские конструкторы продумывают различные варианты кораблей.На которых через 20-30 лет первые земляне (их будет 4-6 человек) отправятся вмарсианскую экспедицию. Она будет продолжаться довольно долго около двух лет.Непосредственно на Марсе люди проведут меньше месяца, а остальное времяпотребуется для того, чтобы долететь туда и потом вернуться на Землю.

Землянамвсегда хоте­лось найти во Вселенной своих «братьев по разуму». Сначаланадеялись обнару­жить их на Луне, потом на Марсе,  другихсолнечных системах или галактиках. А когда в наше времявовсю заговорили о «летающих тарелках» и даже о якобыприлетавших в них инопла­нетных живых существах — гуманоидах, многим показалось, что,наконец-то, мы скоро познакомимся с кос­мическими посланцами.

Сооб­щения отом, что на Марсе будто бы обнаружены признаки не просто жизни (например,растительность), но и разумной деятельности «марсиан», появлялись уже не раз.

В 1877годуитальянский астроном Джоннии Скиапарелли, внимательно изу­чая вид Марса в телескоп, заметил на планете линии, похожие на те, которыемогли бы быть прорезаны потоками воды. Позднее была составлена подробная картатаких линии, и они получили название «каналов». Ответ на вопрос, откуда и куда ведут эти каналы, лю­дям показался очень про­стыми — каналы построили марсиане, чтобы по ним шла вода от белых полярных шапокпланеты (а они на Марсе есть и видны в теле­скоп) к болеетеплым, ноочень сухим районам Марса вблизи его экватора.

Вы знаете,что Марс дальше от Солнца, чем Земля. Значит, он получает меньше тепла, чемнаша планета. К тому же Марс меньше Зем­ли и по размерам, и по мас­се. Емутруднее удерживать своим притяжением ат­мосферные частички, и по­тому Марс ужерастерял значительную часть своем воздушной оболочки. Ат­мосфера там сильноразре­жена.

Марс можносчитать планетой более древней, чем Земля. И если там действительно когда-тобыли дру­гие условия и жили разум­ные существа, то они, возможно, могли раньшенас научиться, например, ле­тать в космос.

Писатели-фантастывсег­да охотно развивали тему о существовании марсиан. Английский писательГерберт Уэллс почти сто лет назад в своей научно — фантастической книге «Войнами­ров» поведал о том, что марсиане — злые завоеватели, мечтающие захватить ипокорить нашу планету. Эта и другие научно -фантастические книги,рассказы, ки­нофильмы о Марсе произ­водили на людей очень большое впечатление.Мно­гие поверили в марсиан, и даже начали их побаиваться. Возможна ли вообщекогда — нибудь встреча с марсианами? Отве­ты на этот и на многие дру­гиевопросы о жизни на Марсе дают космические исследования — полеты на Марс.Правда, никто из лю­дей на Марсе до сил пор не побывал. Вероятно, люди полетятна загадочную Красную Планету а первые десятилетия XXI века. Автоматические меж­планетные станции(АМС) без людей летают к Марсу с начала 60-хгодов ХХ века. Это были и наши АМС — «Марс» и «Фобосы» (десять межпланетных станций), иамериканские — «Маринеры», «Викинги», «Марс-Обсервер». На поверхность планеты смогли сесть толь­ко двенаших АМС и две американских. Другие — ли­бо пролетелимимо, либо просто… пропали. Так, в 1988 году с космодрома Байконур к Марсу иего спутнику (Фобосу) были за­пущены два космических ап­парата«Фобос-1» и «Фобос-2». Им предстояловы­полнить интереснейшую программу. Но из-за какойто ошибки или неточной ко­манды,переданной из Центра управления, «Фобос-1»сошел с заданной траектории, а с «Фобосом-2»,ког­да он уже был готов присту­пить к выполнению про­граммы, неожиданнообор­валась связь.

В 1992 году скосмодрома на мысе Канаверал американцы отправили в 11 -ме­сячное путешествие «Марс- Обсервер». Этобыла очень хорошая и «умная» станция, способная определять по­ломки на борту иустранять их собственными силами. Планировали, что станция будет на протяжениицелого марсианского года (687 земных суток) фотографировать поверхность плане­ты, в том числе детали размерами чуть больше одного метра. Не в августе 1993 года иэтот земной робот неожиданно пропал, хотя до момента аварии ничто не вызывалобеспокойства уче­ных и инженеров за судьбу станции…

А из удачныхполетов наи6ольший успех выпал, по­жалуйнадолю станций Маринер-9, «Викинг-1» и«Викинг-2». «Маринер-9» стал искусственным спутни­комМарса и передал на Землю несколько тысяч снимков. Каналов на них, к сожалению,не видно… Но обнаружено множество кратеров, напоминающих лунные, а такжеочень вы­сокие горы, которые в не­сколько раз выше самых больших земных гор. Сфотографированы длинные ущелья и глубокие пропасти(некоторые из них астрономы вполне могли принять за «каналы»).

Десятки тысячснимков сделали и «Викинги», совер­шившие мягкие посадкина поверхность Марса в райо­нах, отстоящихна расстоянии 3000 километров друг от друга. «Викинги»не толь­ко фотографировали повер­хность Марса, но и брали пробы грунта. Обнаружитьв этих кусочках марсианско­го грунта хоть какие-нибудь микроорганизмы не уда­лось.

Может быть,люди, прилетев на Марс, найдут всетаки там следы жизни, нотакие экспедиции — дело бу­дущего и, конечно, труд­ное,рискованное. Когда земляне прилетят на Марс, им придется работать в спе­циальныхскафандрах, пото­му что воздух там очень разрежен и состоит в основномиз углекислого газа. Человек не может дышать такимвоздухом. Атмос­ферная давление на Марсе почти в 100 раз меньше земного (притаком давле­нии вода закипает не при 100°С, а всего приплюс 2°С!). А раз так, то ясно, что ни морей, ни рек сейчас на поверхностиМарса нет. Но на некоторых снимках видны высохшие русла. Значит,когда-то реки здесь бы­ли. Возможно, что и до на­шего временивода на Мар­се сохранилась, но либо в виде льда в полярных шап­ках (ученыесчитают, что эти шапки состоят из смеси обычного льда и замерзшей углекислоты),либо в виде слоя вечной мерзлоты, скрытого под поверхностью Марса.

Наиболеепригодные для человека температурные условия — вблизи марсиан­ского экватора.Там в пол­день температура может достигать плюс 20°С… Ау полюсов очень холодно — там бывает ниже минус 100°С, этохолоднее, чем у нас в Антарктиде.

На Марсе, каки на Зем­ле, происходит смена вре­мен года. В телескоп хоро­шо видно, как летомумень­шается белая полярная шап­ка и от нее к экватору распространяетсякакое-то потемнение поверхности. Сначала думали, что это мы видим, как таможивает рас­тительность. Потом появи­лось другое объяснение; при потеплениимарсианский грунт становится более влажным, в нем происходят химические реакциии меня­ется его цвет.

Дажепризнаковжизни земные роботы, посланные на Марс, там покане нашли. Но кое-что «подозритель­ное» вся же обнаружили. Например, на снимках,пе­реданных одним из «Викин­гов», видна фигура, напоми­нающая огромного сфинксас женским лицом. Длина сфинкса почти полтора километра, высота- полкилометра. Что это: игра свята и теней? Или сфинкса «соорудили марсианские ветры и пески? На Земле встречается много удивительных фигур,образовавшихся в результата выветривания горных пород.

Во многих газетах появились сообщения о сен­сационной находка на Мар­се.По этому поводу высказываются самые смелыепредположения, вплоть до того, что «сфинкс» был со­оруженмарсианами, чтобы его заметили с Земли. Ученые тоже пытаются разобраться в этой загадке. Им помогают беспристраст­ныекомпьютеры, которые, проигрывая разные вариан­ты, дают возможность выя­вить,где изображение подлинных предметов, а где лишь обманчиваявиди­мость. Надо сказать, что уже есть несколько фактов в пользу того, что«сфинкс» на Марсе действительно су­ществует. И там, где его увидели — на Ацидалийской равнине, рядом с марсиан­скими горамиКидония, — обнаружены еще десятка два «пирамид». Вдруг дейст­вительно окажется,что это вещественные памятники, которые оставили марсианео своей древней и давно ис­чезнувшей цивилизации ?! Всего несколько десятиле­тий назад некоторые серь­езныеученые говорили, что спутник Марса Фобос не ес­тественный,а искусствен­ный. Напомним, что у Мар­са есть двемаленькие луны — Фобос и Доимос. Их от­крыл американскийастроном А. Холл а 1877 году. Красная Планета носит имябога войны Марса, а Фобос (Страх) и Доимос (Ужас) — сыновья бога войны, которые сопровождалиего в по­ходах и битвах. Подозрение в том, что спутники Марса не настоящие,а самодельные, возникло так. Астрономы заметили, что слабенькая атмосфера Марсазаметно тормозит движение Фобоса. Такое возможно, если Фобос очень легкий. Воти решили, что Фобос — пустой внутри шар, что, вероятно, его дав­но-давноизготовили марсиане и вывели на орбиту вок­руг Марса.

Автоматическиемежпла­нетные станции сфотогра­фировали Фобос с близкого расстояния и тогдаокончательно выяснилось: Фобос — вовсе не искусственный, а самый естественныйспут­ник Марса. Причем это даже не шар, а какая-то глыба со множеством кратеров(отметин от метеоритных ударов) и борозд.

Итак, пока наМарсе не обнаружено никаких при­знаков нынешней жизни и нет достоверныхсведений о том, что найдены какие — либо памятники древней циви­лизации. Нопоиски продолжаются.

Список литературы

Журнал  «Наука и жизнь» №10,12

www.ronl.ru

Реферат - Марс - Математика

Марс– четвёртая от Солнца и первая верхняя относительно Земли планета Солнечнойсистемы. Лучшее время для его наблюдений – эпоха противостояния. Орбита Марса,- эллипс со значительным эксцентриситетом; поэтому всякое противостояниеодинаково благоприятно для наблюдений. При орбитальном движении Марса егорасстояние от Солнца изменяется и становится наименьшим, когда планета проходитперигелий. Если в это время произойдёт противостояние, то в пространстве, что вэпохи великих противостояний Марс имеет отрицательное склонение и поэтому виденна небольшой высоте над горизонтом. Зато в это время Марс успешно наблюдается вюжном полушарии Земли.

Большаячасть поверхности планеты занята оранжевыми “материками”, которые придают Марсукрасноватый цвет, выделяющий его среди других планет. Несколько меньшую частьповерхности Марса занимают тёмные зеленоватые “моря”. На рисунке видна южнаяполярная шапка (она расположена вверху, так как телескоп переворачиваетизображения). Бывают такие положения Марса и Земли на орбитах, когда видны обеполярные Шапки или только одна северная.

Одиноборот вокруг оси Марс совершает за 24 ч. 37 м. 23 с., а длительность солнечныхмарсианских суток равна 24 ч. 39 м. 29 с. Ось вращения наклонена к плоскостиорбиты под углом 650041, почти так же, как земная (660341).Наклон оси – причина смены времён года; так как “год” Марса длится 687 земныхсуток, то и длительность марсианских времён года почти в два раза большеземных. Если наблюдать поверхность Марса систематически, на протяжении хотя бынескольких недель, то легко заметить сезонные изменения размеров полярнойшапки: по мере наступления летних дней полярная шапка уменьшается – замёрзшеевещество постепенно тает. Однако таяние полярной шапки явление, какоказывается, не простое. Если полярные шапки Земли образованы льдом и снегом ихимический состав их вещества однороден, то о полярных шапках Марса этогосказать нельзя. Оказывается, что в атмосфере Марса очень мало водяного пара имного углекислого газа. При низких температурах образуется конденсат СО2,выпадающий в зимнее время на поверхность на поверхность планеты. При повышениитемпературы он испаряется и переходит в газообразное состояние. Что же касаетсяводяного льда, то он сохраняется, и в самый разгар марсианского лета, когдаполярная шапка сокращается до минимальных размеров, мы видим остаточнуюполярную шапку, состоящую из замёрзшей воды.

Наиболееценные и подробные сведения о деталях поверхности Марса переданы межпланетнымиавтоматическими станциями и аппаратами, опустившимися на планету. Множествопрекрасных снимков поверхности Марса послужило основой для построения подробнойкарты большей части планеты. На Марсе обнаружено: несколько вулканических гор,имеющих огромные размеры, чрезвычайно интересные образования – грандиозныйразлом коры Марса, получивший название Копрат. Ширина его достигает 120 км,глубина около 6 км, а протяжённость 4000 км. С боков от него отходит множествоизвилистых оврагов. Напоминающих русла рек. Другой примечательный объект: наснимке в малом масштабе видно тёмное пятно, а на снимке в более крупноммасштабе – гряды параллельных дюн.

Цветныеизображения окрестностей места посадки были переданы с Марса спускаемымиаппаратами “Викинг”. На этих снимках видна пустынная красноватая поверхность,усеянная множеством камней разнообразных размеров и кучами песка, нанесённоговетром. Небо Марса жёлтое, по-видимому, также от взвешенной пыли. Специальнаяаппаратура, установленная на “Викингах”, произвела химический анализмарсианского грунта. Оказалось, что грунт Марса содержит очень много железа,кремния и кальция. Красноватый цвет планеты – результат окисленияжелезосодержащего грунта. Установлено, что климат Марса суровый, в среднемтемпература её поверхности гораздо ниже нуля Цельсия и только вблизи полудня вэкваториальной зоне температура ненадолго поднимается выше нуля. Атмосфера на95% состоит из углекислого газа и необычайно разрежена. У поверхности планетыатмосферное давление составляет всего лишь 0,01 атм.

Несмотряна разреженность марсианской атмосферы, в ней возникают ураганы, поднимающиетучи пыли, которая может неделями находиться во взвешенном состоянии, замутняяатмосферу и создавая непрозрачную пелену. Сопоставлении всех данных о Марсесоздаёт впечатление о безжизненной планете. В то же время на поверхности Марсавидны следы прошлых эпох, свидетельствующие о более высокой температуре и болееплотной атмосфере, а также, возможно, о присутствии на планете воды.

Спутники Марса.

ВокругМарса движется два естественных спутника – Фобос и Деймос, что означает “Страх”и “Ужас”; ведь Марс – античный бог войны. Эти маленькие небесные тела находятсянастолько близко к планете, что их очень трудно заметить. Они были открытывыдающимся американским астрономом Асафом Холлом в 1877 году. Ближайший к Марсуспутник, Фобос, отстоит от центра планеты на 9400 км и обращается в прямомнаправлении за 7 ч. 39 м. 14 с., то есть за одни сутки Марса он обегает вокругпланеты более трёх раз. Поэтому находящийся на планете наблюдатель видел быФобос восходящим на западе и заходящим на восточной стороне неба. Второйспутник, Деймос, отстоит от центра Марса на 23500 км и совершает один оборотвокруг планеты за 30 ч. 17 м. 55 с.

СпутникиМарса имеют неправильную форму и очень малы. Размеры Фобоса составляют 19 км х21 км х 27 км, а Деймоса 11 км х 12 км х 15 км. Это крохотные небесные тела,сравнимые с небольшими астероидами. Благодаря созданию искусственных спутниковМарса, мы узнали о Фобосе и Деймосе много удивительного. Этому благоприятствуетто обстоятельство, что искусственные спутники вращаются вокруг Марса примернона тех же высотах, что и Фобос и Деймос. Так, например, удалосьсфотографировать поверхность Деймоса на расстоянии 23 км. Оказалось, чтоповерхность Фобоса покрыта не только кратерами, но и бороздами, почтипараллельными друг другу. Глубина борозд от20 до 30 м, ширина от100 до200 м.Эти борозды связаны с наибольшим на Фобосе кратером, названным Стикни, в честьжены Асафа Холла. Они как бы веером расходятся из точки, диаметральнопротивоположной этому кратеру. По-видимому, кратер Стикни образовался оченьдавно в результате мощного удара при столкновении Фобоса с другим небеснымтелом. Возникшие в теле Фобоса ударные волны породили и эти борозды.

Второйспутник Марса, Деймос, обладает более сглаженным рельефом поверхности.Наибольший кратер имеет диаметр около двух километров. На снимке, полученном срасстояния в 23 км, видно очень много мелких кратеров, свидетельствующих о том,что метеоритная бомбардировка, которой подвергался Деймос, оставила на егоповерхности неизгладимые следы.

Список литературы

В.П.Цесевич, “Что и как наблюдать на небе”, Москва “Наука” 1984

Дляподготовки данной работы были использованы материалы с сайта referat2000.bizforum.ru/

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.