Доклад: Эксимерные лазеры в рефракционной хирургии глаза. Реферат лазерная хирургия


Реферат на тему "Современные технологии в хирургии"

Содержание

ВведениеГлава 1. Миниинвазивные технологии в хирургии1.1. Общие принципы1.2. Лапароскопические операции1.3. Другие направления в эндоскопической хирургииГлава 2. Лазеры в хирургии2.1. Принцип действия. Типы лазеров2.2. Лазеры применяемые в медицине2.3 Механизм взаимодействия лазерного излучения с биотканямиЗаключениеСписок использованных источников

Введение

Современный период развития общества характеризуется сильным влиянием на него компьютерных технологий, которые проникают во все сферы человеческой деятельности, обеспечивают распространение информационных потоков в обществе, образуя глобальное информационное пространство. Они очень быстро превратились в жизненно важный стимул развития не только мировой экономики, но и других сфер человеческой деятельности. Трудно найти сферу, в которой сейчас не используются информационные технологии. Лидирующие области по внедрению компьютерных технологий занимают архитектура, машиностроение, образование, банковская структура  и конечно же медицина.

Компьютер все больше используется в области здравоохранения, что бывает очень удобным, а порой просто необходимым. Благодаря этому медицина, в том числе и нетрадиционная, приобретает сегодня совершенно новые черты. Во многих медицинских исследованиях просто не возможно обойтись без компьютера и специального программного обеспечения к нему. Этот процесс сопровождается существенными изменениями в медицинской  теории и практике, связанными с внесением корректив к подготовке медицинских работников.

Жизненный путь каждого человека в той или иной степени пересекается с врачами, которым мы доверяем свое здоровье и жизнь. Но образ медицинского работника и медицины в целом в последнее время претерпевает сильные изменения, и происходит это во многом благодаря развитию информационных технологий.

И хотя присутствие ИТ становится для пациента уже заметным, тем не менее, это только малая видимая часть айсберга. Сегодня роль ИТ в современной медицине становится просто огромной. Итак, медицина и компьютерные технологии — что связывает вместе эти понятия и как этот дуэт работает сегодня за рубежом и в нашей стране?

Глава 1. Миниинвазивные технологии в хирургии

Классификация миниинвазивных хирургических операций :

Нужна помощь в написании?

Эндоскопическая хирургия – область хирургии, позволяющая выполнять радикальные операции или диагностические процедуры без широкого рассечения покровов либо через точечные проколы тканей (лапароскопические, торакоскопические, риноскопические, артроскопические операции), либо через естественные физиологические отверстия (при фиброэзофагогастродуоденоскопии, колоноскопии, бронхоскопии, цистоскопии и др.).

1.1. Общие принципы

Преимущества эндохирургии по сравнению с традиционными операциями.

  1. Малая травматичность, что проявляется в виде снижения послеоперационных болей, быстрого (1-2 сут) восстановления физиологических функций.
  2. Короткий госпитальный период. Многие операции выполняют амбулаторно либо они требуют лишь 2-3 дневного нахождения в хирургическом стационаре.
  3. Снижение срока утраты трудоспособности в 2-5 раз.
  4. Косметический эффект. Следы от 5-10 мм проколов не сравнимы с рубцами, оставшимися после традиционных “открытых” операций, что особенно важно косметически.
  5. Экономическая эффективность. Хотя стоимость операции выше, лечение оказывается более рентабельным за счет экономии медикаментов, уменьшения длительности госпитального периода и сроков реабилитации пациента.

Показания к эндохирургическому вмешательству при данном заболевании те же, что и на операции, выполняемые “открытым” методом.

Относительные противопоказания:

Факторы, увеличивающие риск возникновения осложнений, либо усугубляющие течение сопутствующих заболеваний.

1. При лапароскопии повышенное внутрибрюшное давление, связанное с создание пневмоперитонеума, уменьшает венозный возврат и ухудшает экскурсию легких. Это опасно для пациентов, имеющих тяжелые сопутствующие заболевания сердечно-сосудистой и легочной систем.

В этих случаях показана операция без наложения пневмоперитонеума (использование лапаролифта) либо традиционный лапаротомный доступ.

2. Разлитой перитонит, требующий тщательной санации всех отделов брюшной полости, лучше лечить традиционным чревосечением. И все же (при сомнении в диагнозе) операцию полезно начать с диагностической лапароскопии.

3. Предшествующие внутриполостные операции из-за выраженного спаечного процесса могут затруднить введение троакаров и выполнение самого вмешательства эндохирургическим методом. Это наиболее вероятно после нескольких перенесенных операций.

4. Риск кровотечения при тяжелых коагулопатиях. Таких больных следует оперировать открытым способом, позволяющим прямое вмешательство в зонах возможного кровотечения.

5. Больные, страдающие ожирением 3-4 степени, могут иметь мощный слой жировой клетчатки, что введение троакара становится затруднительным.

6. Увеличенная матка на поздних сроках беременности может помешать созданию интраабдоминального пространства, достаточного для проведения лапароскопических вмешательств.

7. Портальная гипертензия, особенно протекающая с варикозных расширением вен передней брюшной стенки, значительно увеличивает риск кровотечения. Лапароскопические доступы при этом состоянии нежелательны.

8. Противопоказания при отдельных операциях во многом зависят от опыта специалиста в эндохирургии и могут со временем нежелательны.

9. При неясной анатомии, в технически сложных случаях или при развитии осложнений по ходу вмешательства операцию следует продолжить, выполнив чревосечение “открытым” методом. Всегда следует помнить, что эндохирургия – не специальность, а только метод, имеющий свои ограничения и предел разрешающей способности.

Предоперационная подготовка.

Предоперационная подготовка к лапароскопической операции та же, что и к аналогичному “открытому” вмешательству и направлена на оптимизацию психологического состояния больного и стабилизацию сопутствующих заболеваний.

Больной должен быть психологически подготовлен к тому, что при возникновении технических сложностей или осложнений возможен переход не немедленную лапаротомию. Для декомпрессии желательно установить зонд в желудок и катетер в мочевой пузырь. Тем самым обеспечивается лучший обзор и предупреждается случайная перфорация полых органов троакаром или иглой Вереша.

Обезболивание. Операцию проводят под общим наркозом, поскольку бодрствующие больные плохо переносят растяжение брюшной стенки при инсуффляции газа.

Квалификация хирургов. Бригада, выполняющая лапароскопию, должна быть готовой к переходу на традиционную лапаротомию.

Инструментальное обеспечение. Выполнение эндохирургических операций требует специального, достаточно сложного и дорогостоящего, оборудования и инструментария.

Оборудование.

Инструменты:

Техника.

1. Пневмоперитонеум. Лапароскопия требует создания определенного пространства внутри брюшной полости для осмотра органов и выполнения операции. За последнее время появились специальные устройства (лапаролифты), позволяющие механически приподнять брюшную стенку без инсуффляции газа. Все же большинство лапароскопических вмешательств традиционно выполняют с использованием напряженного пневмоперитонеума.

Нужна помощь в написании?

2. Осмотр органов брюшной полости. После введения лапароскопа, начиная с правого поддиафрагмального пространства, последовательно (по часовой стрелке) осматривают органы брюшной полости. При необходимости более детального осмотра органов через пятимиллиметровый троакар дополнительно вводится зажим. Состояние желчного пузыря, толстой кишки, тазовых органов, передней поверхности желудка и печени может быть оценено без затруднений. Для подробного осмотра других органов изменяют положение тела и вводят мягкий зажим-манипулятор.

3. Остальные троакары, необходимы для введения последующих инструментов, проводят в брюшную полость под контролем глаза, наблюдая прохождение троакара на мониторе. Каждая операция требует различной ориентации применяемых троакаров. Большинство лапароскопических вмешательств требует введения от двух от четырех дополнительных троакаров.

4. Торакоскопия не требует инсуффляции газа, так как сама грудная клетка выполняет каркасную функцию и поддерживает необходимо пространство. Однако, желательна раздельная интубация бронхов,  так как торакоскопические операции лучше проводить при спавшемся легком.

5. Основной метод рассечения тканей и обеспечения гемостаза в эндохирургии – использование высокочастотного электрического тока от электрохирургического генератора. Ток подается на специальные инструменты, имеющие диэлектрическое покрытие. Препаровка тканей ведется в режиме резания и коагуляции. На крупные трубчатые структуры накладывается лигатура, металлическая клипса или используются сшивающие аппараты.

Физиологические изменения при пневмоперитонеуме становятся клинически значимы при сопутствующих заболеваниях сердечно-сосудистой и легочной систем, а также в случае продолжительности операции более 2 часов.

Осложнения.

1. Общая летальность в эндоскопической хирургии составляет 0.5%, а частота осложнений – 10%.

2. Раневая инфекция наблюдается в 1-2% случаев, что приемлемо и сравнимо с частотой нагноения ран при аналогичных операциях, сделанных при открытой методике.

3. Повреждения внутренних органов могут возникнуть при введении иглы для инсуффляции или троакаров. Особенно при наличии спаек от предшествующих операций. Наиболее опасны ранения кишечника и крупных забрюшинных сосудов.

4. Создание пневмопериотонеума под большим давлением (выше 16 мм.рт.ст.) может привести к развитию таких осложнений, как пневмомедиастинум или подкожная эмфизема. Они склонные к спонтанному рассасыванию и редко приводят к таким существенным осложнениям, как ротация сердца или сдавление бифуркации трахеи.

5. Пневмторакс. При выполнении лапароскопии к развитию пневмоторакса может привести ранение диафрагмы, большая диафрагмальная грыжа, либо спонтанный разрыв кисты легкого.

6. Возможно развитие газовой эмболии вследствие непосредственной пункции сосуда иглой Вереша либо в результате “вдавления” газового эмбола в зияющий просвет сосуда, поврежденного при препаровке тканей. Это крайне редкое осложнение может быть фатальным.

7. Электрохирургические повреждения могут проявляться в виде ожогов тканей либо в виде поражения электрическим током низкой частоты. Особенно опасны повреждения кишечника, которые несколько дней (вплоть до момента перфорации) могут оставаться нераспознанными и привести к развитию разлитого перитонита.

8. Сердечно-сосудистый коллапс, обусловленный сниженным венозным возвратом и малым сердечным выбросом, может быть вызван пневмопериотонеумом у больных с тяжелыми нарушениями функций сердца и легких.

Нужна помощь в написании?

9. Послеоперационная боль в правом плече может следствием раздражения диафрагмы углекислым газом или быстрого ее растяжения при инсуффляции. Боль длится недолго и разрешается самостоятельно.

10. Сосуды или нервы передней брюшной стенки могут быть повреждены троакарами. Риск данных осложнений уменьшают, избегая проведения инструментов в проекции прямых мышц живота.

11. Грыжи брюшной стенки иногда образуются в местах введения десятимиллиметровых троакаров.

1.2. Лапароскопические операции

Лапароскопические операции – производятся на органах брюшной полости (печени и желчных путях, желудке, кишечнике, селезенке, матке и ее придатках).

Диагностическая лапароскопия.

1. Показания:

2. Относительные противопоказания. Спайки от предшествующих операций, патологическое ожирение и асцит – главные для успешной диагностической лапароскопии.

3. Техника.

Лапароскопическая декомпрессионная холецистостомия.

1. Показания:

2. Относительные противопоказания

Техника.

  1. Справа по передней подмышечной линии ниже реберной дуги на 5 мм троакаром пунктируют переднюю брюшную стенку.
  2. Через троакар вводят 4 мм иглу, несущую внутри дренажную трубку.
  3. Иглой пунктируют дно желчного пузыря, в его просвет сразу же вводят дренажную трубку на 1-=12 см.
  4. Содержимое пузыря эвакуируют, а полость промывают.
  5. Извлекают троакар и иглу, а дренаж прочно фиксируют к коже.

1.3. Другие направления в эндоскопической хирургии

Преимуществами эндоскопической хирургии являются:

Недостатки:

Таким образом, эндоскопическая хирургия не заменяет традиционную хирургию, а является лишь одним из тех методов, который расширил возможности современной медицины. Классификация эндовидеохирургических вмешательств, показания и противопоказания к тому или иному эндовидеохирургическому лечению во многом схожи с показаниями и противопоказаниями к открытым операциям. В ряде случаев показания к проведению эндовидеохирургических вмешательств,за счет их малой травматичности, расширены по сравнению с традиционной хирургией. Частота осложнений в эндохирургии колеблется от 1 до 25%.Опасность и тяжесть осложнений возрастают по мере увеличения сложности и продолжительности вмешательства.

Глава 2. Лазерная хирургия

Свет использовался для лечения разнообразных болезней испокон веков. Древние греки и римляне часто «принимали солнце» в качестве лекарства. И список болезней, которые приписывалось лечить светом, был достаточно велик.

В начале шестидесятых годов появились первые лазерные медицинские устройства. Сегодня лазерные технологии применяются практически при любых заболеваниях.

Лазер является  источником света, с помощью которого может быть получено когерентное электромагнитное излучение, которое известно нам из радиотехники и техники сверхвысоких частот, а также в коротковолновой, в особенности инфракрасной и видимой, областях спектра.

2.1.Принцип действия. Типы лазеров

Существующие типы лазеров можно классифицировать по нескольким признакам. Прежде всего по агрегатному состоянию активной среды: газовые, жидкостные, твердотельные. Каждый из этих больших классов разбивается на более мелкие: по характерным особенностям активной среды, типу накачки, способу создания инверсии и т.д. Например, из твердотельных довольно четко выделяется обширный класс полупроводниковых лазеров, в которых наиболее широко используется инжекционная накачка. Среди газовых выделяют атомарные, ионные и молекулярные лазеры. Особое место среди всех прочих лазеров занимает лазер на свободных электронах, в основе работы которого лежит классический эффект генерации света релятивистскими заряженными частицами в вакууме.

Излучение лазера отличается от излучения обычных источников света следующими характеристиками:

– высокой спектральной плотностью энергии;

– монохроматичностью;

– высокой временной и пространственной когерентностью;

– высокой стабильностью интенсивности лазерного излучения в стационарном режиме;

– возможностью генерации очень коротких световых импульсов.

Эти особые свойства излучения лазера обеспечивают ему разнообразнейшие применения. Они определяются главным образом принципиально отличным от обычных источников света процессом генерации излучения за счет вынужденного излучения.

Основными характеристиками лазера являются: длина волны, мощность и режим работы, который бывает непрерывным либо импульсным.

Лазеры находят широкое применение в медицинской практике и прежде всего в хирургии, онкологии, офтальмологии, дерматологии, стоматологии и других областях. Механизм взаимодействия лазерного излучения с биологическим объектом ещё изучен не до конца, но можно отметить, что имеют место либо тепловые воздействия, либо резонансные взаимодействия с клетками тканей .

Лазерное лечение безопасно, оно очень актуально для людей с аллергией на медицинские препараты.

2.2. Лазеры, применяемые в медицинской технике

CO2 -лазер , т.е. лазер, излучающей составляющей активной среды которого является углекислый газ CO2 , занимает особое место среди всего многообразия существующих лазеров. Этот уникальный лазер отличается прежде всего тем, что для него характерны и большой энергосъем, и высокий КПД. В непрерывном режиме получены огромные мощности – в несколько десятков киловатт, импульсная мощность достигла уровня в несколько гигаватт, энергия импульса измеряется в килоджоулях.

В гелий-неоновом лазере рабочим веществом являются нейтральные атомы неона. Возбуждение осуществляется электрическим разрядом. В чистом неоне создать инверсию в непрерывном режиме трудно. Эта трудность, носящая достаточно общий для многих случаев характер, обходится введением в разряд дополнительного газа – гелия, выполняющего функцию донора энергии возбуждения.

Полупроводниковые лазерыиспускают в УФ-, видимом или ИК-диапазонах (0,32…32 мкм) когерентное излучение; в качестве активной среды применяются полупроводниковые кристаллы.

Эксимерные лазеры, представляющие собой новый класс лазерных систем, открывают для квантовой электроники УФ диапазон.

Аргоновый лазеротносится к типу газоразрядных лазеров, генерирующих на переходах между уровнями ионов главным образом в сине-зеленой части видимой и ближней ультрафиолетовой областях спектра.

2.2. Механизм взаимодействия лазерного излучения с биотканями

Важное для хирургии свойство лазерного излучения – способность коагулировать кровенасыщенную (васкуляризованную) биоткань.

В основном, коагуляция происходит за счет поглощения кровью лазерного излучения, ее сильного нагрева до вскипания и образования тромбов. Таким образом, поглощающей мишенью при коагуляции могут быть гемоглобин или водная составляющая крови. Это означает, что хорошо коагулировать биоткань будет излучение лазеров в области оранжево-зеленого спектра (КТР-лазер, на парах меди) и инфракрасных лазеров (неодимовый, гольмиевый, эрбиевый в стекле, СО2 -лазер).

Однако, при очень высоком поглощении в биоткани, как, например, у эрбиевого гранатового лазера с длиной волны 2,94 мкм, лазерное излучение поглощается на глубине 5 – 10 мкм и может вообще не достигнуть объекта воздействия – капилляра.

Хирургические лазеры делятся на две большие группы: абляционные (от лат. ablatio – «отнятие»; в медицине – хирургическое удаление, ампутация) и неабляционные лазеры. Абляционные лазеры ближе к скальпелю. Необляционные лазеры действуют по другому принципу: после обработки какого-то объекта, например, бородавки, папилломы или гемангиомы, таким лазером, этот объект остаётся на месте, но через какое-то время в нём проходит серия биологических эффектов и он отмирает. На практике это выглядит так: новообразование мумифицируется, засыхает и отпадает.

В хирургии применяются CO2 -лазеры непрерывного действия. Принцип основан на тепловом воздействии. Преимущества лазерной хирургии состоят в том, что она является бесконтактной, практически бескровной, стерильной, локальной, даёт гладкое заживление рассечённой ткани, а отсюда хорошие косметические результаты.

В онкологии было замечено, что лазерный луч оказывает разрушающее действие на опухолевые клетки. Механизм разрушения основан на термическом эффекте, вследствие которого возникает разность температур между поверхностными и внутренними частями объекта, приводящая к сильным динамическим эффектам и разрушению опухолевых клеток.

Сегодня также очень перспективно такое направление, как фотодинамическая терапия. Появляется множество статей о клиническом применении данного метода. Суть его состоит в том, что в организм пациента вводят специальное вещество – фотосенсибилизатор . Это вещество избирательно накапливается раковой опухолью. После облучения опухоли специальным лазером происходит серия фотохимических реакций с выделением кислорода, который убивает раковые клетки.

Одним из способов воздействия лазерным излучением на организм является внутривенное лазерное облучение крови (ВЛОК), которое в настоящее время успешно используется в кардиологии, пульмонологии, эндокринологии, гастроэнтерологии, гинекологии, урологии, анестезиологии, дерматологии и других областях медицины. Глубокая научная проработка вопроса и прогнозируемость результатов способствуют применению ВЛОК как самостоятельно, так и в комплексе с другими методами лечения.

Для ВЛОК обычно используют лазерное излучение в красной области спектра(0,63 мкм) мощностью 1,5–2 мВт. Лечение проводят ежедневно или через день; на курс от 3 до 10 сеансов. Время воздействия при большинстве заболеваний 15–20 мин за сеанс для взрослых и 5–7 мин для детей. Внутривенная лазерная терапия может быть осуществлена практически в любом стационаре или поликлинике. Преимуществом амбулаторной лазеротерапии является уменьшение возможности развития внутрибольничной инфекции, создается хороший психоэмоциональный фон, позволяя больному на протяжении длительного времени сохранять работоспособность, проводя при этом процедуры и получая полноценное лечение.

В офтальмологии лазеры применяют как для лечения, так и для диагностики. С помощью лазера производят приварку сетчатки глаза, сварку сосудов глазной сосудистой оболочки. Для микрохирургии по лечению глаукомы служат аргоновые лазеры, излучающие в сине-зелёной области спектра. Для коррекции зрения давно и успешно используются эксимерные лазеры.

В дерматологии с помощью лазерного излучения лечат многие тяжёлые и хронические заболевания кожи, а также выводят татуировки. При облучении лазером активируется регенеративный процесс, происходит активация обмена клеточных элементов [4].

Основной принцип применения лазеров в косметологии заключается в том, что свет воздействует только на тот объект или вещество, которое поглощает его. В коже свет поглощается особыми веществами – хромофорами. Каждый хромофор поглощает в определенном диапазоне длин волн, например, для оранжевого и зеленого спектра это гемоглобин крови, для красного спектра – меланин волос, а для инфракрасного спектра – клеточная вода.

При поглощении излучения происходит преобразование энергии лазерного луча в тепло на том участке кожи, который содержит хромофор. При достаточной мощности лазерного луча это приводит к тепловому разрушению мишени. Таким образом, с помощью лазера можно селективно воздействовать, например, на корни волос, пигментные пятна и другие дефекты кожи.

Однако вследствие переноса тепла происходит нагревание и соседних областей, даже если они содержат мало светопоглощающих хромофоров. Процессы поглощения и переноса тепла зависят от физических свойств мишени, глубины залегания и ее размера. Поэтому в лазерной косметологии важно тщательно подбирать не только длину волны, но и энергию, и длительность лазерных импульсов.

В стоматологии лазерное излучение является наиболее эффективным физиотерапевтическим средством лечения пародонтоза и заболеваний слизистой оболочки полости рта.

Лазерный луч применяется вместо иглоукалывания. Преимущества применения лазерного луча состоит в том, что отсутствует контакт с биологическим объектом, а, следовательно, процесс протекает стерильно и безболезненно при большой эффективности.

Световодные инструменты и катетеры для лазерной хирургии предназначены для доставки мощного лазерного излучения к месту проведения оперативного вмешательства при открытых, эндоскопических и лапароскопических операциях в урологии, гинекологии, гастроэнтерологии, общей хирургии, артроскопии, дерматологии. Позволяют осуществлять резание, иссечение, абляцию, вапоризацию и коагуляцию тканей при проведении хирургических операций в контакте с биотканью или в бесконтактном режиме применения (при удалении торца волокна от биоткани). Вывод излучения может осуществляться как с торца волокна, так и через окошко на боковой поверхности волокна. Могут использоваться как в воздушной (газовой), так и водной (жидкой) среде. По отдельному заказу для удобства пользования катетеры комплектуются легкосъёмной ручкой – держателем световода.

В диагностике лазеры применяются для обнаружения различных неоднородностей (опухолей, гематом) и измерения параметров живого организма. Основы диагностических операций сводятся к пропусканию через тело пациента (либо один из его органов) лазерного луча и по спектру или амплитуде прошедшего или отражённого излучения выводят диагноз. Известны методы по обнаружению раковых опухолей в онкологии, гематом в травматологии, а также по измерению параметров крови (практически любых, от артериального давления до содержания сахара и кислорода).

Преимущества лазерной хирургии

Заключение

Медицинская информационная система  призвана повысить качество и доступность медицинских услуг. Использование новых информационных технологий в современных медицинских центрах позволит легко вести полный учет всех оказанных услуг, сданных анализов, выписанных рецептов.

Также при автоматизации медицинского учреждения заполняются электронные амбулаторные карты и истории болезни, составляются отчеты и ведется медицинская статистика. Автоматизация медицинских учреждений – это создание единого информационного пространства ЛПУ, что, в свою очередь, позволяет создавать автоматизированные рабочие места врачей, организовывать работу отдела медицинской статистики, создавать базы данных, вести электронные истории болезней и объединять в единое целое все лечебные, диагностические, административные, хозяйственные и финансовые процессы. Использование информационных технологий в работе поликлиник или стационаров значительно упрощает ряд рабочих процессов и повышает их эффективность при оказании медицинской помощи.

Список использованных источников

1. Эндохирургические вмешательства при острых заболеваниях органов брюшной полости (практическое руководство) Малков И.С., Шаймарданов Р.Ш. Ким И.А., 1996 Казань: Эндохирургия Татарстана.2. Частная хирургия (учебник) под редакцией профессора М.И. Лыткина. Ленинград, 1990 год.3. Острый аппендицит (практическое пособие). В.М. Седов, Н.В. Туркина, М.С. Богомолов. Санкт-Петербург, СПГМУ имени акад. И.П. Павлова, 1997 год.4. Хирургия, руководство для врачей и студентов. Геоэтар Медицина, 1997г. перевод с английского под редакцией Ю.М. Лопухина и В.С. Савельева;5. Джозеф М. Хендерсон. Патофизиология органов пищеварения. Бином паблишерс, 1997 год6. Захаров В.П., Шахматов Е.В. Лазерная техника: учеб. пособие. – Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2006. – 278 с.7. Справочник по лазерной технике. Пер. с немецкого. М., Энергоатомиздат, 1991. – 544 с.8. Жуков Б.Н., Лысов Н.А., Бакуцкий В.Н., Анисимов В.И. Лекции по лазерной медицине: Учебное пособие. – Самара: СМИ, 1993. – 52 с.9. Применение лазерной хирургической установки «Скальпель-1» для лечения стоматологических заболеваний. – М.: Министерство здравоохранения СССР, 1986. – 4 с.10. Канюков В.Н., Терегулов Н.Г., Винярский В.Ф., Осипов В.В. Развитие научно-технических решений в медицине: Учебное пособие. – Оренбург: ОГУ, 2000. – 255 с.

nauchniestati.ru

Реферат - Программа научно-практической конференции «лазерная хирургия» (1-2 марта 2012 г., Черкассы)

Программа научно-практической конференции

«ЛАЗЕРНАЯ ХИРУРГИЯ»

(1-2 марта 2012 г., Черкассы)

Организационный комитет

Гамалея Н.Ф. – сопредседатель оргкомитета, заведующий отделом клеточной фотобиологии и фотомодуляции роста опухолей Института экспериментальной патологии, онкологии и радиобиологии им. Р.Е. Кавецкого НАН Украины, доктор биологических наук, профессор.

Крыса В.М. – сопредседатель оргкомитета, заведующий кафедрой экстренной медицинской помощи и медицины катастроф Ивано-Франковского национального медицинского университета, доктор медицинских наук, профессор.

^ Холин В.В. – сопредседатель оргкомитета, директор ЧМПП «Фотоника Плюс», г. Черкассы Савченко А.Н. – член оргкомитета, заведующий кафедрой управления и экономики здравоохранения Восточноевропейского университета экономики и менеджмента, доктор медицинских наук, профессор.

^ Тарасов Н.В. – член оргкомитета, директор КНП «Черкасская городская поликлиника № 5» Черкасского городского совета, доктор медицинских наук.

1 марта 2012 г.

(актовый зал Клуба Черкасской областной больницы

ул. Менделеева, 3; добираться автобусами № 4, 6, 11, 14, 18, 26а)

^ 10.00 Приветствие участников конференции

Брожик В.Л. – начальник главного управления здравоохранения и медицины катастроф Черкасской областной администрации.

^ Стадник О.М. – директор Департамента здравоохранения Черкасского городского совета.

Гамалея Н.Ф. – заведующий отделом клеточной фотобиологии и фотомодуляции роста опухолей Института экспериментальной патологии, онкологии и радиобиологии им. Р.Е. Кавецкого НАН Украины, доктор биологических наук, профессор.

Коробов А.М. – председатель проблемной комиссии МЗ и АМН Украины «Лазерные технологии в медицине», кандидат физико-математических наук.

^ 10.20-13.45 – Пленарное заседание (Часть 1)

10.20 Тарасов Н.В. «Обобщение практического опыта и перспектив применения лазерных технологий в хирургии» (г. Черкассы).

10.30 Савченко А.Н. «Экономическая целесообразность использования лазерных технологий в медицине» (г. Черкассы).

10.40 Розуменко В.Д., Розуменко А.В. «Навигационное планирование лазерно-хирургического удаления опухолей головного мозга» (г. Киев).

11.00 Шимон В.М., Пичкар И.Й., Пантьо В.И., Литвак В.В. «Применение лазера в лечении патологий позвоночника» (г. Ужгород).

11.20 ^ Годлевский Д.О., Базунов М.В., Медюлянов О.М., Самохвал С.В. «Первый опыт пункционной лазерной вапоризации межпозвоночных дисков в комбинации с перкутанной микродискэктомией декомпрессором «Stryker» (г. Черкассы).

11.30 ^ Посохов Н.Ф., Пыхтин А.В. «Результаты лечения тяжелых форм невралгии тройничного нерва методом перкутанной пункционной селективной лазерной нейротомии чувствительного корешка и периферических ветвей тройничного нерва» (г. Харьков).

11.40 ^ Завадская Т.С. «Клинический случай позитивной динамики рецидивирующего рака молочной железы при использовании комбинированной лазерной и фотодинамической терапии» (г. Киев)

11.50 Зайцев С.Л., Разумейко И.В., Кондрацкий Ю.Н., Войцехович В.С. «ND-YAG лазер в лечении доброкачественных опухолей пищевода» (г. Киев).

12.00-12.15 – «Кофе-брейк»

12.15 Мелеховец Ю.В., Мелеховец О.К., Цымбал В.А. «Лазерная склеротерапия кист молочных желез» (г. Сумы).

12.25 Падалкин Ю.И. «Опыт применения лазерного коагулятора «Лика-хирург» для лечения аденоматозных и гиперпластических полипов желудка» (г. Кривой Рог).

12.35 Сук Л.Л., Антонов В.Р. «Применение высокоинтенсивного лазерного излучения в лечении нетоксической узловой патологии щитовидной железы» (г. Киев).

12.45 Черниенко Ю.Л., Мирошников Я.О. «Лазерная хирургия в лечении геморроя» (г. Киев).

12.55 Буткевич А.Ю. «Хирургическое лечение вросшего ногтя СО2-лазером» (г. Харьков).

13.05 Настенко А.В., Настенко В.В. «Лечение остеоартроза коленного сустава ІІІ степени с помощью лазерного коагулятора «Лика-хирург» (г. Харьков).

13.15-13.45 – Обсуждение докладов

13.45 – 14.45 – Обеденный перерыв

^ 14.45-18.00 – Пленарное заседание (Часть 2)

14.45 Чешенчук С.А. Чешенчук А.С., Шапринский В.В., Горовой В.И. «Лечение варикоцеле с использованием эндовенозной лазерной коагуляции» (г. Винница).

14.55 Щерба Л.А., Гринчук В.П., Щерба А.Л. «Применение диодного лазера в хирургии вен нижних конечностей» (г. Хмельницкий).

15.05 ^ Шапринский В.В., Юрец С.С., Леванчук С.М., Мельник В.Б., Чешенчук С.А., Лазоренко В.Е., Цигалко Д.В. «Сравнительная характеристика результатов эндовенозной лазерной коагуляции варикознорасширенных вен нижних конечностей с применением диодных лазеров инфракрасного диапазона спектра с различными длинами волн» (г. Винница).

15.15 ^ Крыса В.М. «Анализ практического опыта применения эндовенозной лазерной коагуляции в лечении варикозной болезни нижних конечностей» (г. Ивано-Франковск).

15.35 Семенов В.В. «Опыт применения хирургического лазера в гистерорезектоскопии» (г. Киев)

15.45 Палийчук О.В., Коломиец П.П. «Опыт применения хирургических лазеров в программах комплексного лечения патологии шейки матки» (г. Черкассы).

15.55 Еременко С.И. Еременко С.Н., Кононенко Ю.Ю., Еременко А.Н. «Результаты применения диодных хирургических лазеров в урологии» (г. Севастополь).

16.05-16.20 – «Кофе-брейк»

16.20 Лобанов Г.Ф. «Роль микробного фактора в формировании постоперационных осложнений при лазерной эксцизии пролиферативных процессов аногенитальной области» (г. Киев).

16.30 Цепколенко В.А., Цепколенко А.В., Карпенко Е.С. «Осложнения лазерного фракционного фототермолиза» (г. Одесса).

16.40 Клюев Г.О., Привалов А.П. «Лазерный коагулятор «Лика-хирург» в офтальмологической практике» (г. Одесса).

16.50 Свириденко Л.Ю. «Опыт применения хирургического лазера в клинике «Лоридан» (г. Харьков).

17.00 Чернокур А.А. «Использование лазера в хирургическом лечении папилломатоза гортани» (г. Днепропетровск).

17.10 Бургонский В.Г. «Современные аспекты применения лазеров в стоматологии» (г. Киев).

17.20 Барановский В.И., Григорян С.Э. «Применение диодного лазера «Лика-хирург» в практике врача-стоматолога-хирурга» (г. Одесса).

17.30-18.00 – Обсуждение докладов

^ 19.30 – Дружественный ужин

2 марта 2012 г.

(КНП «Пятая Черкасская городская поликлиника»

ул. 30 лет Победы, 20; добираться автобусами № 6, 22, 25)

^ 10.00 Мастер-классы по применению лазерного коагулятора «Лика-хирург» в различных областях

хирургии:

Флебология (эндовенозная лазерная коагуляция варикознорасширенных вен нижних конечностей)

Травматология и ортопедия (контрактура Дюпюитрена)

Дерматология (гемангиомы, телеангиэктазии, кератомы, папилломы)

Гинекология (видеокольпоскопия операций на шейке матки)

Оториноларингология (медикаментозные риниты, гипертрофические риниты, подслизистая лазерная вазотомия)

Нейрохирургия (лазерная вапоризация межпозвоночных дисков)

Контактные телефоны

По всем организационным вопросам обращаться:

Корунец Анастасия – (066) 93-20-289;

Мулярова Александра – (067) 470-02-87

www.ronl.ru

Реферат - Лазеры и их применение в медицине

--PAGE_BREAK--2 ОСНОВНЫЕ НАПРАВЛЕНИЯ И ЦЕЛИ МЕДИКО-БИОЛОГИЧЕСКОГО ИСПОЛЬЗОВАНИЯ ЛАЗЕРОВ

Современные направления медико-биологического применения лазеров могут быть разделены на две основные группы Первая — использование лазерного излучения в качестве инструмента исследования. В этом случае лазер играет роль уникального светового источника при спектральных исследованиях, лазерной микроскопии, голографии и др. Вторая группа — основные пути использования лазеров в качестве инструмента воздействия на биологические объекты. Можно выделить три типа такого воздействия.

Первый тип — воздействие на ткани патологического очага импульсным или непрерывным лазерным излучением при плотности мощности порядка 105 Вт/м2, недостаточной для глубокого обезвоживания, испарения тканей и возникновения в них дефекта. Этому типу воздействия соответствует, в частности, применение лазеров в дерматологии и онкологии для облучения патологических тканевых образований, которое приводит к их коагуляции. Второй тип— рассечение тканей, когда под влиянием излучения лазера непрерывного или частотно-периодического (импульсы, следующие с большой частотой) действия часть ткани испаряется и в ней возникает дефект. В этом случае плотность мощности излучения может превосходить используемую при коагуляции на два порядка (107 Вт/м2) и более. Этому типу воздействия соответствует применение лазеров в хирургии. Третий тип — влияние на ткани и органы низкоэнергетического излучения (единицы или десятки ватт на квадратный метр), обычно не вызывающего явных морфологических изменений, но приводящего к определенным биохимическим и физиологическим сдвигам в организме, т. е. воздействие физиотерапевтического типа. К этому типу следует отнести применение гелий-неонового лазера с целью биостимуляции при вяло текущих раневых процессах, трофических язвах и др.

Задача исследований механизма биологического действия лазерной радиации сводится к изучению тех процессов, которые лежат в основе интегральных эффектов, вызываемых облучением: коагуляции тканей, их рассечения, биостимуляционных сдвигов в организме.3 ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ ЛАЗЕРОВ В МЕДИЦИНСКОЙ ПРАКТИКЕ

Принцип действия лазеров основан на квантово-механических процессах, протекающих в объеме рабочей среды излучателя, объяснение которым дает квантовая электроника — область физики, исследующая взаимодействие электромагнитного излучения с электронами, входящими в состав атомов и молекул рабочей среды.

Согласно принципам квантовой электроники любая атомная система в процессе своего внутреннего движения находится в состояниях с определенными значениями энергии, называемых квантовыми, т. е. имеет строго определенные (дискретные) значения энергии. Набор этих значений энергии образует энергетический спектр атомной системы.

При отсутствии внешнего возбуждения атомная система стремится к состоянию, в котором ее внутренняя энергия минимальна. При внешнем возбуждении переход атома в состояния с большей энергией сопровождается поглощением порции энергии, равной разности энергий конечного Ет и начального Е„ состояний. Этот процесс записывается в следующем виде: Em— En=nVmn,                                              (1) где Vmn— частота перехода из состояния п в состояние m; h— постоянная Планка.

Как правило, средняя продолжительность пребывания (время жизни) атома в возбужденном состоянии мала и возбужденный атом самопроизвольно (спонтанно) переходит в состояние с меньшей энергией, испуская при этом квант света (фотон) с энергией, определяемой по формуле (1). При спонтанных переходах атомы испускают кванты света хаотически, не взаимосвязано. Они разлетаются равномерно во всех направлениях. Процесс спонтанных переходов наблюдается при свечении нагретых тел, например, ламп накаливания и др. Такое излучение немонохроматично.

При взаимодействии возбужденного атома с внешним излучением, частота которого соответствует частоте перехода атома из состояния с большей энергией в состояние с меньшей энергией, существует вероятность (тем большая, чем выше интенсивность внешнего излучения) перевода этим внешним излучением атома в состояние с меньшей энергией. При этом атом излучает квант света, имеющий те же частоту vmn, фазу, направление распространения и поляризацию, что и вынуждающий этот переход квант света внешнего излучения.

Такие переходы называются вынужденными (индуцированными). Именно наличие вынужденного излучения обеспечивает возможность генерирования когерентного излучения в оптических квантовых генераторах-лазерах.

Теперь рассмотрим, что произойдет при распространении света через систему, в которой имеются атомы с энергией Ет и Еn(для определенности примем Em>En). Число атомов с энергией Ега обозначим Nm, а число атомов с энергией En—N„. Числа Nmи N„ принято называть населенностью уровней с энергией Еш и Еп соответственно.

В естественных условиях на более высоком энергетическом уровне частиц меньше, чем на более низком для любого значения температуры. Поэтому для любого нагретого тела а — величина отрицательная и в соответствии с формулой (2) распространение света в веществе сопровождается его ослаблением. Для усиления света необходимо иметь Nm>Nn. Такое состояние вещества называют состоянием с инверсией населенности. В этом случае распространение света через вещество сопровождается его усилением за счет энергии возбужденных атомов.

Таким образом, для процесса усиления излучения необходимо обеспечить превышение населенности верхнего уровня перехода над нижним.

Для создания инверсии населенности применяют различные способы, заключающиеся в использовании внешнего источника возбуждения.

Атомную систему с инверсией населенности принято называть активной средой. Для получения генерации излучения необходимо решить проблему обратной связи. Активную среду помещают в оптический резонатор, который в наиболее простом случае представляет собой два взаимно параллельных плоских зеркала, ограничивающих с двух противоположных сторон активную среду. При этом одно из зеркал резонатора частично пропускает излучение генерации и через него осуществляется вывод излучения из резонатора, а другое зеркало полностью отражает падающее на него излучение.

Процесс развития генерации в резонаторе представляется в следующем виде. После создания внешним источником возбуждения в рабочей среде инверсии населенности участвовать в развитии процесса генерации будет только то излучение, которое распространяется вдоль оси резонатора. Это излучение, достигнув поверхности полностью отражающего зеркала резонатора и отразившись от него, снова попадает в активную среду и, распространяясь в ней, за счет вынужденных переходов усиливается. Отразившись от частично отражающего зеркала резонатора, часть усиленного излучения возвращается в активную среду и снова усиливается, а часть излучения выходит из резонатора. Далее указанные процессы повторяются многократно, пока существует внешний источник возбуждения атомной системы.

Для того чтобы процесс генерации излучения был устойчивым, необходимо, чтобы усиление излучения в активной среде за двойной проход в резонаторе было равно или больше полных потерь излучения на том же пути. В полные потери входят потери в активной среде и то излучение, которое выводится из резонатора через частично отражающее зеркало.

Пропущенное частично отражающим зеркалом лазерное излучение выходит за пределы резонатора во внешнее пространство в виде светового пучка с высокой степенью направленности, что обусловлено тем, что в активной среде усиливается в основном излучение, направление распространения которого совпадает с осью резонатора (рис. 2).

В современных лазерах угол расхождения (9) лазерного пучка может достигать дифракционного предела и составлять по порядку величин от нескольких угловых секунд до десятков угловых минут.

Мощность лазерного излучения, снимаемая с единицы объема активной среды, в конечном счете определяется мощностью внешнего источника возбуждения, подводимой к единице объема активной среды. Максимальная полная мощность (энергия) лазерного излучения в довольно широких пределах пропорциональна объему активной среды и максимальной мощности (энергии) источника внешнего возбуждения (накачки).

Основными особенностями лазерного излучения, делающими его перспективным для применения в различных областях медицины, являются высокие направленность, монохроматичность и энергоемкость.

Высокая направленность лазерного излучения характеризуется тем, что угловое расхождение его пучка в свободном пространстве достигает величин, измеряемых десятками угловых секунд. Благодаря этому возможна передача лазерного излучения в пучке на значительные расстояния без существенного увеличения его диаметра. Высокие монохроматичность и направленность как импульсного, так и непрерывного лазерного излучения позволяют фокусировать его в пятна, соизмеримые с длиной волны излучения самого лазера. Столь острая фокусировка делает возможным облучение медико-биологических объектов на клеточном уровне. Кроме того, такая фокусировка позволяет получать требуемый лечебный эффект при небольших энергиях лазерного излучения. Последнее особенно важно при использовании лазерного излучения для обработки биообъектов, чувствительных к свету.<img width=«281» height=«95» src=«ref-1_1529563958-4228.coolpic» v:shapes="_x0000_i1025"> 2. Угол расхождения лазерного пучка (6).

1 — непрозрачное зеркало, 2 — полупрозрачное зеркало, 3 — лазерный световой пучок.

Использование острой фокусировки при больших мощностях и энергиях облучения позволяет осуществлять испарение и разрез биоткани, что и обусловило применение лазера в хирургии.

Для объектов, малочувствительных к свету (злокачественные опухоли), возможно облучение мощным излучением на больших площадях.

Во всех случаях характер воздействия лазерного излучения на биологические ткани зависит от длины волны, плотности мощности и режима излучения — непрерывного или импульсного.

Излучение в красной и инфракрасной областях спектра при поглощении биотканями преобразуется в теплоту, которая может расходоваться на испарение вещества, генерацию акустических колебаний, вызывать биохимические реакции.

Излучение в видимой области спектра, помимо тепловых эффектов, обеспечивает условия для стимуляции фотохимических реакций. Так, применение низкоинтенсивного излучения гелий-неонового лазера (длина волны излучения 0,63 мкм) оказывает клинически достоверное действие, приводящее к ускорению заживления трофических и гнойных ран, язв и др. Однако механизм действия этого вида излучения до конца не изучен. Несомненно, что исследования в этом направлении будут способствовать более эффективному и осмысленному применению этого вида излучения в клинической практике.

При использовании лазеров, работающих в непрерывном режиме излучения, преобладает в основном тепловое действие, которое проявляется при средних уровнях мощностей в эффекте коагуляции, а при больших мощностях в эффекте испарения биоткани.

В импульсном режиме действие излучения на биологические объекты более сложно. Взаимодействие излучения с живой тканью здесь носит взрывной характер и сопровождается как тепловыми (коагуляция, испарение) эффектами, так и образованием в биоткани волн сжатия и разрежения, распространяющихся в глубь биоткани. При высоких плотностях мощности возможна ионизация атомов биоткани.

Таким образом, отличие в параметрах лазерного излучения ведет к отличию в механизме и результатах взаимодействия<img width=«3» height=«67» src=«ref-1_1529568186-77.coolpic» v:shapes="_x0000_s1029"><img width=«2» height=«355» src=«ref-1_1529568263-88.coolpic» v:shapes="_x0000_s1030">, обеспечивая лазерам широкое поле деятельности для решения различных медицинских задач.

В настоящее время лазеры применяют в таких областях медицины, как хирургия, онкология, офтальмология, терапия, гинекология, урология, нейрохирургия, а также с диагностической целью.

В хирургии лазерный луч нашел широкое применение в качестве универсального скальпеля, превосходящего по своим режущим и кровоостанавливающим свойствам электронож. Механизм взаимодействия лазерного скальпеля с биотканями характеризуется следующими особенностями.

1.  Отсутствие прямого механического контакта инструмента с биотканью, устраняющее опасность инфицирования оперируемых органов и обеспечивающее проведение операции на свободном операционном поле.

2.  Гемостатическое действие излучения, позволяющее получить практически бескровные разрезы, останавливать кровотечение из кровоточащих тканей.

3.  Собственное стерилизующее действие излучения, являющееся активным средством борьбы с инфицированием ран, что предотвращает осложнения в послеоперационном периоде.

4.  Возможность управления параметрами лазерного излучения, позволяющая получать различные эффекты при взаимодействии излучения с биотканями.

5.  Минимальное воздействие на близлежащие ткани.

Разнообразие проблем, существующих в хирургии, обусловило необходимость всестороннего изучения возможностей применения лазеров с различными параметрами и режимами излучения.

В хирургии в качестве светового скальпеля наиболее широкое применение нашли газовые углекислотные лазеры (длина волны излучения 10,6 мкм), работающие в импульсном и непрерывном режиме с мощностью излучения до 100 Вт.

Механизм действия излучения С02-лазера заключается в нагреве биоткани за счет сильного поглощения ею лазерного излучения. Глубина проникновения этого излучения не превышает 50 мкм. В зависимости от плотности мощности излучения его воздействие проявляется в эффектах разреза или поверхностной коагуляции биоткани.

Разрез ткани осуществляют сфокусированным лазерным лучом за счет послойного испарения ее. Объемная плотность мощности при этом достигает нескольких сотен киловатт на 1 см3. Поверхностная коагуляция тканей достигается воздействием на нее расфокусированным лазерным излучением при объемных плотностях порядка нескольких сотен ватт на 1 см3.

При мощности лазерного излучения 20 Вт, диаметре сфокусированного пучка лазерного излучения <metricconverter productid=«1 мм» w:st=«on»>1 мм (поверхностная плотность мощности 2,5 кВт/см2) и глубине проникновения излучения 50 мкм объемная плотность мощности лазерного излучения, идущая на нагрев биоткани, достигает 500 кВт/см3. Такая чрезвычайно высокая объемная плотность мощности лазерного излучения обеспечивает быстрый нагрев и разрушение биоткани в зоне действия лазерного луча. При этом вначале происходит разложение биоткани с испарением жидкой и карбонизацией твердой фаз. Полная карбонизация биоткани наблюдается в интервале температур 200—220 °С. Карбонизированный каркас биоткани существует до температур 400—450 °С и при дальнейшем повышении температуры — выгорает. При горении карбонизированного каркаса температура газообразных продуктов сгорания составляет 800—1000 °С.

Глубина разреза определяется скоростью перемещения границ слоя разрушения биоткани в глубь ее. При этом скорость перемещения указанной границы зависит от скорости перемещения точки фокусировки лазерного луча вдоль линии разреза. Чем ниже скорость перемещения точки фокусировки вдоль линии разреза, тем больше глубина разреза, и наоборот.

В отличие от излучения с ,= 10,6 мкм излучение АИГ-Nd-лазера обладает на порядок большей глубиной проникновения в биоткани, что, несомненно, является благоприятным фактором при коагуляции больших кровеносных сосудов при массивных кровотечениях, а также для разрушения глубоколежащих опухолей.

Таким образом, излучение АИГ-Nd-лазера обладает ярко выраженным коагулирующим (режущее действие излучения этого лазера значительно уступает таковому С02-лазера) действием, что и определяет его область практического применения.

4 МЕРЫ ЗАЩИТЫ ОТ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

При работе с лазерными установками потенциальную опасность для организма человека (пациента, медицинского персонала) представляет неконтролируемое прямое и рассеянное лазерное излучение. Наибольшую опасность оно представляет для зрения оператора, работающего с лазерной установкой. Однако рассеянное инфракрасное лазерное излучение непрерывных углекислотных лазеров установок «Скальпель-1», «Ромашка-1», «Ромашка-2» полностью задерживается слоями слезной жидкости и роговицы глаза и не достигает глазного дна. Поскольку глубина проникновения лазерного излучения не превышает 50 мкм, около 70% его энергии поглощается слезной жидкостью и около 30% —роговицей.

Высокоинтенсивное излучение углекислотного лазера, особенно если оно сфокусировано, может вызывать локальное ожоговое поражение кожи открытых частей тела —рук, лица. Воздействие лазерного излучения на организм человека не проявляется только при интенсивности облучения ниже безопасного уровня, которое для углекислотного лазера непрерывного действия составляет для глаз 0,1 Вт/см2. Известно, что в клинических условиях для достижения требуемого клинического эффекта применяют уровни прямого облучения, в сотни и тысячи раз превышающие безопасный уровень, поэтому при работе с углекислотными лазерными установками необходимо соблюдение определенных мер защиты.

В помещении, где выполняют операции с использованием углекислотного лазера, целесообразно стены и потолок покрыть материалом с минимальной отражающей способностью, а_ аппаратуру и приборы с гладкими блестящими поверхностями разместить таким образом, чтобы на них ни при каких обстоятельствах не мог попасть прямой луч, или отгородить их ширмами, с матовыми темными поверхностями. Перед входом в помещение, в котором находится установка, должно быть установлено световое табло («Не_входить»__«Включен лазер»), включаемое во время лазерной операции.

Защита глаз больных и персонала от прямого или отраженного излучения углекислотного лазера надежно гарантируется очками из обычного оптического стекла. Желательно, чтобы очки были изготовлены таким образом, чтобы исключалась возможность попадания лазерного излучения через щели между оправой и лицом и обеспечивалось широкое поле зрения. Очки надевают только на время выполнения лазерного этапа хирургического вмешательства, чтобы предотвратить непосредственное воздействие лазерного облучения на глаза.

При работе с углекислотными лазерными установками использование лазерных хирургических инструментов повышает опасность повреждения кожи рук и лица хирурга за счет отражения от инструментов лазерного луча. Эта опасность резко снижается при применении инструментов, имеющих специальное «чернение». «Черненые» инструменты поглощают около 90% попадающего на них лазерного излучения с длиной волны 10,6 мкм. Другие инструменты — ранорасширители, кровоостанавливающие зажимы, пинцеты, сшивающие аппараты — также могут отражать лазерный луч. Однако в руках опытного хирурга любое хирургическое вмешательство может быть выполнено без направления лазерного луча на эти инструменты. Существует также опасность возгорания операционного материала, салфеток, простыней и др. при попадании на них прямо направленного лазерного излучения, поэтому при работе с ним необходимо в зоне предполагаемой лазерной обработки использовать мягкий материал, смоченный в изотоническом растворе хлорида натрия._ Целесообразно также в момент выполнения лазерного этапа операции удалять из поля действия лазерного излучения приборы и инструменты, изготовленные из пластических масс, способных возгораться при высокой температуре.

Не следует также забывать, что лазерная установка одновременно является и устройством, работающим с использованием электроэнергии. В связи с этим при работе с ней необходимо соблюдать правила электробезопасности, выполняемые при эксплуатации электроустановок потребителей.

<img width=«2» height=«126» src=«ref-1_1529568351-81.coolpic» v:shapes="_x0000_s1031">Персонал, работающий с лазерными установками, должен пройти специальную подготовку и иметь соответствующую квалификацию. Все лица, работающие с лазерным излучением, регулярно, не менее одного раза в год, должны подвергаться медицинскому обследованию, включающему осмотр офтальмологом, терапевтом и невропатологом. Кроме того, необходим клинический анализ крови с проверкой уровня гемоглобина, числа лейкоцитов и лейкоцитарной формулы. Проводят также основные печеночные пробы.

При аккуратном соблюдении изложенных выше правил опасность повреждения органов, тканей и биологических сред человеческого организма практически отсутствует. Так, за 10-летний период работы с различными лазерными установками, которыми в общей сложности было выполнено несколько тысяч различных операций, мы не наблюдали ни одного случая поражения глаз и кожи лазерным излучением, а также изменений в состоянии здоровья ни у одного из сотрудников учреждения, связанных с работой на лазерных установках.

5 ПРОНИКНОВЕНИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В БИОЛОГИЧЕСКИЕ ТКАНИ

Закономерности, управляющие проникновением излучения в ткани, имеют непосредственное отношение к проблеме механизма биологического действия лазерной радиации. Одна из причин того, что излучение проникает на ограниченную глубину, состоит в поглощении лазерного излучения биологическими тканями, а оно является, за редким исключением, обязательным начальным звеном, которое предшествует цепи изменений, развивающихся в облученном организме. Глубина проникновения лазерного излучения в ткани весьма важна в практическом отношении, так как она является одним из факторов, определяющих границы возможного применения лазеров в клинике.

Поглощение — не единственный процесс, приводящий к ослаблению лазерного излучения при прохождении его через биологические ткани. Одновременно с поглощением излучения происходит ряд других физических процессов, в частности отражение света от поверхности между двумя средами, преломление при прохождении границы, разделяющей две оптически разнородные среды, рассеяние света частицами ткани и др. Таким образом, можно говорить об общем ослаблении излучения, включающем, помимо поглощения, потери за счет других явлений, и об истинном поглощении излучения. При отсутствии рассеяния поглощение в среде характеризуется двумя параметрами: поглощательной способностью и глубиной поглощения. Поглощательная способность определяется как отношение энергии, поглощенной в среде, к энергии излучения, падающей на поверхность среды. Это отношение всегда меньше 1, так как излучение частично проходит сквозь нее. Глубина поглощения характеризует пространственное распределение поглощенной энергии в среде. В простейшем случае (экспоненциальное затухание света в веществе) она равна расстоянию, на котором мощность излучения уменьшается в 2,718 раза по отношению к мощности излучения на поверхности среды. Величина, обратная глубине поглощения, называется коэффициентом поглощения. Он имеет размеренность см-1. Если наряду с поглощением происходит рассеяние света, то расстояние, на котором в результате совместного действия этих процессов излучение затухает в раз, представляет собой глубину ослабления или проникновения излучения, а обратная ей величина — коэффициент ослабления, также имеющий размерность см-1.

При теоретическом рассмотрении вопросов поглощения лазерного излучения тканями для упрощения задачи можно принять, что излучение представляет собой плоскую волну, падающую на ровную поверхность объекта, а коэффициент поглощения на всем облучаемом участке одинаков и не зависит от интенсивности света. В этом случае энергия (мощность) излучения по мере увеличения глубины будет уменьшаться экспоненциально, и распределение ее выражается уравнением:

Р=Р0ехр                                                            (1)

где Р — мощность излучения на глубине; Ро — мощность излучения, падающего на поверхность ткани; — коэффициент поглощения ткани (пренебрегаем потерями на отражение света от гкани).

В реальных условиях при облучении биологических объектов такое простое соотношение между толщиной слоя ткани и количеством поглощенной энергии нарушается, например за счет различий в коэффициентах поглощения разных участков облучаемой ткани. Так, коэффициент поглощения меланиновых гранул сетчатки глаза в 1000 раз больше, чем окружающей ткани. Учитывая, что светопоглощение представляет собой молекулярный процесс, который в конечном счете зависит от концентрации поглощающих излучение молекул, величина поглощения на клеточном и субклеточном уровнях может значительно изменяться даже от органеллы к органелле. Наконец, поглощение является функцией длины волны, следовательно, коэффициент поглощения широко варьирует для лазеров, излучающих в различных областях спектра.

В ряде ранних исследований о величине поглощения биологических тканей судили на основании результатов измерений их светопропускания. При этом в большинстве случаев опыты были проведены с рубиновым и неодимовым лазерами. Так, при облучении рубиновым лазером мышей было установлено, что через кожу проникает от 45 до 60% энергии, а через кожу и подлежащие мышцы — от 20 до 30%. Разработке метода определения коэффициентов пропускания и отражения тканей были посвящены исследования Г. Г. Шамаевой и др. (1969). Данные, полученные с помощью этого метода при облучении крыс неодимовым лазером, были использованы для расчета коэффициента поглощения кожи, составившего 9,9 см-1.

Л. И. Дерлеменко (1969), М. И. Данко и др. (1972) с помощью интегрального фотометра определяли поглощение излучения неодимового лазера тканями мышц и печени крыс. Через слой ткани толщиной <metricconverter productid=«1 мм» w:st=«on»>1 мм при облучении мышц проходило 27— 32% излучения, а печени — 20—23%. Для слоев ткани толщиной 6 мм эти значения составили соответственно 3 и 1,5%.

Приведенные данные демонстрируют зависимость поглощения лазерного излучения от степени окрашенности ткани: обильно пигментированная ткань поглощает излучение интенсивнее, чем ткань мышцы. Та же закономерность проявлялась и в опытах по облучению рубиновым и неодимовым лазерами различных опухолей у животных. Наибольшее поглощение характерно для меланом вследствие наличия в них меланина.

А. М. Уразаев и др. (1978) сравнили степень ослабления излучения гелий-неонового (длина волны 632,8 нм) и аргонового (488 нм) лазеров при прохождении через различные участки тела живых депилированных крыс или через препараты, приготовленные из органов забитых животных. Прошедшее излучение измеряли с помощью фотоэлемента и полученные данные использовали для расчета глубины проникновения лазерного излучения. Почти во всех вариантах опыта излучение красной области спектра проникало на большую глубину, чем сине-зеленое, причем наиболее резко эта разница была выражена при прохождении через интенсивно васкуляризованные органы с обильным кровенаполнением.

Сравнение глубины проникновения в биологические ткани излучения азотного (длина волны 337,1 нм), гелий-кадмиевого (441,6 нм) и гелий-неонового (632,8 нм) лазеров проведено в серии исследований других авторов. Измерения были выполнены на срезах различных органов мышей с помощью двух методов; с применением фотометрического шара или светового зонда. В первом случае фотометрически определяли коэффициент отражения и коэффициент ослабления лазерного излучения в ткани, а последний позволял рассчитать глубину проникновения излучения; во втором в облучаемый образец ткани с противоположной стороны от лазерного луча соосно с ним вводили тонкий (диаметр <metricconverter productid=«0,75 мм» w:st=«on»>0,75 мм) стеклянный световод, соединенный с фотоумножителем. Отодвигая кончик световода на различные известные расстояния от точки падения луча на поверхность ткани и измеряя плотность светового потока, получали кривые распределения интенсивности лазерного излучения в ткани и определяли глубину его проникновения.

Оба примененных метода дали схожие результаты. Наибольшей проникающей способностью отличалось излучение гелий-неонового лазера, наименьшей — гелий-кадмиевого. Во всех случаях глубина проникновения не превышала 2—2,5 мм.

Интересная задача была поставлена в опытах, проведенных В. А. Дубровским и О. Г. Астафьевой (1979), в которых сравнивали величину поглощения красного излучения гемолизатом крови с различными физическими свойствами: поляризованного когерентного излучения гелий-неонового лазера; поляризованного некогерентного излучения лампы накаливания, пропущенного через поляроид и спектральные фильтры; неполяризованного и некогерентного излучения лампы накаливания, пропущенного только через спектральные фильтры. Было установлено, что пространственная когерентность не отражается на поглощении. Выраженное влияние на него оказывают ширина спектра и поляризационные свойства излучения: поляризованное излучение поглощается менее активно, чем неполяризованное.

Наряду с приведенными данными о поглощении биологическими тканями излучения лазеров, которые генерируют в ближней ультрафиолетовой (азотный), видимой (гелий-кадмиевый, аргоновый, гели й-неоновый, рубиновый) и ближней инфракрасной (неодимовый) спектральных областях, практически важной является информация о поглощении излучения СОз-лазера, генерирующего в инфракрасной области на длине волны 10 600 нм. Поскольку это излучение интенсивно поглощается водой, а последняя составляет около 80% массы большинства клеток, при воздействии на биологические ткани излучением СОг-лазера оно практически полностью поглощается поверхностными слоями клеток .

Как отмечалось выше, проникновение лазерного излучения в глубину тканей ограничено вследствие не только поглощения, но и других процессов, в частности отражения излучения от по-нерхности ткани. По данным Б. А. Кудряшова (1976), с. Д. Плетнева (1978) и др., отраженное белой кожей человека и животных излучение лазеров, генерирующих в ближней ультрафиолетовой и видимой областях спектра (азотный, гелий-кадмиевый, аргоновый, гелий-неоновый, рубиновый), составляет 30—40%; для инфракрасного излучения неодимового лазера эта величина не-(колько меньше (20—35%), а в случае более далекого инфракрасного излучения СОг-лазера она уменьшается приблизительно до 5%. Для различных внутренних органов животных величина коэффициента отражения света (633 нм) колеблется от 0,18 (печень) до 0,60 (мозг)

Вследствие ослабления лазерного излучения глубина его проникновения в биологические ткани не превышает нескольких миллиметров, и при практическом применении лазеров нужно исходить из этих условий. Однако наряду с изложенными материалами известны данные, позволяющие сделать более оптимистические выводы. Речь идет о том, что во всех рассмотренных выше исследованиях удалось оценить роль рассеяния излучения в глубине ткани. Когда, например, с помощью фотометрического шара определяли коэффициенты пропускания и отражения образца ткани, выявленная разница в интенсивности излучения, падавшего на поверхность образца и прошедшего сквозь него, представляла собой (за вычетом отраженного излучения) сумму потерь на поглощение и рассеивание, причем доля каждого из этих процессов оставалась неизвестной. В другом случае, когда интенсивность излучения, достигшего данной точки в глубине ткани, измеряли с помощью светового зонда, торец последнего воспринимал только излучение, которое падало «спереди».На самом деле рассматриваемая точка внутри ткани освещается со всех сторон излучением, рассеянным частицами, окружающими ее. Следовательно, с помощью указанного метода получали заниженные показатели распределения интенсивности излучения по глубине, что не позволяло учесть рассеянный свет. Вместе с тем в интенсивно рассеивающих средах, каковыми являются биологические ткани, доля рассеянного излучения весьма значительна .

С учетом этих положений в серии обстоятельных исследований. Doughertyи соавт. (1975, 1978) была сделана попытка выяснить влияние светорассеивания на глубину проникновения излучения в ткани. Авторы с помощью фотоэлемента определяли долю светового излучения ксеноновой лампы (выделялась область 620—640 нм), прошедшего сквозь срезы различной толщины, которые были получены из перевивной опухоли молочной железы мышей или из их нормальных тканей. Полученные величины коэффициента светопропускания использовали для вычисления коэффициентов рассеяния (S) и поглощения (К) из соотношений, установленных P. Kubelka(1964) и F. Kottler(I960). Значения, полученные для опухолевой ткани, составляли S= 13,5 и К = 0,04, откуда видно, что доля рассеянного света намного превышает долю поглощенного.I

Во второй работе, проведенной в <metricconverter productid=«1978 г» w:st=«on»>1978 г. той же группой исследователей, были применены два метода, которые позволяли псе величины внутритканевой интенсивности света, как найденные без учета рассеивания, так и включающие его, получить прямым экспериментальным путем. В случае использования одного из методов в глубину свежеиссеченной опухоли (рабдомиоифкомы крыс) вводили волоконный световод толщиной <metricconverter productid=«0,8 мм» w:st=«on»>0,8 мм и его конец, выступающий из ткани, направляли луч гелий-неонового лазера мощностью 2 мВт. С противоположной стороны образца вводили другой световод, соединенный с фотометром. Приводя сначала световоды в соприкосновение, а затем раздвигая их па известные расстояния, измеряли интенсивность излучения, прошедшего сквозь слой ткани фиксированной толщины. Как и в описанных выше опытах, этот метод не позволял учесть рассеянный нет.

Вторая методика была актинометрической (фотохимической) и состояла в том, что в опухолевую ткань на определенную глубину вводили несколько капиллярных трубок диаметром <metricconverter productid=«1 мм» w:st=«on»>1 мм, заполненных раствором фоточувствительной смеси. Облучая затем образец ткани светом известной интенсивности с помощью лампы накаливания (длины волн более 600 нм), определяли количество продукта фотохимической реакции, которое было прямо пропорционально интенсивности света и являлось функцией глубины расположения трубок. Очевидно, при такой схеме проведения экспериментов на ход реакции влияло все излучение, дошедшее до данной точки в глубине ткани, в том числе и рассеянный свет. Данные, представленные на рис. 2, позволяют сопоставить результаты, полученные с помощью этих методов. Из графика видно, что интенсивность излучения в опухолевой ткани на одной и той же глубине, определенная актинометрическим способом, существенно выше той, которую устанавливали с помощью волоконнооптической техники. Так, из кривой актинометрических измерений видно, что на глубине <metricconverter productid=«2 см» w:st=«on»>2 см в ткань еще проникает около 8% излучения, тогда как, согласно второй кривой, эта величина составляет менее 0,1% К

Таким образом, значительное преобладание рассеяния видимого света при прохождении его через биологические ткани над поглощением позволяет сделать заключение, что способность лазерного излучения проникать в ткани выше, чем принято считать. Если учесть возможность проведения лазерного излучения вглубь тканей с помощью волоконной оптики и последующее распределение его в толще облучаемого очага благодаря рассеянию, можно попытаться значительно раздвинуть рамки клинического применения лазеров.

    продолжение --PAGE_BREAK--

www.ronl.ru

Доклад - Эксимерные лазеры в рефракционной хирургии глаза

Минский государственный медицинский институт

Кафедра медицинской и биологической физики

Эксимерные лазеры в рефракционной хирургии глаза

Научный руководитель: доцент Лещенко В.Г.

Докладчик: студентка лечебного факультета 125а группы Кравченко Н. А.

Минск, 2001

· Актуальность темы.

Для хорошего зрения необходимо, прежде всего, чёткое изображение рассматриваемого предмета на сетчатке. Это изображение получается в результате прохождения лучей через оптическую систему глаза, нарушение любой составной части которой приводит к получению нечёткого изображения. На сегодняшний день существует большое количество методов ликвидации таких нарушений, в том числе и хирургические (использование тончайшего алмазного ножа для осуществления надрезов на роговице). Но в большом числе случаев хирургическое вмешательство даёт побочные эффекты (повреждение близлежащих тканей, малая точность производимых надрезов и т. д.). Создание и совершенствование лазеров, излучающих в ультрафиолетовой части спектра, и открытие процесса фотоабляции создали предпосылки для новых форм лазерной хирургии глаза.

Начиная с 1982 года, неоднократно была показана способность коротковолновых эксимерных лазеров к формированию очень точных (субмикронных) разрезов в различных полимерных материалах, а затем и возможность послойного удаления биологической ткани с минимальным воздействием на окружающее вещество.

· Физические основы работы эксимерных лазеров .

Эксимерные лазеры – это группа лазеров, в которых типичной активной средой является смесь инертного и галогенового газов. Термин “Эксимер” – аббревиатура английского словосочетания exiteddimers (возбуждённые димеры), что означает нестабильное, существующее только в возбуждённом электронном состоянии димеров этих газов. При переходе эксимерных молекул в основное состояние испускаются высокоэнергетичные фотоны УФ-света. При различных комбинациях инертного и галогенового газов ЭЛ могут излучать короткие (наносекундные) импульсы света на различных длинах волн УФ-области спектра: фтор – 157 нм, аргон-фтор – 193 нм, криптон-хлор – 222 нм, криптон-фтор – 248 нм, ксенон-хлор – 308 нм, ксенон-фтор – 351 нм. Длительность импульса – 10 –16 нс. Глубина воздействия на живую ткань – до 60 мкм.

Лазеры, основанные на данном принципе, были созданы в 70-х годах, являются источниками УФ-излучени и используются во многих отраслях науки.

Начиная с 1982 года, неоднократно была показана способность наиболее коротковолновых эксимерных лазеров к формированию очень точных (субмикронных) разрезов в различных полимерных материалах, а затем и возможность послойного удаления биологической ткани с минимальным термическим воздействием на окружающее и оставшееся вещество. Для объяснения данного явления R. Srininasan предложил теорию так называемого механизма фотоабляции. Предполагается, что фотоны УФ-света достаточно энергетичны (например, в случае 193 нм – 6,4 эВ) для прямого разрыва межмолекулярных химических связей, причём остаток поглощённой энергии расходуется на испарение составных частей молекул из материала. Эта особенность может объяснить наблюдаемое минимальное повреждение прилежащих облучаемых тканей, особенно при длине волны менее 220нм. Глубина поглощения излучения аргон-фторового лазера (193 нм) измеряется микронами и, таким образом, воздействующая энергия распределяется в крайне ограниченном объёме ткани. Кроме того, из-за высокой скважности импульсов эксимерных лазеров диффузия тепла из облучаемой зоны в окружающие ткани минимальна. И неоднократно было показано, что термический эффект усиливается с увеличением длины волны.

Первое сообщение об использовании эксимерных лазеров на длине волны 193 нм для получения на роговице неперфорирующих разрезов было сделано в 1982 году. В эксперименте invitro была установлена точная зависимость между количеством энергии и глубиной удалённой ткани: для выполнения надреза глубиной 1 мкм требуется плотность энергии 1 Дж/см2. При гистологическом исследовании в световом микроскопе не определялось признаков термического повреждения близлежащих к разрезу тканей, края лазерных разрезов были параллельными на всём протяжении без дезорганизации стромальных пластин или эпителиального края. После этого сообщения последовали работы различных авторов по изучению воздействия ЭЛ на различные структуры глаза. Одновременно в других отраслях медицины (сосудистая хирургия, дерматология, нейрохирургия и т. д.) проводились подобные работы по изучению воздействия лазерного УФ-излучения на различные биологические структуры.

Было проведено сравнительное исследование воздействия на роговицу и хрусталик излучения длиной волны 193 и 248 нм. Были определены пороговые величины абляции и установлено, что при использовании лазерного излучения с длиной волны 248 нм требуется больший расход энергии, чем при длине волны 193 нм, для получения сходных результатов, как в роговице глаза, так и в хрусталике. При длине волны 193 нм с помощью электронной микроскопии выявлена пограничная зона повреждения шириной 0,1 – 0,3 мкм, далее лежащие стромальные структуры повреждены не были. При использовании криптон-фторового эксимерного лазера (248нм ) зона повреждения была значительно шире – до 2,5 мкм с дезорганизацией и повреждением прилежащих стромальных структур. Были измерены абсорбционные показатели стромы роговицы и хрусталика, и одним из факторов, объясняющих разницу в изменениях, возникающих под воздействием двух близлежащих длин волн УФ – области спектра, может быть разница в коэффициенте поглощения излучения стромой роговицы. Излучение с длиной волны 193 нм успешно использовалось для создания контролируемой зоны абляции в хрусталике, эффект воздействия напоминал таковой в роговице. В дальнейшем были проведены исследования по определению оптимальных энергетических доз для выбора воздействия на роговицу и хрусталик. При длине волны 193 нм величина абляции незначительно увеличивается при колебаниях плотности энергии начиная с 220 мДж/см2 и остаётся на достигнутом уровне при дальнейшем повышении плотности до 600 — 800 мДж/см2. При воздействии излучения с длиной волны 248 нм отмечалось линейное увеличение количества удаленной роговичной ткани при плотности 620 мДж/см2 и выше. При сравнении гистологических препаратов отмечалось, что в случае использования эксимерного лазера с длиной волны 248 нм не только зона повреждения шире, но и резко отличается характер повреждения (присутствуют дезорганизация и повреждение прилежащих стромальных структур, изменения коллагеновых волокон стромы).

Диаграмма 1,2

Из нижеприведенных графиков следует, что при осуществлении абляции эксимерным лазером с длиной волны 248 нм оказывается большее тепловое воздействие, чем лазером с длиной волны 193 нм. Так как поглощение луча с длиной волны 193 нм лучшее, то и абляция будет наблюдаться более точная.

Все исследователи, изучая воздействие излучения эксимерных лазеров на роговицу, предполагают дальнейшее использование этого метода применительно к рефракционной хирурги.При помощи излучения ЭЛ (193 и 248 нм ) была проведена кератэктомию на роговицах кроликов и роговице обезьяны. Отмечено, что результаты заживления, как и оптические результаты при использовании длины волны 193 нм, удовлетворяют требованиям рефракционной хирургии. H. Kerr-Muir и соавторы сравнили результаты кератэктомии, проведенной при помощи ЭЛ с длиной волны 193 и обычного трепана. При сканирующей микроскопии на стенках и дне хирургического

ложа определяли выступы размером более 10 мкм. Лазерное же ложе резко отличалось по качеству: стенки и дно гладкие, покрытые псевдомембраной.

A. Cotliar и соавторы наносили насечки на энуклеированные трупные глаза, используя ЭЛ с длиной волны 193 нм. Наносили по 4 насечки поочерёдно, путём поворота лазерного источника вокруг оси. Рефракционный эффект в среднем был 5 дптр. E. Schroeder и соавторы описывали созданную ими коммерческую установку, позволяющую довести лазерное излучение ЭЛ к операционному микроскопу и при помощи специальной маски наносить радикальные неперфорированные разрезы. Был также проведён клинический эксперимент по нанесению насечек у добровольца, которому предстояла операция энуклеации по поводу внутриглазной опухоли. Были нанесены 4 перпендикулярные насечки с использованием излучения ЭЛ с длиной волны 193 нм, плотность энергии была 370 мДж/см2, время продолжения импульса от 10 до 16 нс, разрезы шириной 75-80 мкм. После процедуры роговица оставалась прозрачной, через 4 дня произошла полная эпителизация. Глаз был энуклеирован на 14-й день, когда разрезы были едва заметны при исследовании в щелевую лампу. При гистологическом исследовании были отмечены хорошее заживление, отсутствие признаков воспаления и иммунной реакции. N. Scharlin и соавторы при помощи излучения ЭЛ с длиной волны 193 и 248 нм сформировали роговичные донорские линзы, которые потенциально можно будет использовать при операциях керато-, эпикератофакии и кератомилезе. Гистологические исследования показали, что длина волны 193 нм индуцирует минимальное повреждение тканей линзы (около 10 мкм), а также, что особенно важно, определялась выживаемость кератоцитов. R. Ziencerce и соавторы использовали излучение аргон-фторового ЭЛ для получения линз из донорского материала для эпикератофакии. Полученная линза имела диаметр 8 мм, с утолщением в центре до 0,2 – 0,24 мм и суживающимися краями. Оптическая сила линзы +8,0 дптр. При исследовании линзы отмечали хорошее качество поверхности линзы, нормальное строение стромы с живыми кератоцитами. У реципиента линза оставалась прозрачной. Позже были предложены и другие, более совершенные методы формирования донорских линз.

Лазерная коррекция зрения
Этапы развития

Разработке техники лазерной коррекции зрения предшествовал длительный период исследований методов изменения рефракции роговицы. К 1949 году относятся первые попытки решения этой проблемы за счёт пересадки донорской роговицы на верхушку роговицы пациента и укрепления её с помощью швов. С 1963 года в рефракционной хирургии начинается новая эра. Доктор J. Barraquer сконструировал первый микрокератом (прибор для расслаивания роговицы). Появление такого устройства открывало новые возможности в хирургии роговицы – моделировании новой преломляющей силы. С помощью микрокератома проводилось срезание с роговицы лоскута толщиной примерно 300 мкм. Затем этот лоскут замораживался и помещался в специальный станок, где обтачивался до придания ему особой формы рассеивающей (при коррекции близорукости) или собирающей (при коррекции дальнозоркости) линзы. Далее он размораживался, переносился обратно на роговицу и укреплялся с помощью швов. Эти операции получили названия: миопический (при коррекции близорукости) и гиперметропический (для коррекции дальнозоркости) кератомилез.

В дальнейшем происходило совершенствование кератома. Толщину срезаемого лоскута удалось уменьшить до 160 мкм. Это позволило проводить операцию по изменению рефракции непосредственно на глазу под лоскутом, что гораздо уменьшило время заживления роговицы. Этот тип операций стал называться автоматизированной ламелярной кератопластикой (АЛК )

С 1982 года с появлением эксимерных лазеров рефракционная хирургия

становится на путь своего совершенства. С внедрением эксимерных лазеров стала возможным коррекция не только близорукости и дальнозоркости, но и астигматизма с уникальной до этого степенью точности. Коррекция зрения эксимерным лазером называется фоторефракционной кератэктомией (ФРК). Точность и простота проведения операции привели к повальному увлечению ею во всём, однако, уже к началу 90-х начали выявляться и её недостатки. Это довольно длительный и болезненный послеоперационный период, необходимость длительного закапывания небезразличных для глаза капель, ограничение по величине корригируемой аномалии рефракции и др. В1991 году греческий офтальмолог Иоаннис Палликарис нашёл путь устранения этих недостатков за счёт совмещения ФРК с АЛК, в результате чего получился новый метод изменения рефракции глаза – лазерный специализированный кератомилез (ЛАСИК).

Эксимерные лазеры со встроенной системой топографии и компьютером.

ЛАСИК

Комбинированная лазерно-хирургическая операция, получившая название от сокращения английского “Laser in Situ Keratomileusis” (дословно: лазерный кератомилез на месте). Технология её разработана для коррекции близорукости,

дальнозоркости и астигматизма.

Как проходит операция?

  1. Веки раскрываются с помощью специального векорасширителя. Пациента просят смотреть на белую лампочку внутри прибора и проводят центровку глаз перед лазером. Затем на роговицу глаза наносится специальная разметка, позво-ляющая определить в дальнейшем соотно-шение будущего поверхностного лоскута и роговицы.
  2. На глаз накладывается присасывающееся кольцо, по которому будет продвигаться микрокератом. Далее определяется размер срезаемого лоскута, и следующий этап – срезание лоскута микрокератомом. Это наиболее важный этап операции, от которого во многом зависит её результат. Пациента просят не волноваться, не сжимать веки и не вращать глазами. Этот этап занимает примерно 15 секунд.
  3. Поверхностный лепесток отворачивается на край роговицы, производится центровка и лазерная коррекция.
  4. После лазерной коррекции роговица очищается, поверхностный лоскут рогови-цы возвращается на место, производится повторное промывание под лоскутом. Да-лее производится окончательное разглажи-вание роговицы, и в течение 3 – 5 минут происходит его окончательная самоада-птация.

Среднее время операции на одном глазу – 12-15 минут.

Возможные осложнения.

· Инфекционные осложнения

· Неполная или избыточная коррекция (разрешена до 2-х дптр)

· Повышенная чувствительность к ярким источникам света

· Децентрация зоны лазерного воздействия

· Незавершённый или неправильный срез поверхностного лоскута

ФРК

Фоторефрактивная кератэктомия – ла-зерный метод коррекции зрения, основанный на испарении поверхностного слоя роговицы с помощью высокоинтен-сивного УФ-излучения экси-мерного лазера. В зависимости от дозы изменяется форма роговицы.

Как проходит операция?

  1. Закапываются обезболивающие капли, пациент укладывается на операционный стол. Веки расширяются с помощью векорасширителя. Глаз центрируется под лазерной головкой.
  2. В центре роговицы отмечается участок, где будет проходить лазерная коррекция. С этого участка удаляется эпителий, чаще всего с помощью специального хирургического инструмента. Иногда это делают, прикладывая к поверхности роговицы пропитанную спиртом ватку, на некоторых моделях лазеров испаряют самим излучением лазера. Проверяется диаметр подготовленного участка и ещё раз центрация.
  3. Эксимерный лазер по заранее рассчитанной на основе введённых врачом данных компьютерной программе испаряет часть ткани роговицы и моделирует таким образом её новую поверхность. Форма сканирующего луча может быть разной – в виде широкого пучка, щели или точки, — в зависимости от модели лазера (сканирование точкой считается наиболее современным).
  4. После завершения абляции операционая зона очищается, закапываются противовоспалительные капли и капли с антибиотиком. Глаз покрывается повязкой.

Среднее время операции – 10 минут, но гораздо более длительный и болезненый процесс заживления роговицы в результате повреждения боуменовой мембраны.

Возможные осложнения .

· Инфекционные осложнения

· Неполная или избыточная коррекция (разрешена до 2-х дптр)

· Повышенная чувствительность к ярким источникам света

· Децентрация зоны лазерного воздействия

· Островковые помутнения роговицы в оптической зоне

· Длительное заживление раны

www.ronl.ru


Смотрите также