works.tarefer.ru
КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ (син. координационные соединения) — сложные химические вещества, в составе которых имеются комплексные ионы, образованные центральным атомом в определенной степени окисления и связанными с ним лигандами, т. е. простыми и сложными ионами или молекулами. О большом мед.-биол, значении К. с. свидетельствует то, что жизненно необходимые человеку и всем живым организмам d-элементы (железо, кобальт, марганец, медь, молибден, цинк) находятся в них исключительно в виде К. с., гл. обр. со сложными органическими молекулами — белками, азотсодержащими основаниями и др. s-Элементы (калий, кальций, магний, натрий) в живых организмах также частично находятся в составе К. с. Перспективы использования К. с. в медицине весьма велики. Лишь сравнительно немногие из известных К. с. исследованы на биол, активность. Обнаружено, что ряд К. с. платины проявляет противоопухолевую активность. Некоторые К. с. в мед. практике применяются в качестве лекарственных средств (напр., витамин В12 представляет собой К. с. кобальта). К. с. широко используются в анализе лекарственных веществ. Относительно простые К. с. могут служить моделями сложных ферментов или других биологически активных высокомолекулярных соединений: известны К. с. кобальта, способные обратимо связывать кислород, подобно гемоглобину.
Для выяснения биохим, роли d-элементов необходимо изучение К. с., в виде которых эти элементы присутствуют в живых организмах. Природные К. с. железа, меди, кобальта, марганца, цинка получены в так наз. индивидуальном состоянии; это гемоглобин (см.), различные металлопротеиды (см.) и др. Особенности участия атомов d-элементов в биохим, процессах объясняются их способностью изменять в своих К. с. степени окисления и координационные числа. Атомы этих элементов входят в активные центры многих ферментов и биологически активных соединений. Наиболее хорошо изучен механизм действия железа в гемоглобине и ферментах цепи окисления — в цитохромах (см.). В этих веществах железо, связанное с протопорфирином, образует макроциклическое К. с. (гем). В гемоглобине железо способно повышать свое координационное число, т. е. число связанных с ним атомов или групп атомов, и за счет этого обратимо присоединять молекулу кислорода. В цитохромах железо служит переносчиком электронов, последовательно меняя степени окисления с +2 на +3 и наоборот.
Лиганды (см. Комплексоны) образуют так наз. внутреннюю сферу К. с. Заряд комплексного иона равен алгебраической сумме степени окисления центрального атома и зарядов лигандов. В состав К. с., помимо комплексных ионов, входят также противоположно заряженные ионы, не связанные с центральным атомом непосредственной хим. связью. Эти ионы образуют внешнюю сферу К. с. В формулах К. с. центральный атом и лиганды заключаются в квадратные скобки, ионы внешней сферы записываются вне этих скобок (K3[FeF6]). Суммарный заряд комплексной частицы иногда оказывается равным нулю, тогда К. с. не имеет ионов внешней сферы ([Co(Nh4)3(NO2)3]).
В названиях К. с. перечисляются лиганды с указанием их количества, называется центральный атом и обозначается степень его окисления (в скобках, римской цифрой). Если комплексная частица является анионом, к названию К. с. присоединяется окончание «-ат». Отдельно указываются ионы внешней сферы. Напр., К. с. K2[PtCl4], [Pt(Nh4)2Cl2] и [Pt(Nh4)4]Cl2 называются так: тетрахлороплатинат (II) калия, дихлородиаминплатина (II), тетраминплатина (II) хлорид.
К К. с. относится большинство неорганических соединений. Количество потенциально возможных К. с. чрезвычайно велико, т. к. число комбинаций различных центральных атомов и лигандов огромно. В тех случаях, когда в качестве лигандов выступают органические молекулы, соответствующие К. с. занимают промежуточное положение между неорганическими и органическими веществами.
В р-рах К. с. диссоциируют как сильные электролиты на комплексный ион и ионы внешней сферы. К. с., не имеющие ионов внешней сферы, в р-рах ведут себя как неэлектролиты. Однако комплексные ионы в р-рах К. с., в свою очередь, обратимо и ступенчато диссоциируют, отщепляя лиганды:
[ZnCl4]2- <-> [ZnCl3]- + Cl-
[ZnCl3]- <-> [ZnCl2] + Cl-
и т. д. Чем менее устойчиво К. с. в р-ре, тем больше относительное содержание продуктов диссоциации комплексных ионов.
К. с. образуют много изомерных форм (см. Изомерия). Особенно специфичны для К. с. два вида изомерии: структурная (ионизационная) — различное распределение анионов между внутренней и внешней сферой К. с., напр. [Co(Nh4)5Br]SO4 и [Co(Nh4)5SO4]Br; геометрическая (стереоизомерия) — различный порядок расположения лигандов вокруг центрального атома, напр.
геометрическая (стереоизомерия)Способность атомов различных хим. элементов образовывать К. с., т. е. играть роль центральных атомов, неодинакова. Наиболее типичными комплексообразователями являются атомы и ионы d-элементов. Практически все соединения d-эле-ментов являются К. с. или по своему строению близки к ним. Так, кристаллогидраты солей d-элементов являются К. с. с молекулами воды в качестве лигандов, а безводные соли имеют кристаллические структуры, в которых катионы d-элементов окружены анионами так же, как и в комплексных ионах. Хорошими комплексообразователями являются также f-элементы (лантаноиды и актиноиды). Меньшее количество К. с. известно для p-элементов. Углерод принадлежит к числу немногих элементов, не образующих К. с., но он входит в состав множества лигандов. s-Элементы редко образуют устойчивые К. с. Наибольшее значение имеют их К. с. с комплексонами — так наз. коронными эфирами (циклическими соединениями, в молекуле которых чередуются атомы кислорода и группы — C2h5—).
Лигандами могут быть разнообразные ионы и молекулы, имеющие неподеленные валентные электронные пары. Устойчивые К. с. образуются с анионами F-, Cl-, Br-, I-, CN-, NO2-, РO43-, S2O32- и др. Из молекул особенно хорошими лигандами являются те, в которых имеются атомы азота, кислорода, серы, фосфора [Nh4, Н2O, Nh3Ch4, Nh3Ch3COOH, (Nh3)2CS, P(C2H5)3 и др.].
К. с. классифицируют в зависимости от вида лигандов и особенностей строения: К. с. с анионными лигандами — ацидокомплексы —
K3[Co(NO2)6], K4[Fe(ON)6], Na2[SiF6];
К. с. с водой — аквакомплексы, гидраты —
Fe[(h3O)6](NO3)3, [Cr(h3O)6]Cl3, [Be(h3O)4](NO3)2;
К. с. с аммиаком — аммиакаты — [Co(Nh4)6]Cl3, [Pd(Nh4)4]SO4, [Ag(Nh4)2]Cl;
К. с. с органическими аминами — аминокомплексы —
[Pt(C5H5N)4]Cl2, [Cd(Ch4Nh3)4](NO3)2;
смешанные К. с., содержащие различные лиганды,—
[Pt(Nh4)2Br2], [Ru(Nh4)5NO]Cl3;
многоядерные К. с., содержащие несколько координационных центров, соединенных мостиковыми лигандами — [(Nh4)5Co—N=С—CO(CN)5]; хелатные К. с.— содержащие циклически присоединенные лиганды:
многоядерные КОМПЛЕКСНЫЕ СОЕДИНЕНИЯДля образования хелатных К. с. необходимо, чтобы молекулы, присоединяющиеся к центральному атому в качестве лигандов, содержали два или несколько атомов, способных образовывать донорно-акцепторные связи с центральным атомом. Хелатные К. с. обладают особенно большой устойчивостью. Весьма интересны лиганды, сами являющиеся сложными циклическими молекулами. Центральный атом, образуя К. с., помещается внутри такой молекулы. Образующиеся К. с. называют макроциклическими. Именно такими К. с. являются природные соединения железа, меди, кобальта и магния с производными порфирина.
Библиография: Гринберг А. А. Введение в химию комплексных соединений, Л., 1971; Методы и достижения бионеорганической химии, под ред. К. Мак Олиффа, пер. с англ., М., 1978; СкорикН. А. и Кумок В. Н. Химия координационных соединений, М., 1975, библиогр.; Яци-мирский К. Б. Введение в бионеорга-ническую химию, Киев, 1976, библиогр.
А. В. Бабков.
xn--90aw5c.xn--c1avg
Московский государственный университет имени М. В. Ломоносова
Факультет фундаментальной медицины
Реферат на тему:
Комплексные соединения, их биологическая роль.
Порфириновые комплексы Fe и Mg.
Выполнил:
Москва — 2001
1. Введение. Обзор комплексов. Функциональное строение порфиринов
2. Гемоглобин – строение, механизмы работы
3. Общий путь образования тетрапиррольных предшественников (синтез основы).
4. Синтез гемоглобина и хлорофилла
5. Заключение.
6. Список использованной литературы
Введение.
Комплексные соединения в организмах обычно координируются ионами переходных металлов, например Mn, Co, Fe V(т.н. «биологически активных»). Содержание этих металлов в организмах очень мало, и уже из этого можно сделать предположение, что значение комплексов (доказанное прямым опытом – это почти всегда так) должно быть связано с катализом, т.к. именно активные катализаторы могут способствовать быстрым изменениям состава вещества, действуя в малых концентрациях. Также, комплексы переходных металлов могут играть роль переносчиков групп атомов и целых молекул, закреплять молекулы в определенном положении, поворачивать их, поляризовать и т.п. Металлы-комплексообразователи (таб.1) относятся к группе «жизненно важных», т.е. присутствуют во всех здоровых тканях человека и диапазон их концентраций практически постоянен в каждой ткани, а исключение из организма приводит к тяжелым последствиям.
(!!! здесь 24Энтера!!! для таблицы!!!)
Обзор комплексов. Значение порфиринов.
Для живых организмов(животных, растений, бактерий) очень важны комплексные соединения металлов, в которых четыре координационных места занимает одна и та же частица, называемая порфином, содержащая четыре пирролоподобных цикла, соединенных =СН-группами (рис. 1):
Производными порфина являются порфирины. В порфиринах, в отличие от порфина, имеются боковые цепи вместо некоторых из 8 периферических пиррольных атомов водорода. Расположение и вид заместителей определяют название и специфические функции, соответствующего производного. В нормальном обмене веществ человека участвует т.н. Изомер III. Изомер I в значительных количествах появляется при довольно редком дефекте метаболизма. Остальные изомеры у человека не встречаются.
Некоординированные («чистые») порфирины не проявляют биологической активности в организме человека, они работают только в комплексе с металлами (гем – комплекс порфирина и иона железа). В некординированном виде порфирины встречаются в качестве пигментов в скорлупе яиц, птичьих перьях и покровах червей.
Порфирины – это ярко окрашенные соединения. К ним в настоящее время относятся представители многочисленного класса циклических ароматических соединений, содержащих многоконтурную сопряженную систему, в основе которой лежит шестнадцатичленный макроцикл, состоящий из четырех молекул пиррола и мостиков. У порфиринов, имеющих красный цвет, пирролы соединены между собой метиновыми мостиками, и тогда макроцикл носит название «порфин»(1). В хлорофиллах, для которых характерна зеленая окраска, частично гидрированы один или два пиррола и молекула носит название «хлорин»(2) или «бактериохлорин»(3). Для кобаламинов, важнейшим из которых является витамин В12, все четыре кольца частично гидрированы и вместо одного метинового мостика имеется непосредственная связь между пирролами. Этот цикл называется коррином(4).
(!!! здесь 15Энтеров!!! для 1Й картинки из БИОСИНТЕЗА!!!)
В составе гемоглобина, миоглобина, цитохромов, каталазы и пероксидазы порфирины выступают в виде комплексов с ионами железа – гемов. Хлорофиллы и бактериохлорофиллы содержат магний. Витамин В12 и родственные ему кобаламины, как следует из названия, имеют в качестве центрального иона кобальт.
В организмах встречаются комплексы, в которых некоторые атомы водорода в порфине замещены на метильные и винильные остатки пропионовой кислоты (протопорфирины). Известны 15 возможных изомерных структур. Однако основной каркас этой сложной молекулы сохраняется во многих сложных веществах: гемоглобине, цитохромах, витамине В12. Ион металла замещает атомы водорода двух пиррольных колец. Связи металла с четырьмя атомами азота двух других пиррольных колец, которые лежат в одной плоскости, благодаря эффекту резонанса рассматриваются как одинаковые.
Важнейшим свойством порфиринов является наличие в молекуле координационной полости, ограниченной атомами азота, N4, имеющей радиус около 2Å и способной координировать ионы металлов М2+, М3+, М4+ и даже с большей степенью окисления. В результате комплексообразования образуются комплексные соединения порфиринов, т.н. металлопорфирины, обладающие многообразными структурными и химическими особенностями, высокой биологической и каталитической активностью. При этом металл либо занимает центр полости N4 и оказывается в экваториальной плоскости xy, образуя плоский координационный узел из атомов MN4, либо оказывается приподнятой над плоскостью, в которой лежат атомы N4 и образует координационные узлы различной геометрической структуры – от терагоналной пирамиды L(MN)4 (рис. 2) и октаэдра (L1 )(L2 )MN4 (рис. 3) до более сложных геометрических фигур.
Выход центрального атома из плоскости происходит, как правило, при донорно-акцепторном взаимодействии с молекулой L. Если металл М способен присоединить вторую молекулу L той же природы с противоположной стороны плоскостиxy, то он возвращается в центр плоскости N4. Лиганды (L1 ), способные вступать в координационную сферу металла, уже занятую четырьмя атомами азота порфирина, называются аксиальными.
Возможности молекул металлопорфиринов выступать в биологических процессах в качестве биокатализаторов (ферментов) значительно расширяется в связи с специфическим строением порфиринов и их комплексов, необычайным своеобразием их свойств и чрезвычайно большим структурным многообразием. Структурное многообразие связано с многочисленными путями химической модификации молекул порфина за счет замещения атомов водорода.
Известно большое число биологических систем, в структуре которых металлопорфирины выполняют функции инициатора того или иного биологического процесса. Например, гем в составе гемопротеидов участвует в транспорте кислорода (гемоглобин), клеточном дыхании (цитохромы), утилизации пероксидов (каталаза). Наибольшее число исследований посвящено гемоглобину, гему крови, и процессам обратимой фиксации атмосферного кислорода на биологических и модельных системах.
Рассмотрим функциональные особенности и механизмы работы гемоглобина, как наиболее хорошо изученные.
Гемоглобин
Потребление атмосферного кислорода живыми организмами – важнейший биохимический процесс. Кислород транспортируется гемоглобином эритроцитов от легких к мышцам и удерживается в мышцах миоглобином. Гемоглобин и миоглобин представляют собой комплексы железа, в которых группа ферропротопорфирина (гема) содержит Fe (III) (рис.4):
Пятое координационное число занимает азот имидазола (Im) гистидинового остатка, через который осуществляется единственная связь группы гема с полипептидной цепью белка. В настоящее время известны аминокислотный состав и последовательность аминокислот в гемоглобинах, выделенных из разных животных, места присоединения частиц гема, пространственная структура гемоглобина (работы Перутца и др.). Гем локализован в расщелине между спиралями белка. Одна молекула гемоглобина, состоящая из четырех белковых субъединиц (глобулл), содержит четыре гема и, следовательно, четыре атома железа. Поскольку кислород в гемоглобине непосредственно фиксируется железом, то такая молекула может, постепенно насыщаясь, присоединить четыре молекулы кислорода. В молекуле миоглобина полипептидная цепь координирована железом гем-группы так же как в гемоглобине. Однако, в отличие от гемоглобина молекула миоглобина состоит из одной белковой субъединицы и содержит одну гемовую единицу. Структуры окси- и дезокси-форм различны, и это различие не исчерпывается тем, что одна из них содержит молекулы кислорода, а другая – нет.
При отсутствии кислорода атом Fe (II) в гемоглобине имеет координационное число 5, связан донорно-акцепторными связями с четырьмя координирующими атомами азота протопорфирина и одной менее прочной связью с третичным атомом азота проксимального имидазольного фрагмента гистидина (рис. 5). Координационный узел Fe (N4 ) N Im представляет собой квадратную пирамиду с атомом железа, удаленным от основания пирамиды на 0.8 Å. Шестое координационное место не в состоянии занять ни один из имеющихся поблизости лигандов (в том числе и Н2 О), кроме молекулярного кислорода. Молекула О2 вызывает оксигенирование гемоглобина, а точнее иона Fe (II). При этом комплекс Fe (N4 ) N Im из высокоспинового пирамидального состояния в низкосипновое октаэдрическое искаженное состояние с координационным узлом Fe (N4 ) N Im (О2 ).
Под влиянием кристаллического поля N-донорных атомов порфирина, а также аксиальных лигандов (Im и О2 ) t42g e2g –конфигурацияFe (II) превращается в t62g e0g. На вакантные eg -орбитали переходят сигма-электроные пары имидазола и кислорода. Считают, что молекула О2 связывается в шестом координационном месте с Fe (II) также за счет дативной π-связи. Координированный ион железа поставляет пару электронов, находящуюся на его dyz (или dxz )-орбитали, на вакантную (разрыхляющую) pz -орбиталь молекулы О2. Образованию π-связи Fe (II) → О2 благоприятствует высокая электроннодонорная способность π-системы и проксимального имидазола. Атом железа после оксигенации входит в координационную плоскость N4 и располагается ценртосимметрично. Структура белка в гемоглобине такова, что он экранирует подход к атому Fe (II) всех других молекул, имеющихся в крови, и своевременно регулирует его донорно-акцепторные свойства. Исключение составляют токсиканты – яды крови, к которым относятся монооксид углерода, оксиды азота, метиленовый синий. Проникая с атмосферным воздухом в легкие, монооксид углерода быстро преодолевает капиллярно- альвеолярную мембрану, растворяется в плазме крови, диффундирует в эритроциты и вступает в обратимое химическое взаимодействие как с окси-, так и с дезоксигемоглобином:
HbО2 + CO = HbCO + О2
Hb + CO = HbCO, где Hb – гемоглобин.
Образующийся комплекс карбоксигемоглобин (HbCO) не способен присоединять к себе кислород. В молекуле гемоглобина СО координируется атомом железа, вытесняя О2. Одна молекула гемоглобина (точнее, четыре её гема) может присоединить до четырех молекул СО.
Важным производным гемоглобина является метгемоглобин, в молекуле которого атом железа находится в степени окисления +3. Метгемоглобин не связывает молекулярный кислород. Он образуется при воздействии на гемоглобин окислителей (оксидов азота, метиленового синего, хлоратов). Образование метгемоглобина в крови уменьшает количество в ней функционально важного оксигемоглобина и нарушает доставку кислорода к тканям. Комплексы железа с порфиринами участвуют не только в транспорте кислорода, но и выполняют множество других функций. Среди них процесс переноса электронов.
Общий путь образования тетрапиррольных предшественников
Начало исследований принято относить к 1945 году, когда молодой американский ученый Шемин поставил эксперимент на собственном организме, приняв порцию простейшей аминокислоты глицина, которая отличалась от обычной аминокислоты заменой изотопа 14 N на 15 N. Через некоторое время он выделил из крови гемоглобин затем гемин, содержащий повышенное количество изотопа 15 N. Позднее было показано, что глицин конденсируется с сукцинил-коэнзимом А, давая δ-аминолевулиновую кислоту (δ-АЛК). Этот процесс катализируется ферментом АЛК-синтетазой, его обязательным участником является фосфорилированная форма витамина В6 – пиридоксальфосфат. Последующими исследованиями было доказано, что δ-АЛК выступает в качестве общего предшественника в биосинтезе всех природных тетрапиррольных пигментов. Описанное образование δ-АЛК характерно для животных и ферросинтетических бактерий. В растениях и у некоторых прокариотов δ-АЛК синтезируется из глютаминовой кислоты.
(!!! здесь 24Энтера!!! для 1Й схемы из БИОСИНТЕЗА!!!)
Две молекулы δ-АЛК под действием фермента порфобилиноген-синтетазы конденсируются в молекулу пиррола, получившего название «порфобилиноген» (ПБГ). Следующая стадия биосинтеза – превращение четырех молекул ПБГ в макроцикл уропорфириноген III (Уро’ген III). Конденсация ПБГ в Уро’ген III состоит из двух этапов. На первом происходит полимеризация ПБГ под действием фермента ПБГ-деаминазы в линейный тетрапиррол. На втором в присутствии фермента косинтетазы происходит не только замыкание билана в макроцикл, но и поворот одного из пиррольных колец (пиррола D) с образованием природного изомера III типа – Уро’гена III. При отсутствии косинтетазы билан замыкается в другой изомер – Уро’ген I, который в последующем биосинтезе не участвует (это очень редкая патология обмена веществ у человека). Только при наличии двух ферментов – дезаминазы и косинтетазы – ПБГ замыкается в изомер III типа. Отдельно взятая косинтетаза не полимеризует ПБГ и не в состоянии изомеризовать Уро’ген I в Уро’ген III. Лишь в начале 90-х годов был окончательно раскрыт механизм образования Уро’гена III.
(!!! здесь 27Энтеров!!! для 2Й схемы из БИОСИНТЕЗА!!!)
После получения дезаминазы высокой степени чистоты генноинженерными методами стало возможным показать, что фермент (Е) содержит активный центр – кофактор, состоящий из двух соединенных между собой молекул ПБГ. Этот дипирролилметан ковалентно связан с белком через атом серы остатка цистеина. Молекулы ПБГ последовательно присоединяются к дипирролилметану (с потерей Nh4 ), образуя цепочку из трех (ES1 ), четырех (ES2 ), пяти (ES3 ) и шести (ES4 ) пирролов, причем все присоединения происходят по типу «голова к хвосту», и, следовательно, полипиррольная цепь имеет регулярно чередующиеся заместители А-Р-А-Р-А-Р- и т.д. После присоединения четвертой молекулы ПБГ тетрапиррольная цепочка отделяется с образованием оксибилана. Дипирролилметан дезаминазы снова готов к наращиванию полипиррольного ансамбля (схема↓).
(!!! здесь 14Энтеров!!! для 3Й схемы из БИОСИНТЕЗА!!!)
Наличие простетичсекой группы в дезаминазе, построенной из молекул, подобных субстрату, – явление необычное для ферментов. Известно только, что, действуя на дезаминазу сильными кислотами, удается отщепить депирролилметан. Полученный апофермент уже не обладает каталитической активностью. Лишь после присоединения двух первых молей ПБГ при определенном pH дезаминаза снова становится способной к обратимому присоединению четырех молекул ПБГ.
Синтезированный оксибилан под действием второго фермента косинтетазы превращается в Уро’ген III. Для этой циклизации, сопровождающейся обращением пиррольного кольца D, за долгие годы изучения этой реакции предложено свыше двух десятков механизмов. В настоящее время наиболее обоснованным представляется поворот кольца D за счет образования спиро-структуры (на схеме).
После образования Уро’гена III происходит первое разветвление путей биосинтеза тетрапиррольных пигментов. Декарбоксилирование Уро’гена III ведет к порфиринам и хлорофиллам, а С-метилирование – через прекоррин-1 – к витамину В12 и другим кобаламинам.
Биосинтез протогема
(!!! здесь 29Энтеров!!! для 4Й схемы из БИОСИНТЕЗА!!!)
Копро’ген III под действием копропорфириногеноксидазы подвергается окислительному декарбоксилированию. В результате два остатка пропионовой кислоты в положениях 3 и 8 превращаются в винильные группы и образуется протопорфирин IX(Прото IX). На этом участке происходит дальнейшее разветвление путей биосинтеза. Введение ионов двухвалентного железа (фермент феррохелатаза) приводит к образованию протогема, который является простетической группой в многочисленных природных белках – гемопротеидах.
Включение в Прото IX магния начинает новую цепь биосинтетических превращений, ведущую к хлорофиллу а, бактериохлорофиллу и другим зеленым пигментам, общее количество которых на сегодня превышает 50 типов.
Ниже приведена схема, основных превращений магниевого комплекса Прото IX в хлорофилл а (Хл а ).
(!!! здесь 35Энтеров!!! для 5Й схемы из БИОСИНТЕЗА!!!)
Существенным отличием этой ветви биосинтеза от ранее рассмотренной является то, что при биосинтезе Прото IX большая часть промежуточных соединений находится в растворах, перемещаясь от одного фермента к другому, причем сами ферменты также по большей части растворены в цитоплазме клетки. Биосинтез хлорофиллов, напротив, протекает только в хлоропластах, все ферменты закреплены в мембранах и часто образуют сложные ассоциаты. Это значительно затрудняет изучение отдельных стадий, механизмов превращений промежуточных соединений, и, в связи с этим, общая картина биосинтеза Хл а остаётся менее ясной.В целом же о биосинтезе известно следующее. После введения иона магния происходит этерификация остатка пропионовой кислоты в положении 13. Далее этот остаток окисляется через несколько промежуточных стадий, давая после замыкания кольцо Е(12). Затем происходит восстановление винильной группы до этильной в положении 8 с образованием 3-винилпротохлорофилла(13).
Следующая важная стадия включает в себя восстановление двойной связи в кольце D. Исключительно важную роль играет при этом освещение растений. Показано, что в отсутствии света у высших растений накапливается протохлорофиллид. Даже короткая световая экспозиция приводит к превращению протохлорофиллида в хлорофиллид(14). В то же время, низшие растения и водоросли могут синтезировать хлорофиллид и при отсутствии света. На заключительном этапе происходит этерификация хлорофиллида природным спиртом фитолом при участии особого фермента хлорофиллсинтетазы. В результате образуется хлорофилл а (15).
(!!! здесь 18Энтеров!!! для Хл b и БХл а из БИОСИНТЕЗА!!!)
Пути биосинтеза других хлорофиллов, а также бактериохлорофиллов изучены пока недостаточно. Известно, однако, что все эти пигменты образуются через Хл а. В случае хлорофилла b происходит окисление метильной группы в положении 7 до формильной (16). Образование самого распространенного среди бактериохлорофиллов а –изомера (17) включает превращение винильной группы в ацетильную, гидрирование второго пиррольного остатка В и этерификацию остатка пропионовой кислоты фитолом.
Заключение
Металлопорфирины являются макроциклическими комплексами, и это накладывает отпечаток на их строение и свойства. Однако, они отличаются от бесчисленного множества других групп макроциклических комплексов тем, что являются ароматическими макроциклами с уникальной сопряженной π-системой. Ароматичность порфиринов определяет их электроннодонорные свойства, то есть способность к снижению локальных положительных и отрицательных зарядов путем их распределения по ароматическим орбиталям. Вследствие этого стабилизируются катион- и анион-радикальные формы, а также различные степени окисления металлов, возникающие в процессе функционирования биологически активных соединений на основе металлопорфиринов.
Изложенные здесь пути биосинтеза протогема и хлорофилла а показывают, насколько близко переплетаются фундаментальные процессы жизнедеятельности в бактериях, высших растениях и животном мире. При значительных различиях объектов исследования в рассмотренных схемах используются близкие или общие методы построения промежуточных соединений.
Успешное раскрытие путей биосинтеза «пигментов жизни» можно рассматривать как важный этап в развитии современной молекулярной биологии и биохимии. Полученные знания могут быть использованы и в медицинской практике в борьбе с определенными наследственными заболеваниями, при химических отравлениях и других процессах, связанных с нарушениями биосинтеза гемопротеидов. Примером успешного использования биосинтеза гема явился предложенный недавно модифицированный метод фотодинамической терапии рака, основанный на введении в организм пациента δ-АЛК, которая превращается в Прото IX, а последний накапливается в злокачественных опухолях[1].
Список использованной литературы
1. Блюменфельд Л.А. «Гемоглобин»/СОЖ, №4, 1998
2. Миронов А.Ф. «Биосинтез тетрапиррольных пигментов»/СОЖ, №7, 1998
3. Улахович Н.А. «Комплексы металлов в живых организмов»/СОЖ, №8, 1998
4. Tradeth A. et al. «Clinical chemistry», L: Oxford University press, 1976
[1] Статья А.Ф. Миронова в СОЖ №8 за 1996, С.32
www.ronl.ru