Геотермальная энергетика. Реферат геотермальная энергетика


Доклад - Геотермальная энергетика - Физика

Государственное общеобразовательное учреждение высшего профессионального образования Дальневосточный государственный университет путей сообщения

Кафедра «Электротехники, электроники и электромеханики»

Реферат

На тему: «Геотермальная энергетика и государственный план рыночной электрификации России»

Хабаровск

2009

Энергетическая стратегия

Наметившийся в последние годы поворот к использованию геотермальных источников в России даёт основания надеяться на изменение энергетической стратегии в части переориентирования со строительства только крупных генерирующих источников электроэнергетики на массовое использование вторичных и возобновляемых энергоресурсов.

И здесь возникает вопрос о концепции электрификации, в частности, тех районов, где геотермальная энергия имеет перспективы использования сейчас или в ближайшем будущем. Это необходимо потому, что электрификация России развивалась все годы советской власти (да и в 90-е годы) на основании концепции ГОЭЛРО, принятой в 1920 г. и сыгравшем ключевую роль в индустриализации страны. Следование основным положениям плана ГОЭЛРО сегодня ошибочно, тем более, что электрификация всей России не состоялась, так как 2/3 территории России (а это порядка 10 млн. человек населения) не охвачено электрификацией. Впрочем, в центре России, на Урале и в Сибири есть населённые пункты без электричества, а во многих местах глубинки качество и надёжность электроснабжения не соответствуют не только ГОСТ, но и элементарным требованиям по ведению товарного хозяйства и нормального быта.

Однако анализ сложившегося в стране подхода к использованию геотермальной энергии говорит о подспудном ориентировании на концепцию ГОЭЛРО, в частности, это относится к разработке Единого государственного плана строительства геотермальных установок, концентрирующего мощности и централизующего тепло- и электроснабжение. Несомненна необходимость разработки Государственного плана рыночной электрификации России, основные положения которого иные и они одобрены 27 января 2004 г. на постоянно действующем открытом семинаре «Экономические проблемы энергетического комплекса» Института народнохозяйственного прогнозирования РАН.

Концепция плана рыночной электрификации

Включает:

1. Инвестиционное рыночное строительство, эксплуатацию, ликвидацию субъектов электроэнергетики и объектов электрики на основе единства федеральных законов, ориентирующихся на приоритет потребителя и опирающихся на ограничения закона информационного отбора;

2. Постиндустриализация, регулирующая появление и функционирование гигантов электроэнергетики для мегаполисов и энергоёмких производств, но опирающаяся на средние и малые электростанции, рассредоточенные по России, с оценкой результатов конечного энергосбережения по вводу вторичных и возобновляемых ресурсов;

3. Выстраивание ценологического соотношения «крупное-мелкое» в производстве, трансформации, передаче, распределении и услугах по использованию электроэнергии при уведомительном сооружении генерирующих мощностей потребителя с мониторингом оценки результатов по гиперболическому Н-распределению;

4. Восстановление фермерства (кулачества как класса) и мелкого предпринимательства на отдалённых и необжитых территориях с заменой принципа интенсификации сетевого строительства всех классов напряжений на принцип децентрализованного электроснабжения (в особенности для отдалённых и неэлектрифицированных территорий)

5. Введение экономической и иной ответственности энергоснабжающих организаций и гарантирующих поставщиков электрической энергии за качество электрообеспечения потребителей всех уровней системы электроснабжения в нормальных ситуациях при ограничениях по вине субъекта электроэнергетики и при решении вопросов энергообеспечения в чрезвычайных ситуациях.

Геотермальный потенциал России

Руководствуясь положениями ГОРЭЛ и математическими ограничениями закона информационного отбора, вернёмся к рассмотрению геотермальной энергии, технический потенциал которой по России составляет 2950 млн. тут/год. Столь высокий потенциал позволяет утверждать, что он выше углеводородного. При этом более 20 млн тут/год имеют районы: Северный Кавказ; Западная Сибирь – Алтай – Кузбасс; Восток (включая Якутию, Чукотку, Камчатку, Курилы, Хабаровск, Владивосток). Вместе с тем, рассматривая текущее и перспективное производство электроэнергии на основе возобновляемых источников, следует отметить, что геотермальная энергия к началу века от общего количества вырабатываемой электроэнергии не превосходила 0,15% и лишь к 2010 г. хотя и увеличится на треть, но не превысит 0,2% с общей выработкой на уровне 7 ТВтч. Суммарные мировые мощности геотермальных установок в отоплении, производстве электроэнергии, тепличном хозяйстве удвоились с 1995 г., превысив 15 ГВт в 2000 г. Причём, прогнозы строительства геотермальных электростанций по всему миру – самые благоприятные.

Применительно к России распределение термальных вод по суточному дебиту с температурой 40–200 о С и минерализацией до 35 г./л составляет по европейской части России 1,2 млн м3, по второму району – 10,8, и третьему – 7,2 млн. м3 /сут. Термальные воды с температурой 50–200 о С и минерализацией до 10 г./л по каждому из районов приблизительно вдвое меньше. Таким образом, свыше половины территории России имеет приемлемый технический потенциал по геотермальной энергии, а если присоединить районы с потенциалом 1–20 млн. тут/год, то речь может идти практически о всей России, исключая Москву и области, граничащие с Белоруссией и Украиной. Это означает, что план ГОРЭЛ может быть существенно дополнен в части решения проблем электрификации малообжитых территорий и повышения надёжности электроснабжения (теплоснабжения) той части потребителей, для которых централизованное энергообеспечение экономически неприемлемо. Имеются расчёты по экономически целесообразным геотермальным ресурсам территории России, оцениваемые для температур 70/20 о С в 44,6 Ттут, в том числе Дальневосточному региону – 8,2 Ттут.

Технический потенциал

Что мы имеем сейчас в отношении оборудования? Основные отечественные производители геотермального оборудования это ОАО «Геотерм», ориентированные на ГеоТЭС мощностью от 4 до 25 МВт; Калужский турбинный завод, поставляющий ГеоТЭС средней мощностью 6, 12, 20 и 23 МВт; АО «Наука», предлагающее модульные ГеоТЭС малой и средней мощности от 0,5 до 20 МВт (российские компании в рамках проектов государственной научно-технической программы «Экологически чистая энергетика» разработали и организовали серийное производство ГеоЭс мощностью от 5 до 20 МВт). В Ставропольском крае «Нефтегазгеотерм» на базе Казьминского месторождения геотермальных вод предполагает строительство энергетической установки на 500 кВт. Итак, речь не идёт об установках, обеспечивающих электрическую мощность на уровне 5–10 кВт. Но для средних и крупных источников можно говорить о готовности российской промышленности к производству оборудования и установок на уровне мировых стандартов.

Что построено и ожидается строительством? Здесь, безусловно, впереди Камчатка, где десятилетиями (с 50-х годов) речь шла о Паужетской геотермальной электростанции (промышленная выработка началась с 1967 г., когда на Паратунском месторождении уже действовала опытно-промышленная геотермальная электростанция мощностью 500 кВт) установленной мощностью первой очереди 5 МВт (доведённая позднее до 11, а в перспективе до 20 МВт). Ныне имеется Верхне-Мутновская (12 МВт) и Мутновская ГеоТЭС (действует два энергоблока суммарной мощностью 50 МВт) с намечаемой второй очередью мощностью 100 МВт. На Кунашире действует ГеоЭс 2,6 МВт, а планируют несколько ГеоЭс суммарной мощностью 12-17 МВт. Начато строительство ГеоЭс на Итурупе мощность 6 МВт (с удвоением мощности в ближайшие годы). На противоположном конце России в Калининградской области планируется осуществить пилотный проект геотермального тепло- и электроснабжения города Светлый на базе бинарной ГеоЭс мощностью 4 МВт.

Налицо ориентирование геоэнергетики на строительство гигантов (не сравнимых, впрочем, с гигантами «большой» энергетики). Представляет интерес использование геотермальной энергии для отдельных хозяйств (домов), для сельских (а в отдельных случаях – для муниципальных) школ, больниц, частных магазинов и других объектов мощностью 0,1–0,4 МВт с использованием геотермальных циркуляционных систем. Но и в этом случае на примере Ярославля сразу говорится о геотермальной станции применительно к пластовым водам с температурой 35–60 о С для городского микрорайона на 8300 чел. с прилегающим сельским посёлком мощностью 10,4 МВт. «Ярославгражданпроект» для сельских школ определил мощность отопления 0,2–0,3 МВт.

Способы получения геотермальной энергии

Существует мнение, что использование низкотемпературной геотермальной энергии малых глубин можно рассматривать как революцию в системе теплообеспечения, основанную на неисчерпаемости ресурса, повсеместности его распространения, близости к потребителю, возможной локальности полного обеспечения теплотой и электроэнергией, на интеллектуальной автоматизации и интернетизации, на безопасности и практической безлюдности добычи геотермальной энергии, экономической конкурентоспособности, возможности строительства маломощных установок и их экологической частоте. Специфика (низкий температурный потенциал теплоносителя на выходе из установки, нетранспортабельность, трудности складирования, рассредоточенность сооружений, а у нас и отсутствие массового выпуска оборудования) не помешали США ежегодно вводить не менее 50–80 тыс. новых систем, планируя довести их ежегодное производство до 400 тыс. Успешно внедряется в Швеции, Швейцарии, Канаде, Австрии, Германии низкотемпературная геотермальная энергетика. В мире в 2002 г. действовало около 450 тыс. таких систем общей мощностью 2,9 ГВт (тепл.) при средней 10 кВт.

Нельзя не обратить внимание на необходимость использования родниковых вод на месте затопленных после вывода из эксплуатации угольных шахт. Это наблюдается, например, в Кузбассе, где выведено из эксплуатации около 20 шахт и где затопление близлежащих посёлков и невозможность обуздать выход вод на поверхность засыпкой грунта порождает социальные и экологические проблемы. К этому же классу геотермальных вод относят воды глубинного водопонижения на площадках крупных металлургических, химических и других заводов; вод при открытой разработке рудных и нерудных ископаемых (впрочем, для металлургии эта постановка – новая). Глубинное водопонижение приобретает всё большее значение из-за подъёма уровня грунтовых вод и объёмов откачиваемой воды с глубины до 20 м, а в отдельных случаях – ближайшего водного горизонта. При нормальной эксплуатации угольных шахт и подземных рудников работают системы водоотлива такие, что в ряде случаев приходится устанавливать три группы высоковольтных насосов, а вода сбрасывается в естественные водоёмы. Теплота особенно заметна зимой, проявляясь в виде тумана.

Имеющиеся разработки утилизации низкопотенциального тепла шахтных вод показывают, что можно покрыть потребности горячего водоснабжения, полностью отключая в летнее время котельные (2001 г., шахта «Осинниковская», Кузнецкуголь). Оказалось, что себестоимость 1 Гкал тепловой энергии в 2.5 раза ниже по сравнению с котельной шахты. Существовал проект утилизации низкопотенциального тепла воды шахты «Зенковская» Прокопьевскуголь мощностью 2,4 МВт, покрывающей круглогодичную нагрузку системы горячего водоснабжения и базовую нагрузку отопления. Что касается экономической стороны использования геотермальной энергии, то можно говорить о стоимости электроэнергии для геотермальных электростанций на 2005 г. на уровне 4–8 цент/кВтч при удельных капитальных вложениях не свыше 2000 долл./кВт. Если соотнести эти величины с дизельэлектростанциями на жидком топливе, малыми и микроГЭС, ветроэлектростанциями, ветродизельэлектростанциями, то можно вполне говорить о конкурентоспособности геотермальной энергетики.

Что касается фотоэлектрических станций, то сейчас они дороже, хотя безусловно это наиболее развивающаяся область, имеющая в будущем приоритетные перспективы. Безруких П.П. утверждает [5,6], что усреднённые максимальное и минимальное значения стоимости электроэнергии от электростанций на возобновляемых источниках энергии и различных видах топлива, определённые в 1997 г., находятся в тех же пределах и в 2003 г.

Таким образом, теоретические разработки и практическая база выпуска оборудования, строительства и эксплуатации геотермальных установок дают возможности ввести этот вид получения тепла и электричества в общий энергетический баланс по городу, региону, стране. Однако, переходя к региону и отдельным территориям, необходимо так выстраивать гиперболическое Н-распределение, чтобы выдерживалась ценологическая гармоничность всего ряда генерирующих мощностей «крупное-среднее-мелкое» [2,7]. Проверка должна выделять аномальные области по следующим параметрам: генерирующий ряд, протяжённость сетей по классам напряжения, генерирующий ряд при аварийных и чрезвычайных ситуациях. Учитывая, что возобновляемые источники по величине мощности и годовой (суточной) выработке тепла и электроэнергии могут попадать в один кластер, разделение их следует производить, опираясь на многомерный ценологический анализ с привлечением, естественно, экономических критериев.

Осуществление Государственного плана рыночной электрификации России невозможно без решения вопросов, касающихся возобновляемой энергетики, и прежде всего с точки зрения обеспечения безопасности страны. Без использования возобновляемых источников нельзя удовлетворительно решить энергоснабжение районов Крайнего Севера и приравненных к ним территорий; районов, не связанных сетями общего пользования; повысить до цивилизованного уровня надёжность и качество электроснабжения регионов, дефицитных по электрической энергии и органическим ресурсам; улучшить экологическую обстановку по стране (в том числе обеспечить решение проблем, связанных с Киотским протоколом, прежде всего в части эмиссии парниковых газов), обеспечения аварийного энергоснабжения, специальных объектов, а также объектов сферы образования, культуры, услуг.

С точки зрения потребителя, ориентирующегося на собственные возобновляемые источники, необходимо законодательно решить ряд проблем: 1) выдачу технических условий на технологическое присоединение к сетям электроэнергетики; 2) заявительное, а не разрешительное присоединение на параллельную работу мощностей до 10–100 кВт; 3) обязательный приём энергосистемой излишков вырабатываемой электрической мощности и её оплаты.

Наконец, главное. Во всех странах мира развитие возобновляемых источников осуществляется при поддержке государства. Это объясняется стартовой величиной затрат на оборудование. Речь, таким образом, идёт о лизинге, обеспечивающем получение электроэнергии (тепла) без затраты органического топлива. Нельзя не иметь в виду, что эксплуатационные затраты начинает нести собственник ГеоТЭС.

Развитие использования возобновляемых источников невозможно без разработки и принятия Федерального закона «О возобновляемых источниках энергии», включая подзаконные акты (в том числе и по геотермальным источникам). Назрела необходимость и в определении федерального органа исполнительной власти, отвечающего за развитие использования вторичных и возобновляемых источников энергии в субъектах Российской Федерации.

www.ronl.ru

Реферат Геотермальная энергетика

скачать

Реферат на тему:

План:

Введение

Несьявеллир ГеоТЭС, Исландия

Геотермальная энергетика — направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.

В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.

1. Ресурсы

Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.

РоссияНа 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м³/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).

2. Достоинства и недостатки

Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.

Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, по имеющимся данным, в Западной Сибири имеется подземное море площадью 3 млн м2 с температурой воды 70—90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России, также в Казахстане.

Какие проблемы возникают при использовании подземных термальных вод? Главная из них заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.

Итак, достоинствами геотермальной энергии можно считать практическую неисчерпаемость ресурсов, независимость от внешних условий, времени суток и года, возможность комплексного использования термальных вод для нужд теплоэлектроэнергетики и медицины. Недостатками ее являются высокая минерализация термальных вод большинства месторождений и наличие токсичных соединений и металлов, что исключает в большинстве случаев сброс термальных вод в природные водоемы.

3. Геотермальная электроэнергетика в мире

Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.

Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х — около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт[1].

Установленная мощность по странам Страна Мощность, МВт2007[2] Мощность, МВт2010[3] Доля[когда?][] Всего 9,731.9 10,709.7
США 2687 3086 0.3%
Филиппины 1969.7 1904 27%
Индонезия 992 1197 3.7%
Мексика 953 958 3%
Италия 810.5 843
Новая Зеландия 471.6 628 10%
Исландия 421.2 575 30%
Япония 535.2 536 0.1%
Сальвадор 204.2 204 14%
Кения 128.8 167 11.2%
Коста-Рика 162.5 166 14%
Никарагуа 87.4 88 10%
Россия 79 82
Турция 38 82
Папуа-Новая Гвинея 56 56
Гватемала 53 52
Португалия 23 29
КНР 27.8 24
Франция 14.7 16
Эфиопия 7.3 7.3
Германия 8.4 6.6
Австрия 1.1 1.4
Австралия 0.2 1.1
Таиланд 0.3 0.3

3.1. США

Крупнейшим производителем геотермальной электроэнергии являются США, которые в 2005 году произвели около 16 млрд кВт·ч возобновимой электроэнергии. В 2009 году суммарные мощности 77 геотермальных электростанций в США составляли 3086 МВт[4]. До 2013 года планируется строительство более 4400 МВт.

Основные промышленные зоны: «гейзеры» — в 100 км к северу от Сан-Франциско (1360 МВт установленной мощности), и северная часть Солёного моря в центральной Калифорнии (570 МВт установленной мощности), в Неваде установленная мощность станций достигает 235 МВт.

Геотермальная электроэнергетика, как один из альтернативных источников энергии в стране, имеет особую правительственную поддержку.

3.2. Филиппины

На 2003 год 1930 МВт электрической мощности установлено на Филиппинских островах, в Филиппинах парогидротермы обеспечивают производство около 27% всей электроэнергии в стране.

3.3. Мексика

Страна на 2003 год находилась на третьем месте по выработке геотермальной энергии в мире, с установленной мощностью электростанций в 953 МВт. На важнейшей геотермальной зоне Серро Прието расположились станции общей мощностью в 750 МВт.

3.4. Италия

В Италии на 2003 год действовали энергоустановки общей мощностью в 790 МВт.

3.5. Исландия

В Исландии действуют пять теплофикационных геотермальных электростанций общей электрической мощностью 570 МВт (2008), которые производят 25 % всей электроэнергии в стране.

3.6. Кения

В Кении на 2005 год действовали три геотермальные электростанции общей электрической мощностью в 160 МВт., существуют планы по росту мощностей до 576 МВт.

3.7. Израиль

Один из крупнейших производителей геотермальной энергии в мире. Сотрудничает по этому вопросу с США. По некоторым данным геотермальная энергия обеспечивает электричеством около 500 тыс. жителей страны.

3.8. Россия

Все российские геотермальные электростанции расположены на Камчатке и Курилах, суммарный электропотенциал пароводных терм одной Камчатки оценивается в 1 ГВт рабочей электрической мощности. Российский потенциал реализован только в размере не многим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):

В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.

4. Классификация геотермальных вод[5]

4.1. По температуре

Слаботермальные до 40°C
Термальные 40-60°C
Высокотермальные 60-100°C
Перегретые более 100°C

4.2. По минерализации (сухой остаток)

ультрапресные до 0,1 г/л
пресные 0,1-1,0 г/л
слабосолоноватые 1,0-3,0 г/л
сильносолоноватые 3,0-10,0 г/л
соленые 10,0-35,0 г/л
рассольные более 35,0 г/л

4.3. По общей жесткости

очень мягкие до 1,2 мг-экв/л
мягкие 1,2-2,8 мг-экв/л
средние 2,8-5,7 мг-экв/л
жесткие 5,7-11,7 мг-экв/л
очень жесткие более 11,7 мг-экв/л

4.4. По кислотности, рН

сильнокислые до 3,5
кислые 3,5-5,5
слабокислые 5,5-6,8
нейтральные 6,8-7,2
слабощелочные 7,2-8,5
щелочные более 8,5

4.5. По газовому составу

сероводородные
сероводородно-углекислые
углекислые
азотно-углекислые
метановые
азотно-метановые
азотные

4.6. По газонасыщенности

слабая до 100 мг/л
средняя 100-1000 мг/л
высокая более 1000 мг/л

Примечания

  1. Geothermal Development Expands Globally - www.renewableenergyworld.com/rea/news/article/2009/05/geothermal-development-expands-globally?cmpid=rss
  2. Bertani, Ruggero (September 2007), "World Geothermal Generation in 2007 - geoheat.oit.edu/bulletin/bull28-3/art3.pdf", Geo-Heat Centre Quarterly Bulletin (Klamath Falls, Oregon: Oregon Institute of Technology) . — Т. 28 (3): 8–19, ISSN 0276-1084 - worldcat.org/issn/0276-1084, <http://geoheat.oit.edu/bulletin/bull28-3/art3.pdf - geoheat.oit.edu/bulletin/bull28-3/art3.pdf>.  
  3. Holm, Alison (May 2010), Geothermal Energy:International Market Update - www.geo-energy.org/pdf/reports/GEA_International_Market_Report_Final_May_2010.pdf, Geothermal Energy Association, pp. 7, <http://www.geo-energy.org/pdf/reports/GEA_International_Market_Report_Final_May_2010.pdf - www.geo-energy.org/pdf/reports/GEA_International_Market_Report_Final_May_2010.pdf>.  
  4. Geothermal Projects Being Developed in 70 Countries 25 Май 2010 г - www.renewableenergyworld.com/rea/news/article/2010/05/geothermal-projects-being-developed-in-94-countries?cmpid=rss
  5. ВСН 56-87 "Геотермальное теплохладоснабжение жилых и общественных зданий и сооружений"

Литература

wreferat.baza-referat.ru

Содержание:

Введение……………………………………………………………………………......................................2

1.Энергосбережение……………………………………………………………………………………..…3

1.1.Геотермальные ресурсы ……………………………………………………………………………6

1.2. Различают четыре основных типа ресурсов геотермальной энергии………………………..7

1.3.Геотермальные электростанции……………………………………………………………………8

2. Экологически непротиворечивые способы реализации программ по геотермальной энергетике…………………………………………………………………………………………………..15

2.1.Рекультивация. ……………………………………………………………………………………...16

2.2.Формирование эталонных, особо охраняемых природных геотермальных ландшафтов и геотермальных систем……………………………………………………………………………………16

2.3.Строительство малых геотермальных электростанций……………………………………….17

Вывод…………………………………………………………………………………………………….....18

Введение :

Значительная часть поверхности Земли обладает большими запасами геотермальной энергии вследствие вулканической деятельности, радиоактивного распада, тектонических сдвигов и наличия участков магмы в земной коре.

В ряде географических районов использование геотермальных источников может существенно увеличить выработку энергии, так как геотермальные электростанции (ГеоТЭС) являются одним из наиболее дешевых альтернативных источников энергии. Только в верхнем трехкилометровом слое Земли содержится свыше 1020 Дж теплоты, пригодной для выработки электроэнергии. Такое количество энергии позволяет рассматривать теплоту Земли как альтернативу органическому топливу. Сама природа дает человеку в руки источник альтернативной энергетики

Реальные потребности развития цивилизации на Земле обусловлены непрерывным прогрессом в наращивании энергетической вооруженности, что сопровождается постоянным увеличением энергетических мощностей, которые требуют поиска новых источников энергии. Пока проекты освоения практически неисчерпаемых, энергетических ресурсов не нашли своего решения, человечество, в силу своей исключительной особенности развития, не может остановиться на достигнутом этапе прогресса и оно будет вынуждено пользоваться теми энергетическими ресурсами, которые доступны для освоения и реализации с точки зрения современного уровня экономического развития

Во второй половине ХХ века стало очевидно, что используемые источники энергии или ограничены в своих ресурсах, или же опасны при своём использовании, в особенности, в областях современной сейсмической и вулканической активизации. Кроме того, они распределены неравномерно и могут принести существенный вред среде обитания биоценозов или при их добыче, или при транспортировке. Зависимость многих стран и отдалённых регионов, в такой стране, как Украина, от импортируемого топлива даёт толчок действиям Правительств, руководителям регионов и промышленников к поиску иных источников энергии и к разработке технологий в реализации новых источников энергии. В первую очередь проявился такой интерес, как на национальном уровне, так и на международном, к разработке геотехнологических решений в использовании геотермальной энергетике.

Экономическая целесообразность использования геотермальных ресурсов зависит от многих обстоятельств. Одними из главных особенностей этого аспекта развития геотермальной энергетики является цена на традиционные виды топлива в местах расположения гидротермальных ресурсов, развитость инфраструктуры, сильно влияющей на капитальные затраты, как геологоразведочных работ и эксплуатационного бурения, так и на строительство самих геотермальных электростанций и обустройство промыслов. Все названные факторы изменяются во времени и, естественно, экономическая целесообразность должна рассчитываться весьма конкретно для каждого проекта. Невозможно сделать вывод об абсолютной выгодности того или иного геотермального проекта. Однако следует отметить наличиенекоторых экономических особенностей в использовании геотермальных ресурсов. Так, например, экономическая целесообразность строительства геотермальных электростанций характеризуется сравнительно высокими затратами на капитальное строительство. Подавляющую долю в расходной части сметы занимает финансирование строительства геотермальных скважин. Поскольку условия бурения часто зависят от плохо прогнозируемого процесса проходки ствола скважины и возможных притоков геотермального теплоносителя с почти неизвестными термодинамическими параметрами то и стоимость конструкций скважин колеблется в широких пределах. В литературе часто называются средняя стоимость оборудования геотермальных скважин в пределах 1-10 млн. долларов. При этом следует понимать, что средняя стоимость скважины зависит от конкретной гидротермальной системы. По-видимому, следует учитывать и развитость той или ин ой страны, что определяет уровень заработных плат конкретной страны, которые входят основной долей затрат Известно, что стоимость геотермальной скважины сопоставима со стоимостью газовых и нефтяных скважин.

studfiles.net


Смотрите также