Реферат: Солнечная радиация и ее ослабление в атмосфере. Радиоактивность атмосферы реферат


Радиоактивность атмосферы понятие

Словарь

загрузка...

Большая советская энциклопедия

Радиоактивность атмосферы 8793 б.        обусловлена присутствием в атмосфере радиоактивных газов и аэрозолей, попадающих в неё в результате процессов, происходящих в природе, и деятельности человека. Соответственно различают естественную и искусственную Р. а. Естественные радиоактивные газы являются изотопами радона: 222Rn — радон, 220Rn — торон, 219Rn — актинон, и образуются вследствие радиоактивного распада 238U, 232Th и 235U (см. Радиоактивные ряды). Они поступают в атмосферу с почвенным воздухом при обмене его с атмосферным (т. н. эксхаляция) или путём диффузии. При радиоактивном распаде изотопов Rn образуются аэрозольные продукты их распада (см. Радиоактивные аэрозоли), т.к. возникающие при этом химические элементы относятся к металлам и не летучи при обычных условиях (Po, Bi и др.). При этом 232Rn (период полураспада T1/2 = 3,8 сут) распространяется в пределах тропосферы, а его долгоживущие продукты распада 210Pb (RaD), 210Bi (RaE), 210Po (RaF) обнаружены в стратосфере. Содержание 222Rn в воздухе над океанами на 2 порядка ниже, чем над материками, а концентрация над земной поверхностью уменьшается примерно вдвое на каждый км высоты. Торон и актинон вследствие малого значения T1/2 (54 сек и 3,9 сек) присутствуют только у земной поверхности. Продукт распада торона 212Pb (ThB) с T1/2 =10,6 ч обнаруживается в нижней тропосфере. В воздухе над океанами 220Rn, 210Rn и их продукты распада практически отсутствуют.

         Основная масса естественных радиоактивных изотопов 7Be, 10Be, 35S, 32P, 33P, 22Na, 14C, 3H), возникающих при взаимодействии космического излучения с ядрами атомов химических элементов, входящих в состав воздуха, образуется в стратосфере, где и отмечаются наибольшие их концентрации.

         Искусственные радиоактивные аэрозоли образуются при ядерных взрывах. Через несколько десятков сек после взрыва они содержат Радиоактивность атмосферы 100 различных радиоактивных изотопов; наиболее токсичными из них считаются 90Sr, 137Cs, 14C, 131I. Высота заброса в атмосферу радиоактивных аэрозолей зависит от мощности и высоты ядерного взрыва, а характер их распространения — от размеров частиц и от высоты заброса их в атмосферу. Наиболее крупные частицы (сотни мкм и выше) быстро выпадают из атмосферы, распространяясь всего на сотни км от места взрыва (локальные выпадения). Однако в случае взрывов мощных ядерных бомб (эквивалентных десяткам мегатонн тринитротолуола) они попадают в стратосферу и, прежде чем выпадут на поверхность Земли, могут пройти в атмосфере тысячи км. Мелкие аэрозоли (размером не более нескольких мкм), попавшие при взрыве в верхнюю тропосферу, обычно распространяются вдоль зонального пояса широт с запада на восток, а заброшенные в стратосферу выпадают на поверхность Земли в пределах всего полушария, а в некоторых случаях — в обоих полушариях, поэтому выпадения этих аэрозолей называются глобальными.

         Основной механизм очищения атмосферы от радиоактивных аэрозолей — выпадение осадков (см. Радиоактивность осадков). Среднее время τ пребывания радиоактивного аэрозоля в нижней тропосфере (до момента его выпадения на земную поверхность) порядка нескольких сут, а в верхней тропосфере 20—40 сут. Радиоактивные аэрозоли, попавшие в нижние слои стратосферы, имеют τ порядка года и выше. Величина τ растет с увеличением высоты заброса в стратосферу. Обычно бо́льшая часть радиоактивных продуктов деления остаётся в пределах того полушария, где проведён взрыв ядерной бомбы.

         Концентрация продуктов деления в тропосфере растет с высотой. Особенно большой рост отмечается при переходе через тропопазу. В стратосфере максимум концентрации продуктов деления по измерениям до осени 1961 отмечался на высоте 19—23 км (примерно на той же высоте, что и слой максимальной концентрации нерадиоактивного аэрозоля). Радиоактивное загрязнение атмосферы от предприятий атомной промышленности имеет чаще всего локальный характер; однако 85Kr распределён по всей тропосфере.

         Изучение распространения в атмосфере естественных радиоактивных аэрозолей, а также продуктов ядерных взрывов позволило получить некоторые характеристики физики атмосферы: скорость вымывания аэрозолей из атмосферы, оценку коэффициента макротурбулентной диффузии и скорости обмена между атмосферами полушарий, а также между стратосферой и тропосферой и т.д.

         Лит.: Метеорология и атомная энергия, пер. с англ., под ред. Н. Л. Бызовой и К. П. Махонько, Л., 1971; Кароль И. Л., Радиоактивные изотопы и глобальный перенос в атмосфере, Л., 1972; Израэль Ю. А., Мирные ядерные взрывы и окружающая среда, Л., 1974.

         С. Г. Малахов.

Другой материал:Реферат - РадиоактивностьРеферат - Изменение газового состава атмосферы в прошлом и настоящемРеферат - Ионизирующее излучение

загрузка...

Словари:

• медицинская энциклопедия• большой медицинский словарь• медицинские термины• психологическая энциклопедия• психотерапевтическая энциклопедия

slovare.coolreferat.com

Реферат - Радиационный режим в атмосфере

Введение

Большинство происходящих в атмосфере явлений, изучаемых оптиками и метеорологами, развиваются за счет лучистой энергии, т.е. энергии, доставляемой Земле солнечной радиацией. Мощность этой энергии примерно может быть оценена в 18*1023 эрг/с. Энергетический спектр солнечной радиации на границе атмосферы близок к спектру абсолютно черного тела с температурой порядка 60000К (рис.1.[1]). До того, как солнечное излучение достигнет поверхности, оно проделает длинный путь через земную атмосферу, где будет не только рассеяно и ослаблено, но и изменено по спектральному

Рис.1. Распределение энергии в спектре солнечной радиации на границе атмосферы: 1- по данным 1903-1910 гг., 2 - 1920-1922 гг., 3 - 1917 г., 4 - абсолютно черное тело при температуре 57130К.

составу. В результате дошедшая до места наблюдения (земной поверхности) в виде параллельных лучей от Солнца так называемая прямая солнечная радиация будет как количественно, так и качественно отлична от солнечной радиации за пределами атмосферы [1]. Солнечная (коротковолновая) радиация преобразуется, проходя через атмосферу, в следующие виды радиации: рассеянную (ввиду наличия в атмосфере различных ионов и молекул газов, частиц пыли происходит рассеяние прямой солнечной энергии во все стороны; часть рассеянной энергии доходит до поверхности Земли), отраженную (часть попавшей в атмосферу и на земную поверхность энергии отражается обратно), поглощенную (происходит диссоциация и ионизация молекул верхних слоях атмосферы, нагрев воздуха и самой земной поверхности, тех предметов, которые на ней находятся).

Спектр Солнца

Как видно из рис.1., энергетический спектр излучения близок к спектру абсолютно черного тела при температуре T~60000К, но не совпадает с ним, т.к. яркость солнечного диска планомерно уменьшается от его центра к краям. Наилучшей формой представления распределения энергии в солнечном спектре является формула В.Г. Кастрова:

l0,l*Dl=0,021*l-23*exp(-0,0327*l-4)*Dl[1] (1).

Формулы, описывающей распределение энергии Солнца на поверхности Земли пока не существует, т.к. в нее должно входить слишком много флуктуирующих параметров (плотность и высотное распределение газов, альбедо отражающих поверхностей, температура и т.п.).

Ослабление потоков лучистой энергии в атмосфере Солнечное излучение, проходя через атмосферу, ослабляется благодаря эффектам рассеяния и поглощения. Для потоков лучистой энергии атмосфера в видимой части спектра является мутной средой, т.е. рассеивающей, а в ультрафиолетовой и инфракрасной - поглощающей и рассеивающей. Световой поток поглощается в атмосфере, причем количество энергии, дошедшей до поверхности Земли, можно найти из закона Бугера (закон ослабления света):

I=I0*exp(-)[3] (2), где I0 - интенсивность падающего излучения (на границе атмосферы), Z0?750 (плоско-параллельная модель атмосферы), H - путь, пройденный светом до земной поверхности, k(h)- коэффициент поглощения (ослабления) светового потока, зависящий от высотного распределения плотности, состава атмосферы, физических и химических свойств газов, частиц, находящихся в атмосфере (рис.2.[1]). Рассмотрим избирательное поглощение лучистой энергии в атмосфере. Любое вещество имеет свои полосы поглощения (рис.3.[1]). Из газов, входящих всегда в состав атмосферы, существенным для нас селективным поглощением обладают лишь O2, O3, CO2 и водяной пар h3O. Кислород вызывает интенсивное поглощение света В далекой ультрафиолетовой области для длин волн l

Рис.2. Распределение энергии в нормальном солнечном спектре.

Рис.3. Спектр поглощения земной атмосферы.

атмосферы, что солнечные лучи с длиной волны l DE=0,156*(m*v)0,294 кал/см2* мин.[2] (3), где m - пройденный лучами путь, v - общее содержание водяного пара в вертикальном столбе атмосферы единичного сечения (1 см2). Далее рассмотрим атмосферные аэрозоли и пыль, их содержание зависит от высоты, они влияют на уменьшение прозрачности атмосферы. Рассмотрим отраженную радиацию, т.е. радиацию, которая достигает земной поверхности, частично отражается от нее и вновь возвращается в атмосферу. Также отраженная радиация - это и излучение, отраженное от облаков. Количество отраженной некоторой поверхностью энергии в сильной мере зависит от свойств и состояния этой поверхности, длины волны падающих лучей. Можно оценить отражательную способность любой поверхности, зная величину ее альбедо, под которым понимается отношение величины всего потока, отраженного данной поверхностью по всем направлениям, к потоку лучистой энергии, падающему на эту поверхность; обычно его выражают в процентах (ТАБЛИЦА 1[1]). ТАБЛИЦА 1 ВИД ПОВЕРХНОСТИ АЛЬБЕДО СУХОЙ ЧЕРНОЗЕМ 14 ГУМУС 26 ПОВЕРХНОСТЬ ПЕСЧАНОЙ ПУСТЫНИ 28 -38 ПАРОВОЕ ПОЛЕ ( СУХОЕ) 8 - 12 ВЛАЖНОЕ ВСПАХАННОЕ ПОЛЕ 14 СВЕЖААЯ ( ЗЕЛЕНАЯ ) ТРАВА 26 СУХАЯ ТРАВА 19 РОЖЬ И ПШЕНИЕЦА 10 - 25 ХВОЙНЫЙ ЛЕС 10 - 12 ЛИСТВЕННЫЙ ЛЕС 13 - 17 ЛУГ 17 - 21 СНЕГ 60 - 90 ВОДНЫЕ ПОВЕРХНОСТИ 2 - 70 ОБЛАКА 60 - 80

Рассмотрим рассеянную радиацию. Рассеяние в атмосфере может происходить на молекулах газов (молекулярное рассеяние) и частицах (крупных (l>r)), находящихся в атмосфере, оно зависит также и от наличия облачности. Основы этой теории заложены Рэлеем, но позже она была усоршенствована другими учеными уже для различных размеров, форм и свойств частиц. Для анализа явлений рассеяния используют уравнение переноса излучения; запишем его в векторной форме[3: (4),

где Si - параметры Стокса (S1=I - суммарная интенсивность, S2=I*p*cos(Y0), Y0 - угол поворота направления максимальной поляризации относительно плоскости референции, p - степень линейной поляризации, S3=I*p*sin(Y0), S4=I*q, q - степень эллиптичности поляризации),fij - матрица рассеяния. При молекулярном рассеянии диполи под действием падающей волны начинают двигаться с ускорением, следовательно излучают волны с частотой падающей волны, т.е. происходит рассеяние света на данных молекулах. Рассмотрим коэффициент молекулярного ослабления kMS и учтем, что рассеяние должно происходить тогда, когда показатель преломления частицы относительно среды n не равен единице, тогда: [3] (5) (l где N - число частиц в единице объема, l - длина падающей волны. Также запишем функцию, показывающую «разбрасывание света по углам»:

fMS(j)=3*tMS*(1+cos2(j))/(16*p)[3] (6), где tMS - оптическая толща молекулярного рассеяния. Если ввести параметр D, характеризующий анизотропию молекул, то формула (6) примет вид:

fMS(j)=3*tMS*(1+D+(1-D)*cos2(j))/(16*p)[3] (7) Обычно молекулярный рассеянный свет поляризован: [3](8), где Pлин - степень линейной поляризации. При попадании света на крупные частицы, обычно находящиеся вблизи поверхности Земли, происходит частичная потеря импульса падающей электро-магнитной волны, т.е. на молекулу действует световое давление, тогда будем иметь эффекты дифракции, отражения и преломления, пронукновения электро-магнитной волны вовнутрь частицы. В результате может возникнуть интерференция падающей волны и вышедшей из частицы за счет явления внутреннего отражения. Все эти явления описываются в теории Ми. Предположения теории Ми: частицы сферические, однородные, не сталкиваются; атмосфера - плоско-параллельный слой. Т.к. показатель преломления частиц, описываемых теорией Ми, - комплексный: m=n+i*c, где n - обычный показатель преломления, c - характеризует поглощение волны частицей. В результате рассеяния прямого солнечного излучения в атмосфере, она сама становится источником излучения, которое достигает земной поверхности в виде рассеянного излучения. Максимум в спектре рассеянной радиации смещен в более коротковолновую область, чем у солнечного спектра; также состав рассеянной радиации зависит от высоты Солнца (рис.4.[1]).

Рис.4. Распределение энергии в спектре рассеянного света, посылаемого различными точками небесного свода.

Рассеянная радиация также зависит и от облачности, что проиллюстрировано на рис.5.[1], который построен по экспериментальным данным для г. Павловска. Нередки случаи, когда рассеянная радиация достигает значений, сравнимых с потоком прямой солнечной радиации[1]. Это явление обычно происходит в северных широтах. Оно объяснимо тем, что чистый сплошной снежный покров имеет черезвычайно большую отражательную способность. Облака являются средами, которые могут сильно рассеивать свет; опыты показали, что плотные облака толщиной 50 - 100 метров уже полностью рассеивают прямые солнечные лучи.

Рис.5. Рассеянная радиация атмосферы при безоблачном небе и при сплошной облачности (10 баллов).

Реферат содержит

СТРАНИЦ ТАБЛИЦ РИСУНКОВ ФОРМУЛ 14 1 5 8

Литература 1. 1. «Курс метеорологии» под ред. Г.Н.Тверского, ГИДРОМЕТЕОИЗДАТ, Л., 1951г.. 2. 2. Справочник «Атмосфера», ГИДРОМЕТЕОИЗДАТ, Л., 1991г.. 3. 3. Лекции Павлова В.Е. по оптике атмосферы для студентов III - V курсов специализации «Оптическое зондирование атмосферы», АГУ, Барнаул, 1996г.. 4.

www.ronl.ru

Реферат - Состав, строение атмосферы, значение атмосферы в жизни человека. Солнечная радиация, ее виды, распределение на территории России.

Состав атмосферы

Атмосфера – это газовая оболочка, окружающая Землю. Атмосфера имеет «многоэтажное» строение и делится на такие слои, как тропосфера, стратосфера, мезосфера, термосфера и экзосфера. Состав сухого остатка атмосферы по всей ее толще почти одинаков. Но отличается его плотность и температура, а в нижнем слое (тропосфере) повышено содержание воды, твердых частиц, над почвой – углекислого газа. Тропосфера включает около 80% всей массы атмосферы.

Главными компонентами атмосферы являются азот ( более 78%) и кислород (более 20%), а также ряд других газов (до 1%) – аргон, неон, углекислый газ, метан, гелий, водород, криптон, ксенон, оксид азота, озон, двуокись серы. Некоторые газы находятся в атмосферном воздухе в следовых количествах.

Азот в атмосфере содержится в значительно большей концентрации (78%), чем другие газы. Около трех миллионов лет назад в результате появления зеленых растений и, соответственно, фотосинтеза, в атмосферу в больших количествах стал выделяться кислород. При окислении молекулярным кислородом аммиачно-водородной атмосферы появилось огромное количество азота. В настоящее время данный газ выделяется в атмосферу в процессе жизнедеятельности микроорганизмов, так как этот химический элемент является составной частью белков растительного и животного происхождения. Атмосферный воздух обогащается азотом в ходе денитрификации нитратов и некоторых азотсодержащих соединений. В верхних слоях атмосферы азот подвергается окислению озоном до оксида азота. Свободный азот вступает в химические реакции только в особых условиях, к примеру, при разряде молнии. Азот участвует в природном круговороте веществ и в регуляции концентрации молекулярного кислорода в атмосфере, не допуская его чрезмерного накопления.

Кислород после азота занимает второе место в процентном соотношении по объемному содержанию в атмосферном воздухе (20, 85%). Кардинальные изменения в составе атмосферы произошли после появления на Земле живых организмов, в частности, растений, которые в результате фотосинтеза обогащают воздух кислородом и поглощают углекислый газ. На начальных этапах развития атмосферы Земли выделенный кислород тратился на окисление аммиака, углеводородов, железа. Когда данный период завершился, содержание кислорода в воздухе постепенно возрастало. Атмосфера древней планеты стала приобретать характерные черты современной. Приобретение атмосферой окислительных свойств определило появление изменений в литосфере и биосфере. Кислород, содержащийся в атмосфере, необходим для протекания таких важных для живых организмов процессов, как дыхание, гниение, горение. Таким образом, без этого химического элемента жизнь невозможна. В настоящее время практически весь свободный кислород поступает в атмосферу вследствие фотосинтеза в клетках растений.

Важная составляющая воздуха – углекислый газ, который содержится в атмосфере в небольших количествах (0,03%). Его концентрация зависит от деятельности вулканов, химических процессов в оболочках Земли (минеральные источники, почвы, продукты гниения). Также большое количество углекислого газа выделяется в атмосферу от промышленных предприятий. Но основная масса данного соединения попадает в атмосферу вследствие биосинтеза и разложения органического вещества в биосфере нашей планеты. Углекислый газ считается обогревателем Земли, так как он хорошо пропускает солнечную радиацию к поверхности планеты и удерживает тепло, излучаемое от нее.

Содержание других газов в атмосфере незначительно. Инертные газы, такие как неон, аргон, ксенон, поступают в атмосферу в результате вулканических извержений и распада некоторых радиоактивных элементов. Ученые полагают, что в земной атмосфере содержится такое малое количество благородных газов вследствие их постоянного рассеивания в космическом пространстве.

Кроме газов, в атмосферном воздухе содержатся водяные пары и твердые частицы в форме аэрозоля. Концентрация водяного пара в воздухе увеличивается из-за испарения воды с поверхности Земли. В разных областях его содержание отличается, также оно может изменяться в течение года. Осадки и облака формируются из водяного пара. Именно благодаря содержанию водяных паров, в атмосфере удерживается около 60% тепла от земной поверхности.

Твердые частицы в атмосферном воздухе – это пыль космического и вулканического происхождения, солевые кристаллы, дым, микроорганизмы, пыльца растительных организмов, т.д. Взвеси твердых частиц уменьшают солнечную радиацию, поступающую к поверхности Земли, а также ускоряют сгущение водяного пара и формирование облаков.

Посторонние примеси, содержащиеся в воздухе, оказывают влияние на цвет неба днем. Молекулы газов, составляющих воздух, пыль, капельки воды и кристаллики льда частично рассеивают солнечные лучи. При этом молекулы газов сильно рассеивают радиацию наиболее коротких волн видимой части спектра Солнца (фиолетовый и синий участки) по сравнению с видимым красным участком спектра. Молекулярное рассеяние света обратно пропорционально четвертой степени длины волны светового луча. Вследствие этого крайние фиолетовые лучи рассеиваются в 14 раз больше, чем крайние красные. Содержащиеся в воздухе примеси, будучи значительно крупнее молекул газов, рассеивают лучи обратно пропорционально длине волны, но уже не в четвертой степени, а в меньшей. Однако и они коротковолновую радиацию рассеивают больше, чем длинноволновую. Поэтому воспринимаемый человеческим глазом рассеянный свет при безоблачной погоде представляется голубым и синим.

С увеличением высоты над уровнем моря насыщенность цвета неба возрастает: от голубого он постепенно переходит к фиолетовому. В стратосфере и выше цвет неба становится черно-серым, а затем черно-фиолетовым. При большой запыленности воздуха или большом количестве в нем водяного пара небо приобретает белесоватый оттенок, а при сплошной облачности выглядит серым.

По химическому составу атмосферу по вертикали делят на два слоя: гомосферу (однородную) — от поверхности земли до 100—120 километров и гетеросферу (неоднородную) — выше 100—120 километров.

В гомосфере химический состав атмосферы за исключением водяного пара, озона и углекислого газа мало меняется с высотой. В гетеросфере состав атмосферы с высотой претерпевает значительные изменения вследствие разложения молекул газов, а также из-за стремления газов к диффузному равновесию под действием силы тяжести.

Выше 100 километров под действием ультрафиолетовой радиации Солнца молекулы газов расщепляются на атомы. На высоте 100—200 километров кислород (О2) частично уже находится в атомарном состоянии, а в слое 200—1000 километров атомы кислорода (О) преобладают. Выше 500 километров большая часть азота (N2) также находится в атомарном состоянии. На высоте 500—1000 километров преобладает гелий.

www.ronl.ru

Реферат Радиоактивность и анализ веществ

ТЕМАРАДИОАКТИВНОСТЬ И АНАЛИЗ ВЕЩЕСТВ

Содержание1. Радиохимический анализ

1.1 Анализ естественных радиоактивных веществ

1.2 Анализ искусственных радиоактивных веществ

2. Радиоиндикаторные методы анализа

3. Активационный анализ

4. Методы анализа, основанные на взаимодействии излучения с веществами

4.1 Метод анализа, основанный на упругом рассеянии заряженных частиц

4.2 Метод анализа, основанный на поглощении и рассеянии P-частиц

4.3 Метод анализа, основанный на поглощении и рассеянии γ-излучения

1. РАДИОХИМИЧЕСКИЙ АНАЛИЗОткрытие радиоактивности дало толчок к появлению и развитию новых направлений исследований. Само же явление нашло применение как в промышленности, так и в науке. В частности, в аналитической химии (науке, которая занимается определением качественного и количественного состава вещества) явление радиоактивности применяется для анализа состава и количества веществ. Оказалось, что характер испускаемого излучения является настолько индивидуальным для каждого атома, что его можно использовать для идентификации элементов. Разработано большое количество методов, позволяющих провести анализ любого элемента и многих соединений. Существуют методы, которые позволяют проводить определение не только в лаборатории, но и в полевых условиях, например активационный анализ, который применяется для разведывания месторождений полезных ископаемых. В основе радиохимического анализа лежит использование ядерных свойств радионуклидов. С его помощью можно проанализировать радионуклиды, встречающиеся в природе (анализ естественных радиоактивных веществ) и исследовать природные материалы (почву, воздух, руду и т. д.) на наличие в них радиоактивных изотопов. Кроме того, метод радиохимического анализа позволяет изучать системы искусственных радионуклидов: обнаруживать и идентифицировать радионуклиды, определять продукты распада и ядерного синтеза трансурановых элементов и т. д.1.1.          Анализ естественных радиоактивных веществАнализируя природные радиоактивные вещества, обычно в них определяют наличие уже известного радионуклида и его количество. Определение обычно проводят относительным методом, т. е. исследуемый образец сравнивается со стандартным, в котором количество определяемого радионуклида точно установлено. Естественные радионуклиды определяют путем измерения их активности. Особенно широко этот способ применяется для определения естественных радиоактивных элементов, содержащих радионуклиды с небольшим периодом полураспада, которые встречаются в ничтожно малых количествах. Никаким другим способом их определить нельзя. Для долгоживущих радионуклидов измерение их радиоактивности является не очень эффективным, поскольку не дает высокой точности результатов. Накопленная на сегодняшний день информация о характере радиоактивности природных веществ позволяет выбрать наиболее результативные методики их анализа. Такие природные материалы, как руды (за исключением урановых), горные породы и минералы, как правило, обладают слабой радиоактивностью. Измерение их активности позволяет определить следы радия или тория, которые находятся либо в состоянии, близком к равновесию с продуктами распада, либо после достижения такого равновесия. Количество радиоактивных компонентов обычно невелико, поэтому часто прибегают к их выделению и концентрированию. Предва- рительно образец переводят в раствор. Естественная радиоактивность воздуха обуславливается наличием в нем радона, торона или актинона и их активными осадками, которые образуют радиоактивные аэрозоли. Следует отметить, что над поверхностью океанов концентрация радионуклидов значительно меньше, чем в воздухе над континентами, например, концентрация радона над континентами имеет порядок 10-6 Бк/см3, а над океанами 10-8 Бк/см3. Радиоактивность почвенного воздуха значительно выше, чем радиоактивность воздуха свободной атмосферы (10-3 Бк/см3), а наиболее велика радиоактивность воздуха шахт, особенно если там добывают урановую руду.

Природная вода может содержать до 0,5 кБк/л радия идо 30 мкг урана. В области урановых месторождений концентрации радионуклидов значительно выше: до 0,8 кБк/л радия и до 90 мг урана. 1.2.          Анализ искусственных радиоактивных веществАнализ искусственных радиоактивных веществ (т. е. тех, которые возникли в результате ядерных реакций, продуктов реакций деления и ядерного синтеза трансурановых элементов) гораздо сложнее, чем анализ естественных радиоактивных материалов. Дело в том, что, анализируя природные вещества, чаще всего приходится определять количество заранее известного радионуклида. В отличие от этого, образцы искусственных радиоактивных веществ обычно состоят из радионуклидов разных видов (как известных, так и неизвестных; и их необходимо дополнительно идентифицировать. Поэтому качественный анализ искусственных радиоактивных веществ включает два этапа:

1) обнаружение излучения и описание его свойств;

2) распознавание радионуклида, которому принадлежит обнаруженное излучение. Вид излучения радионуклида определяется в процессе изучения его прохождения через воздух и другие материалы.

Энергию излучения определяют, измеряя пробег или величину слоя поглощения в веществе, через которое проходит излучение. Кроме того, для идентификации радионуклида используется период полураспада. Если нужно распознать неизвестный радионуклид, то в первую очередь устанавливают характеристики наблюдаемого излучения (его вид, энергию, период полураспада). Целью распознавания является определение заряда Z и атомной массы А радионуклида Установив эти характеристики, возможно выяснить, какому именно химическому элементу соответствует наблюдаемая активность. Это делается следующим образом: из всех элементов отбирается тот, который хотя бы водной химической реакции проявляет аналогичную активность. Его называют носителем.

2.                 РАДИОИНДИКАТОРНЫЕ МЕТОДЫ АНАЛИЗАРадиоиндикаторные методы используются для того, чтобы исследовать качественный состав системы в ходе реакции. В анализируемую систему (т. е. ту, которая содержит определяемый элемент или соединение) вводится меченое соединение (радионуклид или неизотопный радиоактивный реагент), после чего измеряется удельная активность системы и устанавливается изменение удельной активности, а также изменение изотопного состава и др. характеристики системы.

Метод меченых атомов

В основе метода меченых атомов лежит тот факт, что химические свойства радиоактивных и нерадиоактивных изотопов одинаковы Эго означает, что в химических реакциях из исходных веществ в продукты будут переходить равные части обоих типов изотопов. Но это можно использовать на практике только в том случае, если радиоактивный и стабильный изотопы находятся в состоянии идеального однородного распределения в химической системе, причем на протяжениивсех исследуемых процессов однородность распределения (изотопный состав) не изменяется. Тогда можно проследить, во-первых, как меняется концентрация исследуемого соединения в ходе реакции, а во-вторых — на каких этапах протекания реакции с ним начинают происходить изменения. Качественное исследование меченого элемента или его соединения проводят, обнаруживая радиоактивность, а количественное замеряя величину радиоактивности.

Из огромного множества радионуклидов, известных на сегодняшний день, только некоторые из них можно использовать в качестве индикаторов. При этом во внимание принимаются как физические и химические свойства радионуклида, так и экономические характеристики (доступность, дешевизна).

Основные показатели, которые принимают во внимание при выборе индикатора:

— период полураспада;

— вид и энергия излучения;

— доступность радионуклида;

— химическая и радиоактивная чистота:

— химическая форма.

Период полураспада радионуклида, который собираются использовать в качестве индикатора, не должен быть слишком маленьким. Если продолжительность эксперимента превышает период полураспада в 10 и более раз, то такой радионуклид использовать в длительном эксперименте нельзя. Непригодны для радиоиндикаторного метода и долгоживущие радионуклиды, т. к. в большинстве случаев они испускают излучение с низкой энергией. Наиболее подходящими являются радионуклиды с периодом полураспада от нескольких часов до нескольких месяцев.

Вид излучения радионуклида имеет не меньшее значение, чем период полураспада, а-излучение имеет слишком малый пробег, а излучение — слишком большую проникающую способность, что делает работу с ним небезопасной. Поэтому наиболее широко применяют радионуклиды, испускающие Р-излучение. При работе с ними легко обеспечить безопасность человека. Кроме того, существует множество приборов, позволяющих измерить активность р-излучения. Наиболее эффективны радионуклиды, испускающие коротковолнокое Р-излучение с энергией Е > 0,3 МЭВ. Для длинноволнового р-излучения применяются специальные счетчики. Радионуклиды, используемые в качестве индикаторов, должны быть доступны в приготовлении. В первую очередь это радионуклиды, которые получают в ядерном реакторе.

Химическая форма и степень очистки вещества также влияют на то, насколько доступен будет радиоиндикатэр, в том числе и по стоимости.

Химическая и радиохимическая чистоте радиоиндикатора должна быть очень высокой, т. е. вещество должно иметь минимум посторонних химических элементов или соединений, испускающих излучение. Если нет возможности обеспечить отсутствие посторонних радиоактивных веществ и элементов, то нужно, чтобы эти загрязнения были известны и их влияние можно было бы оценить и учесть. Если же распознать радиоактивное загрязнение нельзя, то радиоиндикаторный метод даст ошибочный результат.

Химическая форма радиоактивного индикатора и определяемого вещества должна быть одинакова, т. е. индикатор и исследуемое вещество должны иметь одинаковый количественный и качественный состав молекулы (химическую формулу). Это особенно важно для элементов, которые могут находиться в нескольких степенях окисления и образовывать несколько разных соединений с одним и тем же элементом.

3. АКТИВАЦИОННЫЙ АНАЛИЗАктивационный анализ является методом, который наиболее широко используется для обнаружения и идентификации химических элементов. Впервые он был применен в 1936 г, когда Хевеши и Леви с помощью активации нейтронами определили следы диспрозия (Dy) и иттрии (Y).

Сущность метода заключается в том, что исследуемый (нерадиоактивный) образец подвергается облучению, а затем, замеряя активность полученного радионуклида, устанавливают его количество, соответствующее количеству исследуемого вещества. Облучение проводится потоком бомбардирующих частиц, чаще всего — нейтронов, хотя иногда активация проводится заряженными частицами или γ-квантами. Если образец бомбардируется нейтронами, то метод носит название нейтронно актиоационного анализа. Другие способы активации не имеют отдельных названий и используются только в специальных случаях, когда исследуемый элемент но активируется нейтронами или активируется со слишком малым выходом.

Активность, а значит, и количество радионуклида, образующегося в результате ядерной реакции при активации образца, прямо пропорциональны массе определяемого элемента в образце. Следовательно, по измеренной интенсивности излучения данного радионуклида в образце можно установить колитгетво исследуемого вещества, подвергнутого активизации.

Обычно при облучении образца возникает смесь радиоактивных изотопов различных других элементов, кроме определяемого. Их нужно разделить таким образом, чтобы радиоизотоп исследуемого вещества не имел примесей. Для радиохимического разделения компонентов облученный образец переводят в раствор.

Кроме количественного анализа образца, активационный анализ позволяет проводить и качественные исследования, т. е. идентифицировать образовавшиеся радионуклиды. Это можно сделать, опираясь на три ядерно-физические характеристики: тип испускаемого излучения, период полураспада и энергия испускаемого излучения. Некоторые трудности появляются, когда нужно провести распознавание состава сложных смесей. В этом случае смесь сначала разделяют на компоненты, а затем идентифицируют каждый из них в отдельности.

радиоактивный вещество радиоиндикаторный анализ 4. МЕТОДЫ АНАЛИЗА, ОСНОВАННЫЕ НА ВЗАИМОДЕЙСТВИИ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМПровести анализ нерадиоактивного вещества можно без его активации. Часто используются реакции взаимодействия ядерного и рентгеновского излучений с веществом, которое их поглощает или рассеивает, но активация исследуемого вещества не происходит. В основе методов, базирующихся на этом явлении, лежат следующие принципы:

- упругое рассеяние α-частиц;

-поглощение и рассеяние β-частиц и γ-квантов;

-возникновение рентгеновского характеристического излучения;

-поглощение и замедление нейтронов и др.4.1 Метод анализа, основанный на упругом рассеянии заряженных частицТяжелые заряженные частицы (24Не (γ-частицы), 73Li) проходят через анализируемую среду, взаимодействуя с атомами вещества. При этом наиболее важными видами взаимодействия являются упругое рассеяние на ядрах определяемого элемента, ионизация (обрыв электрона,) и возбуждение атомов определяемого элемента, а также торможение заряженных частиц. Однако упругое рассеяние происходит чаще всего. Надо сказать, что возникает оно в результате кулоновского взаимодействия ядра и заряженной частицы.

Рассматриваемый метод анализа основан на том, что кинетическая энергия падающей частицы не равна кинетической энергии рассеянной частицы. Для идентификации вещества используют отношение кинетической энергии частицы Е после упругого соударения к ее исходной энергии Ео. В результате получают спектр, расположение пиков на котором является индивидуальной характеристикой вещества. По величине пиков судят о количестве исследуемого вещества (чем пик выше, тем больше концентрация). Полученные пики сравнивают со стандартными пиками известных веществ.

После идентификации вещества устанавливают его концентрацию, сравнивая высоту экспериментального пика с пиком того же вещества известной концентрации.4.2 Метод анализа, основанный на поглощении и рассеянии β-частицПроходя через анализируемое вещество, β-частииы вступают в реакции взаимодействия как на атомных ядрах, так и в электронных оболочках атомов. При этом энергия β-частиц уменьшается, а направление их движения изменяется, т. е. происходит рассеяние.

Потеря энергии β-частиц происходит вследствие неупругих соударений с ядрами атомов и электронами. При этом β-частица будет всегда отклоняться от исходного направления движения на угол, который зависит от исходной энергиичастицы, и от энергии, потерянной ею при взаимодействии

При упругом рассеянии β-частица изменяет направление движения, но полная энергия системы не меняется. Угол, на который отклоняется частица, зависит от ее скорости и от массового числа элемента. Масса β-частицы и атомного ядра очень различаются, поэтому частица отклоняется сильно, особенно если β излучение имеет низкую энергию. Кроме того,отклонение на большой угол возникает и тогда, когда β частица пролетает вблизи ядра. Но чаще всего β частицы движутся на большом расстоянии от ядра и отклоняются на меньшие углы. Анализ по β-поглощению основан па том, что поглощение β-излучения зависит от отношения заряда к массовому числу исследуемого элемента (Z/A) Обычно это отношение колеблется в пределах от 0,4 до 0,5, но исключение составляет водород (Z/A=1),поэтому его поглощающая способность вдвое больше, чем у остальных элементов, т е если в анализируемом веществе вместе с водородом находится еще какой-нибудь один элемент, то, измеряя поглощение β-излучения в анализируемом образце, можно определить его с высокой точностью.

Другой способ использования анализа по поглощению (β-излучения основан на том, что с изменением химического состава вещества изменяется его плотность. В случае двухкомпонентной системы можно, измеряя поглощение, определять концентрации растворов и составы смесей (т. е. осуществлять количественный анализ). Однако это возможно только в случае абсолютного отсутствия примесей в исследуемой системе.

В методе β-рассеяния измеряют интенсивность β-излучения, рассеянного анализируемым образцом. Эта интенсивность является индивидуальной характеристикой элемента.4.3 Метод анализа, основанный на поглощении и рассеянии γ излученияПри взаимодействии γ-квантов, энергия которых мала, с веществами большую роль играет фотоэлектрический эффект (фотоэффект). Это явление состоит в том, что практически вся энергия γ-кванта передается одному из электронов атома, который из-за избытка энергии отрывается от атома. Испускаемый электрон приобретает кинетическую энергию, равную разности энергии исходного γ-кванта и энергия электрона в атоме.

После высвобождения электрона происходит мгновенное заполнение электронного уровня, сопровождавшееся характеристическим рентгеновским излучением. Энергия этого излучения часто сразу же передается наиболее слабо связанному наружному электрону, который вылетает из этома. Такие электроны называются электронами Оже. Фотоэлектроны теряют свою энергию в тех же процессах, что и β-излучение.

Анализ по поглощению γ-квантов основан на изменении плотности потока γ- или рентгеновского излучения при прохождении через вещество. Степень поглощения фотонного излучения является основной характеристикой вещества в этом методе.

Методы анализа, основанные на рассеянии γ-излучения, используются в тех случаях, когда к исследуемому образцу нет доступа с двух сторон. В основе метода лежит тот факт, что интенсивность рассеянного γ-излучения зависит от энергии падающего излучения, атомного номера определяемого элемента, толщины образца и схемы исследования. При возрастании заряда определяемого элемента в анализируемом образце увеличивается плотность потока рассеянного γ-излучения.

Размещено на Allbest.ru

bukvasha.ru

Реферат - Солнечная радиация и ее ослабление в атмосфере.

Атмосферные процессы сопровождаются перераспределением огромных количеств энергии (в конечном счете все виды энергии – тепло). Для нашей планеты существуют три потенциальных источника тепловой энергии: лучистая энергия Солнца (солнечная радиация), энергия звезд и солнечная, отраженная от Луны, и, наконец, внутреннее тепло остывающей Земли, поступающее на поверхность в результате тектонических процессов с термальными водами, гейзерами и пр. Энергия звезд и внутреннее тепло Земли ничтожно мало по сравнению с солнечной радиацией, поэтому лучистую энергию Солнца рассматривают как единственный источник всех энергетических процессов на Земле.

Широкий диапазон солнечной температуры определяет спектр электромагнитных волн Солнца от гамма-излучения с длинами волн 10-10 см и короче до сверхдлинных радиоволн порядка десятков и сотен километров.

Распределение энергии в спектре Солнца по длинам волн неравномерно. Его можно аппроксимировать законом Планка. Около 99% солнечной энергии приходится на длины волн γ от 0,1 до 4 мкм. Эти волны называются короткими. Только один процент солнечной энергии приходится на длинные волны (γ > 4 мкм). В коротковолновом участке солнечного спектра можно выделить ультрофиолетовые волны (0,1-0,4 мкм), видимые волны (0,4-0,78 мкм) и ближние инфракрасные волны (0,78- 4 мкм). На видимый участок солнечного спектра приходится почти половина энергии, излучаемой Солнцем. В видимом участке спектра самые короткие фиолетовые волны, а самые длинные – красные.

На ультрафиолетовую часть приходится около 5%, видимую – 52% и на инфракрасную –43 %. Максимум солнечного излучения приходится на волны длиной 0,47 мк, что соответствует сине-голубому участи солнечного спектра.

Электромагнитные волны, проходя через атмосферу Земли, испытывают отражение, поглощение и рассеяние как молекулами газов, входящих в состав атмосферного воздуха, так и атмосферным aэрозолем. Результирующее влияние атмосферы на солнечную радиации называется ослаблением лучистой энергии. Величину этого ослабления оценивают в 17–25%. Изменяется также соотношение частей соленого спектра. У поверхности Земли на ультрафиолетовую часть спектра приходится около 1 %, видимую – около 40 % к инфракрасную – около 60 %. Максимум излучения здесь приходится на длины волн около 0,56 мк, что соответствует желто-зеленому участку спектра.

Солнечная радиация в атмосфере поглощается преимущественно озоном (ультрафиолетовые лучи), водяным паром и углекислым газом, также облаками и твердыми частицами примесей. В солнечном спектре у Земли не наблюдаются волны короче 0,29 мк.

Атмосферный воздух – оптически неоднородная среда, рассеивающая лучистую энергию Солнца. В результате чего, например, освещаются места, куда не проникают прямые солнечные лучи. Рассеяние лучистой энергии в атмосфере происходит двояко: на молекулах и в аэрозоле. Интенсивность молекулярного и аэрозольного рассеяния различны. В результате этого процентное содержание лучей различной длины волн постоянно меняется, меняется и цвет небесной сферы, солнечного диска и пр. Когда, например, Солнце в сухую летнюю погоду находится близко к зениту, в атмосфере преобладают фиолетовые (малочувствительные человеческим глазам), синие и голубые цвета (небо голубое). Когда прямой солнечный свет теряет вследствие рассеяния больше всего сине-голубых лучей (пасмурная, облачная погода), цвет неба меняется на белесый, так как аэрозольное рассеяние дает преобладающий белый цвет. При заходе и восходе Солнца, когда лучи его пронизывают наибольшую толщу атмосферы, потеря сине-голубых лучей максимальна и Солнце у горизонта принимает красно-оранжевый цвет. Таким образом, яркость небесной сферы может служить показателем прозрачности (в первую очередь влагосодержания) атмосферы.

Электромагнитное коротковолновое излучение Солнца поступает к земной поверхности в виде прямой радиации, рассеянной и суммарной.

Прямая радиация – лучистая энергия, поступающая к ПП непосредственно от солнечного диска в виде пучка параллельных прямых лучей. На долю этого вида радиации приходится 75–80 % потока солнечной радиации на верхней границе атмосферы, что составляет 1,5–1,6 кал/см² мин. На прямую солнечную радиацию значительно влияют облака. Очень плотные облака прямую радиацию не пропускают, а легкие и прозрачные облака начинают пропускать ее при высотах Солнца над горизонтом более 15–20°.

Рассеянная радиация – радиация, поступающая к ПП от различных участков небесной сферы и от облаков. Полуденные значения рассеянной радиации в летние месяцы для умеренных широт составляют около 25 % от прямой радиации. Наличие неплотных просвечивающих облаков увеличивает рассеянную радиацию в 3–4 раза.

Суммарная радиация – суммарный поток лучистой энергии, поступающий к горизонтальной поверхности при незатененном солнечном диске.

Часть падающей на ПП коротковолновой радиации Солнца отражается (отраженная радиация), часть поглощается (поглощенная радиация). Отражательная способность ПП характеризуется величиной альбедо (Ак).

Альбедо моря колеблется от 2 до 80 % и зависит от состояния поверхности моря и высоты Солнца над горизонтом. Средняя величина альбедо моря 5–14 %, а суши (не покрытой снегом) –10 — 30 %. Вследствие этого единичная площадь поверхности океана получает тепла на 10–20 % больше, чем суша.

www.ronl.ru


Смотрите также