тическая энергия, которую может иметь электрон при вылете из металла. Она может быть определена:

mv2 /2=eU3 .

U3 — задерживающее напряжение.

В теории Эйнштейна законы фотоэффекта объясняются следующим образом:

1. 1. Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.

2. 2. Второй закон следует из уравнения: mv2 /2=hv-A.

3. 3. Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:

vo=A/h yo=c/vo=ch/A.

4. 4. При меньшей частоте света энергии фотона не хватает для совершения электроном работы выхода, и поэтому фотоэффект отсутствует.

Квантовая теория Эйнштейна позволила объяснить и ещё одну закономерность, установленную Столетевым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента. По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется.

С изобретением лазеров появилась возможность экспериментировать с очень интенсивными пучками света. Применяя сверхкороткие импульсы лазерного излучения, удалось наблюдать многофотонные процессы, когда электрон, прежде чем покинуть катод, претерпевал столкновение не с одним, а с несколькими фотонами. В этом случае уравнение фотоэффекта записывается: Nhv=A+mv2 /2, чему соответствует красная граница.

Фотоэффект широко используется в технике. На явлении фотоэффекта основано действие фотоэлементов. Комбинация фотоэлемента с реле позволяет конструировать множество ”видящих” автоматов, которые вовремя включают и выключают маяки, уличное освещение, автоматически открывают двери, сортируют детали, останавливают мощный пресс, когда рука человека оказывается в опасной зоне. С помощью фотоэлементов осуществляется воспроизведение звука, записанного на киноплёнке.

www.ronl.ru

Реферат - Фотоэффект - Рефераты на репетирем.ру

Фотоэффект-испускание электронов телами под действием света, который был открыт в 1887 г. Герценом. В 1888 Гальвакс показал, что при облучении ультрафиолетовым светом электрически нейтральной металлической пластинки последняя приобретает положительный заряд. В этом же году Столетев создал первый фотоэлемент и применил его на практике, потом он установил прямую пропорциональность силы фототока интенсивности падающего света. В 1899 Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за 1с, прямо пропорционально интенсивности света.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота света v0(или максимальная длина волны y0), при которой ещё возможен фотоэффект, и если v<v0 , то фотоэффект уже не происходит.

Первый закон объяснён с позиции электромагнитной теории света: чем больше интенсивность световой волны, тем большему количеству электронов будет передана достаточная для вылета из металла энергия. Другие законы фотоэффекта противоречат этой теории.

Теоретическое объяснение этих законов было дано в 1905 Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов( фотонов) с энергией hv каждый ( h-постоянная Планка). При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:

Hv=A+mv2 / 2 , где

mv2 –максимальная кинетическая энергия, которую может иметь электрон при вылете из металла. Она может быть определена:

mv2/2=eU 3.

U 3 - задерживающее напряжение.

В теории Эйнштейна законы фотоэффекта объясняются следующим образом:

  1. Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.

  2. Второй закон следует из уравнения: mv 2 /2=hv-A.

  3. Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:

vo=A/h yo=c/vo=ch/A.

  1. При меньшей частоте света энергии фотона не хватает для совершения электроном работы выхода, и поэтому фотоэффект отсутствует.

Квантовая теория Эйнштейна позволила объяснить и ещё одну закономерность , установленную Столетевым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента. По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется.

С изобретением лазеров появилась возможность экспериментировать с очень интенсивными пучками света. Применяя сверхкороткие импульсы лазерного излучения, удалось наблюдать многофотонные процессы, когда электрон, прежде чем покинуть катод, претерпевал столкновение не с одним , а с несколькими фотонами. В этом случае уравнение фотоэффекта записывается: Nhv=A+mv 2 /2,чему соответствует красная граница.

Фотоэффект широко используется в технике. На явлении фотоэффекта основано действие фотоэлементов. Комбинация фотоэлемента с реле позволяет конструировать множество ”видящих” автоматов , которые вовремя включают и выключают маяки , уличное освещение, автоматически открывают двери , сортируют детали, останавливают мощный пресс, когда рука человека оказывается в опасной зоне . С помощью фотоэлементов осуществляется воспроизведение звука , записанного на киноплёнке.

referat.store

Реферат Фотоэффект

скачать

Реферат на тему:

План:

Введение

Фотоэффе́кт — это испускание электронов вещества под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν0, то фотоэффект уже не происходит.

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл: hν = Aout + We, где We — максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.

1. История открытия

В 1839 году Александр Беккерель наблюдал[1] явление фотоэффекта в электролите.

В 1873 году Уиллоуби Смит обнаружил, что селен является фотопроводящим. Затем эффект изучался в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается.

Исследования фотоэффекта показали, что, вопреки классической электродинамике, энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения.

В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.

Схема эксперимента по исследованию фотоэффекта. Из света берется узкий диапазон частот и направляется на катод внутри вакуумного прибора. Напряжением между катодом и анодом устанавливается энергетический порог между ними. По току судят о достижении электронами анода.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

hν = Aout + Ek

где Aout — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), Ek — кинетическая энергия вылетающего электрона (в зависимости от скорости может вычисляться как кинетическая энергия релятивистской частицы, так и нет), ν — частота падающего фотона с энергией hν, h — постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже не достаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества и на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.

Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.

2. Внешний фотоэффект

Внешний фотоэффект

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения.

Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.

2.1. Законы внешнего фотоэффекта

  1. Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):I_n~E_e и n_{\rm cek}~E_e
  2. Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.
  3. Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота ν0 света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.

2.2. Теория Фаулера

Основные закономерности внешнего фотоэффекта для металлов хорошо описываются теорией Фаулера [2]. Согласно ей, после поглощения в металле фотона, его энергия переходит электронам проводимости, в результате чего электронный газ в металле состоит из смеси газов с нормальным распределением Ферми-Дирака и возбужденным (сдвинутым на hν) распределением по энергиям. Плотность фототока определяется формулой Фаулера:

j=\left\{ \begin{matrix}
 {{B}_{1}}{{T}^{2}}\exp (\frac{h\nu -h{{\nu }_{\min }}}{kT}), & \nu \le {{\nu }_{\min }}=\frac{{{A}_{out}}}{h} \\
 {{B}_{2}}{{T}^{2}}(\frac{{{(h\nu -h{{\nu }_{\min }})}^{2}}}{{{k}^{2}}{{T}^{2}}}+{{B}_{3}}), & \nu >{{\nu }_{\min }} \\
\end{matrix} \right.

где B1, B2, B3 – постоянные коэффициенты, зависящие от свойств облучаемого металла.

3. Внутренний фотоэффект

Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.

Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.

3.1. Вентильный фотоэффект

Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).

4. Фотовольтаический эффект

Фотовольтаический эффект — возникновение электродвижущей силы под действием электромагнитного излучения.[3]

5. Ядерный фотоэффект

При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном нейтронов. Такой распад ведёт к ядерным реакциям ~ (\gamma, n) и ~ (\gamma, p) , которые и называются фотоядерными, а явление испускания нуклонов (нейтронов и протонов) в этих реакциях — ядерным фотоэффектом[4].

6. Современные исследования

Как показали эксперименты в национальном метрологическом институте Германии Physikalisch-Technische Bundesanstalt, результаты которых опубликованы 24 апреля 2009 года в Physical Review Letters[5], в мягком рентгеновском диапазоне длин волн при плотности мощности на уровне нескольких петаватт (1015 Вт) на квадратный сантиметр общепринятая теоретическая модель фотоэффекта может оказаться неверной.

Сравнительные количественные исследования различных материалов показали, что глубина взаимодействия между излучением и веществом существенно зависит от структуры атомов этого вещества и корреляции между внутренними электронными оболочками. В случае c ксеноном, который использовался в экспериментах, воздействие пакета фотонов в коротком импульсе приводит, по всей видимости, к одновременной эмиссии множества электронов с внутренних оболочек.[6]

Примечания

  1. A. E. Becquerel (1839). «Mémoire sur les effets électriques produits sous l’influence des rayons solaires». Comptes Rendus 9: 561—567
  2. Л.Н. Добрецов, М.В. Гомоюнова Эмиссионная электроника. - www.accel.ru/vt/djvu/Добрецов Л.Н. и др. Эмиссионная электроника.djvu. — Москва: Наука, 1966. — С. 564.
  3. БСЭ. Статья «Фотовольтаический эффект» - slovari.yandex.ru/dict/bse/article/00084/97000.htm
  4. А.Н.Климов Ядерная физика и ядерные реакторы. — Москва: Энергоатомиздат, 1985. — С. 352.
  5. Phys. Rev. Lett. 102, 163002 (2009): Extreme Ultraviolet Laser Excites Atomic Giant Resonance - link.aps.org/doi/10.1103/PhysRevLett.102.163002
  6. Обнаружены ограничения классического фотоэффекта для рентгеновского излучения | Нанотехнологии Nanonewsnet - www.nanonewsnet.ru/news/2009/obnaruzheny-ogranicheniya-klassicheskogo-fotoeffekta-dlya-rentgenovskogo-izlucheniya

wreferat.baza-referat.ru

Фотоэффект - (реферат)

Уже сейчас на сайте вы можете воспользоваться более чем 20 000 рефератами, докладами, шпаргалками, курсовыми и дипломными работами.Присылайте нам свои новые работы и мы их обязательно опубликуем. Давайте продолжим создавать нашу коллекцию рефератов вместе!!!

Вы согласны передать свой реферат (диплом, курсовую работу и т.п.), а также дальнейшие права на хранение,  и распространение данного документа администрации сервера "mcvouo.ru"?

Всего 19436 рефератов.

Дата добавления: март 2006г.

Фотоэффект-испускание электронов телами под действием света, который был открыт в 1887 г. Герценом. В 1888 Гальвакс показал, что при облучении ультрафиолетовым светом электрически нейтральной металлической пластинки последняя приобретает положительный заряд. В этом же году Столетев создал первый фотоэлемент и применил его на практике, потом он установил прямую пропорциональность силы фототока интенсивности падающего света. В 1899 Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны. Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за 1с, прямо пропорционально интенсивности света.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности. 3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота света v0(или максимальная длина волны y0), при которой ещё возможен фотоэффект, и если v

Теоретическое объяснение этих законов было дано в 1905 Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов( фотонов) с энергией hv каждый ( h-постоянная Планка). При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:

    Hv=A+mv2 / 2 , где

mv2 –максимальная кинетическая энергия, которую может иметь электрон при вылете из металла. Она может быть определена:

    mv2/2=eU 3 .    U 3 - задерживающее напряжение.

В теории Эйнштейна законы фотоэффекта объясняются следующим образом: Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.

    Второй закон следует из уравнения: mv 2 /2=hv-A.

Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:

    vo=A/h yo=c/vo=ch/A.

При меньшей частоте света энергии фотона не хватает для совершения электроном работы выхода, и поэтому фотоэффект отсутствует.

Квантовая теория Эйнштейна позволила объяснить и ещё одну закономерность , установленную Столетевым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента. По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется.

С изобретением лазеров появилась возможность экспериментировать с очень интенсивными пучками света. Применяя сверхкороткие импульсы лазерного излучения, удалось наблюдать многофотонные процессы, когда электрон, прежде чем покинуть катод, претерпевал столкновение не с одним , а с несколькими фотонами. В этом случае уравнение фотоэффекта записывается: Nhv=A+mv 2 /2, чему соответствует красная граница. Фотоэффект широко используется в технике. На явлении фотоэффекта основано действие фотоэлементов. Комбинация фотоэлемента с реле позволяет конструировать множество ”видящих” автоматов , которые вовремя включают и выключают маяки , уличное освещение, автоматически открывают двери , сортируют детали, останавливают мощный пресс, когда рука человека оказывается в опасной зоне . С помощью фотоэлементов осуществляется воспроизведение звука , записанного на киноплёнке.

Скачен 1448 раз.

mcvouo.ru

Доклад - Фотоэффект - Физика

-испускание электронов телами под действием света, который был открыт в 1887 г. Герценом. В 1888 Гальвакс показал, что при облучении ультрафиолетовым светом электрически нейтральной металлической пластинки последняя приобретает положительный заряд. В этом же году Столетев создал первый фотоэлемент и применил его на практике, потом он установил прямую пропорциональность силы фототока интенсивности падающего света. В 1899 Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за 1с, прямо пропорционально интенсивности света.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота света v (или максимальная длина волны y ), при которой ещё возможен фотоэффект, и если v < v , то фотоэффект уже не происходит.

Первый закон объяснён с позиции электромагнитной теории света: чем больше интенсивность световой волны, тем большему количеству электронов будет передана достаточная для вылета из металла энергия. Другие законы фотоэффекта противоречат этой теории.

Теоретическое объяснение этих законов было дано в 1905 Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов( фотонов) с энергией hv каждый ( h-постоянная Планка). При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:

Hv=A+mv2 / 2, где

mv2 –максимальная кинетическая энергия, которую может иметь электрон при вылете из металла. Она может быть определена:

mv2 /2=eU3 .

U3 — задерживающее напряжение.

В теории Эйнштейна законы фотоэффекта объясняются следующим образом:

1. 1. Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.

2. 2. Второй закон следует из уравнения: mv2 /2=hv-A.

3. 3. Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:

vo=A/h yo=c/vo=ch/A.

4. 4. При меньшей частоте света энергии фотона не хватает для совершения электроном работы выхода, и поэтому фотоэффект отсутствует.

Квантовая теория Эйнштейна позволила объяснить и ещё одну закономерность, установленную Столетевым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента. По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется.

С изобретением лазеров появилась возможность экспериментировать с очень интенсивными пучками света. Применяя сверхкороткие импульсы лазерного излучения, удалось наблюдать многофотонные процессы, когда электрон, прежде чем покинуть катод, претерпевал столкновение не с одним, а с несколькими фотонами. В этом случае уравнение фотоэффекта записывается: Nhv=A+mv2 /2, чему соответствует красная граница.

Фотоэффект широко используется в технике. На явлении фотоэффекта основано действие фотоэлементов. Комбинация фотоэлемента с реле позволяет конструировать множество ”видящих” автоматов, которые вовремя включают и выключают маяки, уличное освещение, автоматически открывают двери, сортируют детали, останавливают мощный пресс, когда рука человека оказывается в опасной зоне. С помощью фотоэлементов осуществляется воспроизведение звука, записанного на киноплёнке.

www.ronl.ru

Реферат - Внешний фотоэффект. - Оптика

Внешний фотоэффект.

В недалеком прошлом русский физик Столетов Александр Григорьевич столкнулся с загадочным явлением – внешним фотоэффектом. Проводя многократные эксперименты, он установил, что металлическая пластинка, а точнее ее поверхность испускает электроны под действием электромагнитного ультрафиолетового излучения или излучения какого-либо другого диапазона. Объяснить этого Александр Григорьевич не смог, но все же, эта работа принесла ему мировую известность. Эксперимент был проведен в 1888 г. Затем фундаментальные исследования были сделаны многими учеными, такими как Планк, Эйнштейн и др. Схема эксперимента была такова: электрометр, с присоединенной к нему цинковой пластинкой, заряженной положительно, при освещении пластины, например электрической дугой, не влияет на быстроту разрядки электрометра. Но если пластину зарядить отрицательно, то световой пучок от дуги разряжает электрометр очень быстро. Объяснить это можно единственным образом. Свет вырывает электроны с поверхности пластины. Если она заряжена отрицательно, электроны отталкиваются от нее и электрометр разряжается. При положительном заряде пластины вырванные светом электроны притягиваются к пластине и снова оседают на ней. Поэтому заряд электрометра не изменяется. Однако, когда на пути света поставлено обыкновенное стекло, отрицательно заряженная пластина уже не теряет электроны, какова бы ни было интенсивность излучения. Так как известно, что стекло поглощает ультрафиолетовые лучи, то из этого можно заключить, что именно ультрафиолетовый участок спектра вызывает фотоэффект. Этот сам по себе не сложный факт нельзя объяснить на основе классической электромагнитной теории света. Согласно этой теории вырывание электронов является результатом «раскачивание» их в электромагнитном поле световой волны, которое должно усиливаться при увеличении интенсивности света и пропорциональной ей энергетической освещенности фотокатода. Планк, рассматривая излучения абсолютно черного тела, пришел к выводу, что излучение формулу, сопоставив свои работы с формулой Вина. Кстати, Планк получил нобелевскую премию за эту формулу. Развивая идеи Планка, Эйнштейн ввел гипотезу световых квантов, согласно которой электромагнитное излучение само состоит из таких квантов, и на ее основе объяснил, и сформулировал ряд закономерностей фотоэффекта, люминисценсии и фотохимических реакций. За проделанную по настоящему гениальную работу, Эйнштейн в 1921 году был удостоен нобелевской премии. Работы его были удостоены и многих других почетных наград. Первый закон гласит, что количество электронов, вырываемых с поверхности металла за одну секунду, прямо пропорционально поглощаемой за это время энергии световой волны. В этом ничего неожиданного нет: чем больше энергия светового пучка, тем эффективнее его действие. Теперь рассмотрим кинетическую энергию световой волны или скорость электронов. (схема на прозрачке). Из опыта видно, что при отсутствии напряжения фотоэлектроны достигают правого электрода. Если изменить полярность батарейки, то образуется некоторое поле, которое будет тормозить электроны и возвращать их на место, то есть при определенном задерживающим напряжением фототок равен нулю. Дальнейшие эксперименты доказали, что при изменении интенсивности света, задерживающее напряжение не меняется. Из этого можно найти значение кинетической энергии электронов. Второй закон – максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности. Если частота света меньше определенной для данного вещества минимальной частоты, то фотоэффект не происходит. Эта минимальная частота названа красной границей. Почему именно красная, а не зеленая? Дело в том, что если рассматривать спектр видимых электромагнитных излучений, то красный свет имеет самую низкую частоту. По формуле hv, он обладает самой малой энергией, то есть самая маленькая энергия, которая необходима для преодоления сил удерживающих междоузельный электрон на поверхности, названа красной. Именно Эйнштейн высказал смелую гипотезу о том, что свет имеет двойственную структуру, он ведет себя как поток частиц и как волна одновременно. Также он высказал гипотезу о том, что свет не только излучается в виде отдельных дискретных квантов, но и распространяется в пространстве и поглощается веществом. В данном случае, междоузельный электрон получает энергию фотона. При очень больших интенсивностях света, достижимых с помощью лазеров, наблюдается многофотонный или нелинейный, фотоэффект. При многофотонном фотоэффекте электрон может одновременно получать энергию не одного, а N фотонов. Все результаты работы внесли и даже открыли новую дверь в физику, а точнее квантовую физику. И в большей мере заслуга за этим лежит на Эйнштейне. Макс Борн сказал: «идеи Эйнштейна дали физической науке импульс, который освободил ее от устаревших философских доктрин, и превратил в одну из решающих сил современного мира людей» Открытие фотоэффекта имело очень большое значение для более глубокого понимания природы света. Но ценность науки состоит не только в том, что она дает нам в руки средства, используя которые можно совершенствовать производство, улучшать условия материальной и культурной жизни общества. С помощью фотоэффекта «заговорило» кино и стало возможной передача движущихся изображений (телевидение). Применение фотоэлектронных приборов позволило создать станки, которые без всякого участия человека изготавливают детали по заданным чертежам. Основанные на фотоэффекте приборы контролируют размеры изделий лучше любого человека, вовремя включают маяки и уличное освещение. Все это оказалось возможным благодаря изобретению особых устройств – фотоэлементов. Современный вакуумный фотоэлемент представляет собой стеклянную колбу, часть внутренней поверхности которой покрыта тонким слоем металла с малой работой выхода ( красной границей). Это катод на который через прозрачное окошко падает свет. В центре расположен анод, который служит для улавливания фотоэлектронов. Анод присоединяют к положительному полюсу батареи. Фотоэлементы реагируют на видимые излучения и даже не инфракрасные лучи. На их основе сделаны автоматы, которые могут предотвращать аварии. На заводе фотоэлементы почти мгновенно останавливает мощный пресс, если рука человека оказывается в опасной зоне. Что касается фотохимических реакций, то на этой основе сделана фотография. Объяснение фотоэффекта не единственная заслуга Эйнштейна. Еще он знаменит своей теорией относительности. Специальная теория относительности (частная теория относительности) представляет собой современную физическую теорию пространства и времени. Специальная теория относительности и квантовая механика служит теоретической базой современной физики и техники (например: ядерной физики, техники). Специальную теорию относительности часто называют релятивистской теорией, а специфические явления, описываемые этой теорией, - релятивистскими эффектами. Как правило, релятивистские эффекты проявляются при скоростях движения 8 тел близкой к величине скорости света в вакууме с=10 м/с и называемых релятивистскими скоростями. Релятивистской механикой называется механика движений с релятивистскими скоростями, основанная на специальной теории относительности. В специальной теории относительности, так же как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Первый постулат является обобщением механического принципа относительности Галилея на любые физические процессы. Этот постулат – релятивистский принцип относительности Эйнштейна, гласит: в любых инерциальных системах отсчета все физические явления при одних и тех же условиях протекают одинаково. Иначе говоря, физические законы не зависимы по отношению к выбору инерциальной системы отсчета. Второй постулат выражает принцип инвариантности скорости света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета, являясь одной из важнейших физических постоянных. Опыты показывают, что скорость света в вакууме - предельная скорость в природе. Альберт Эйнштейн был в жизни очень разносторонним человеком (как и все гениальные люди). Его предки – евреи эмигранты, переселились в Вьюртенберг в XVI веке. Отец физика, Герман Эйнштейн, выделялся своими математическими способностями, но его родители не обладали средствами, чтобы дать ему высшее образование. Мать, Паулина Эйнштейн – Кох, была музыкально одаренной женщиной, дочерью богатого торговца зерном, музыкальность матери и математические отца не только передались сыну, но и проявились у него гораздо более ярко. С детских лет у мальчика развивалась глубокая любовь к природе, Алберт Эйнштейн в последствие всегда любил жить в сельской местности или в провинциальных городках. Еще будучи школьником, в Мюнихе, Эйнштейн занимался музыкой. С шестилетнего возраста его начали учить игре на скрипке. В начале мальчик воспринимал эти уроки как скучную обязанность, но вскоре музыка увлекла его, а с течением времени она стала его вторым призванием. Отправляясь в любые поездки, Эйнштейн брал с собой скрипку, даже в первое время появлялся на заседании Берлинской академии наук со скрипичным футляром. «Альбертель», так его называли родители, держался обычно в стороне от своих школьных сверстников. Больше всего он любил заниматься в одиночестве своими кубиками или выпиливать лобзиком. Иногда он писал стихи, в которых он с насмешкой отзывался о несмелых, робких людях ( сам он к таким не относился). Еще до того как Эйнштейн поступил в школу, отец однажды подарил ему компас. Этот простой предмет с неожиданной силой возбудил любознательность мальчика, внешность вещей таил в себе что-то глубоко скрытое в пространстве, которое обычно считается пустым. Хотя знакомство с компасом относилось к тому периоду жизни великого исследователя, когда он был еще далек от занятий наукой, оно оказало сильное влияние на последующую деятельность. Альберт Эйнштейн был человеком прагматичным и даже жадным. Об этом свидетельствует и тот факт, что люди приходившие в гости, открывая калитку, приводили в действие определенный механизм, который поливал огород изобретателя. Научное творчество Альберта Эйнштейна поразительным образом сочеталось с активной деятельностью во имя гуманизма и защиты мира. Эйнштейн был буквально основателем государства Израиля, его даже приглашали стать правителем этого государства, но он отказался.

Макс Борн сказал : «идеи эйнштейна дали физической науке импульс, который освободил ее от устаревших философских доктрин и превратил в одну из решающих сил современного мира людей.»

.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.