Реферат: Источники энергии. Реферат энергия


Реферат - Источники энергии - Физика

Введение

Энергия – не только одно из чаще всего обсуждаемых сегодня понятий; помимо своего основного физического (а в более широком смысле – естественнонаучного) содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты.

Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы тради­ционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива — урана и тория, из которого можно получать в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топли­ва – водорода, однако управляемые термоядерные реак­ции пока не освоены и неизвестно, когда они будут использова­ны для промышленного получения энергии в чистом виде, т.е. без участия в этом процессе реакторов деления. Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

Данная дипломная работа является кратким, но обширным обзором современного состояния энергоресурсов человечества. В работе рассмотрено развитие энергетики, как отрасли народного хозяйства, эволюция источников энергии, а также проблемы освоения и использования новых ресурсов энергии (альтернативные источники энергии). Цель работы – прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике, анализ новых путей получения практически полезных форм энергии.

К новым формам первичной энергии, рассмотренным в нашей дипломной работе в пер­вую очередь относятся: солнечная и геотермальная энергия, приливная, атомная, энергия ветра и энергия волн. В отличие от ископаемых топлив эти формы энергии не ограниче­ны геологически накопленными запасами (если атом­ную энергию рассматривать вместе с термоядерной). Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.

Рассмотренныев работе новые схемы преобразования энергии можно объединить единым термином «экоэнергетика», под которым подразумеваются любые методы по­лучения чистой энергии, не вызывающие загрязнения окружающей среды.

Раздел 1.

Мир ищет энергию

Предисловие

Н икакой ви д энергии не обходится так дорого, как её не достаток .

Гоми Баба, 1964.

Это высказывание известного и нди йского ученого никогда не звучало столь актуально, как в наши дни, когда человечество, не считаясь с огромными финансовыми расходами, прилагает все уси­ лия к пои ску н овых путей получени я э нергии .

Проблемы, связанные с происхождением, экономичн остью, те х­ ническим освоением и способами использ овани я разли чных источн и­ ков эн ергии, были и будут не отъемлемой частью жизни на нашей п ланете. Прямо или косвенно с ними стал кивается каждый житель Зе мли. Понимание прин ципов п роизводства и потребления энергии составляет необход имую предпосылку для успешного реше ния при­обретающих все большую остроту проблем современности и в еще большей степени – ближайшего будущего.

Мир, в котором мы живем, можно изучать с самых разных то­чек зрения. Новые знания ведут к постоянному их сужени ю, ко все большей диффе ре нци ац ии научных дисциплин и соответствующих им областей человеческой деятельности. Результаты объективной оцен­ки «состояния дел» в этих областях весьма различны. Если говорить о существующей и поныне угрозе войн, о миллионах н едоедающ их и голодных, о все возрастающем загрязнении жизненной среды, то приходится констатировать н аличие серь езнейших проблем, решение которых не те рпит отлагательства. Проблемы эти тревожат весь про­грессивный мир и не позволяют челове честву удовлетвориться до­стигнутым. Если же оценивать развити е пауки и те хни ки само по се бе, в самом широком смысле слова, то здесь успе хи ве сьма велики и заслуживают высочайше го уваже ни я.

Почему же именно сейчас, как никогда остро, встал вопрос: что ждет человечество — энергетический голод или энергетичес­кое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из-за нефти возникают войны, расцвета­ют и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых ус­тановок или о новых изобретениях в области энергетики. Разра­батываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце прошлого века самая распространенная сейчас энергия — энергетическая — играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Вполне реален прогноз, по которому в 2000 году будет произведено 30 тысяч миллиардов киловатт-часов! Гигант­ские цифры, небывалые темпы роста! И все равно энергии будет мало, а потребности в ней растут еще быстрее.

Уровень материальной, а в конечном счете и духовной куль­туры людей находится в прямой зависимости от количества энер­гии, имеющейся в их распоряжении. Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израс­ходовать энергию. А потребности человека все время растут, да и людей становится все больше.

Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько по­надобится! Такое, казалось бы, очевидное решение сложной зада­чи, оказывается, таит в себе немало подводных камней.

Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее пре­образований из других форм. Вечные двигатели, якобы производя­щие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложи­лась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым поль­зовался первобытный человек для согревания, то есть при сжига­нии топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых элект­ростанциях.

Конечно, способы сжигания топлива стали намного сложнее и совершеннее.

Новые факторы — возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды, потребовали нового подхода к энергетике.

В разработке Энергетической программы приняли участие виднейшие ученые нашей страны, специалисты различных минис­терств и ведомств. С помощью новейших математических моделей электронно-вычислительные машины рассчитали несколько сотен вариантов структуры будущего энергетического баланса страны. Были найдены принципиальные решения, определившие стратегию развития энергетики страны на грядущие десятилетия.

Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, струк­тура ее изменится. Должно сократиться использование нефти. Су­щественно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канс­ко-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

Энергетическая программа страны — основа нашей техники и экономики в канун 21 века.

Но ученые заглядывают и вперед, за пределы сроков, уста­новленных Энергетической программой. На пороге 21 века, и они трезво отдают себе отсчет в реальностях третьего тысячелетия. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запа­сов топлива может хватить на века. К сожалению, многие нефте­добывающие страны живут сегодняшним днем. Они нещадно расходу­ют подаренные им природой нефтяные запасы. Сейчас многие из этих стран, особенно в районе Персидского залива, буквально купаются в золоте, не задумываясь, что через несколько десятков лет эти запасы иссякнут. Что же произойдет тогда –, а это рано или поздно случится, – когда месторождения нефти и газа будут исчерпаны? Происшедшее повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило заду­маться о других видах топлива, пригодных для замены нефти и газа. Особенно призадумались тогда те страны, где нет собс­твенных запасов нефти и газа и которым приходится их покупать.

А пока в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников, которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Решение этой задачи исследователи ищут на разных пу­тях. Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии-энергии текущей воды и вет­ра, океанских приливов и отливов, тепла земных недр, солнца. Много внимания уделяется развитию атомной энергетики, ученые ищут способы воспроизведения на Земле процессов, протекающих в звездах и снабжающих их колоссальными запасами энергии.

Энергия – с чего все началось

Сегодня нам может казаться, что развитие и совершенствование человека происходило невообразимо медленно. Ему в буквальном смысле слова приходилось ждать милостей от природы. Он был практически беззащите н перед холодом, ему непрестанно угрожали дикие звери, его жизнь постоянно висела на волоске. Но постепенн о человек развился настолько, что сумел найти оружие, которое в сочетании со способностью мыслить и творить окончательно возвысило его над всем живым окружением. Сначала огонь добывали случайно – например, из горящих деревьев, в которые ударила молния, затем стали добывать сознательно: за счет трения друг о друга двух подходящих кусков дерева человек впервые зажег огонь 80–150 тысяч лет назад. Животворный, таинственный, вселяющий уверенность и чувство гордости ОГОНЬ.

После этого люди уже не отказывались от возможности использовать огонь в борьбе против суровых холодов и хищных зверей, для приготовления с трудом добытой пищи. Сколько ловкости, настойчивости, опыта да и просто везения это требовало! Представим себе человека, окруженного нетронутой природой – без построек, которые бы его защищали, без знания хотя бы элементарных физических законов, с запасом слов, не превышающим нескольких десятков. (Кстати, многие ли из нас, даже обладающие солидной научной подготовкой, смогли бы зажечь огонь, не прибегая к каким-либо техническим средствам–хотя бы спичкам?) К этому открытию человек шел очень долго и распространялось Оно медленно, но ознаменовало собой один из важнейших переломных этапов в истории цивилизации.

Шло время. Люди научились получать тепло, но ста ре располагали никакой силой, кроме собственных мускулов, которая помогала бы им подчинить себе природу. И все же постепенно, мало-помалу они стали использовать силу прирученных животных, ветра и воды. По данным историков, первые тягловые животные была запряжены в плуг около 5000 лет назад. Упоминание о первом использовании водной энергии – запуске первой мельницы с колесом, приводимым в движение водяным потоком,– относится к началу нашего летосчисления. Однако потребовалась еще тысяча лет, прежде чем это изобретение получило распространение. А древнейшие из известных сегодня ветряных мельниц в Европа были построены в XI в.

На протяжении столетий степень использования новых источников энергии — домашних животных, ветра и воды – оставалась очень низкой. Главным же источником энергии, при помощи которой человек строил жилье, обрабатывал поля, «путешествовал», защищался и нападал, служила сила его собственных рук и ног. И так продолжалось примерно до середины нашего тысячелетия. Правда, уже в 1470 г. был спущен на воду первый большой четырехмачтовый корабль; около 1500 г. гениальный Леонардо да Винчи предложил не только весьма остроумную модель ткацкого станка, но и проект сооружения летающей машины. Ему же принадлежат многие другие, для того времени просто фантастические идеи и замыслы, осуществление которых должно было способствовать расширению знаний и производительных сил. Но подлинный перелом в технической мысли человечества наступил сравнительно недавно, немногим более тре х столетий назад.

Одним из первых гигантов на пути научного прогресса человечества, несомне нно, был Исаак Ньютон. Этот выдающийся английский естествоиспытатель всю свою долгую жизнь и незаурядный талант посвятил пауке: физике, астрономии и математике. Он сформулировал основные законы классической механики, разработал те ори ю тяготени я, заложил основы гидродинамики и акустики, в значите льной мере способствовал развитию оптики, вместе с Лейбн ице м создал начала теории исчислени я бесконе чно малых и теории симметричных функций. Физику XVIII и XIX столетий по праву называют ньютон овской. Труды Исаака Ньютона во многом помогли умножить силу человеческих мускулов и творче ские во зможности человеческого мозга.

Всле д за кембриджски ми исследованиями Ньютона в Лондоне в 1633 г. выходит книга «Сто приме ров изобре тений ». Ее ав тором был мало кому известный сегодня лорд Эдвард Сомерсет (маркиз Вустер). Один и з при меров, приведенных в этой кн иге под номе ром 68, настолько напоминает водяной насос с паровым приводом, что многие специалисты приписывают Сомерсету честь изобретения паровой машины.

Промышленная революция – так мы часто называем эту эпоху великих открытий – существенно изменила течение жизни на нашей планете. Одним из ее последствий было окончательное падение феодализма, который уже не мог приспособиться к развитию новых производительных сил, и упрочение капиталистических производственных отношений. Джеймс Уатт изобрел паровую машину, которая раскрутила колесо истории до небывалых прежде оборотов.

Паровую машину низкого давления Уатта совершенствовали многие мастера и инженеры. Среди них следует выделить американца Оливера Эванса. Преодолев многие препятствия, этот талантливый механик, полный энтузиазма и смелых идей, в 1801 г, приступил к сооружению малой паровой машины, в которой давление пара в десять раз превышало атмосферное. Уже первые две машины получились необычайно удачными, и в 1802 г. Эванс открыл в Филадельфии первый завод паровых машин высокого давления. Он поставил заказчикам до 50 машин мощностью от 7,4 до 29,4 кВт (10–40 л. с.).

В 1807 г. американский изобретатель Роберт Фултон сконструировал первый пароход «Клермонт», который совершал регулярные рейсы по реке Гудзон между Нью-Йорком и Олбани. Успех «Клермонта» оказался настолько убедительным, что в 1819 г. в США был спущен на воду морской пароход.

Английский техник Джордж Стефенсон в 1823 г. основал завод по изготовлению подвижного состава для общественного транспорта, и в 1825 г.– через шесть лет после смерти Уатта – на трассе Стоктон – Дарлингтон начала действовать первая железная дорога.

В наши дни паровую машину скоро можно будет увидеть только в технических музеях, но и там мы будем смотреть на нее с уважением.

Итальянский физик Алессандро Вольта родился в 1745 г. Он продолжил эксперименты своего земляка Луиджи Гальвани и прославился изобретением электрической батареи (1800). В его честь мы называем основную единицу электрического напряжения вольтом. (В). Вольтову батарею–так называемый элемент–составляли два разных проводника электрического тока (электроды), погруженные в жидкость (электролит), через которую протекал электрический ток. В качестве электродов Вольта использовал медь и цинк, а электролитом служила соленая вода. Долгим и трудным был путь от этого первого источника постоянного тока до современной электрификации большей части нашей планеты. Остановимся на некоторых знаменательных событиях из истории электричества.

Первым убедительным доказательством полезности вольтова элемента было изобретение электрического телеграфа, которое чаще всего приписывают немецкому врачу и натуралисту Самуэлю Земмерингу (1809). Через два года английскому физику и химику Гемфри Дэви удалось получить между двумя угольными электродами электрическую дугу–светящуюся струю электрически заряженных частиц необычайно высокой температуры. Дэви был автором и ряда других открытий в зарождающейся области науки–электрохимии, изучающей связь между электрическими и химическими процессами и явлениями.

Затем последовало множество открытий, связанных с магнитными свойствами электрического тока. Французский физик Андре Ампер стал основоп оложником новой науки – уче ния об электромагнетизме. Отсюда оставался один шаг до создания электродвигателя, Этот решающий шаг помогли сде лать великий английский физик и химик, бывший ученик переплетчика Майкл Фарадей, немецкий физик, живший и работавший в России, Герман Якоби и многие другие известные и неизве стные механики, физики и химики. Пе рвые электродвигатели работали от усовершенствованных вольтовых элеме нтов. Они обладали малой мощностью и постепенно были вытеснены двигателями пе ре менного тока. Для этого потребовалось создать новые источники такого тока – генераторы, а затем турбины, чтобы приводить их в движение.

Путь к всеобщей электрификации проходил через множество крупных и мелких открытий и изобретений. Но это был логичный и целенаправленный путь. Электрическую энергию легко можно передавать на большие расстояния и непосредственно использовать для самых разнообразных целей. Все прежние машины и механизмы требовали «топлива», т. е. источника энергии, непосредственно на месте: паровая машина не в состоянии работать без достаточного количества топлива, ветряная мельница – без ветра, водяная мельница – без потока воды. А электрический двигатель работает и за сотни километров от источника потребляемой им энергии.

Сколько людям нужно энергии

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и опти­мизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продук­тов, технологическим средством и т.д.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарни­ков, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренно­го обращения с огнем, его получением и тушением, сохранени­ем огня и рациональным использованием топлива.

Сейчас известно, что древесина — это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждо­го килограмма сухой древесины выделяется около 20 000 кДж тепла (эта величина в теплотехнике именуется теплотой сгора­ния). Напомним также, что теплота сгорания бурого угла равна примерно 13000 кДж/кг, антрацита 25000 кДж/кг, нефти и нефтепродуктов 42000 кДж/кг, а природного газа 45000 кДж/кг. Самой высокой теплотой сгорания обладает водород -120000 кДж/кг.

Пришло время объяснить, что же такое энергия, т.е. величи­на, измеряемая килоджоулями. Известна и другая физическая величина — работа, имеющая ту же размерность, что и энергия, Зачем нужны два разных понятия?

Оказывается, вопрос имеет принципиальное значение. Энер­гия — слово греческое, означающее в переводе деятельность… Термином «энергия» обозначают единую скалярную меру раз­личных форм движения материи. Энергию можно получить при сгорании 1 кг угля или 1 кг нефти, которые называются энерго­носителями. Законы физики утверждают: та работа, которую можно получить в реальных машинах и использовать на наши нужды, будет всегда меньше энергии, заключенной в энергоно­сителе. Энергия — это, по сути дела, энергетический потенциал (или просто потенциал), а работа — это та часть потенциала, которая дает полезный эффект. Разницу между энергией и работой называют диссипированной (или рассеявшейся) энергией. До сих пор по традиции еще применяют понятия потен­циальной и кинетической энергии, хотя в действительности из-за огромного разнообразия видов энергии было бы целесооб­разно пользоваться единственным термином — энергия. Таким образом, работа совершается в процессе преобразования одних видов энергии в другие и характеризует полезную ее часть, полученную в процессе такого преобразования. Рассеянная в процессе совершения работы энергия неизменно превращается в тепло, которое сообщается окружающему пространству. По­скольку процессы преобразования одних видов энергии в другие бесконечны, любая работа в конце концов переходит в тепло, т.е. обесценивается. Это означает, что чем больше чело­вечество добывает угля, нефти и других энергоресурсов, тем больше оно в конечном итоге нагревает окружающую среду.

Прогноз роста потребности в энергии чаще всего связывают с ростом численности населения Земли. При этом предполагают, что на каждого жителя уровень полученной энергии будет также увеличиваться. 15 июля 1987 года численность населения Земли перешла 5-миллиардный рубеж (прогнозы 1975 года утверждали, что это произойдет только после 1990 года!). Ожи­дается, что к 2000 году население составит не меньше 6 млрд. человек, а на каждого жителя будет приходиться в год в сред­нем около 29 МВт·ч получаемой энергии, в то время как общая годовая потребность в ней составит 20-200 млрд. МВт·ч.

Таким образом, можно сказать, что на одного человека в 2000 году будет приходиться 29МВт·ч всех видов вырабатываемой энергии. Каждый житель Земли в том же 2000 году будет потреблять мощность 3 кВт. Надо заметить, что в развитых странах это значение уже достигнуто, а в США, СССР и ря­де других стран на одного человека приходится до 10 кВт энергии всех видов. Развивающиеся страны потребляют значительно меньше, так что среднее мировое значение в настоящее время не превышает 2 кВт на человека.

Предполагается, что к 2000 году общая потребляемая электриче­ская мощность должна удвоиться по отношению к нынешнему уровню и составить (1,8-2,0) 1010 кВт (или 20 млрд. кВт). Были предприняты и более глобальные оценки энергопотребления землян в следующем тысячелетии. Большинство экспертов предполагают, что численность населения Земли и потребление энергии должны стабилизироваться на каком-то одном уровне и что произойдет это в середине или конце XXI века. Диапазон оценок такого «стабиль­ного» потребления электрической мощности довольно широк: от 3-1010 до 1011 кВт, что всего в 3-10 раз больше нынешнего уровня. Соответствующие зависимости приведены на рис. 1, откуда видно, что стабилизация на уровне 3·1011 кВт еще мо­жет быть понятна, в то время как другая оценка (1011 кВт) весь­ма сомнительна даже для ориентировочного прогноза.

Очевидно, при этом учитывались результаты существующих прогнозов по истощению к середине – концу следующего столе­тия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которо­го, по расчетам, должно хватить на 300 лет) из-за вредных выбро­сов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-раз­множителей хватит не менее чем на 1000 лет (из-за трудностей с удалением радиоактивных отходов и захоронением отработав­ших агрегатов АЭС).

В таблице 1 приведена приближенная оценка процентной доли отдельных источников энергии в различные периоды развития человечества.

Доля отдельных источников энергии (%)

Таблица 1.

Период Мускульная энергия человека Органические вещества Древесина Уголь Нефть Природный газ Водная энергия Атомная энергия
500 000 лет до н. э. 100
2000 г. до н. э. 70 25 5
Около 1500 г. н. э. 10 20 70
1910 г. 16 16 65 3
1935 г. 13 7 55 15 3 5
1972 г. 10 32 34 18 5 1
1990 г. 1 20 33 26 4 16

Итак, ресурсы практически неисчерпаемы! А потребности? По-видимому, они должны соответствовать не только земным нуждам, но и нуждам космического строительства, космических сообщений по трассе Земля – орбита, межорбитальных сообще­ний, освоения Луны, планет и астероидов. В дальнейшем, по-видимому, потребуются огромные энергетические затраты на обнаружение и установление связи с другими цивилизациями Вселенной.

Мир наполнен энергией, которая может быть использована для совершения работы разного характера. Энергия может находиться и находится в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах, а мы, в свою очередь, рассмотрим способы извлечения этой энергии и ее преобразования.

Раздел 2.

Альтернативные источники энергииВетровая энергия

Мы живем на дне воздушного океана, в мире ветров. Люди давно это поняли, они постоянно ощущали на себе воздействие ветра, хотя долгое время не могли объяс­нить многие явления. Наблюдением за ветрами занима­лись еще в Древней Греции. Уже в III в. до н. э. было известно, что ветер приносит ту или иную погоду. Правда, греки определяли только направление ветра. В Афинах около 100 г. до н. э. построили так называе­мую Башню ветров с укрепленной на ней «розой вет­ров» (башня существует по сей день, нет только «розы»). В Японии и Китае также были известны розы ветров: изготовленные в виде драконов, они указывали направление ветра. Но главное назначение их было иное: отпугивать злых духов – чужие ветры.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории – от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

По оценкам различных авторов, общий ветроэнергетический потенциал Земли равен 1200 ТВт, однако возможности использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2 .

Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не вся энергия воздушного потока может быть использована даже с помощью идеального устройства. Теоретически коэффициент полезного использования (КПИ) энергии воздушного потока может быть равен 59,3 %. На практике, согласно опубликованным данным, максимальный КПИ энергии ветра в реальном ветроагрегате равен приблизительно 50 %, однако и этот показатель достигается не при всех скоростях, а только при оптимальной скорости, предусмотренной проектом. Кроме того, часть энергии воздушного потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно 75–95 %. Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим агрегатом, видимо, составляет 30–40 % мощности воздушного потока при условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом. Однако иногда ветер имеет скорость, выходящую за пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что ветроагрегат совсем не может работать, или настолько высокой, что ветроагрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Учитывая эти факторы, удельная выработка электрической энергии в течение года, видимо, составляет 15–30% энергии ветра, или даже меньше, в зависимости от местоположения и параметров ветроагрегата.

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы. Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении.

В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад. Самая крупная из них мощностью 1250 кВт давала ток в сеть электроснабжения американского штата Вермонт непрерывно с 1941 по 1945 г. Однако после поломки ротора опыт прервался – ротор не стали ремонтировать, поскольку энергия от соседней тепловой электростанции обходилась дешевле. По экономическим причинам прекратилась эксплуатация ветроэлектрических станций и в европейских странах.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования. Американец Генри Клюз в штате Мэн построил две мачты и укрепил на них ветродвигатели с генераторами. 20 аккумулятором по 6 В и 60 по 2 В служат ему в безветренную погоду, а в качестве резерва он имеет бензиновый движок. За месяц Клюз получает от своих ветроэлектрических агрегатов 250 кВт·ч энергии; этого ему хватает для освещения всего хозяйства, питания бытовой аппаратуры (телевизора, проигрывателя, пылесоса, электрической пишущей машинки), а также для водяного насоса и хорошо оборудованной мастерской.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие – на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей, с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями.

На рис. 2. схематически показана ветроэлектрическая установка, построенная Национальным управлением по аэронавтике и исследованию космического пространства (НАСА) в штате Огайо. На башне высотой 30,5 м укреплен генератор в поворотном обтекаемом корпусе; на валу генератора сидит пропеллер с двумя алюминиевыми лопастями длиной 19 м и весом 900 кг. Агрегат начинает работать при скорости ветра 13 км/ч, а наибольшей производительности (100 кВт) достигает при 29 км/ч. Максимальная скорость вращения пропеллера составляет 40 об/мин.

В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто rкакую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

Хранение ветряной энергии.

При использовании ветра возникает серьезная про­блема: избыток энергии в ветреную погоду и недоста­ток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, кото­рый накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие во­дяную турбину и генератор постоянного или перемен­ного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнета­ния сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Элек­трический ток от ветроагрегата разлагает воду на кис­лород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Американский ученый Уильям Херонимус считает, что производить водород за счет энергии ветра лучше всего па море. С этой целью он предлагает установить у берега высокие мачты с ветродвигателями диаметром 60 м и генераторами. 13 тысяч таких установок могли бы разместиться вдоль побережья Новой Англии (се­веро-восток США) и «ловить» преобладающие восточ­ные ветры. Некоторые агрегаты будут закреплены на дне мелкого моря, другие будут плавать на его поверх­ности. Постоянный ток от ветроэлектрических генераторов будет питать расположенные на дне электролизные установки, откуда водород будет по подводному трубо­проводу подаваться на сушу.

Энергия рек.

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода – ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Вода была первым источником энергии, и, вероятно, первой машиной, в которой человек использовал энер­гию воды, была примитивная водяная турбина. Свыше 2000 лет назад горцы на Ближнем Востоке уже поль­зовались водяным колесом в виде вала с лопатками (рис. 3 ). Суть устройства сводилась к следующему. Поток воды, отведенный из ручья или речки, давит на лопатки, передавая им свою кинетическую энергию. Лопатки приходят в движение, а поскольку они жестко скреплены с палом, вал вращается. С ним в свою оче­редь скреплен мельничный жернов, который вместе с валом вращается по отношению к неподвижному ниж­нему жернову. Именно так работали первые «механи­зированные» мельницы для зерна. Но их сооружали только в горных районах, где есть речки и ручьи с большим перепадом и сильным напором. На медленно текущих потоках водяные колеса с горизонтально размещенными лопатками малоэффективны.

Шагом вперед было водяное колесо Витрувия (1 в. н. э.), схема которого показана на рис. 4. Это вертикальное колесо с большими лопатками и гори­зонтальным валом. Вал колеса связан деревянными зубчатыми колесами с вертикальным валом, на кото­ром сидит мельничный жернов. Подобные мельницы и сегодня можно встретить на Малом Дунае; они пере­малывают в час до 200 кг зерна.

Почти полторы тысячи лет после распада Римской империи водяные колеса служили основным источником энергии для всевозможных производственных процес­сов в Европе, заменяя физический труд человека.

Устройства, в которых энергия воды используется для совершения работы, принято называть водяными (или гидравлическими.) двигателями. Простейшие и са­мые древние из них – описанные выше водяные колеса. Различают колеса с верхним, средним и нижним под­водом воды.

В со­временной гидроэлектростанции масса воды с большой скоростью устремляется на лопатки турбин. Вода из-за плотины течет – через защитную сетку и регулируемый затвор – по стальному трубопро­воду к турбине, над которой установлен генератор. Механическая энергия воды посредством турбины пере­дается генераторам и в них преобразуется в электри че ­скую. После сове ршения работы вода стекае т в ре ку че рез постепенно расширяющи йся туннель, те ряя при этом свою скорость.

Гидроэлектростанции классифицируются по мощно­сти на мелкие (с установленной электрической мощ­ностью до 0,2 МВт), малые (до 2 МВт), средние (до 20 МВт) и крупные (свыше 20 МВт). Второй критерий, по которому разделяются гидроэлектростанции, – напор. Различают низконапорные ГЭС (напор до 10 м), сред­него напора (до 100 м) и высоконапорные (свыше 100 м). В редких случаях плоти ны высоконапорных ГЭС дости гают высоты 240 м. Такие плотины сосредо­точивают пе ред турбинами водную энергию, накаплива я воду и подни мая ее уровень.

Затраты на строительство ГЭС ве лики, но они ком­пенсируются тем, что не приходится платить (во вся­ком случае, в явной форме) за источник энергии – воду. Мощность современных ГЭС, спроектирован ных на высоком инженерном уровне, превышает 100 МВт, а К.П. Д. составляет 95% (водяные колеса имеют К.П .Д. 50–85%). Такая мощность достигается при доволь­но малых скоростях вращения ротора (порядка 100 об/мин), поэтому современные гидротурбины пора­ жают своими размерами. Наприме р, рабочее коле со турбины Волжской ГЭС им. В. И. Ленин а имее т высо­ту около 10 м и весит 420 т.

Турбина – энергетически очень выгодная машина, потому что вода легко и просто меняе т поступательное движение на вращательное. Тот же принцип часто используют и в маши нах, которые внешне совсе м не по­хожи на водяное колесо (если на лопатки воздействуе т пар, то речь иде т о паровой турбине ).

Преимущества гидроэлектростанций очевидны – постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным.

Поэтому в начале XX века было построено всего несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием «Белый уголь». Это было лишь началом.

Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волховская ГЭС, в следующем – началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились мощные промышленные комплексы.

Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Геотермальная энергия

Земля, эта маленькая зеленая планета,–наш общий дом, из которого мы пока не можем, да и не хотим, ухо­дить. По сравнению с мириадами других планет Земля действительно невелика: большая ее часть покрыта уют­ной и живительной зеленью. Но эта прекрасная и спо­койная планета порой приходит в ярость, и тогда с ней шутки плохи – она способна уничтожить все, что мило­стиво дарила нам с незапамятных времен. Грозные смерчи и тайфуны уносят тысячи жизней, неукротимые воды рек и морей разрушают все на своем пути, лесные пожары за считанные часы опустошают огромные тер­ритории вместе с постройками и посевами.

Но все это мелочи по сравнению с извержением про­снувшегося вулкана. Едва ли сыщешь на Земле другие примеры стихийного высвобождения природной энергии, которые по силе могли бы соперничать с некоторыми вулканами.

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Энергетика земли – геотермальная энергетика базируется на использова­нии природной теплоты Земли. Верхняя часть земной ко­ры имеет термический градиент, равный 20–30 °С в рас­чете на 1 км глубины, и, по данным Уайта (1965 г.), ко­личество теплоты, содержащейся в земной коре до глу­бины 10 км (без учета температуры поверхности), равно приблизительно 12,6-10^26 Дж. Эти ресурсы эквивалент­ны теплосодержанию 4,6·1016 т угля (принимая среднюю теплоту сгорания угля равной 27,6-109 Дж/т), что бо­лее чем в 70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресур­сов угля. Однако геотермальная теплота в верхней части земной коры (до глубины 10 км) слишком рассеяна, что­бы на ее базе решать мировые энергетические проблемы. Ресурсы, пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты.

С геологической точки зрения геотермальные энерго­ресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.

Гидротермальные системы

К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, ко­торые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера и фумаролы. Образование та­ких систем связано с наличием источника теплоты го­рячен или расплавленной скальной породой, располо­женной относительно близко к поверхности земли. Над этой зоной высокотемпературной скальной породы на­ходится формация из проницаемой горной породы, содержащая воду, которая поднимается вверх в резуль­тате ее подстилающей горячей породой. Про­ницаемая порода, в свою очередь, сверху покрыта непро­ницаемой скальной породой, образующей «ловушку» для перегретой воды. Однако наличие в этой породе трещин или пор позволяет горячей воде или пароводяной смеси подниматься к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.

В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то явление, что при приближении го­рячей воды (находящейся под высоким давлением) по скважинам из бассейна к поверхности давление падает и около 20 % жидкости вскипает и превращается в пар. Этот пар отделяется с помощью сепаратора от воды и направляется в турбину. Вода, выходящая из сепарато­ра, может быть подвергнута дальнейшей обработке в зависимости от ее минерального состава. Эту воду можно закачивать обратно в скальные породы сразу или, если это экономически оправдано, с предварительным извле­чением из нее минералов. Примерами геотермальных месторождений с горячей водой являются Уайракей и Бродлендс в Новой Зеландии, Серро-Прието в Мексике, Солтон-Си в Калифорнии, Отаке в Японии.

Другим методом производства электроэнергии на базе высоко- или среднетемпературных геотермальных вод является использование процесса с применением двух­контурного (бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовав­шийся в результате кипения этой жидкости, использует­ся для привода турбины. Отработавший пар конденси­руется и вновь пропускается через теплообменник, создавая тем самым замкн утый цикл. Установки, исполь­зующие фреон в качестве теплоносителя второго контура, о настоящее время подготовлены для промышленного освоения в диапазоне температур 75–150 °С и при еди­ничной электрической мощности в пределах 10–100 кВт. Такие установки могут быть использованы для произ­водства электроэнергии в подходящих для этого местах, особенно в отдаленных сельских районах.

Горячие системы вулканического происхождения

Ко второму типу геотермальных ресурсов (горячие системы вулканического происхождения) относятся маг­ма и непроницаемые горячие сухие породы (зоны за­стывшей породы вокруг магмы и покрывающие ее скаль­ные породы). Получение геотермальной энергии непо­средственно из магмы пока технически неосуществимо. Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматри­вают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу (рис. 5 ). Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещино­ватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагрева­ется II извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотрен­ных ранее способов.

Системы с высоким тепловым потоком

Геотермальные системы третьего типа существуют в тех районах, где в зоне с высокими значениями теплово­го потока располагается глубокозалегающий осадочный бассейн. В таких районах, как Парижский или Венгерский бассейны, температура воды, поступающая из сква­жин, может достигать 100 °С.

Особая категория месторождений этого типа нахо­дится в районах, где нормальный тепловой поток через грунт оказывается в ловушке из изолирующих непрони­цаемых пластов глины, образовавшихся в быстро опускающихся геосинклинальных зонах или в областях опускания земной коры. Температу­ра воды, поступающей из геотермальных месторождений в зонах геодавления, может достигать 150–180 °С, а давление у устья скважины 28–56 МПа. Суточная про­изводительность в расчете на одну скважину может со­ставлять несколько миллионов кубических метров флюида. Геотермальные бассейны в зонах повышенного геодавле­ния найдены во многих районах в ходе нефтегазоразведки, например, в Северной и Южной Америке, на Даль­нем и Ближнем Востоке, в Африке и Европе. Возмож­ность использования таких месторождений в энергетиче­ских целях пока еще не продемонстрирована.

Энергия мирового океана

Резкое увеличение цен на топливо, трудности с его полученном, сообщения об истощении топливных ресурсов – все эти видимые признаки энергетического кризиса вызвали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Тепловая энергия океана

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км2 ) занимают моря и океаны – акватория Тихого океана составляет 180 млн. км2. Атлантического – 93 млн. км2, Индийского – 75 млн. км2.Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Последние десятилетие характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС – начальные буквы английских слов Осеаn Тhеrmal Energy Conversion, т.e. преобразованиетепловой энергии океана – речь идет о преобразовании в электрическую энергию). В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с поло­виной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если но считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная –53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точ­нее – на зарядку аккумуляторов. Остальная вырабаты­ваемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

Три насоса потребовались из следующего расчета: один – для подачи теплой виды из океана, второй – для подкачки холодной воды с глубины около 700 м, третий – для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак.

Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.

Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобн ого типа.

Новые станции ОТЕС на мощн ость во много десятков и сотен мегаватт проекти руются без судна. Это – одна грандиоз ная труба, в верхней части которой н аходится круглый машин ный зал, где размещены все необходимые устройства для п реобразования анергии (рис. 6 ). Верхний конец трубопровода хол одной воды расположится в океане на глубине 25–5 0 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут устан овлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. М асса всего сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде мален ького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания систе мы и дл я связи с берегом.

Энергия приливов и отливов.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные поды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней.

Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.

Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см.

Максимально возможная мощность в одном цикле прилив – отлив, т. е. от одного прилива до другого, выражается уравнением

где р – плотность воды, g – ускорение силы тяжести, S – площадь приливного бассейна, R – разность уровней при приливе.

Как видно из (формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны».

Мощность электростанций в некоторых местах могла бы составить 2–20 МВт.

Пе рвая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Ди около Ливерпуля. В 1935 г. приливную эле ктростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побе режье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строите льства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподале ку крупная теплов ая электростанци я дала боле е дешевую энергию.

Арге нтинские специалисты предлагали использовать очень высокую приливную волну в Магеллановом проливе, по правительство н е утве рдило дорогостоящий проект.

С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт*ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море.

Энергия морских течений

Неисче рпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в ме ханическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, «погруженным» в атмосферу).

Важнейше е и самое известное морское течение – Гольфстрим. Его основная часть проходит через Флоридский пролив между полуостровом Флорида и Багам скими островами. Ши рина течен ия составляет 60 км, глубина до 800 м, а поперечное сечение 28 км2 . Энергию Р, которую несет такой поток воды со скоростью 0,9 м/с, можно выразить формулой (в ваттах)

где т– масса воды (кг), р – плотность воды (кг/м3 ), А– сечение (м2 ), v– скорость (м/с). Подставив цифры, получим

Если бы мы смогли полностью использовать эту энергию, она была бы эквив але нтна суммарной энергии от 50 крупных электростанций по 1000 МВт, Но эта цифра чисто теоретическая, а практиче ски можно рассчитывать на использование лишь около 10% энергии течения.

В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую лини ю, к во многих местах море остается бурным в течени е длительного времени. По оценкам ученых, за счет энергии морских волн з ан глийских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.

Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских «коробах» без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действ ует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование и нерции рабочих колес турбин с количе ством воздуха в коробах, так чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря.

Энергия солнца.

Для древних народов Солнце было богом. В Верхнем Египте, культура которого восходит к четвертому тысячелетию до н.э., верили, что род фараонов ведет свое происхождение от Ра – бога Солнца. Надпись на одной из пирамид представляет фараона как наместника Солнца на Земле, «который исцеляет нас своей заботой, когда выйдет, подобно Солнцу, что дает зелень землям. Каждый взор устрашится, когда увидит его в образе Ра, что встает над горизонтом».

Своей жизнетворной силой Солнце всегда вызывало у людей чувства поклонения и страха. Народы, тесно связанные с природой, ждали от него милостивых даров – урожая и изобилия, хорошей погоды и свежего дождя или же кары – ненастья, бурь, града. Поэтому в народном искусстве мы всюду видим изображение Солнца: над фасадами домов, на вышивках, в резьбе и т. п.

Почти все источники энергии, о которых мы до сих пор говорили, так или иначе используют энергию Солнца: уголь, нефть, природный газ суть не что иное, как «законсервированная» солнечная энергия. Она заключена в этом топливе с незапамятных времен; под действием солнечного тепла и света на Земле росли растения, накапливали в себе энергию, а потом в результате длительных процессов превратились в употребляемое сегодня топливо. Солнце каждый год даст человечеству миллиарды тонн зерна и древесины. Энергия рек и горных водопадов также происходит от Солнца, которое поддерживает кругооборот воды на Земле.

Во всех приведенных примерах солнечная энергия используется косвенно, через многие промежуточные превращения. Заманчиво было бы исключить эти превращения и найти способ непосредственно преобразовывать тепловое и световое излучение Солнца, падающее на Землю, в механическую или электрическую энергию. Всего за три дня Солнце посылает на Землю столько энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив, а за 1 с – 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть ее достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той ее части, которую получает Земля, в 5000000000 раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Согласно легенде Архимед, находясь на берегу, уничтожил неприятельский римский флот под Сиракузами. Как? При помощи зажигательных зеркал. Известно, что подобные зеркала делались также в VI веке. А в середине XVIII столетия французский естествоиспытатель Ж. Бюффон производил опыты с большим вогнутым зеркалом, состоящим из множества маленьких плоских. Они были подвижными и фокусировали в одну точку отраженные солнечные лучи. Этот аппарат был способен в ясный летний день с расстояния 68 м довольно быстро воспламенить пропитанное смолой дерево. Позднее во Франции было изготовлено вогнутое зеркало диаметром 1,3 м, в фокусе которого можно было за 16 секунд расплавить чугунный стержень. В Англии же отшлифовали большое двояковыпуклое стекло, с его помощью удавалось расплавлять чугун за три секунды и гранит – за минуту.

В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор – в сущности первое устройство, превращавшее солнечную энергию в механическую. Но принцип был тем же: большое вогнутое зеркало фокусировало солнечные лучи на паровом котле, который приводил в движение печатную машину, делавшую по 500 оттисков газеты в час. Через несколько лет в Калифорнии построили действующий по такому же принципу конический рефлектор в паре с паровой машиной мощностью 15 л. с.

И хотя с той поры то в одной, то в другой стране появляются экспериментальные рефлекторы-нагреватели, а в публикуемых статьях все громче напоминают о неиссякаемости нашего светила, рентабельнее они от этого не становятся и широкого распространения пока не получают: слишком дорогое удовольствие это даровое солнечное излучение.

Сегодня для преобразования солнечного излучения в эле ктрическую энергию мы располагаем двумя возможностями: использов ать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечн ых элементах. Реализация обеих возможностей пока находится в зачаточной стадии. В значительно более широких масштабах солнечную энергию и спользуют после ее концентрации при помощи зеркал – для плавления веществ, дистилляции воды, н агрев а, отопления и т. д.

Поскольку энергия солнечного излучени я распреде лена по большой площади (иными словами, имее т ни зкую плотность), любая устан овка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточн ой поверхностью.

Простейшее устройство такого рода–п лоский ко лле ктор; в принципе это черная плита, хорошо и золированная снизу. Она прикрыта сте клом или пластмассой, которая пропускает свет, но не п роп ускает и нфракрасное те пловое излучен ие. В пространстве между п ли той и стеклом чаще всего размещают черные трубки, че ре з которые текут вода, масло, ртуть, воздух, се рнистый ангидрид и т. п. Солнечное излучение, прони кая через стекло или пластмассу в коллектор, поглощае тся черными трубками и плитой и нагре вае т рабочее ве щество в трубках. Тепловое излучени е не может выйти из коллектора, поэтому температура в нем значите льно выше (па 200–500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парн ики, по сути дела, представляют собой простые колле кто ры солнечного и злучения. Но чем дальше от тропиков, тем менее эфф ек тивен горизон тальный коллектор, а поворачивать его всле д за Со лнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавли вают под определенным оптимальным углом к югу.

Более сложным и дорогостоящим коллектором являе тся вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной ге ометрической точки – фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу–это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов д остигает 3000°С и выше.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт*год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Но, тем не менее, станции-преобразователи солнечной энергии строят и они работают.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека.

Крымская СЭС невелика – мощность всего 5 МВт. В определенном смысле она – проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10–20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные – до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Но, для примера, электростанция на солнечных батареях вблизи экватора с суточной выработкой 500 МВт·ч (примерно столько энергии вырабатывает довольно крупная ГЭС) при к.п.д. 10% потребовала бы эффективной поверх­ности около 500000 м2. Ясно, что такое огромное коли­чество солнечных полупроводниковых элементов может. окупиться только тогда, когда их производство будет действительно дешево. Эффективность солнечных элек­тростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно сла­бой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.

Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле – в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радио­аппаратура, электрические бритвы и зажигалки и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спут­нике Земли (запущенном на орбиту 15 мая 1958 г.).

Идет работа, идут оценки. Пока они, надо признать, не в пользу солнечных электростанций: сегодня эти сооружения все еще относятся к наиболее сложным и самым дорогостоящим техническим методам использования гелиоэнергии. Нужны новые варианты, новые идеи. Недостатка в них нет. С реализацией хуже.

Атомная энергия.

При исследовании распада атомных ядер оказалось, что каждое ядро весит меньше, чем сумма масс его протонов и нейтронов. Это объясняется тем, что при объединении протонов и нейтронов в ядро выделяется много энергии. Убыль массы ядер на 1 г эквивалентна такому количеству тепловой энергии, какое получилось бы при сжигании 300 вагонов каменного угля. Не уди­вительно поэтому, что исследователи приложили все силы, стремясь найти ключ, который позволил бы «открыть» атомное ядро и высвободить скрытую в нем огромную энергию.

Вначале эта задача казалась неразрешимой. В ка­честве инструмента ученые не случайно выбрали ней­трон. Эта частица электрически нейтральна, и на нее не действуют электрические силы отталкивания. По­этому нейтрон легко может проникнуть в атомное ядро. Нейтронами бомбардировали ядра атомов отдельных эле­ментов. Когда же очередь до­шла до урана, обнаружилось, что этот тяжелый элемент ве­дет себя иначе, чем другие. Кстати, следует напомнить, что встречающийся в природе уран содержит три изотопа: уран-238 (238 U), уран-235 (235 U) и уран-234 (234 U), при­чем цифра означает массовое число.

Атомное ядро урана-235 оказалось значительно менее устойчивым, чем ядра других элементов и изотопов. Под действием одного нейтрона наступает деление (расщеп­ление) урана, его ядро распадается па два приблизи­тельно одинаковых осколка, например на ядра крипто­на и бария. Эти осколки с огромными скоростями раз­летаются в разных направлениях.

Но главное в этом процессе, что при распаде одного ядра урана возникают два-три новых свободных ней­трона. Причина заключается в том, что тяжелое ядро урана содержит больше нейтронов, чем их требуется для образования двух меньших атомных ядер. «Строи­тельного материала» слишком много, и атомное ядро должно от него избавиться.

Каждый из новых нейтронов может сделать то же, что сделал первый, когда расщепил одно ядро. В самом деле, выгодная калькуляция: вместо одного нейтрона получаем два-три с такой же способностью расщепить следующие два-три ядра урана-235. И так продолжает­ся дальше: происходит цепная реакция, и, если ею не управлять, она приобретает лавинный характер и за­канчивается мощнейшим взрывом – взрывом атомной бомбы. Научившись регулировать этот процесс, люди получили возможность практически непрерывно получать энергию из атомных ядер урана. Управление этим процессом осуществляют в ядерных реакторах.

Ядерный реактор – устройство, в котором протекает управляемая цепная реакция. При этом распад атом­ных ядер служит регулируемым источником и тепла, и нейтронов.

Первый проект ядерного реактора разработал в 1939 г. французский ученый Фредерик Жолио-Кюри. Но вскоре Францию оккупировали фашисты, и проект не был реализован.

Цепная реакция деления урана впервые была осу­ществлена в 1942 г. в США, в реакторе, который груп­па исследователей во главе с итальянским ученым Энрико Ферми построила в помещении стадиона Чи­кагского университета. Этот реактор имел размеры 6х6х6,7 м и мощность 20 кВт; он работал без внеш­него охлаждения.

Первый ядерный реактор в СССР (и в Европе) был построен под руководством акад. И. В. Курчатова и запущен в 1946 г.

Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение, что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях.

В принципе энергетический ядерный реактор устроен довольно просто – в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Атомные реакторы на тепловых нейтронах различаются между собой главным образом по двум признакам: какие вещества используются в качестве замедлителя нейтронов и какие в качестве теплоносителя, с помощью которого производится отвод тепла из активной зоны реактора. Наибольшее распространение в настоящее время имеют водо-водяные реакторы, в которых обычная вода служит и замедлителем нейтронов, и теплоносителем, уран-графитовые реакторы (замедлитель – графит, теплоноситель – обычная вода), газографитовые реакторы (замедлитель – графит, теплоноситель – газ, часто углекислота), тяжеловодные реакторы (замедлитель – тяжелая вода, теплоноситель – либо тяжелая, либо обычная вода).

Ни рис. 9 представлена принципиальная схема водо-водяного реактора. Активная зона реактора представляет собой толстостенный сосуд, в котором находятся вода и погруженные в нее сборки тепловыделяющих элементов (ТВЭЛов). Тепло, выделяемое ТВЭЛами забирается водой, температура которой значительно повышается.

Конструкторы довели мощность таких реакторов до миллиона киловатт. Могучие энергетические агрегаты установлены на Запорожской, Балаковской и других атомных электростанциях. Вскоре реакторы такой конструкции, видимо, догонят по мощности и рекордсмена — полуторамиллионик с Игналинской АЭС.

Но все-таки будущее ядерной энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкция которых предложены учеными, — реакторами на быстрых нейтронах. Их называют еще реакторами-размножителями. Обычные реакторы используют замедленные нейтроны, которые вызывают цепную реакцию в довольно редком изотопе – уране-235, которого в природном уране всего около одного процента. Именно поэтому приходится строить огромные заводы, на которых буквально просеивают атомы урана, выбирая из них атомы лишь одного сорта урана-235. Остальной уран в обычных реакторах использоваться не может. Возникает вопрос: а хватит ли этого редкого изотопа урана на сколько-нибудь продолжительное время или же человечество вновь столкнется с проблемой нехватки энергетических ресурсов ?

Более тридцати лет назад эта проблема была поставлена перед коллективом лаборатории Физико-энергетического института. Она была решена. Руководителем лаборатории Александром Ильичом Лейпунским была предложена конструкция реактора на быстрых нейтронах. В 1955 году была построена первая такая установка. Преимущества реакторов на быстрых нейтронах очевидны. В них для получения энергии можно использовать все запасы природных урана и тория, а они огромны – только в Мировом океане растворено более четырех миллиардов тонн урана.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она безусловно будет развиваться и впредь, без отказано поставляя столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а ученые и инженеры сумеют найти необходимые решения.

Водородная энергетика

Многие специалисты высказывают опасение по поводу все возрастающей тенденции к сплошной электрификации экономики и хозяйства: на тепловых электростанциях сжигается все больше химического топлива, а сотни новых атомных электростанций, как и зарождающиеся солнечные, ветряные и геотермальные станции, будут во все более широком масштабе (и в конце концов исключительно) работать для производства электрической энергии. Поэтому ученые заняты поиском принципиально новых энергетических систем.

К.п.д. тепловых электростанций относительно низок, хотя конструкторы прилагают все силы, чтобы его повысить. В современных электростанциях на органическом топливе он составляет около 40%, а в атомных электростанциях – 33%. При этом большая доля энергии теряется с отходящим теплом (например, вместе со сбрасываемой из систем охлаждения теплой водой), что приводит к так называемому тепловому загрязнению окружающей среды. Отсюда следует, что тепловые электростанции нужно строить в тех местах, где имеется а достаточном количестве охлаждающая вода, или же в открытых ветрам местностях, где воздушное охлаждение не будет оказывать отрицательного влияния на микроклимат. К этому добавляются вопросы безопасности и гигиены. Вот почему будущие крупные АЭС должны располагаться как можно дальше от густонаселенных районов. Но тем самым источники электроэнергии удаляются от ее потребителей, что значительно усложняет проблему электропередачи.

Передача электроэнергии по проводам обходится очень дорого: она составляет около трети себестоимости энергии для потребителя. Чтобы снизить расходы, строят линии электропередачи все более высокого напряжения – оно скоро достигнет 1500 кВ. Но воздушные высоковольтные линии требуют отчуждения большой земельной площади, к тому же они уязвимы для очень сильных ветров и иных метеорологических факторов. А подземные кабельные линии обходятся в 10 – 20 раз дороже, и их прокладывают лишь в исключительных случаях (например, когда это вызвано соображениями архитектуры или надежности).

Серьезнейшую проблему составляет накопление и хранение электроэнергии, поскольку электростанции наиболее экономично работают при постоянной мощности и полной нагрузке. Между тем спрос на электроэнергию меняется в течение суток, недели и года, так что мощность электростанций приходится к нему приспосабливать. Единственную возможность сохранять впрок большие количества электроэнергии в настоящее время дают гидроаккумулирующие электростанции, но и они в свою очередь связаны с множеством проблем.

Все эти проблемы, стоящие перед современной энергетикой, могло бы – по мнению многих специалистов – разрешить использование водорода в качестве топлива и создание так называемого водородного энергетического хозяйства.

Водород, самый простой и легкий из всех химических элементов, можно считать идеальным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды. Водородное пламя не выделяет в атмосферу продуктов, которыми неизбежно сопровождается горение любых других видов топлива: углекислого газа, окиси углерода, сернистого газа, углеводородов, золы, органических перекисей н т. п. Водород обладает очень высокой теплотворной способностью: при сжигании 1 г водорода получается 120 Дж тепловой энергии, а при сжигании 1 г бензина – только 47 Дж.

Водород можно транспортировать и распределять по трубопроводам, как природный газ. Трубопроводный транспорт топлива – самый дешевый способ дальней передачи энергии. К тому же трубопроводы прокладываются под землей, что не нарушает ландшафта. Газопроводы занимают меньше земельной площади, чем воздушные электрические линии. Передача энергии в форме газообразного водорода по трубопроводу диаметром 750 мм на расстояние свыше 80 км обойдется дешевле, чем передача тоги же количества энергии в форме переменного тока по подземному кабелю. На расстояниях больше 450 км трубопроводный транспорт водорода дешевле, чем использование воздушной линии электропередачи постоянного тока с напряжением 40кВ, а па расстоянии свыше 900 км – дешевле воздушной линии электропередачи переменного тока с напряжением 500 кВ.

Водород – синтетическое топливо. Его можно получать из угля, нефти, природного газа либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное – на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.

Современные и перспективные методы производства водорода

Сейчас водород производят главным образом (около 80%) из нефти. Но это неэкономичный для энергети­ки процесс, потому что энергия, получаемая из такого водорода, обходится в 3,5 раза дороже, чем энергия от сжигания бензина. К тому же себестоимость такого во­дорода постоянно возрастает по мере повышения цен на нефть.

Небольшое количество водорода получают путем электролиза. Производство водорода методом электро­лиза воды обходится дороже, чем выработка его из нефти, но оно будет расширяться и с развитием атом­ной энергетики станет дешевле. Вблизи атомных элек­тростанций можно разместить станции электролиза воды, где вся энергия, выработанная электростанцией, пойдет на разложение воды с образованием водорода. Правда, цена электролитического водорода останется выше цены электрического тока, зато расходы на тран­спортировку и распределение водорода настолько малы, что окончательная цена для потребителя будет вполне приемлема по сравнению с ценой электроэнергии.

Сегодня исследователи интенсивно работают над удешевлением технологических процессов крупнотон­нажного производства водорода за счет более эффек­тивного разложения воды, используя высокотемпера­турный электролиз водяного пара, применяя катализа­торы, полунепроницаемые мембраны и т. п.

Большое внимание уделяют термолитическому мето­ду, который (в перспективе) заключается в разложе­нии воды на водород и кислород при температуре 2500 °С. Но такой температурный предел инженеры еще не освоили в больших технологических агрегатах, в том числе и работающих на атомной энергии (в высо­котемпературных реакторах пока рассчитывают лишь на температуру около 1000°С). Поэтому исследовате­ли стремятся разработать процессы, протекающие в не­сколько стадий, что позволило бы вырабатывать водо­род в температурных интервалах ниже 1000°С.

В 1969 г. в итальянском отделении «Евратома» была пущена в эксплуатацию установка для термолитического получения водорода, работающая с к.п.д. 55% при температуре 730°С. При этом использовали бромистый кальций, воду и ртуть. Вода в установке разлагается на водород и кислород, а остальные реаген­ты циркулируют в повторных циклах. Другие – скон­струированные установки работали – при температурах 700–800°С. Как полагают, высокотемпературные реак­торы позволят поднять к.п.д. таких процессов до 85%. Сегодня мы не в состоянии точно предсказать, сколько будет стоить водород. Но если учесть, что цены всех современных видов энергии проявляют тен­денцию к росту, можно предположить, что в долго­срочной перспективе энергия в форме водорода будет обходиться дешевле, чем в форме природного газа, а возможно, и в форме электрического тока.

Использование водорода

Когда водород станет столь же доступным топливом, как сегодня природный газ, он сможет всюду его заме­нить. Водород можно будет сжигать в кухонных плитах, в водонагревателях и отопительных печах, снабженных горелками, которые почти или совсем не будут отли­чаться от современных горелок, применяемых для сжи­гания природного газа.

Как мы уже говорили, при сжигании водорода не остается никаких вредных продуктов сгорания. Поэтому отпадает нужда в системах отвода этих продуктов для отопительных устройств, работающих на водороде, Более того, образующийся при горении водяной пар можно считать полезным продуктом — он увлажняет воздух (как известно, в современных квартирах с цен­тральным отоплением воздух слишком сух). А отсут­ствие дымоходов не только способствует экономии строительных расходов, но и повышает к. п. д. отопле­ния на 30%.

Водород может служить и химическим сырьем во многих отраслях промышленности, например при про­изводстве удобрений и продуктов питания, в металлур­гии и нефтехимии. Его можно использовать и для вы­работки электроэнергии на местных тепловых электро­станциях.

Заключение.

Неоспорима роль энергии в поддержании и дальней­шем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой дея­тельности, которая не требовала бы – прямо или кос­венно – больше энергии, чем ее могут дать мускулы человека.

Потребление энергии – важный показатель жизнен­ного уровня. В те времена, когда человек добывал пи­щу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овла­дения огнем эта величина возросла до 16 МДж: в при­митивном сельскохозяйственном обществе она составля­ла 50 МДж, а в более развитом – 100 МДж.

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма».

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.

Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю… Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, «воинствующая» линия энергетики.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика «щадящая». Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому — быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, «черных дырах», вакууме, — это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, кликов радости и побед. Тернист, непрост, непрям энергетический путь человечества. Но мы верим, что мы на пути к Эре Энергетического Изобилия и что все препоны, преграды и трудности будут преодолены.

Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому. следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: «Нет простых решений, есть только разумный выбор».

Список литературы

1. 1. Аугуста Голдин. Океаны энергии. – Пер. с англ. – М.: Знание, 1983. – 144 с.

2. 2. Баланчевадзе В. И., Барановский А. И. и др.; Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. – М.: Энергоатомиздат, 1990. – 344 с.

3. 3. Более чем достаточно. Оптимистический взгляд на будущее энергетики мира/ Под ред. Р. Кларка: Пер. с англ. – М.: Энергоатомиздат, 1984. – 215 с.

4. 4. Бурдаков В.П… Электроэнергия из космоса. – М.: Энергоатомиздат, 1991. – 152 с.

5. 5. Вершинский Н. В. Энергия океана. – М.: Наука, 1986. – 152 с.

6. 6. Гуревич Ю. Холодное горение. //Квант. – 1990 г. — №6. – ст. 9-15.

7. 7. Источники энергии. Факты, проблемы, решения. – М.: Наука и техника, 1997. – 110 с.

8. 8. Кириллин В. А. Энергетика. Главные проблемы: В вопросах и ответах. – М.: Знание, 1990. – 128 с.

9. 9. Кононов Ю. Д… Энергетика и экономика. Проблемы перехода к новым источникам энергии. – М.: Наука, 1981. – 190 с.

10.10.Меркулов О. П. У пошуках енергії майбутнього. – К.: Наукова думка, 1991. – 123 с.

11.11.Мировая энергетика: прогноз развития до 2020 г./ Пер. с англ. под ред. Ю. Н. Старшикова. – М.: Энергия, 1980. – 256 с.

12.12.Нетрадиционные источники энергии. – М.: Знание, 1982. – 120 с.

13.13.Подгорный А. Н. Водородная энергетика. – М.: Наука, 1988.– 96 с.

14.14.Соснов А. Я. Энергия Земли. – Л.: Лениздат, 1986. – 104 с.

15.15.Шейдлин А. Е. Новая энергетика. – М.: Наука, 1987. – 463 с.

16.16.Шульга В. Г., Коробко Б. П., Жовмір М. М. Основні результати та завдання впровадження нетрадиційних та відновлюваних джерел енергії в Україні.// Энергетика и электрификация. – 1995 г. — №2. – ст. 39-42.

17.17.Энергетика мира: Переводы докладов XI конгресса МИРЭК/ Под ред. П. С. Непорожнего. – М.: Энергоатомиздат, 1982. – 216 с.

18.18.Энергетические ресурсы мира/ Под ред. П.С.Непорожнего, В.И. Попкова. – М.: Энергоатомиздат, 1995. – 232 с.

19.19.Ю. Тёльдеши, Ю. Лесны. Мир ищет энергию. – М.: Мир, 1981. – 440 с.

20.20.Юдасин Л. С… Энергетика: проблемы и надежды. – М.: Просвещение, 1990. – 207с.

www.ronl.ru

Реферат - Энергия - Физика

--PAGE_BREAK--Паровую машину низкого давления Уатта совершенствовали многие мастера и инженеры. Среди них следует выделить американца Оливера Эванса. Преодолев многие препятствия, этот талантливый механик, полный энтузиазма и смелых идей, в 1801 г, приступил к сооружению малой паровой машины, в которой давление пара в десять раз превышало атмосферное. Уже первые две машины получились необычайно удачными, и в 1802 г. Эванс открыл в Филадельфии первый завод паровых машин высокого давления. Он поставил заказчикам до 50 машин мощностью от 7,4 до 29,4 кВт (10-40 л. с.). В 1807 г. американский изобретатель Роберт Фултон сконструировал первый пароход “Клермонт”, который совершал регулярные рейсы по реке Гудзон между Нью-Йорком и Олбани. Успех “Клермонта” оказался настолько убедительным, что в 1819 г. в США был спущен на воду морской пароход. Английский техник Джордж Стефенсон в 1823 г. основал завод по изготовлению подвижного состава для общественного транспорта, и в 1825 г.- через шесть лет после смерти Уатта — на трассе Стоктон — Дарлингтон начала действовать первая железная дорога. В наши дни паровую машину скоро можно будет увидеть только в технических музеях, но и там мы будем смотреть на нее с уважением. Итальянский физик Алессандро Вольта родился в 1745 г. Он продолжил эксперименты своего земляка Луиджи Гальвани и прославился изобретением электрической батареи (1800). В его честь мы называем основную единицу электрического напряжения вольтом. (В). Вольтову батарею-так называемый элемент-составляли два разных проводника электрического тока (электроды), погруженные в жидкость (электролит), через которую протекал электрический ток. В качестве электродов Вольта использовал медь и цинк, а электролитом служила соленая вода. Долгим и трудным был путь от этого первого источника постоянного тока до современной электрификации большей части нашей планеты. Остановимся на некоторых знаменательных событиях из истории электричества. Первым убедительным доказательством полезности вольтова элемента было изобретение электрического телеграфа, которое чаще всего приписывают немецкому врачу и натуралисту Самуэлю Земмерингу (1809). Через два года английскому физику и химику Гемфри Дэви удалось получить между двумя угольными электродами электрическую дугу-светящуюся струю электрически заряженных частиц необычайно высокой температуры. Дэви был автором и ряда других открытий в зарождающейся области науки-электрохимии, изучающей связь между электрическими и химическими процессами и явлениями. Затем последовало множество открытий, связанных с магнитными свойствами электрического тока. Французский физик Андре Ампер стал основоположником новой науки — учения об электромагнетизме. Отсюда оставался один шаг до создания электродвигателя, Этот решающий шаг помогли сделать великий английский физик и химик, бывший ученик переплетчика Майкл Фарадей, немецкий физик, живший и работавший в России, Герман Якоби и многие другие известные и неизвестные механики, физики и химики. Первые электродвигатели работали от усовершенствованных вольтовых элементов. Они обладали малой мощностью и постепенно были вытеснены двигателями переменного тока. Для этого потребовалось создать новые источники такого тока — генераторы, а затем турбины, чтобы приводить их в движение. Путь к всеобщей электрификации проходил через множество крупных и мелких открытий и изобретений. Но это был логичный и целенаправленный путь. Электрическую энергию легко можно передавать на большие расстояния и непосредственно использовать для самых разнообразных целей. Все прежние машины и механизмы требовали “топлива”, т. е. источника энергии, непосредственно на месте: паровая машина не в состоянии работать без достаточного количества топлива, ветряная мельница — без ветра, водяная мельница — без потока воды. А электрический двигатель работает и за сотни километров от источника потребляемой им энергии.

Сколько людям нужно энергии Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и опти­мизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продук­тов, технологическим средством и т.д. На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарни­ков, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф. Прекрасный миф о Прометее, даровавшем людям огонь, появился в древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренно­го обращения с огнем, его получением и тушением, сохранени­ем огня и рациональным использованием топлива. Сейчас известно, что древесина — это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждо­го килограмма сухой древесины выделяется около 20 000 кДж тепла (эта величина в теплотехнике именуется теплотой сгора­ния). Напомним также, что теплота сгорания бурого угла равна примерно 13000 кДж/кг, антрацита 25000 кДж/кг, нефти и нефтепродуктов 42000 кДж/кг, а природного газа 45000 кДж/кг. Самой высокой теплотой сгорания обладает водород -120000 кДж/кг. Пришло время объяснить, что же такое энергия, т.е. величи­на, измеряемая килоджоулями. Известна и другая физическая величина — работа, имеющая ту же размерность, что и энергия, Зачем нужны два разных понятия? Оказывается, вопрос имеет принципиальное значение. Энер­гия — слово греческое, означающее в переводе деятельность… Термином «энергия» обозначают единую скалярную меру раз­личных форм движения материи. Энергию можно получить при сгорании 1 кг угля или 1 кг нефти, которые называются энерго­носителями. Законы физики утверждают: та работа, которую можно получить в реальных машинах и использовать на наши нужды, будет всегда меньше энергии, заключенной в энергоно­сителе. Энергия — это, по сути дела, энергетический потенциал (или просто потенциал), а работа — это та часть потенциала, которая дает полезный эффект. Разницу между энергией и работой называют диссипированной (или рассеявшейся) энергией. До сих пор по традиции еще применяют понятия потен­циальной и кинетической энергии, хотя в действительности из-за огромного разнообразия видов энергии было бы целесооб­разно пользоваться единственным термином — энергия. Таким образом, работа совершается в процессе преобразования одних видов энергии в другие и характеризует полезную ее часть, полученную в процессе такого преобразования. Рассеянная в процессе совершения работы энергия неизменно превращается в тепло, которое сообщается окружающему пространству. По­скольку процессы преобразования одних видов энергии в другие бесконечны, любая работа в конце концов переходит в тепло, т.е. обесценивается. Это означает, что чем больше чело­вечество добывает угля, нефти и других энергоресурсов, тем больше оно в конечном итоге нагревает окружающую среду. Прогноз роста потребности в энергии чаще всего связывают с ростом численности населения Земли. При этом предполагают, что на каждого жителя уровень полученной энергии будет также увеличиваться. 15 июля 1987 года численность населения Земли перешла 5-миллиардный рубеж (прогнозы 1975 года утверждали, что это произойдет только после 1990 года!). Ожи­дается, что к 2000 году население составит не меньше 6 млрд. человек, а на каждого жителя будет приходиться в год в сред­нем около 29 МВт·ч получаемой энергии, в то время как общая годовая потребность в ней составит 20-200 млрд. МВт·ч.  Таким образом, можно сказать, что на одного человека в 2000 году будет приходиться  29МВт·ч всех видов вырабатываемой энергии. Каждый житель Земли в том же 2000 году  будет потреблять мощность 3 кВт. Надо заметить, что в развитых странах это значение уже достигнуто, а в США, СССР и ря­де других стран на одного человека приходится до 10 кВт энергии всех видов. Развивающиеся страны потребляют значительно меньше, так что среднее мировое значение в настоящее время не превышает 2 кВт на человека. Предполагается, что к 2000 году общая потребляемая электриче­ская мощность должна удвоиться по отношению к нынешнему уровню и составить (1,8-2,0) 1010кВт (или 20 млрд. кВт). Были предприняты и более глобальные оценки энергопотребления землян в следующем тысячелетии. Большинство экспертов предполагают, что численность населения Земли и потребление энергии должны стабилизироваться на каком-то одном уровне и что произойдет это в середине или конце XXI века. Диапазон оценок такого «стабиль­ного» потребления электрической мощности довольно широк: от 3-1010 до 1011 кВт, что всего в 3-10 раз больше нынешнего уровня. Соответствующие зависимости приведены на рис.1, откуда видно, что стабилизация на уровне 3·1011 кВт еще мо­жет быть понятна, в то время как другая оценка (1011 кВт) весь­ма сомнительна даже для ориентировочного прогноза. Очевидно, при этом учитывались результаты существующих прогнозов по истощению к середине — концу следующего столе­тия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которо­го, по расчетам, должно хватить на 300 лет) из-за вредных выбро­сов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-раз­множителей хватит не менее чем на 1000 лет (из-за трудностей с удалением радиоактивных отходов и захоронением отработав­ших агрегатов АЭС). В таблице 1 приведена приближенная оценка процентной доли отдельных источников энергии в различные периоды развития человечества. Доля отдельных источников энергии(%) Таблица1. Период Мускульная энергия человека Органические вещества Древесина Уголь Нефть Природный газ Водная энергия Атомная энергия 500 000 лет до н. э. 100 — — — — — — — 2000 г. до н. э. 70 25 5 — — — — — Около 1500 г. н. э. 10 20 70 — — — — — 1910 г. — 16 16 65 3 — — — 1935 г. — 13 7 55 15 3 5 — 1972 г. — — 10 32 34 18 5 1 1990 г. — — 1 20 33 26 4 16 Итак, ресурсы практически неисчерпаемы! А потребности? По-видимому, они должны соответствовать не только земным нуждам, но и нуждам космического строительства, космических сообщений по трассе Земля — орбита, межорбитальных сообще­ний, освоения Луны, планет и астероидов. В дальнейшем, по-видимому, потребуются огромные энергетические затраты на обнаружение и установление связи с другими цивилизациями Вселенной.    Мир наполнен энергией, которая может быть использована для совершения работы разного характера. Энергия может находиться и находится в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах, а мы, в свою очередь, рассмотрим способы извлечения этой энергии и ее преобразования.

Раздел 2. Альтернативные источники энергииВетровая энергия Мы живем на дне воздушного океана, в мире ветров. Люди давно это поняли, они постоянно ощущали на себе воздействие ветра, хотя долгое время не могли объяс­нить многие явления. Наблюдением за ветрами занима­лись еще в Древней Греции. Уже в III в. до н. э. было известно, что ветер приносит ту или иную погоду. Правда, греки определяли только направление ветра. В Афинах около 100 г. до н. э. построили так называе­мую Башню ветров с укрепленной на ней “розой вет­ров” (башня существует по сей день, нет только “розы”). В Японии и Китае также были известны розы ветров: изготовленные в виде драконов, они указывали направление ветра. Но главное назначение их было иное: отпугивать злых духов — чужие ветры. Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры — от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории — от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии. По оценкам различных авторов, общий ветроэнергетический потенциал Земли равен 1200 ТВт, однако возможности использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20-30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2. Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не вся энергия воздушного потока может быть использована даже с помощью идеального устройства. Теоретически коэффициент полезного использования (КПИ) энергии воздушного потока может быть равен 59,3 %. На практике, согласно опубликованным данным, максимальный КПИ энергии ветра в реальном ветроагрегате равен приблизительно 50 %, однако и этот показатель достигается не при всех скоростях, а только при оптимальной скорости, предусмотренной проектом. Кроме того, часть энергии воздушного потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно 75-95 %. Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим агрегатом, видимо, составляет 30-40 % мощности воздушного потока при условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом. Однако иногда ветер имеет скорость, выходящую за пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что ветроагрегат совсем не может работать, или настолько высокой, что ветроагрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Учитывая эти факторы, удельная выработка электрической энергии в течение года, видимо, составляет 15-30% энергии ветра, или даже меньше, в зависимости от местоположения и параметров ветроагрегата. Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов. Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину — генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы. Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении. В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад. Самая крупная из них мощностью 1250 кВт давала ток в сеть электроснабжения американского штата Вермонт непрерывно с 1941 по 1945 г. Однако после поломки ротора опыт прервался — ротор не стали ремонтировать, поскольку энергия от соседней тепловой электростанции обходилась дешевле. По экономическим причинам прекратилась эксплуатация ветроэлектрических станций и в европейских странах.     продолжение --PAGE_BREAK--Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных  районах,  на  дальних  островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования. Американец Генри Клюз в штате Мэн построил две мачты и укрепил на них ветродвигатели с генераторами. 20 аккумулятором по 6 В и 60 по 2 В служат ему в безветренную погоду, а в качестве резерва он имеет бензиновый движок. За месяц Клюз получает от своих ветроэлектрических агрегатов 250 кВт·ч энергии; этого ему хватает для освещения всего хозяйства, питания бытовой аппаратуры (телевизора, проигрывателя, пылесоса, электрической пишущей машинки), а также для водяного насоса и хорошо оборудованной мастерской. Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого. Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие — на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей, с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями. На рис. 2. схематически показана ветроэлектрическая установка, построенная Национальным управлением по аэронавтике и исследованию космического пространства (НАСА) в штате Огайо. На башне высотой 30,5 м укреплен генератор в поворотном обтекаемом корпусе; на валу генератора сидит пропеллер с двумя алюминиевыми лопастями длиной 19 м и весом 900 кг. Агрегат начинает работать при скорости ветра 13 км/ч, а наибольшей производительности (100 кВт) достигает при 29 км/ч. Максимальная скорость вращения пропеллера составляет 40 об/мин. В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто rкакую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра. Хранение ветряной энергии. При использовании ветра возникает серьезная про­блема: избыток энергии в ветреную погоду и недоста­ток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, кото­рый накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие во­дяную турбину и генератор постоянного или перемен­ного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнета­ния сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Элек­трический ток от ветроагрегата разлагает воду на кис­лород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности. Американский ученый Уильям Херонимус считает, что производить водород за счет энергии ветра лучше всего па море. С этой целью он предлагает установить у берега высокие мачты с ветродвигателями диаметром 60 м и генераторами. 13 тысяч таких установок могли бы разместиться вдоль побережья Новой Англии (се­веро-восток США) и “ловить” преобладающие восточ­ные ветры. Некоторые агрегаты будут закреплены на дне мелкого моря, другие будут плавать на его поверх­ности. Постоянный ток от ветроэлектрических генераторов будет питать расположенные на дне электролизные установки, откуда водород будет по подводному трубо­проводу подаваться на сушу.

Энергия рек. Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода — ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек. <shapetype coordsize=«21600,21600» o:spt=«75» o:divferrelative=«t» path=«m@4@5l@4@11@9@11@9@5xe» filled=«f» stroked=«f»><path o:extrusionok=«f» gradientshapeok=«t» o:connecttype=«rect»><lock v:ext=«edit» aspectratio=«t»><imagedata src=«dopb24851.zip» o:><img width=«221» height=«377» src=«dopb24851.zip» v:shapes="_x0000_i1025"> Вода была первым источником энергии, и, вероятно, первой машиной, в которой человек использовал энер­гию воды, была примитивная водяная турбина. Свыше 2000 лет назад горцы на Ближнем Востоке уже поль­зовались водяным колесом в виде вала с лопатками (рис.3). Суть устройства сводилась к следующему. Поток воды, отведенный из ручья или речки, давит на лопатки, передавая им свою кинетическую энергию. Лопатки приходят в движение, а поскольку они жестко скреплены с палом, вал вращается. С ним в свою оче­редь скреплен мельничный жернов, который вместе с валом вращается по отношению к неподвижному ниж­нему жернову. Именно так работали первые “механи­зированные” мельницы для зерна. Но их сооружали только в горных районах, где есть речки и ручьи с большим перепадом и сильным напором. На медленно текущих потоках водяные колеса с горизонтально размещенными лопатками малоэффективны. <imagedata src=«dopb24852.zip» o:><img width=«363» height=«389» src=«dopb24852.zip» v:shapes="_x0000_i1026"> Шагом вперед было водяное колесо Витрувия (1 в. н. э.), схема которого показана на рис.4. Это вертикальное колесо с большими лопатками и гори­зонтальным валом. Вал колеса связан деревянными зубчатыми колесами с вертикальным валом, на кото­ром сидит мельничный жернов. Подобные мельницы и сегодня можно встретить на Малом Дунае; они пере­малывают в час до 200 кг зерна. Почти полторы тысячи лет после распада Римской империи водяные колеса служили основным источником энергии для всевозможных производственных процес­сов в Европе, заменяя физический труд человека. Устройства, в которых энергия воды используется для совершения работы, принято называть водяными (или гидравлическими.) двигателями. Простейшие и са­мые древние из них — описанные выше водяные колеса. Различают колеса с верхним, средним и нижним под­водом воды. В со­временной гидроэлектростанции масса воды с большой скоростью устремляется на лопатки турбин. Вода из-за плотины течет — через защитную сетку и регулируемый затвор — по стальному трубопро­воду к турбине, над которой установлен генератор. Механическая энергия воды посредством турбины пере­дается генераторам и в них преобразуется в электриче­скую. После совершения работы вода стекает в реку через постепенно расширяющийся туннель, теряя при этом свою скорость. Гидроэлектростанции классифицируются по мощно­сти на мелкие (с установленной электрической мощ­ностью до 0,2 МВт), малые (до 2 МВт), средние (до 20 МВт) и крупные (свыше 20 МВт). Второй критерий, по которому разделяются гидроэлектростанции, —  напор. Различают низконапорные ГЭС (напор до 10 м), сред­него напора (до 100 м) и высоконапорные (свыше 100 м). В редких случаях плотины высоконапорных ГЭС достигают высоты 240 м. Такие плотины сосредо­точивают перед турбинами водную энергию, накапливая воду и поднимая ее уровень. Затраты на строительство ГЭС велики, но они ком­пенсируются тем, что не приходится платить (во вся­ком случае, в явной форме) за источник энергии — воду. Мощность современных ГЭС, спроектированных на высоком инженерном уровне, превышает 100 МВт, а К.П.Д. составляет 95% (водяные колеса имеют К.П.Д. 50-85%). Такая мощность достигается при доволь­но малых скоростях вращения ротора  (порядка 100 об/мин), поэтому современные гидротурбины пора­жают своими размерами. Например, рабочее колесо турбины Волжской ГЭС им. В. И. Ленина имеет высо­ту около 10 м и весит 420 т. Турбина — энергетически очень выгодная машина, потому что вода легко и просто меняет поступательное движение на вращательное. Тот же принцип часто используют и в машинах, которые внешне совсем не по­хожи на водяное колесо (если на лопатки воздействует пар, то речь идет о паровой турбине). Преимущества гидроэлектростанций очевидны — постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале XX века было построено всего несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием «Белый уголь». Это было лишь началом.           Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волховская ГЭС, в следующем — началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились мощные промышленные комплексы.    Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Геотермальная энергия Земля, эта маленькая зеленая планета,-наш общий дом, из которого мы пока не можем, да и не хотим, ухо­дить. По сравнению с мириадами других планет Земля действительно невелика: большая ее часть покрыта уют­ной и живительной зеленью. Но эта прекрасная и спо­койная планета порой приходит в ярость, и тогда с ней шутки плохи — она способна уничтожить все, что мило­стиво дарила нам с незапамятных времен. Грозные смерчи и тайфуны уносят тысячи жизней, неукротимые воды рек и морей разрушают все на своем пути, лесные пожары за считанные часы опустошают огромные тер­ритории вместе с постройками и посевами. Но все это мелочи по сравнению с извержением про­снувшегося вулкана. Едва ли сыщешь на Земле другие примеры стихийного высвобождения природной энергии, которые по силе могли бы соперничать с некоторыми вулканами. Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится — нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Энергетика земли — геотермальная энергетика базируется на использова­нии природной теплоты Земли. Верхняя часть земной ко­ры имеет термический градиент, равный 20-30 °С в рас­чете на 1 км глубины, и, по данным Уайта (1965 г.), ко­личество теплоты, содержащейся в земной коре до глу­бины 10 км (без учета температуры поверхности), равно приблизительно 12,6-10^26 Дж. Эти ресурсы эквивалент­ны теплосодержанию 4,6·1016 т угля (принимая среднюю теплоту сгорания угля равной 27,6-109 Дж/т), что бо­лее чем в 70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресур­сов угля. Однако геотермальная теплота в верхней части земной коры (до глубины 10 км) слишком рассеяна, что­бы на ее базе решать мировые энергетические проблемы. Ресурсы, пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты. С геологической точки зрения геотермальные энерго­ресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком. Гидротермальные системы К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, ко­торые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера и фумаролы. Образование та­ких систем связано с наличием источника теплоты  го­рячен или расплавленной скальной породой, располо­женной относительно близко к поверхности земли. Над этой зоной высокотемпературной скальной породы на­ходится формация из проницаемой горной породы, содержащая воду, которая поднимается вверх в резуль­тате ее подстилающей горячей породой. Про­ницаемая порода, в свою очередь, сверху покрыта непро­ницаемой скальной породой, образующей “ловушку” для перегретой воды. Однако наличие в этой породе трещин или пор позволяет горячей воде или пароводяной смеси подниматься к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность. В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то явление, что при приближении го­рячей воды (находящейся под высоким давлением) по скважинам из бассейна к поверхности давление падает и около 20 % жидкости вскипает и превращается в пар. Этот пар отделяется с помощью сепаратора от воды и направляется в турбину. Вода, выходящая из сепарато­ра, может быть подвергнута дальнейшей обработке в зависимости от ее минерального состава. Эту воду можно закачивать обратно в скальные породы сразу или, если это экономически оправдано, с предварительным извле­чением из нее минералов. Примерами геотермальных месторождений с горячей водой являются Уайракей и Бродлендс в Новой Зеландии, Серро-Прието в Мексике, Солтон-Си в Калифорнии, Отаке в Японии. Другим методом производства электроэнергии на базе высоко- или среднетемпературных геотермальных вод является использование процесса с применением двух­контурного (бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовав­шийся в результате кипения этой жидкости, использует­ся для привода турбины. Отработавший пар конденси­руется и вновь пропускается через теплообменник, создавая тем самым замкнутый цикл. Установки, исполь­зующие фреон в качестве теплоносителя второго контура, о настоящее время подготовлены для промышленного освоения в диапазоне температур 75-150 °С и при еди­ничной электрической мощности в пределах 10-100 кВт. Такие установки могут быть использованы для произ­водства электроэнергии в подходящих для этого местах, особенно в отдаленных сельских районах. Горячие системы вулканического происхождения Ко второму типу геотермальных ресурсов (горячие системы вулканического происхождения) относятся маг­ма и непроницаемые горячие сухие породы (зоны за­стывшей породы вокруг магмы и покрывающие ее скаль­ные породы). Получение геотермальной энергии непо­средственно из магмы пока технически неосуществимо. Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматри­вают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу (рис.5). Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещино­ватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагрева­ется II извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотрен­ных ранее способов.     продолжение --PAGE_BREAK--Системы с высоким тепловым потоком Геотермальные системы третьего типа существуют в тех районах, где в зоне с высокими значениями теплово­го потока располагается глубокозалегающий осадочный бассейн. В таких районах, как Парижский или Венгерский бассейны, температура воды, поступающая из сква­жин, может достигать 100 °С. Особая категория месторождений этого типа нахо­дится в районах, где нормальный тепловой поток через грунт оказывается в ловушке из изолирующих непрони­цаемых пластов глины, образовавшихся в быстро опускающихся геосинклинальных зонах или в областях опускания земной коры. Температу­ра воды, поступающей из геотермальных месторождений в зонах геодавления, может достигать 150-180 °С, а давление у устья скважины 28-56 МПа. Суточная про­изводительность в расчете на одну скважину может со­ставлять несколько   миллионов кубических метров флюида. Геотермальные бассейны в зонах повышенного геодавле­ния найдены во многих районах в ходе нефтегазоразведки, например, в Северной и Южной Америке, на Даль­нем и Ближнем Востоке, в Африке и Европе. Возмож­ность использования таких месторождений в энергетиче­ских целях пока еще не продемонстрирована.

Энергия мирового океана Резкое увеличение цен на топливо, трудности с его полученном, сообщения об истощении топливных ресурсов — все эти видимые признаки энергетического кризиса вызвали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана. Тепловая энергия океана Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км2) занимают моря и океаны — акватория Тихого океана составляет 180 млн. км2. Атлантического — 93 млн. км2, Индийского — 75 млн. км2.Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной. Последние десятилетие характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС — начальные буквы английских слов Осеаn Тhеrmal Energy Conversion, т.e. преобразование тепловой энергии океана — речь идет о преобразовании в электрическую энергию). В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с поло­виной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если но считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная -53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точ­нее — на зарядку аккумуляторов. Остальная вырабаты­ваемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии. Три насоса потребовались из следующего расчета: один — для подачи теплой виды из океана, второй — для подкачки холодной воды с глубины около 700 м, третий — для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак. Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба-судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой. Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа. Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это — одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии (рис.6). Верхний конец трубопровода холодной воды расположится в океане на глубине 25-50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания системы и для связи с берегом. Энергия приливов и отливов. Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление — ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные поды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней. Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер. Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см. Максимально возможная мощность в одном цикле прилив — отлив, т. е. от одного прилива до другого, выражается уравнением <imagedata src=«5460.files/image003.wmz» o:><img width=«83» height=«24» src=«dopb24853.zip» v:shapes="_x0000_i1027"> где р— плотность воды, g — ускорение силы тяжести, S — площадь приливного бассейна, R — разность уровней при приливе. Как видно из (формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые “бассейны”. Мощность электростанций в некоторых местах могла бы составить 2-20 МВт. Первая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Ди около Ливерпуля. В 1935 г. приливную электростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строительства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподалеку крупная тепловая электростанция дала более дешевую энергию. Аргентинские специалисты предлагали использовать очень высокую приливную волну в Магеллановом проливе, по правительство не утвердило дорогостоящий проект. С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт*ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море. Энергия морских течений Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, “погруженным” в атмосферу). Важнейшее и самое известное морское течение — Гольфстрим. Его основная часть проходит через Флоридский пролив между полуостровом Флорида и Багамскими островами. Ширина течения составляет 60 км, глубина до 800 м, а поперечное сечение 28 км2. Энергию Р, которую несет такой поток воды со скоростью 0,9 м/с, можно выразить формулой (в ваттах) <imagedata src=«5460.files/image005.wmz» o:><img width=«136» height=«41» src=«dopb24854.zip» v:shapes="_x0000_i1028"> где т-масса воды (кг), р-плотность воды (кг/м3), А-сечение (м2),v- скорость (м/с). Подставив цифры, получим <imagedata src=«5460.files/image007.wmz» o:><img width=«365» height=«41» src=«dopb24855.zip» v:shapes="_x0000_i1029"> Если бы мы смогли полностью использовать эту энергию, она была бы эквивалентна суммарной энергии от 50 крупных электростанций по 1000 МВт, Но эта цифра чисто теоретическая, а практически можно рассчитывать на использование лишь около 10% энергии течения. В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, к во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн з английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению. Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских “коробах” без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование инерции рабочих колес турбин с количеством воздуха в коробах, так чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря.

Энергия солнца. Для древних народов Солнце было богом. В Верхнем Египте, культура которого восходит к четвертому тысячелетию до н.э., верили, что род фараонов ведет свое происхождение от Ра — бога Солнца. Надпись на одной из пирамид представляет фараона как наместника Солнца на Земле, “который исцеляет нас своей заботой, когда выйдет, подобно Солнцу, что дает зелень землям. Каждый взор устрашится, когда увидит его в образе Ра, что встает над горизонтом”. Своей жизнетворной силой Солнце всегда вызывало у людей чувства поклонения и страха. Народы, тесно связанные с природой, ждали от него милостивых даров — урожая и изобилия, хорошей погоды и свежего дождя или же кары — ненастья, бурь, града. Поэтому в народном искусстве мы всюду видим изображение Солнца: над фасадами домов, на вышивках, в резьбе и т. п. Почти все источники энергии, о которых мы до сих пор говорили, так или иначе используют энергию Солнца: уголь, нефть, природный газ суть не что иное, как “законсервированная” солнечная энергия. Она заключена в этом топливе с незапамятных времен; под действием солнечного тепла и света на Земле росли растения, накапливали в себе энергию, а потом в результате длительных процессов превратились в употребляемое сегодня топливо. Солнце каждый год даст человечеству миллиарды тонн зерна и древесины. Энергия рек и горных водопадов также происходит от Солнца, которое поддерживает кругооборот воды на Земле. Во всех приведенных примерах солнечная энергия используется косвенно, через многие промежуточные превращения. Заманчиво было бы исключить эти превращения и найти способ непосредственно преобразовывать тепловое и световое излучение Солнца, падающее на Землю, в механическую или электрическую энергию. Всего за  три  дня Солнце посылает на Землю   столько   энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив, а за 1 с — 170 млрд. Дж. Большую часть этой энергии рассеивает или   поглощает атмосфера, особенно облака, и только треть ее достигает земной поверхности. Вся энергия, испускаемая    Солнцем, больше той ее части, которую получает Земля, в 5000000000 раз. Но даже такая “ничтожная” величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции. Согласно легенде Архимед, находясь на берегу, уничтожил неприятельский римский флот под Сиракузами. Как? При помощи зажигательных зеркал. Известно, что подобные зеркала делались также в VI веке. А в середине XVIII столетия французский естествоиспытатель Ж. Бюффон производил опыты с большим вогнутым зеркалом, состоящим из множества маленьких плоских. Они были подвижными и фокусировали в одну точку отраженные солнечные лучи. Этот аппарат был способен в ясный летний день с расстояния 68 м довольно быстро воспламенить пропитанное смолой дерево. Позднее во Франции было изготовлено вогнутое зеркало диаметром 1,3 м, в фокусе которого можно было за 16 секунд расплавить чугунный стержень. В Англии же отшлифовали большое двояковыпуклое стекло, с его помощью удавалось расплавлять чугун за три секунды и гранит — за минуту. В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор — в сущности первое устройство, превращавшее солнечную энергию в механическую. Но принцип был тем же: большое вогнутое зеркало фокусировало солнечные лучи на паровом котле, который приводил в движение печатную машину, делавшую по 500 оттисков газеты в час. Через несколько лет в Калифорнии построили действующий по такому же принципу конический рефлектор в паре с паровой машиной мощностью 15 л. с. И хотя с той поры то в одной, то в другой стране появляются экспериментальные рефлекторы-нагреватели, а в публикуемых статьях все громче напоминают о неиссякаемости нашего светила, рентабельнее они от этого не становятся и широкого распространения пока не получают: слишком дорогое удовольствие это даровое солнечное излучение. Сегодня для преобразования солнечного излучения в электрическую энергию мы располагаем двумя возможностями: использовать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечных элементах. Реализация обеих возможностей пока находится в зачаточной стадии. В значительно более широких масштабах солнечную энергию используют после ее концентрации при помощи зеркал — для плавления веществ, дистилляции воды, нагрева, отопления и т. д. Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью. Простейшее устройство такого рода-плоский коллектор; в принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (па 200-500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути дела, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.     продолжение --PAGE_BREAK--

www.ronl.ru

Реферат - Основные и нетрадиционные способы получения электроэнергии

Оглавление.

Введение……………………………………………….………….2

I . Основные способы получения энергии…………………….3

1. Тепловые электростанции……………..…………………3

2. Гидроэлектростанции……………………………………5

3. Атомные электростанции……………………..…………6

II . Нетрадиционные источники энергии……………………..9

1. Ветровая энергия…………………………………………9

2. Геотермальная энергия…………………………………11

3. Тепловая энергия океана……………………………….12

4. Энергия приливов и отливов…………………………...13

5. Энергия морских течений………………………………13

6. Энергия Солнца…………………………………………14

7. Водородная энергетика…………………………………17

Заключение………………………………………………………19
Литература……………………………………………………….21

Введение.

Научно-технический прогресс невозможен без развития энергетики, электрификации. Для повы­шения производительности труда первостепенное значение имеет механизация и автоматизация про­изводственных процессов, замена человеческого тру­да машинным. Но подавляющее большинство технических средств механизации и автоматизации (оборудова­ние, приборы, ЭВМ) имеет электрическую основу. Особенно широкое применение электрическая энергия получила для привода в действие электри­ческих моторов. Мощность электрических машин (в зависимости от их назначения) различна: от до­лей ватта (микродвигатели, применяемые во многих отраслях техники и в бытовых изделиях) до огром­ных величин, превышающих миллион киловатт (генераторы электростанций).

Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы тради­ционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива — урана и тория, из которого можно получать в реакторах-размножителях плутоний. Поэтому важно на сегодняшний день найти выгодные источники электроэнергии, причем выгодные не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкций, эксплуатации, дешевизны материалов, необходимых для постройки станции, долговечности станций.

Данный реферат является кратким, обзором современного состояния энергоресурсов человечества. В работе рассмотрены традиционные источники электрической энергии. Цель работы – прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике.

К традиционным источникам в пер­вую очередь относятся: тепловая, атомная и энергия потка воды.

Российская энергетика сегодня — это 600 тепловых, 100 гидравлических, 9 атомных электростанций. Есть, конечно, несколько электростанций использующих в качестве первичного источника солнечную, ветровую, гидротермальную, приливную энергию, но доля производимой ими энергии очень мала по сравнению с тепловыми, атомными и гидравлическими станциями.

I . Основные способы получения энергии.

1. Тепловые электростанции.

Тепловая электростанция (ТЭС), электростанция, вырабатываю­щая электрическую энергию в результате пре­образования тепловой энергии, выделяю­щейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС — основной вид элек­трической станций. Доля вырабатываемой ими электроэнергии составляла: в России и США св. 80% (1975), в мире около 76% (1973).

Около 75% всей электроэнергии России производится на тепловых электростанциях. Большинство городов России снабжаются именно ТЭС. Часто в городах используются ТЭЦ — теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. Такая система является довольно-таки непрактичной т.к. в отличие от электрокабеля надежность теплотрасс чрезвычайно низка на больших расстояниях, эффективность централизованного теплоснабжения сильно снижается, вследствие уменьшения температуры теплоносителя. Подсчитано, что при протяженности теплотрасс более 20 км (типичная ситуация для большинства городов) установка электрического бойлера в одельно стоящем доме становится экономически выгодна.

На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую.

Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические стан­ции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электро­станций (ГРЭС)..

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рис. Уголь подается в топливный бункер 1, а из него — в дробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насы­щенный пар доводится до температуры 400—650°С и под дав­лением 3—24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависят от мощности агрегатов.

Тепловые конденсацион­ные электростанции име­ют невысокий кпд (30— 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора.

Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значи­тельном расстоянии от стан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление (на рис. штриховая ли­ния), отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприя­тий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60—70%.

Такие станции строят обычно вблизи потребителей — про­мышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Рассмотренные тепловые электростанции по виду основного теплового агрегата — паровой турбины — относятся к паротур­бинным станциям. Значительно меньшее распространение полу­чили тепловые станции с газотурбинными (ГТУ), парогазовыми (ПГУ) и дизельными установками.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическая энергия струй пара пере­дается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС — весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятков дисков с рабочими лопат­ками и такое же

количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики из­вестно, что КПД тепловых двига­телей увеличивается с ростом на­чальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру — почти до 550 °С и давление — до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

По мнению ученых в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах. Но струк­тура ее изменится. Должно сократиться использование нефти. Су­щественно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канс­ко-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запа­сов топлива может хватить на века.

2. Гидроэлектростанции.

Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию по­тока воды и создание напора, и энергетического. оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию.

По схеме использования водных ре­сурсов и концентрации напоров ГЭС обыч­но подразделяют на русловые, приплотинные, деривационные с напорной и без­напорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопле­ния уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высо­ту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и во­досбросные сооружения (рис. 4). Состав гидротехнических сооружений зависит от вы­соты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолже­нием плотины и вместе с ней создаёт напорный фронт. При этом с одной сто­роны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Под­водящие спиральные камеры гидротурбин своими входными сечениями заклады­ваются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопро­пускные сооружения, водозаборные соо­ружения для ирригации и водоснабже­ния. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях по­лезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую тру­бу, а по специальным водоводам между сосед­ними турбинными камерами произво­дится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40 м, к простейшим русловым ГЭС относятся также ранее строившиеся сель­ские ГЭС небольшой мощности. На круп­ных равнинных реках основное русло пере­крывается земляной плотиной, к которой примыкает бетонная водосливная пло­тина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волж­ская ГЭС им. 22-го съезда КПСС— наиболее крупная среди станций русло­вого типа.

При более высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за пло­тиной, примыкает к нижнему бьефу. В состав гидравлической трассы меж­ду верхним и нижним бьефом ГЭС тако­го типа входят глубинный водоприёмник с мусорозадерживающей решёткой, тур­бинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит, сооружений в состав узла могут входить судоходные сооруже­ния и рыбоходы, а также дополнительные водо­сбросы Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара.

Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 дей­ствующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — на территории бывшего Советского Союза.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низ­кую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря на значительные, удельные капиталовложения на 1 квт установлен­ной мощности и продолжительные сроки строи­тельства, придавалось и придаётся боль­шое значение, особенно когда это связано с размещением электроёмких производств.

3. Атомные электростанции.

Атомная электростанция (АЭС) — электростанция, в которой атомная (ядер­ная) энергия преобразуется в элект­рическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделя­ется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обыч­ных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отли­чие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горю­чем (в основе 233 U, 235 U, 239 Pu). Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворе­ния быстро растущих потребностей в топ­ливе. Кроме того, необходимо учиты­вать всё увеличивающийся объём потреб­ления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепло­вых электростанций. Несмотря на откры­тие новых месторождений органического топ­лива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного на­значения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась в военных це­лях. Пуск первой АЭС ознаменовал от­крытие нового направления в энергети­ке, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энер­гии (август 1955, Женева).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяется в активной зоне реактора, теплоносителем, вбирается водой (теплоносителем 1-го контура), которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступав в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образованный пар поступает в турбину 4.

Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя 4) графито-газовые с газовым теплоноси­телем и графитовым замедлителем.

В России строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газо­вые реакторы применяются в Англии. В атомной энергетике Канады преобла­дают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного со­стояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верх­ней температурной границы термодинамического цикла определяется максимально допусти­мой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное го­рючее, допустимой темп-рой собственно ядер­ного горючего, а также свойствами теплоноси­теля, принятого для данного типа реактора. На АЭС тепловой реактор, которой охлаждает­ся водой, обычно пользуются низкотемпера­турными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными дав­лением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур — пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одно­контурная тепловая АЭС. В кипящих реак­торах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева.(рис. 3).

В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сго­рания.

При работе реактора концентрация де­лящихся изотопов в ядерном топливе постепенно уменьшается, и топливо выгорает. Поэтому со временем их заме­няют свежими. Ядерное горючее пере­загружают с помощью механизмов и при­способлений с дистанционным управлением. Отработавшее топливо переносят в бас­сейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его си­стемам относятся: собственно реактор с биологической защитой, теплообменни­ки, насосы или газодувные установки, осуществляющие циркуляцию теплоноси­теля; трубопроводы и арматура циркуляции контура; устройства для перезагруз­ки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного ис­полнения реакторы имеют отличительные, осо­бенности: в корпусных реакторах топливо и замедлитель расположены внутри корпу­са, несущего полное давление теплоно­сителя; в канальных реакторах топливо, охлаждаемые теплоносителем, устанавли­ваются в спец. трубах-каналах, пронизы­вающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в России (Сибирская, Белоярская АЭС и др.),

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, песок. Оборудование реакторного контура должно быть полностью герме­тичным. Предусматривается система конт­роля мест возможной утечки теплоноси­теля, принимают меры, чтобы появление не плотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю­щей местности. Оборудование реакторно­го контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслу­живаются, Радиоактивный воздух и не­большое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС спец. системой вентиляции, в которой для исключения возможно­сти загрязнения атмосферы предусмот­рены очистные фильтры и газгольдеры выдержки. За выполнением правил ра­диационной безопасности персоналом АЭС сле­дит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядер­ной реакции; аварийная система расхо­лаживания имеет автономные источники питания.

Наличие биологической защиты, систем специальной вентиляции и аварийного расхо­лаживания и службы дозиметрического контро­ля позволяет полностью обезопасить обслуживающий персонал АЭС от вред­ных воздействий радиоактивного облу­чения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная, особенность боль­шинства АЭС — использование пара сравнительно низких параметров, на­сыщенного или слабо перегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепари­рующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем, что теплоноситель и со­держащиеся в нём примеси при прохож­дении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины од­ноконтурных АЭС должно полностью исключать возможность утечки теплоно­сителя. На двухконтурных АЭС с высо­кими параметрами пара подобные требо­вания к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоак­тивными средами, повышенная жёст­кость фундаментов и несущих конст­рукций реактора, надёжная организа­ция вентиляции помещений. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор—турбина. В машинном зале рас­положены турбогенераторы и обслужи­вающие их системы. Между машинным и реакторным залами размещены вспомогательные оборудование и системы управле­ния станцией.

В большинстве промышленно развитых стран (Россия, США, Англия, Фран­ция, Канада, ФРГ, Япония, ГДР и др.) мощность действующих и строящихся АЭС к 1980 доведена до десятков Гвт. По данным Международного атомного агентства ООН, опубликован­ным в 1967, установленная мощность всех АЭС в мире к 1980 достигла 300 Гвт.

За годы, прошедшие со времени пуска в эксплуатацию пер­вой АЭС, было создано несколько конструкций ядерных реак­торов, на основе которых началось широкое развитие атомной энергетики в нашей стране.

АЭС являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде, новые энергоблоки имеют мощность практически равную мощности средней ГЭС, однако коэффициент использования установленной мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС. Об экономичности и эффективности атомных электростанций может говорить тот факт, что из 1 кг урана можно получить столько же теплоты, сколь­ко при сжигании примерно 3000 т каменного угля.

Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форсмажорных обстоятельствах: землетрясениях, ураганах, и т. п. — здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.

II. Нетрадиционные источники энергии

Ученые предостерегают: разведанных запасов органического топлива при нынешних темпах роста энергопотребления хватит всего на 70-130 лет. Конечно, можно перейти и на другие невозобновляемые источники энергии. Например, ученые уже многие годы пытаются освоить управляемый термоядерный синтез…

1. Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории – от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

По оценкам различных авторов, общий ветроэнергетический потенциал Земли равен 1200 ГВт, однако возможности использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2 .

Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не вся энергия воздушного потока может быть использована даже с помощью идеального устройства. Теоретически коэффициент полезного использования (КПИ) энергии воздушного потока может быть равен 59,3 %. На практике, согласно опубликованным данным, максимальный КПИ энергии ветра в реальном ветроагрегате равен приблизительно 50 %, однако и этот показатель достигается не при всех скоростях, а только при оптимальной скорости, предусмотренной проектом. Кроме того, часть энергии воздушного потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно 75–95 %. Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим агрегатом, видимо, составляет 30–40 % мощности воздушного потока при условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом. Однако иногда ветер имеет скорость, выходящую за пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что ветроагрегат совсем не может работать, или настолько высокой, что ветроагрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Учитывая эти факторы, удельная выработка электрической энергии в течение года, видимо, составляет 15–30% энергии ветра, или даже меньше, в зависимости от местоположения и параметров ветроагрегата.

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы. Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении.

В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад. Самая крупная из них мощностью 1250 кВт давала ток в сеть электроснабжения американского штата Вермонт непрерывно с 1941 по 1945 г. Однако после поломки ротора опыт прервался – ротор не стали ремонтировать, поскольку энергия от соседней тепловой электростанции обходилась дешевле. По экономическим причинам прекратилась эксплуатация ветроэлектрических станций и в европейских странах.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования. Американец Генри Клюз в штате Мэн построил две мачты и укрепил на них ветродвигатели с генераторами. 20 аккумулятором по 6 В и 60 по 2 В служат ему в безветренную погоду, а в качестве резерва он имеет бензиновый движок. За месяц Клюз получает от своих ветроэлектрических агрегатов 250 кВт·ч энергии; этого ему хватает для освещения всего хозяйства, питания бытовой аппаратуры (телевизора, проигрывателя, пылесоса, электрической пишущей машинки), а также для водяного насоса и хорошо оборудованной мастерской.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие – на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей, с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями.

В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 50 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

При использовании ветра возникает серьезная про­блема: избыток энергии в ветреную погоду и недоста­ток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, кото­рый накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие во­дяную турбину и генератор постоянного или перемен­ного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнета­ния сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Элек­трический ток от ветроагрегата разлагает воду на кис­лород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

2. Геотермальная энергия

Энергетика земли – геотермальная энергетика базируется на использова­нии природной теплоты Земли. Верхняя часть земной ко­ры имеет термический градиент, равный 20–30 °С в рас­чете на 1 км глубины, и, ко­личество теплоты, содержащейся в земной коре до глу­бины 10 км (без учета температуры поверхности), равно приблизительно 12,6. 1026 Дж. Эти ресурсы эквивалент­ны теплосодержанию 4,6·1016 т угля (принимая среднюю теплоту сгорания угля равной 27,6. 109 Дж/т), что бо­лее чем в 70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресур­сов угля. Однако геотермальная теплота в верхней части земной слишком рассеяна, что­бы на ее базе решать мировые энергетические проблемы. Ресурсы, пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты.

С геологической точки зрения геотермальные энерго­ресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.

К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, ко­торые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера. Образование та­ких систем связано с наличием источника теплоты — го­рячей или расплавленной скальной породой, располо­женной относительно близко к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.

В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то явление, что при приближении го­рячей воды (находящейся под высоким давлением) по скважинам из бассейна к поверхности давление падает и около 20 % жидкости вскипает и превращается в пар. Этот пар отделяется с помощью сепаратора от воды и направляется в турбину. Вода, выходящая из сепарато­ра, может быть подвергнута дальнейшей обработке в зависимости от ее минерального состава. Эту воду можно закачивать обратно в скальные породы сразу или, если это экономически оправдано, с предварительным извле­чением из нее минералов.

Другим методом производства электроэнергии на базе высоко- или среднетемпературных геотермальных вод является использование процесса с применением двух­контурного (бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовав­шийся в результате кипения этой жидкости, использует­ся для привода турбины. Отработавший пар конденси­руется и вновь пропускается через теплообменник, создавая тем самым замкн утый цикл.

Ко второму типу геотермальных ресурсов (горячие системы вулканического происхождения) относятся маг­ма и непроницаемые горячие сухие породы (зоны за­стывшей породы вокруг магмы и покрывающие ее скаль­ные породы). Получение геотермальной энергии непо­средственно из магмы пока технически неосуществимо. Технология, необходимая для использования энергии горячих сухих пород, только начинает разрабатываться. Предварительные технические разработки методов использования этих энергетических ресурсов предусматри­вают устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу. Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию в ней трещин. После этого через образованную таким образом зону трещино­ватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагрева­ется, извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотрен­ных ранее способов.

Геотермальные системы третьего типа существуют в тех районах, где в зоне с высокими значениями теплово­го потока располагается глубокозалегающий осадочный бассейн. В таких районах, как Парижский или Венгерский бассейны, температура воды, поступающая из сква­жин, может достигать 100 °С.

3. Тепловая энергия океана

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км2 ) занимают моря и океаны – акватория Тихого океана составляет 180 млн. км2. Атлантического – 93 млн. км2, Индийского – 75 млн. км2.Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Последние десятилетие характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС – начальные буквы английских слов Осеаn ТhеrmalEnergyConversion, т.e. преобразование тепловой энергии океана – речь идет о преобразовании в электрическую энергию). В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с поло­виной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если не считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная –53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точ­нее – на зарядку аккумуляторов. Остальная вырабаты­ваемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

Три насоса потребовались из следующего расчета: один – для подачи теплой виды из океана, второй – для подкачки холодной воды с глубины около 700 м, третий – для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак.

Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случае необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.

Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобн ого типа.

Новые станции ОТЕС на мощн ость во много десятков и сотен мегаватт проекти руются без судна. Это – одна грандиоз ная труба, в верхней части которой н аходится круглый машин ный зал, где размещены все необходимые устройства для п реобразования энергии.

4. Энергия приливов и отливов.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные воды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой, Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив. Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней.

Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.

Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см.

Максимально возможная мощность в одном цикле прилив – отлив, т. е. от одного прилива до другого, выражается уравнением

где р – плотность воды, g – ускорение силы тяжести, S – площадь приливного бассейна, R – разность уровней при приливе.

Как видно из формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны». Мощность электростанций в некоторых местах могла бы составить 2–20 МВт.

Пе рвая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Ди около Ливерпуля. В 1935 г. приливную эле ктростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побе режье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строите льства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподале ку крупная теплов ая электростанци я дала боле е дешевую энергию.

Арге нтинские специалисты предлагали использовать очень высокую приливную волну в Магеллановом проливе, но правительство н е утве рдило дорогостоящий проект.

5. Энергия морских течений

Неисче рпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в ме ханическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, «погруженным» в атмосферу).

Важнейше е и самое известное морское течение – Гольфстрим. Его основная часть проходит через Флоридский пролив между полуостровом Флорида и Багам скими островами. Ши рина течен ия составляет 60 км, глубина до 800 м, а поперечное сечение 28 км2 . Энергию Р, которую несет такой поток воды со скоростью 0,9 м/с, можно выразить формулой (в ваттах)

где т– масса воды (кг), р – плотность воды (кг/м3 ), А– сечение (м2 ), v– скорость (м/с). Подставив цифры, получим

Если бы мы смогли полностью использовать эту энергию, она была бы эквив але нтна суммарной энергии от 50 крупных электростанций по 1000 МВт, Но эта цифра чисто теоретическая, а практиче ски можно рассчитывать на использование лишь около 10% энергии течения.

В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую лини ю, к во многих местах море остается бурным в течени е длительного времени. По оценкам ученых, за счет энергии морских волн в ан глийских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.

Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских «коробах» без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действ ует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование и нерции рабочих колес турбин с количе ством воздуха в коробах, так чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря.

6. Энергия солнца.

Почти все источники энергии, о которых мы до сих пор говорили, так или иначе используют энергию Солнца: уголь, нефть, природный газ суть не что иное, как «законсервированная» солнечная энергия. Она заключена в этом топливе с незапамятных времен; под действием солнечного тепла и света на Земле росли растения, накапливали в себе энергию, а потом в результате длительных процессов превратились в употребляемое сегодня топливо. Солнце каждый год даст человечеству миллиарды тонн зерна и древесины. Энергия рек и горных водопадов также происходит от Солнца, которое поддерживает кругооборот воды на Земле.

Во всех приведенных примерах солнечная энергия используется косвенно, через многие промежуточные превращения. Заманчиво было бы исключить эти превращения и найти способ непосредственно преобразовывать тепловое и световое излучение Солнца, падающее на Землю, в механическую или электрическую энергию. Всего за три дня Солнце посылает на Землю столько энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив, а за 1 с – 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть ее достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той ее части, которую получает Земля, в 5000000000 раз. Но даже такая «ничтожная» величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Согласно легенде Архимед, находясь на берегу, уничтожил неприятельский римский флот под Сиракузами. Как? При помощи зажигательных зеркал. Известно, что подобные зеркала делались также в VI веке. А в середине XVIII столетия французский естествоиспытатель Ж. Бюффон производил опыты с большим вогнутым зеркалом, состоящим из множества маленьких плоских. Они были подвижными и фокусировали в одну точку отраженные солнечные лучи. Этот аппарат был способен в ясный летний день с расстояния 68 м довольно быстро воспламенить пропитанное смолой дерево. Позднее во Франции было изготовлено вогнутое зеркало диаметром 1,3 м, в фокусе которого можно было за 16 секунд расплавить чугунный стержень. В Англии же отшлифовали большое двояковыпуклое стекло, с его помощью удавалось расплавлять чугун за три секунды и гранит – за минуту.

В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор – в сущности первое устройство, превращавшее солнечную энергию в механическую. Но принцип был тем же: большое вогнутое зеркало фокусировало солнечные лучи на паровом котле, который приводил в движение печатную машину, делавшую по 500 оттисков газеты в час. Через несколько лет в Калифорнии построили действующий по такому же принципу конический рефлектор в паре с паровой машиной мощностью 15 л. с.

И хотя с той поры то в одной, то в другой стране появляются экспериментальные рефлекторы-нагреватели, а в публикуемых статьях все громче напоминают о неиссякаемости нашего светила, рентабельнее они от этого не становятся и широкого распространения пока не получают: слишком дорогое удовольствие это даровое солнечное излучение.

Сегодня для преобразования солнечного излучения в эле ктрическую энергию мы располагаем двумя возможностями: использов ать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечн ых элементах. Реализация обеих возможностей пока находится в зачаточной стадии. В значительно более широких масштабах солнечную энергию и спользуют после ее концентрации при помощи зеркал – для плавления веществ, дистилляции воды, н агрев а, отопления и т. д.

Поскольку энергия солнечного излучени я распреде лена по большой площади (иными словами, имее т ни зкую плотность), любая устан овка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточн ой поверхностью.

Простейшее устройство такого рода–п лоский ко лле ктор; в принципе это черная плита, хорошо и золированная снизу. Она прикрыта сте клом или пластмассой, которая пропускает свет, но не п роп ускает и нфракрасное те пловое излучен ие. В пространстве между п ли той и стеклом чаще всего размещают черные трубки, че ре з которые текут вода, масло, ртуть, воздух, се рнистый ангидрид и т. п. Солнечное излучение, прони кая через стекло или пластмассу в коллектор, поглощае тся черными трубками и плитой и нагре вае т рабочее ве щество в трубках. Тепловое излучени е не может выйти из коллектора, поэтому температура в нем значите льно выше (па 200–500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парн ики, по сути дела, представляют собой простые колле кто ры солнечного и злучения. Но чем дальше от тропиков, тем менее эфф ек тивен горизон тальный коллектор, а поворачивать его всле д за Со лнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавли вают под определенным оптимальным углом к югу.

Более сложным и дорогостоящим коллектором являе тся вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной ге ометрической точки – фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу–это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов д остигает 3000°С и выше.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт в год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Но, тем не менее, станции-преобразователи солнечной энергии строят и они работают.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека.

Крымская СЭС невелика – мощность всего 5 МВт. В определенном смысле она – проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10–20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные – до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Но, для примера, электростанция на солнечных батареях вблизи экватора с суточной выработкой 500 МВт·ч (примерно столько энергии вырабатывает довольно крупная ГЭС) при к.п.д. 10% потребовала бы эффективной поверх­ности около 500000 м2. Ясно, что такое огромное коли­чество солнечных полупроводниковых элементов может. окупиться только тогда, когда их производство будет действительно дешево. Эффективность солнечных элек­тростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно сла­бой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.

Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле – в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радио­аппаратура, электрические бритвы и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спут­нике Земли (запущенном на орбиту 15 мая 1958 г.).

Идет работа, идут оценки. Пока они, надо признать, не в пользу солнечных электростанций: сегодня эти сооружения все еще относятся к наиболее сложным и самым дорогостоящим техническим методам использования гелиоэнергии. Нужны новые варианты, новые идеи. Недостатка в них нет. С реализацией хуже.

7. Водородная энергетика

Водород, самый простой и легкий из всех химических элементов, можно считать идеальным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды. Водородное пламя не выделяет в атмосферу продуктов, которыми неизбежно сопровождается горение любых других видов топлива: углекислого газа, окиси углерода, сернистого газа, углеводородов, золы, органических перекисей н т. п. Водород обладает очень высокой теплотворной способностью: при сжигании 1 г водорода получается 120 Дж тепловой энергии, а при сжигании 1 г бензина – только 47 Дж.

Водород можно транспортировать и распределять по трубопроводам, как природный газ. Трубопроводный транспорт топлива – самый дешевый способ дальней передачи энергии. К тому же трубопроводы прокладываются под землей, что не нарушает ландшафта. Газопроводы занимают меньше земельной площади, чем воздушные электрические линии. Передача энергии в форме газообразного водорода по трубопроводу диаметром 750 мм на расстояние свыше 80 км обойдется дешевле, чем передача того же количества энергии в форме переменного тока по подземному кабелю. На расстояниях больше 450 км трубопроводный транспорт водорода дешевле, чем использование воздушной линии электропередачи постоянного тока..

Водород – синтетическое топливо. Его можно получать из угля, нефти, природного газа либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное – на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.

Сейчас водород производят главным образом (около 80%) из нефти. Но это неэкономичный для энергети­ки процесс, потому что энергия, получаемая из такого водорода, обходится в 3,5 раза дороже, чем энергия от сжигания бензина. К тому же себестоимость такого во­дорода постоянно возрастает по мере повышения цен на нефть.

Небольшое количество водорода получают путем электролиза. Производство водорода методом электро­лиза воды обходится дороже, чем выработка его из нефти, но оно будет расширяться и с развитием атом­ной энергетики станет дешевле. Вблизи атомных элек­тростанций можно разместить станции электролиза воды, где вся энергия, выработанная электростанцией, пойдет на разложение воды с образованием водорода. Правда, цена электролитического водорода останется выше цены электрического тока, зато расходы на тран­спортировку и распределение водорода настолько малы, что окончательная цена для потребителя будет вполне приемлема по сравнению с ценой электроэнергии.

Сегодня исследователи интенсивно работают над удешевлением технологических процессов крупнотон­нажного производства водорода за счет более эффек­тивного разложения воды, используя высокотемпера­турный электролиз водяного пара, применяя катализа­торы, полунепроницаемые мембраны и т. п.

Большое внимание уделяют термолитическому мето­ду, который (в перспективе) заключается в разложе­нии воды на водород и кислород при температуре 2500 °С. Но такой температурный предел инженеры еще не освоили в больших технологических агрегатах, в том числе и работающих на атомной энергии (в высо­котемпературных реакторах пока рассчитывают лишь на температуру около 1000°С). Поэтому исследовате­ли стремятся разработать процессы, протекающие в не­сколько стадий, что позволило бы вырабатывать водо­род в температурных интервалах ниже 1000°С.

В 1969 г. в итальянском отделении «Евратома» была пущена в эксплуатацию установка для термолитического получения водорода, работающая с к.п.д. 55% при температуре 730°С. При этом использовали бромистый кальций, воду и ртуть. Вода в установке разлагается на водород и кислород, а остальные реаген­ты циркулируют в повторных циклах. Другие – скон­струированные установки работали – при температурах 700–800°С. Как полагают, высокотемпературные реак­торы позволят поднять к.п.д. таких процессов до 85%. Сегодня мы не в состоянии точно предсказать, сколько будет стоить водород. Но если учесть, что цены всех современных видов энергии проявляют тен­денцию к росту, можно предположить, что в долго­срочной перспективе энергия в форме водорода будет обходиться дешевле, чем в форме природного газа, а возможно, и в форме электрического тока.

Когда водород станет столь же доступным топливом, как сегодня природный газ, он сможет всюду его заме­нить. Водород можно будет сжигать в кухонных плитах, в водонагревателях и отопительных печах, снабженных горелками, которые почти или совсем не будут отли­чаться от современных горелок, применяемых для сжи­гания природного газа.

Как мы уже говорили, при сжигании водорода не остается никаких вредных продуктов сгорания. Поэтому отпадает нужда в системах отвода этих продуктов для отопительных устройств, работающих на водороде, Более того, образующийся при горении водяной пар можно считать полезным продуктом — он увлажняет воздух (как известно, в современных квартирах с цен­тральным отоплением воздух слишком сух). А отсут­ствие дымоходов не только способствует экономии строительных расходов, но и повышает к. п. д. отопле­ния на 30%.

Водород может служить и химическим сырьем во многих отраслях промышленности, например при про­изводстве удобрений и продуктов питания, в металлур­гии и нефтехимии. Его можно использовать и для вы­работки электроэнергии на местных тепловых электро­станциях.

Заключение.

Учитывая результаты существующих прогнозов по истощению к середине – концу следующего столе­тия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которо­го, по расчетам, должно хватить на 300 лет) из-за вредных выбро­сов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-раз­множителей хватит не менее чем на 1000 лет можно считать, что на данном этапе развития науки и техники тепловые, атомные и гидроэлектрические источники будут еще долгое время преобладать над остальными источниками электроэнергии. Уже началось удорожание нефти, поэтому тепловые электростанции на этом топливе будут вытеснены станциями на угле.

Некоторые ученые и экологи в конце 1990-х гг. говорили о скором запрещении государствами Западной Европы атомных электростанции. Но исходя из современных анализов сырьевого рынка и потребностей общества в электроэнергии, эти утверждения выглядят неуместными.

Неоспорима роль энергии в поддержании и дальней­шем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой дея­тельности, которая не требовала бы – прямо или кос­венно – больше энергии, чем ее могут дать мускулы человека.

Потребление энергии – важный показатель жизнен­ного уровня. В те времена, когда человек добывал пи­щу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овла­дения огнем эта величина возросла до 16 МДж: в при­митивном сельскохозяйственном обществе она составля­ла 50 МДж, а в более развитом – 100 МДж.

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма».

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.

Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю… Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, «воинствующая» линия энергетики.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика «щадящая». Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому — быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, «черных дырах», вакууме, — это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Литература.

1. Баланчевадзе В. И., Барановский А. И. и др.; Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. – М.: Энергоатомиздат, 1990. – 344 с.

2. Более чем достаточно. Оптимистический взгляд на будущее энергетики мира/ Под ред. Р. Кларка: Пер. с англ. – М.: Энергоатомиздат, 1994. – 215 с.

3. Источники энергии. Факты, проблемы, решения. – М.: Наука и техника, 1997. – 110 с.

4. Кириллин В. А. Энергетика. Главные проблемы: В вопросах и ответах. – М.: Знание, 1997. – 128 с.

5. Мировая энергетика: прогноз развития до 2020 г./ Пер. с англ. под ред. Ю. Н. Старшикова. – М.: Энергия, 1990. – 256 с.

6. Нетрадиционные источники энергии. – М.: Знание, 1982. – 120 с.

7. Подгорный А. Н. Водородная энергетика. – М.: Наука, 1988.– 96 с.

8. Энергетические ресурсы мира/ Под ред. П.С.Непорожнего, В.И. Попкова. – М.: Энергоатомиздат, 1995. – 232 с.

9. Юдасин Л. С… Энергетика: проблемы и надежды. – М.: Просвещение, 1990. – 207с.

www.ronl.ru

Содержение:

ТИТУЛЬНЫЙ ЛИСТ 2

ЭНЕРГИЯ. РЕСУРСЫ. МЕТОДЫ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ. СООТНОШЕНИЯ ЕДИНИЦ ИЗМЕРЕНИЯ. 3

ЭНЕРГЕТИКА И ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ. ТЕРМИНЫ. 19

ЭНЕРГОСБЕРЕЖЕНИЕ. ТЕРМИНЫ И ПОНЯТИЯ. 28

ЭНЕРГЕТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ. СОСТАВ ПОКАЗАТЕЛЕЙ. 34

ЭНЕРГОСБЕРЕЖЕНИЕ В ЗДАНИЯХ. ОСНОВНЫЕ ТЕРМИНЫ. 43

ЭНЕРГЕТИКА И ЭКОНОМИКА. ТЕРМИНЫ. 59

ЭНЕРГОБАЛАНС ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ. 67

ГАЗОВОЕ ХОЗЯЙСТВО. СОЛНЕЧНАЯ ЭНЕРГИЯ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ. 72

СОЛНЕЧНАЯ ЭНЕРГИЯ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ. 76

ВЕТРОЭНЕРГЕТИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ. 85

ТЕОРИЯ РАЗВИТИЯ БИОСФЕРЫ. 137

ОБ ИТОГАХ ХХ ВЕКА. 164

ИСТОРИЯ ЭНЕРГОСБЕРЕЖЕНИЯ В ЛИЦАХ. 174

ЭНЕРГЕТИЧЕСКИЕ ЗАКОНЫ, ЗАКОНОМЕРНОСТИ, ПРАВИЛА. 180

ФОРМИРОВАНИЕ И РЕАЛИЗАЦИЯ ПОЛИТИКИ ЭНЕРГОСБЕРЕЖЕНИЯ. 186

НОРМАТИВНО-ПРАВОВАЯ БАЗА ЭНЕРГОСБЕРЕЖЕНИЯ В РОССИИ. 191

ОТРАСЛЕВОЕ ЭНЕРГОСБЕРЕЖЕНИЕ. 205

ДОМАШНЯЯ ЭНЕРГЕТИКА. 247

МЕТОДЫ И СРЕДСТВА ОПТИМИЗАЦИИ ЭНЕРГОПОТРЕБЛЕНИЯ В НЕРЕГУЛИРУЕМОМ ПРОМЫШЛЕННОМ ЭЛЕКТРОПРИВОДЕ ПЕРЕМЕННОГО ТОКА. 263

ЧАСТОТНО-РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД ПЕРЕМЕННОГО ТОКА. 264

СПЕЦИАЛЬНЫЕ СРЕДСТВА АВТОМАТИЗАЦИИ, КОНТРОЛЯ И УПРАВЛЕНИЯ УРОВНЕМ ЭНЕРГОПОТРЕБЛЕНИЯ В ПРОМЫШЛЕННОМ ОБОРУДОВАНИИ. 273

ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ В КОММУНАЛЬНОЙ СФЕРЕ. 273

ЭНЕРГЕТИЧЕСКИЕ ОБСЛЕДОВАНИЯ НА ПРЕДПРИЯТИИ. 273

ЭФФЕКТИВНОСТЬ ЭНЕРГОИСПОЛЬЗОВАНИЯ. 289

ЭНЕРГЕТИЧЕСКИЙ ПАСПОРТ ПРЕДПРИЯТИЯ. 302

КОНТРОЛЬ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. 314

ВЛИЯНИЕ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ НА РАБОТУ ЭЛЕКТРОПРИЕМНИКОВ. 326

СТИМУЛИРОВАНИЕ ЭНЕРГОСБЕРЕЖЕНИЯ. 355

ЦЕНЫ И ТАРИФЫ НА ЭЛЕКТРОЭНЕРГИЮ. 364

ЭНЕРГОСБЕРЕЖЕНИЕ – НОВОЕ ЯВЛЕНИЕ ОБЩЕСТВЕННОЙ ЖИЗНИ. 370

УПРАВЛЕНИЕ ЭНЕРГОСБЕРЕЖЕНИЕМ В РЕГИОНЕ. 388

АНАЛИЗ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА. 414

ОЦЕНКА ПОТЕНЦИАЛА ЭНЕРГОСБЕРЕЖЕНИЯ. 428

РАЗРАБОТКА ПРОГРАММ ЭНЕРГОСБЕРЕЖЕНИЯ. 436

ФОРМИРОВАНИЕ КОМПЛЕКСА ЭНЕРГОСБЕРЕГАЮЩИХ МЕРОПРИЯТИЙ. 442

НЕДОУЧЕТ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И КОММЕРЧЕСКИЕ ПОТЕРИ. 449

АНАЛИЗ ПОТЕРЬ И МЕРОПРИЯТИЙ ПО ИХ СНИЖЕНИЮ. 455

НОРМИРОВАНИЕ ПОТЕРЬ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. 464

Титульный лист

Министерство образования Российской Федерации

Омский государственный технический университет

Кафедра ЭсПП

Реферат

по дисциплине «История электроэнергетики»

на тему:

________________________________________________

Выполнил студент группы __________

_________________________________

Проверил

_________________________________

Омск 2006

Энергия. Ресурсы. Методы преобразования энергии. Соотношения единиц измерения.

Энергия (от греч. energeia — действие, деятельность), общая коли­чественная мера различных форм движения материи. Вследствие су­ществования закона сохранения энергии, понятие энергии связывает воедино все явления природы.

Приведем одну из классификаций видов энергии.

1. Аннигиляционная энергия — полная энергия системы «вещество — антивещество», освобождающаяся в процессе их соединения и анни­гиляции (взаимного уничтожения, т.е. слияния и «исчезновения») в различных видах.

2. Ядерная энергия — энергия связи нейтронов и протонов в ядре, освобождающаяся в различных видах при делении тяжелых и синте­зе легких ядер; в последнем случае ее называют «термоядерной».

3. Химическая (логичнее — атомная) энергия — энергия системы из двух или более реагирующих между собой веществ. Эта энергия освобождается в результате перестройки электронных оболочек ато­мов и молекул при химических реакциях.

4. Гравистатическая энергия — потенциальная энергия ультрасла­бого взаимодействия всех тел, пропорциональная их массам. Прак­тическое значение имеет энергия тела, которую оно накапливает, преодолевая силу земного притяжения.

5. Электростатическая энергия — потенциальная энергия взаи­модействия электрических зарядов, то есть запас энергии электрически заряженного тела, накапливаемый в процессе преодоления им сил электрического поля.

6. Магнитостатическая энергия — потенциальная энергия взаи­модействия «магнитных зарядов», или запас энергии, накапливаемый телом, способным преодолевать силы магнитного поля в процессе перемещения против направления действия этих сил. Источником магнитного поля может быть постоянный магнит, электрический ток.

7. Нейтриностатическая энергия — потенциальная энергия слабого взаимодействия «нейтринных зарядов», или запас энергии, накапливаемый в процессе преодоления сил р-поля — «нейтрин­ного поля». Вследствие огромной проникающей способности ней­трино накапливать энергию таким способом практически невоз­можно.

8. Упругостная энергия — потенциальная энергия механически упруго измененного тела (сжатая пружина, газ), освобождающаяся при снятии нагрузки чаще всего в виде механической энергии.

9. Тепловая энергия — часть энергии теплового движения частиц тел, которая освобождается при наличии разности температур меж­ду данным телом и телами окружающей среды.

10. Механическая энергия — кинетическая энергия свободно дви­жущихся тел и отдельных частиц.

11. Электрическая (электродинамическая) энергия — энергия элек­трического тока во всех его формах.

12. Электромагнитная (фотонная) энергия — энергия движения фотонов электромагнитного поля.

13. Мезонная (мезонодинамическая) энергия — энергия движения мезонов (пионов) — квантов ядерного поля, путем обмена которыми взаимодействуют нуклоны (теория Юкавы, 1935 г.).

14. Гравидинамическая (гравитонная) энергия — энергия движе­ния гипотетических квантов гравитационного поля — гравитонов.

15. Нейтринодинамическая энергия — энергия движения всепроникающих частиц β-поля - нейтрино.

Таковы «лица» многоликой царицы — Энергии. А нельзя ли чис­ло их увеличить или убавить? Теоретически можно, но для этого нуж­ны веские аргументы.

Так, иногда выделяют еще «колебательную» и «инерционную» энергии. Однако и колебательный характер движения, и инерция свой­ственны различным видам материи и движения (например, «звуко­вая энергия» есть разновидность механической), а потому уже вклю­чены в классификацию.

Часто в особый вид энергии выделяют биологическую. Но биоло­гические процессы — всего лишь особая группа физико-химических процессов, в которых участвуют те же виды энергии, что и в других. Обычно в растениях электромагнитная энергия солнечного излуче­ния превращается в химическую энергию, а в организмах животных химическая энергия пищи превращается в тепловую, механическую, электрическую, а иногда и в световую (электромагнитную). Поэтому правильнее говорить не о биологической энергии, а о биологических преобразователях энергии — растениях и животных.

А существует ли «психическая энергия»? Большинство специалистов считают, что пока нет оснований ее выделять, так как неясно, каким материальным носителям, формам движения и видам взаимодействия можно сопоставить эту энергию. Однако ни один акт человеческой дея­тельности не может произойти без мотивационного, а значит, и «психо­энергетического» обеспечения, источником которого служит физико-химическая энергия организма. А на что еще можно рассчитывать в будущем? Эксперименты на мощных ускорителях элементарных частиц свидетельствуют, что считавшиеся неделимыми нейтрон и протон, ве­роятно, состоят из еще более «элементарных» частиц, чему, возможно, соответствует какой-то новый вид или виды энергии.

studfiles.net

Реферат Энергия, ее виды и использование

Энергия, ее виды и использование

В физике энергия обычно обозначается латинской буквой E.

В системе СИ энергия измеряется в джоулях. В системе СГС - в эргах. Кроме этих основных единиц измерения на практике используется очень много других удобных при конкретном застовування единиц. В атомной и ядерной физиках а также в физике элементарных частиц энергию измеряют электрон-вольтами, в химии калориями, в физике твердого тела градусами Кельвина, в оптике обращенными сантиметрами, в квантовой химии в самосогласованного.

В соответствии к различным формам движения материи, различают несколько типов энергии: механическая, электромагнитная, химическая, ядерная, тепловая, гравитационная и др.. Это деление достаточно условно. Так химическая энергия состоит из кинетической энергии движения электронов, их взаимодействия и взаимодействия с атомами.

Кроме того, различают энергию внутреннюю энергию и энергию в поле внешних сил. Внутренняя энергия равна сумме кинетической энергии движения молекул и потенциальной энергии взаимодействия молекул между собой. Внутренняя энергия изолированной системы является постоянной.

Энергия системы однозначно зависит от параметров, характеризующих ее состояние. В случае непрерывной среды вводят понятие плотности энергии в единице объема и плотности потока энергии, уровня произведения плотности энергии на скорость ее перемещения.

результате существования закона сохранения энергии понятие энергия связывает все явления природы.

Энергия - это общая количественная мера движения и взаимодействия всех видов материи и их взаимных превращений. Таким образом, понятие энергии, как и материи, является философской категорией. Однако конкретные виды энергии (кинетическая, потенциальная, механическая, внутренняя и др..) Имеют вполне конкретный физический смысл.

Величина называется кинетической энергией, то есть энергией движущегося тела. Таким образом, работа постоянной силы, которая перемещает тело горизонтально при отсутствии трения, равна его кинетической энергии или изменении кинетической энергии:

Это положение называют теоремой о кинетической энергии.

Кинетическая энергия, как и скорость, зависит от системы отсчета, тобтo является относительной величиной.

Таким образом, потенциальная энергия - это энергия гравитационного, электрического взаимодействия тел зависит от взаимного расположения тел или энергия взаимодействия частей тела при упругих деформациях. При движении тела в потенциальном поле работа, с одной стороны, доривяюе изменении его кинетической энергии, а с другой, уменьшению потенциальной энергии:

Сумма кинетической и потенциальной энергии тела является его полной механической энергией.

Таким образом, полная механическая энергия тела, перемещается в потенциальном поле, остается постоянной. Это утверждение (законом сохранения механической энергии для одного тела, еще движется в потенциальном поле.

Для системы тел закон сохранения механической энергии формулируется так: полная механическая энергия замкнутой системы тел, между которыми действуют консервативные силы, остается постоянной.

Под действием сил трения и сопротивления механическая энергия тел пере-творюеться в кинетическую энергию хаотического движения атомов и молекул вещества, а также в потенциальную энергию их взаимодействия. Эта часть энергии тела называется внутренней.

С учетом изменения внутренней энергии, закон сохранения энергии, как всеобщий закон природы, формулируется так: при любых процессах полная энергия изолированной системы не изменяется; энергия системы может только превращаться из одной формы в другую и перераспределяться между частями системы.

Источники электрической энергии их преимущества и недостатки.

К традиционным источников производства электроэнергии принято относить производство электроэнергии на ТЭС, ГЭС и АЭС. Каждая из современный электростанций имеет свои недостатки: ГЭС - изменениями водного баланса и вытекающими из этого негативными воздействиями на экосистемы, ТЭС - выбросами в атмосферу вредных веществ, тепловым загрязнением год, АЭС - угрозой радиоактивного загрязнения.

вирбництва электроэнергии на ТЭС (тепловых электростанциях) занимает в мире сегодня первое место. Однако ТЭС довольно сильно загрязняют окружающую среду.

Гидроэнергетика имеет большие перспективы развития. Удельный вес гидроэнергии в мировом энергетическом балансе на середину 90-х годов равнялась 20%. По мощности (более 5 млн кВт) и количеством электростанций первенство принадлежит Бразилии, США и Венесуэле. В России построено несколько каскадов ГЭС Волго-Камский, Ангаро-Енисейский. На Ангаро-Енисейском каскаде действуют Саяно-Шушенская (6,4 млн. кВт), Красноярская (6 млн Вт), Братская (4,5 млн кВт), Усть-Илимска (4300000 кВт) и другие ГЭС. Крупные ГЭС построены в Бразилии, США, Канаде. Например, Гранд-Кули на р Колумбия в США (10,8 млн. кВт), Черчилль в Канаде (5,2 млн. кВт), Итайпу в Бразилии (12600000 кВт). В Китае строится крупнейшая в мире ГЭС "Три ущелья" на реке Янцзы мощностью 17700000 кВт.

Несмотря гидроэнергетическое строительство, продолжающийся во всем мире, роль ГЭС в энергоснабжении постоянно уменьшается. Это объясняется высокими темпами строительства ТЭС, работающих на минеральном топливе.

Атомная энергетика стала отдельной отраслью энергетики после второй мировой войны. Сегодня она играет важную роль в электроэнергетике многих стран мира.

Атомные электростанции (АЭС) используют транспортабельное топливо - уран, их располагают независимо от топливно-энергетического фактора и ориентируют на потребителей в районах с напряженным топливно-энергетическим балансом. Поскольку АБС очень водосодержащих, их сооружают возле водных источников. К наибольшим экспортерам урановых концентратов принадлежат Канада, Австралия, ЮАР, Нигер, Бразилия и США. Роль атомных электростанций непрерывно растет. По состоянию на 1995 год в мире уже работало 428 реакторов общей мощностью 358 млн кВт, 108 реакторов 30% мощностей), в США, 55 (17% мощностей) - во Франции, 49 (10% мощностей) - в Японии, более чем за 10 реакторов имели ФРГ, Канада, Великобритания, Россия, Украина, Швеция и Республика Корея (каждая из стран 4-6% мировых мощностей АЭС). В отдельных странах доля электроэнергии, вырабатываемой на атомных станциях, исключительно велика. Так, во Франции АЭС производят 3/4 электроэнергии страны, в Бельгии и Литве - 3/5, в Украине, Швеции, Венгрии, Словакии и Республике Корея - более 1/3. Добыча урана для атомной энергетики мира сосредоточен в небольшой группе стран: Канаде, ЮАР, Австралии СЕЛА, Нигере, Франции, ФРГ, Украине, Казахстане, Узбекистане.

Электроэнергетика крайне нужна отрасль для современного общества. Однако помимо большой пользы она приносит много экологических проблем. Использование только традиционных источников энергии (нефти, газа, ядерного топлива) разрушает и загрязняет землю, водные ресурсы и воздуха. Попробуем рассмотреть их и определить возможные пути их решения.

Гидроэнергетические технологии имеют много пере-весов, но есть и существенные недостатки. Например, дождевые се-зоны, низкие водные ресурсы во время засухи могут сер-йозни влиять на количество произведенной энергии. Это может стать серьезной проблемой там, где гидроенер-гия составляет значительную часть в энергетическом комп-лекса страны, строительство плотин является причиной мно-ти проблем переселения жителей, пересихан-ния природных русел рек, заиление водохранилищ, водных споров между соседними странами, значительная стоимости этих проектов. Строительство ГЭС на равнин-ных реках приводит к затоплению больших тер-торий. Значительная часть площади водоемов, образуют ся, - мелководье. В летнее время за счет со-нячнои радиации в них активно развивается водная растительность, происходит так называемое «цветение» воды.

Изменение уровня воды, иногда до полного высушивания, приводит к гибели растительности. Плотины препятствуют миграции рыб. Многокаскадные ГЭС уже сейчас превратили реки в ряд озер, где возникают болота. В этих реках гибнет рыба, а окружающую ло них изменяется микроклимат, еще более разрушаю-или природные экосистемы.

О вредности ТЭС, то при сгорании топлива в тепловых двигателях выделяются вредные вещества: закись углерода, соединения азота, соединения свинца, а также выделяется в атмосферу значительное количество теплоты. Кроме того, применение паровых турбин на ТЭС требует отвода больших площадей под пруды, в которых охлаждается отработанный пар. Ежегодно в мире сжигается 5 млрд. тонн угля и 3,2 млрд. тонн нефти, это сопровождается выбросом в атмосферу 2-10 '° Дж теплоты. Запасы органического топлива на Земле распределены крайне неравномерно, и по нынешним темпам потребления угля хватит на 150-200 лет, нефти - на 40-50 лет, а газа примерно на 60 лет. Весь цикл работ, связанных с добычей, перевозкой и сжиганием органических ного топлива (главным образом угля), а также ут-ванием отходов, сопровождается выделением большого количества химических загрязнителей. Добыча угля связан с большим засолением водных резервуаров куда сбрасываются воды из шахт. Кроме это-го, в воде, откачиваемой, содержатся изотопы радия и радон. ТЭС, хотя и имеет современные системы очистки продуктов сжигания угля, выбрасывает за год в атмосферу по разным оценкам от 10 до 120 тыс. тонн оксидов серы, 2-20 тыс. тонн оксидов азота, /700-1500 тонн пепла (без очистки & mdash ; в 2т-3 раза больше) и выделяет 3-7 млн. тонн оксида углерода. Кроме того, образуется более-300 тыс. тонн золы, которая содержит около 400-т токсичных металлов (мышьяка, кадмия, свинца, ртути). Можно отметить, что ТЭС, работающей на угле, выбрасывает в атмосферу более радиоактивных веществ, чем АЭС такой же мощности. Это связано с вы-ваться с выбросом различных радиоактивных элементов, содержащихся в угле в виде вкраплений (радий, торий, полоний и др.)..Для количественной оценки воздействия радиации вводится по понятия «коллективная доза», т.е. произведение значения дозы на население, подвергшееся воздействию радиации (он выражается в человеко-зиверт). Оказалось, что в начале 90-х годов прошлого века ежегодная коллективная доза облучения населения Украины за счет тепловой энергетики составила 767 чел /н и за счет атомной-188 чел /н.

В наше время в атмосферу ежегодно выбрасывается 20-30 млрд. тонн оксида углерода. Прогнозы показывают, что при сохранении таких темпов в будущем к середине века средняя температура на Земле может повыситься на несколько градусов, что приведет к непредвиденным глобальных климатических изменений. Сравнивая экологическую действие различных энергоисточников, необходимо учесть их влияние на здоровье человека. Высокий риск для работников в случае исполь-зования угля связан с его добычей в шахтах и транспортировкой и с экологическим воздействием про-дуктов его сжигания. Последние две причины касаются нефти и газа и влияют на все население. Установлено, что глобальное влияние выбросов от сжигания угля и нефти на здоровье людей действует при-мерно так же, как авария типа Чернобыльской, повторяющегося раз в год. Это - «тихий Чернобыль», последствия которого непосредственно невидимы, но постоянно влияют на экологию. Концентрация токсичных примесей в химических отходах стабильная, и в конце концов все они перейдут в экосферу, в отличие от радиоактивных отходов АЭС, распадаются.

В целом реальный радиационное воздействие АЭС на природную сре-ды намного (в 10 и более раз) меньше при-допустимых. Если учесть экологическую действие различ-нитных энергоисточников на здоровье людей, то среди НЕ возобновляемых источников энергии риск от нормаль-но работающих АЭС минимальный как для работников, деятельность которых связана с различными этапами ядер-ного топливного цикла, так и для населения . Глобал-ный радиационный вклад атомной энергетики на всех этапах ядерного топливного цикла в настоящее время составляет около 0,1% естественного фона и не превысит 1% даже при интенсивном ее развития в будущем.

Добыча и переработка урановых руд также связаны с неблагоприятной экологической действием. Коллективный доза, полученная персоналом установки и насе-лением на всех этапах добычи урана и изготовления ления топлива для реакторов, составляет 14% полной дозы ядерного топливного цикла. Но главной проблемой остается захоронения высокоактивных отходов. Объем особо опасных радиоактивных отходов составляет примерно одну стотысячную время-типа общего количества отходов, среди которых вы-котоксични химические элементы и их устойчивые соединения. Разрабатываются методы их концентрации, надежного связывания и размещения в устойчивых геологических формациях, где по расчетам специалистов, они мо-гут содержаться течение тысячелетий Серьезным недостатком атомной энергетики является ра-диоактивнисть используемого топлива и продуктов его деления. Это требует создания защиты от разно-го типа радиоактивного излучения, зна-чительно повышает стоимость энергии, вырабатываемой АЭС. Кроме этого, еще одним недостатком АЭС является тепловое загрязнение воды, то есть ее нагрева.

Интересно отметить, что по данным группы английс-ких медиков, лица, работавшие в течение 1946 - 1988 годах на предприятиях британской ядерной промыш-ленности, живут в среднем дольше, а уровень смертности среди них от всех причин, включая рак, значительно ниже. Если учитывать реальные уровни радиации и концентрации химических веществ в атмосфере-сфере, то можно сказать, что влияние последних на фло-ру в целом довольно значительный по сравнению с воздействием радиации.

Приведенные данные свидетельствуют, что при нормальной работе энергетических установок экологическое влияние атомной энергетики в десятки раз ниже, чем тепловой.

Неисправимым бедствием для Украины остается Чернобыльская трагедия. Но она больше стосуеть-ся того социального строя, что ее породил, чем атом-ной энергетики. Ведь ни на одной АЭС в мире, кроме Чернобыльской, не было аварий, непосредственно привели к гибели людей.

Вероятностный метод расчета безопасности АЭС в целом свидетельствует, что при выработке одной и той же единицы электроэнергии, вероятность крупной аварии на АЭС в 100 раз ниже, чем в случае угольной энер-гетики. Выводы из такого сравнения очевидны.

В 2004 году мировое производство электроэнергии превысило 12 млрд кВт * ч, 2/3 ее производится на тепловых (ТЭС), 1/6 - гидравлических, 1/6 - на атомных элек-тростанциях. Тепловые станции используют как топливо преимущественно уголь и мазут, поскольку нефть и газ более ценные энергоносители. Строительство ТЭС сравнительно де-Шеве, но неблагоприятным является экологическое воздействие - загрязнение атмосферы и тепло-ное загрязнение. Гидроэлектростанции, наоборот, дороги в строительстве, но дают де-Шеву энергию, их строительство зависит от запасов гидроресурсов, которые сосредоточены в горных районах Азии и азиатской части СНГ, Северной и Южной Амери-ки, экваториальной Африки.

Итак, сегодня электроэнергию можно получать самыми разнообразными способами, но к основным источникам производства электроэнергии принято отношения ТЭС (тепловые электростанции - получение энергии за счет сжигания угля, газа или нефтепродуктов), ГЭС (гидроэлектростанции - получение электроэнергии за счет перепада уровня воды, вращающей гидротурбины), АЭС (атомные электростанции - относительно новые, но достаточно распространены электростанции, позволяющие получать по атомной энергии электроэнергию).

Теплоэлектростанция, ее строение, принцип работы и назначение

На ТЭС энергия, выделяемая при сгорании топлива (угля, нефти, торфа, горючих сланцев) с помощью электрогенераторов, приводимых во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания, преобразуется в электрическую энергию. Большинство современных мощных ТЭС является паротурбинными. В паровой турбине нагретая (к 500-600С) и сжатая (до 2, 4107 Па) пар выходит из сопла. Объем пара растет, а давление соответственно падает, при этом потенциальная энергия сжатой пары превращается в кинетическую. Пара с значительной скоростью выходит из сопла, ударяется лопатки диска турбины, закрепленного на валу и быстро обращает их, при этом кинетическая энергия пара передается ротору турбины. Вал турбины жестко связан с валом электрогенератора, и поэтому турбина приводит во вращение ротор генератора, в результате чего и вырабатывается электроэнергия.

На ТЭС большая часть энергии топлива теряется вместе с горячим паром. Эту отработанную на турбинах горячую пароводяную смесь используют для отопления жилых домов, повышает КПД тепловых электроцентралей до 70%. КПД же ТЭС составляет примерно 40%. Преимущество ТЭС состоит

ogorod.net

Реферат - Чистая энергия - Физика

1.

Энергия. Почему она так необходима?

Маленький Майк родился в августе 2005 года. Машина, которая привезла его маму рожать, работала на бензине. Электростанция, дающая в роддом свет — на угле. Центральное отопление, обогревающее комнату, где Майк сделал первый вдох,- на природном газе. Если бы один из этих источников энергии по какой-то причине прервался, жизнь маленького Майка оказалась бы в опасности.

Само существование современной цивилизации, в которой родился Майк, зависит от различных источников энергии. Каждый день мы, так или иначе пользуемся разными видами ископаемого топлива: ездим на машине, готовим еду, отапливаем или освещаем свой дом. Институт мировых ресурсов сообщает, что «мировое энергопотребление на 90% удовлетворяется за счет ископаемого топлива». В отчете, опубликованном этим институтом в 2000 году, говорится: «Больше всего энергии вырабатывается из нефти- 40% далее следует уголь- 26%, и природный газ- 24%»

Журналист Джеремая Кридон в статье «Когда кончится нефть» пишет: «Не все знают, что от нефти зависят продовольственные запасы всего мира. Нефть и природный газ играют огромную роль в сельском хозяйстве, начиная с производства удобрений и кончая перевозкой урожая». Но надолго ли хватит этих источников энергии, от которых зависит современное общество? И есть ли другие, более экономичные источники энергии?

Зачем нужны новые источники энергии?

«Если вы думаете, что сейчас нефти не хватает, подождите лет 20- вот тогда начнется полный кошмар»- Джереми Рифкин, Фонд изучения экономических тенденций (Вашингтон, август 2003 года)

Лет через 20 – когда Майк станет взрослым и сможет водить машину — мировое энергопотребление, согласно выходящему в США «Международному энергетическому обозрению» за 2003 год (IЕО 2003), «вырастет на 58 %». В журнале «Нью сайентист» о предстоящем буме говорится как о «самом стремительном росте энергопотребления в истории». Смогут ли традиционные энергоносители удовлетворить такой спрос? Рассмотрим некоторые тревожные факторы.

Уголь

Из всех ископаемых видов топлива угля осталось больше всего, и его должно хватить на 1000 лет. Электростанции, работающие на угле, производят 40% электроэнергии в мире. Крупнейший экспортер угля – Австралия, на нее приходится почти треть мирового рынка угля.

И все же в недавнем пресс-релизе института «Уорлдуоч» говорится: «Уголь- это самое насыщенное углеродом топливо, которое выделяет углекислого газа на 29% больше, чем нефть, и на 80% больше, чем природный газ. На его долю приходится 43% ежегодных выбросов углерода в атмосферу — примерно 2,7 миллиарда тонн». Помимо ущерба окружающей среде, сжигание угля отражается на здоровье людей. В одном из недавних докладов ООН «Глобальное экономическое обозрение» сообщается: «В 11 крупных городах Китая дым и мельчайшие частицы, выделяющиеся при сгорании угля, служит причиной более 50 000 преждевременных смертей и 400 000 новых случаев заболевания хроническим бронхитом»

Нефть

Ежедневно в мире расходуется 75 миллионов баррилей нефти. Из мировых запасов нефти, объем которых оценивают в 2 триллиона баррелей, около 900 миллиардов уже

2.

использовано. При нынешнем уровне нефтедобычи запасов нефти еще должно хватить на 40 лет.

Однако геологи Колин Кэмпбелл и Жан Лаэррер в 1998 году высказали прогноз: «Уже в ближайшие 10 лет добыча нефти не сможет угнаться за спросом на нее». Эти специалисты-нефтяники предупреждают: «Многие думают, что если нефть бьет фонтаном из скважин сегодня, то и последнее ведро нефти добыть из-под земли будет так же легко. Но практика показывает: идет ли речь об одной скважине, или целой стране, нефтедобыча всегда растет до максимума и потом, когда примерно половина нефти выкачана, начинает уменьшаться, постепенно падая до ноля. С экономической точки зрения важно знать не то, когда вся нефть иссякнет, а когда добыча нефти начнет сокращаться».

Когда начнется ожидаемое падение нефтедобычи? Геолог-нефтяник Джозеф Рива говорит: «Планируемое увеличение нефтедобычи… в два раза меньше того, что нужно, чтобы удовлетворить тот спрос на нефть, который по прогнозам Международного энергетического агентства (IEA) будет в 2010 году». Журнал «Нью саентист» предупреждает: «Когда нефтедобыча снижается, а спрос на нефть растет, цены на нее резко поднимаются или стают неустойчивыми, что может прив5ести к экономическому хаосу, проблемам с транспортировкой продуктов и других запасов и даже к войне за нефть».

В то время как одни специалисты считают проблемой снижение нефтедобычи, другие — само использование нефти. В «Утне ритер» Джеремая Кридон говорит: «Дефицит нефти — это не самое худшее. Сжигая топливо и получая тепло, мы производим углекислый газ, из-за которого температура повышается на всей планете, но экономические проблемы по-прежнему решаются отдельно от экологических». Например, Австралийская радиовещательная комиссия обращает внимание на последствие использования нефти в одной стране: «В Великобритании 26 миллионов транспортных средств. Они выделяют треть всего углекислого газа в стране, содействуя глобальному потеплению, и одну треть всех вредных выбросов в атмосферу, от которых ежегодно умирает примерно 10 000 человек».

Природный газ

В следующие 20 лет «во всем мире все большую роль как источника энергии будет играть природный газ», говорится в отчете «IEO 2003». Природный газ- это самый чистый вид ископаемого топлива и, по предварительным оценкам, есть еще большие запасы газа.

Но, по мнению ассоциации газопромышленников (Вашингтон), «на самом деле никто не знает, насколько велики запасы природного газа, все оценки его количества основаны на предположениях…Поэтому оценить реальнее объемы газа достаточно трудно».

Основной компонент природного газа — метан, который значительно усиливает парниковый эффект. «Метан задерживает тепло в 21 раз больше углекислого газа»,- заявляет упомянутая выше Ассоциация. Но, не смотря на это, масштабное исследование, проведенное в США Управлением по охране окружающей среды и Институтом исследования газа показало, что «при переходе на природный газ будет выделятся больше метана, но зато значительно снизится количество других выбросов».

Атомная энергия

«В мире существует примерно 430 ядерных реакторов, которые вырабатывают 16% всей электроэнергии»,- сообщается в «Острэлиан джиогрэфик». В докладе «IEO 2003» говорится, что помимо существующих реакторов, «в феврале 2003 года 17 из 35 строящихся во всем мире реакторов приходилось на развивающиеся страны Азии».

Атомная энергетика завоевывает все большую популярность, даже, несмотря на возможность повторения аварии, произошедшей в 1986 году в Чернобыле. В «Нью

3.

сайентист» сообщается, что «неполадки и повреждения стали серьезной проблемой для атомных реакторов в Америке» и что в марте 2002 года на реакторе Дэйвис-Бесси в Огайо «чуть было не произошла авария».

Какие есть новые разработки в энергетике?

Вакуумная картина мира разрешает принципиально переосмыслить подходы и методы получения энергий, которые сложились, и выйти на совсем новые технологии в области энергетики.

На основе теории Вакуума авторами разработана новая энергетическая концепция — концепцию Вакуумной энергетики. Отличием от традиционных подходов есть использования вакуумных эффектов с целью получения высоких уровней энергии, так и проблемы экологической чистоты самого процесса получения энергии.

Исследования показали, что наиэффективнее проходит возбуждение Вакуума в полевых образованиях, которые имеют цилиндрическую, коническую формы, а наиболее благоприятной средой есть жидкость.

Вещество, которое используется как среда возбуждения выполняет двойную функцию. С одного стороны она есть средой для выбора энергии, с второй стороны она создает условия для реализации процесса возбуждения.

Вакуумные эффекты открывают путь к новой энергетике иd разрешают сделать шаг за рамки традиционных подходов к способам получения энергии.

Японские учении изобрели устройство для получения тепловой энергии в водной среде, которая названа «Лазером голубой воды».

В устройстве использовано явление холодного ядерного синтеза. В водной среде создается акустическое поле и осуществляется концентрация ультрафиолетового света сферической линзой.

Устройство планируется использовать как компактный генератор энергии для нагревания естественной воды до 50? С, Именно к такой температуре сохраняются фокусуючи свойства водной сферической линзы, но для ультрафиолетового света.

При этом сохраняется высокая плотность энергии, достаточная для реализации безнейтронной реакции синтеза. В разработанном нами способе е возможность делать выбор, как тепловой энергии так и електрики.

Энергетика будущего не будет грунтоваться ни на энергетических гигантах, которые используют химическое или ядерное горючее, ни на дорого стоимостных системах транспортирования энергии. Компактные генераторы энергии, основанные на реализации вакуумных эффектов, расположенных в местах использования энергии, будут составлять основу энергетики третьего тысячелетия.

Это будет вакуумная энергетика, которая будет использовать достижения электроники для получения высоких уровней экологически чистой энергии.

Ветер

Человечество уже давно использует силу ветра в мореплавании, для роботы мельниц и для перекачивания воды. В последние годы, однако, интерес к ветру снова возрождается. Изготовленные по новейшим технологиям ветроенергетические установки вырабатывают электричество для 35 миллионов человек. Ветер- это совершенно чистый, возобновляемый источник энергии. В Дании, например, уже 20% электричества вырабатывается силой ветра. Все большее распространение ветроэнергетика получает в Германии, Испании, а также Индии, которая претендует на пятое место в мире по использованию силы ветра. В США сейчас вырабатывается электричество 13 000 ветроустановок. А некоторые специалисты

4.

считают, что если использовать все подходящие территории в США, то энергия ветра могла бы обеспечить 20% потребностей страны в электричестве.

Солнце

Сейчас выпускают фотоэлементы, которые преобразуют энергию солнечного света в электричество. Во всем мире суммарная мощность гелиоустановок составляет около 500 мегаватт, и потребность в фотоэлементах ежегодно увеличивается на 30%. Однако фотоэлектрические преобразователи пока еще не на столько эффективны, как хотелось бы, и вырабатываемое ими электричество дороже, чем получаемое при сжигании ископаемого топлива. Кроме того, при производстве фотоэлементов используются такие ядовитые вещества, как сульфид кадмия и арсенид галлия. Так как они сохраняются в природе столетиями, «Биосайенс» отмечает, что «переработка и утилизация отработавших фотоэлементов может стать большой проблемой».

Геотермальная энергия

Если к ядру нашей планеты, температуру которой оценивают в 4 000 градусов по Цельсию, сквозь земную кору прокопать туннель, температура в нем будет увеличиваться в среднем на 30 градусов на каждый километр. Для людей, которые живут радом с термальными источниками или вулканическими разломами, подземное тепло более доступно. В 58 странах мира исходящая из глубин земной коры горячая вода или пар используются, чтобы отапливать дома или вырабатывать электричество. Исландия примерно половину вырабатываемой энергии получает от геотермальных источников. В других странах, например в Австралии, обсуждается возможность извлекать энергию из раскаленных каменных пород, находящихся на глубине нескольких километров под землей. «Острэлиан джиогрэфик» сообщает: «Некоторые ученые предлагают закачивать под землю воду, и обратно она будет выходить горячей и уже под большим давлением, вращая турбины электрогенераторов. Это позволит получать электричество десятилетиями и даже веками».

Вода

Уже сейчас 6% электроэнергии всего мира вырабатывается гидроэлектростанциями. Согласно «Международному энергетическому обозрению» за 2003 год, в течении следующих двух десятилетий «развитие возобновляемых источников энергии будет происходить в основном за счет строительства крупных гидроэлектростанций в развивающихся странах, особенно в Азии. Однако «Биосайенс» предупреждает: «Водохранилища часто затапливают ценные плодородные земли. Кроме того, плотины значительно влияют на существующие экосистемы — на растения, животных и микроорганизмы».

Водород

Водород- это бесцветный, не имеющий запаха горючий газ, самый распространенный элемент во Вселенной. На земле водород входит в состав растительных и животных тканей, ископаемого топлива и воды. Он сгорает без выделения вредных веществ и более эффективно, чем ископаемое топливо.

В журнале «Сайенс ньюс онлайн» говорится, что «пропуская через воду электричество, ее разлагают на водород и кислород». Хотя таким способом можно добывать водород в больших количествах, в журнале отмечается, что «этот простой метод пока не экономичен».

5.

В мире вырабатывается примерно 45 миллионов тонн водорода, в основном для производства удобрений и чистящихся средств. Но этот водород производят с применением ископаемого топлива, а при этом выделяется ядовитый угарный газ и углекислый газ, способствующие глобальному потеплению.

И все же многие считают водород одним из самых перспективных и многообещающих альтернативных источников энергии и полагают, что в будущем он сможет удовлетворить энергетические потребности человечества. Подобный оптимизм основан на значительных достижениях в разработке так называемого топливного элемента.

Топливный элемент

Каждая тысяча автомобилей сегодня выбрасывает в атмосферу более 3 тонны оксиду вуглецю и сотни других вредных веществ. Поэтому одно из главных задач ученых и инженеров было изобретение «чистого двигателя».

«Топливный элемент- это устройство, которое вырабатывает электричество из водорода, но не путем сжигания, а путем соединения его с кислородом в ходе управляемой химической реакции. При использовании чистого водорода, в отличии от обогащенного водородом ископаемого топлива, выделяется только тепло и вода.

В 1839 году Уильям Гров, английский судья и физик, сконструировал первый топливный элемент. Однако производить такие устройства было дорого, к тому же топливо и необходимые элементы было трудно достать. На какое-то время эта технология была забыта, пока в середине ХХ века не стали разрабатывать топливные элементы для обеспечения энергией американских космических кораблей. Сейчас такие устройства применяются как в космонавтике, так и для более земных задач.

Сегодня разрабатываются топливные элементы, которые могли бы заменить двигатель внутреннего сгорания на автомобилях, обеспечивать электроэнергией жилые и производственные здания, а также питать небольшие электрические устройства, например сотовые телефоны или компьютеры.

Польза для окружающей среды от применения более экологических источников энергии очевидна. Однако стоимость их слишком высока. В докладе «IEO 2003» говорится: «Предстоящий рост энергопотребления будет, скорее всего, будет удовлетворятся за счет ископаемых видов энергии (Нефти, угля, природного газа), потому что цены на них останутся относительно низкими, а вырабатывать энергию из других видов топлива может быть не выгодно».

И все же самым дешевым и самым чистым источником энергии является солнце. Практически вся энергия на земле происходит от солнца. Уголь, нефть, по мнению ученых, не что иное, как разложившиеся остатки деревьев и др. растений, выросших благодаря энергии солнца.

Использованная литература:

  1. «Книга для чтения с физики. Тепловые явления»
  2. Журнал «Пробудитесь» 8.03.05.г. «Доступна ли нам более чистая энергия?»

3. Л.Л. Пасечкин. А.С. Попович “Энергетика: реальность и перспективы”

. Киев 1986г.

www.ronl.ru

Реферат: Энергия

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

Прекрасный миф о Прометее, даровавшем людям огонь появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

Сейчас известно, что древесина - это аккумулированная с помощью фотосинтеза солнечная энергия. При сгорании каждого килограмма сухой древесины выделяется около 20 000 к Дж тепла, теплота сгорания бурого угля равна примерно 13 000 кДж/кг, антрацита 25 000 кДж/кг, нефти и нефтепродуктов 42 000 кДж/кг, а природного газа 45 000 кДж/кг. Самой высокой теплотой сгорания обладает водород 120 000 кДж/кг.

Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получить в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива - водорода, однако управляемые термоядерные реакции пока не освоены, и неизвестно когда они будут использованы для промышленного получения энергии в чистом виде, т.е. без участия в этом процессе реакторов деления В связи с указанными проблемами становится все более необходимым использование нетрадиционных энергоресурсов, в первую очередь солнечной, ветровой, геотермальной энергии, наряду с внедрением энергосберегающих технологий.

Возможно вы искали - Реферат: Энергия морей и океанов

Среди возобновляемых источников энергии солнечная радиация по масштабам ресурсов, экологической чистоте и повсеместной распространенности наиболее перспективна.

Впервые на практическую возможность использования людьми огромной энергии Солнца указал основоположник теоретической космонавтики К.Э. Циолковский в 1912 году во второй части своей книги: “Исследования мировых пространств реактивными приборами”. Он писал: “Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два миллиарда раз большую, чем та, которую человечество имеет на Земле”.

У нас есть не только Земля, но и весь необъятный Космос, ресурсы которого разнообразны и неисчерпаемы. Оптимисты уверены - наступит время, когда все наиболее энергоемкие и вредные для людей и других живых организмов производства будут располагаться в космическом пространстве, а Земля - необычайно красивая и ухоженная “колыбель разума” - станет использоваться только для отдыха, лечения и некоторых безвредных для окружающей среды научных исследований.

Энергия солнца может быть использована как в земных условиях, так и в космосе. Наземные солнечные электростанции следует строить в районах расположенных как можно ближе к экватору с большим количеством солнечных дней. В настоящее время солнечную энергию экономически целесообразно использовать для горячего водоснабжения сезонных потребителей типа спортивно-оздоровительных учреждений, баз отдыха, дачных поселков, а также для обогрева открытых и закрытых плавательных бассейнов. В сухом жарком климате Средней Азии рационально использовать установки для охлаждения зданий и сооружений, сельскохозяйственных объектов, птичников, хранения скоропортящихся продуктов, медицинских препаратов и т.д.

Первые опыты использования солнечной энергии

В 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды. В конце XVII в. ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 о С и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины. В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут. В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8* 3,3 м. Первый плоский коллектор солнечной энергии был построен французом Ш.А. Тельером. Он имел площадь 20 м 2 и использовался в тепловом двигателе, работавшем на аммиаке. В 1885г. Была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому.

Похожий материал - Реферат: Энтропия термодинамическая и информационная

Первая крупномасштабная установка для дистилляции воды была построена в Чили в 1871 г. американским инженером Ч. Уилсоном. Она эксплуатировалась в течение 30 лет, поставляя питьевую воду для рудника.

В 1890 г. профессор В.К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000 о С.

Преобразование солнечной энергии в теплоту, работу и электричество

Солнце - гигантское светило, имеющее диаметр 1392 тыс. км. Его масса (2*1030 кг) в 333 тыс. раз превышает массу Земли, а объем в 1,3 млн. раз больше объема Земли. Химический состав Солнца: 81,76 % водорода, 18,14 % гелия и 0,1% азота. Средняя плотность вещества Солнца равна 1400 кг/м3 . Внутри Солнца происходят термоядерные реакции превращения водорода в гелий и ежесекундно 4 млрд. кг материи преобразуется в энергию, излучаемую Солнцем в космическое пространство в виде электромагнитных волн различной длины.

Солнечную энергию люди используют с древнейших времен. Еще в 212г. н.э.с помощью концентрированных солнечных лучей зажигали священный огонь у храмов. Согласно легенде Приблизительно в то же время греческий ученый Архимед при защите родного города поджег паруса римского флота.

Солнечная радиация - это неисчерпаемый возобновляемый источник экологически чистой энергии.

Очень интересно - Реферат: Энтропия. Теория информации

Верхней границы атмосферы Земли за год достигает поток солнечной энергии в количестве 5,6*1024 Дж. Атмосфера Земли отражает 35 % этой энергии обратно в космос, а остальная энергия расходуется на нагрев земной поверхности, испарительно-осадочный цикл и образование волн в морях и океанах, воздушных и океанских течений и ветра.

Среднегодовое количество солнечной энергии, поступающей за 1 день на 1м2 поверхности Земли, колеблется от 7,2 МДж/м2 на севере до 21,4 МДж/м2 в пустынях и тропиках.

Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах. Солнечные установки находят применение в системах отопления и охлаждения жилых и общественных зданий, в технологических процессах, протекающих при низких, средних и высоких температурах. Они используются для получения горячей воды, опреснения морской или минерализированной воды, для сушки материалов и сельскохозяйственных продуктов и т.п. Благодаря солнечной энергии осуществляется процесс фотосинтеза и рост растений, происходят различные фотохимические процессы.

Известны методы термодинамического преобразования солнечной энергии в электрическую, основанные на использовании циклов тепловых двигателей, термоэлектрического и термоэмиссионного процессов, а также прямые методы фотоэлектрического, фотогальванического и фотоэмиссионного преобразований. Наибольшее практическое применение получили фотоэлектрические преобразователи и системы термодинамического преобразования с применением тепловых двигателей.

Солнечная энергия преобразуется в электрическую на солнечных электростанциях (СЭС), имеющих оборудование, предназначенное для улавливания солнечной энергии и ее последовательного преобразования в теплоту и электроэнергию. Для эффективной работы СЭС требуется аккумулятор теплоты и система автоматического управления.

Вам будет интересно - Реферат: Этюды о занимательной оптике

Улавливание и преобразование солнечной энергии в теплоту осуществляется с помощью оптической системы отражателей и приемника сконцентрированной солнечной энергии, используемой для получения водяного пара или нагрева газообразного или жидкометаллического теплоносителя (рабочего тела).

Для размещения солнечных электростанций лучше всего подходят засушливые и пустынные зоны.

На поверхность самых больших пустынь мира общей площадью 20 млн.км2 (площадь Сахары 7 млн. км2 ) за год поступает около 5*1016 кВт*ч солнечной энергии. При эффективности преобразования солнечной энергии в электрическую, равной 10%, достаточно использовать всего 1 % территории пустынных зон для размещения СЭС, чтобы обеспечить современный мировой уровень энергопотребления.

Башенные и модульные электростанции

В настоящее время строятся солнечные электростанции в основном двух типов: СЭС башенного типа и СЭС распределенного (модульного) типа.

Идея, лежащая в основе работы СЭС башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965 г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

Похожий материал - Реферат: Эффект Комптона

В !985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция СЭС-5 электрической мощностью 5 МВт; 1600 гелиостатов (плоских зеркал) площадью 25,5 м2 каждый, имеющих коэффициент отражения 0,71, концентрируют солнечную энергию на центральный приемник в виде открытого цилиндра, установленного на башне высотой 89 м и служащего парогенератором.

В башенных СЭС используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550 о С, воздух и другие газы - до 1000 о С, низкокипящие органические жидкости (в том числе фреоны) - до 100 о С, жидкометаллические теплоносители - до 800 о С.

Главным недостатком башенных СЭС являются их высокая стоимость и большая занимаемая площадь. Так, для размещения СЭС мощностью 100 МВт требуется площадь в 200 га, а для АЭС мощностью 1000 МВт - всего 50 га. Башенные СЭС мощностью до 10 МВт нерентабельны, их оптимальная мощность равна 100 МВт , а высота башни 250 м.

cwetochki.ru


Смотрите также