Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Электролит. Реферат электролиты и неэлектролиты


Реферат Электролиты

скачать

Реферат на тему:

План:

    Введение
  • 1 Степень диссоциации
  • 2 Классификация
  • 3 Использование термина «Электролит»
    • 3.1 В естественных науках
    • 3.2 Электролиты в технике
      • 3.2.1 Электролит в электрохимии
      • 3.2.2 В источниках тока
      • 3.2.3 Электролитический конденсатор
  • Примечания

Введение

Электроли́т — вещества, расплавы или растворы которых проводят электрический ток вследствие диссоциации на ионы, однако сами вещества не проводят электрический ток. Примерами электролитов могут служить растворы кислот, солей и оснований. Электролиты — проводники второго рода, вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов, и обладающие вследствие этого ионной проводимостью.

1. Степень диссоциации

В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации[1].

2. Классификация

Исходя из степени диссоциации все электролиты делятся на две группы

  1. Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3).
  2. Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты), основания p-, d-, и f- элементов.

Между этими двумя группами четкой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.

3. Использование термина «Электролит»

3.1. В естественных науках

Термин электролит широко используется в биологии и медицине. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (напр., «всасывание электролитов» в кишечнике).

3.2. Электролиты в технике

Слово электролит широко используется в науке и технике, в разных отраслях оно может иметь различающийся смысл.

3.2.1. Электролит в электрохимии

Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например, электролит золочения).

3.2.2. В источниках тока

Электролиты являются важной частью химических источников тока: гальванических элементов и аккумуляторов.[2] Электролит участвует в химических реакциях окисления и восстановления с электродами, благодаря чему возникает ЭДС.

  • В свинцово-кислотных аккумуляторах

Электролитом свинцово-кислотного аккумулятора является раствор серной кислоты (ГОСТ 667—73) в дистиллированной воде (ГОСТ 6709—72). Представляет собой прозрачную жидкость с желтоватым оттенком без посторонних включений.

При использовании технической серной кислоты и недистиллированной воды ускоряются саморазрядка, сульфатация, разрушение пластин и уменьшение емкости аккумуляторной батареи.

Хранят электролит в кислотостойкой эбонитовой, фарфоровой или освинцованной посуде.

В современных свинцово-кислотных аккумуляторах электролит обычно загущён до состояния геля, а сами аккумуляторы делают герметичными. Благодаря этому удаётся значительно снизить выход водорода, а значит и расход электролита, что позволяет использовать аккумуляторы в течение всего срока службы без доливки электролита и вмешательства в его работу в целом.

3.2.3. Электролитический конденсатор

В электролитических конденсаторах в качестве одной из обкладок используется электролит. Конденсаторы данного типа, в отличие от других типов, обладают несколькими отличительными особенностями:

  1. при очень маленьких[уточнить] габаритных размерах обладают на несколько порядков большей ёмкостью
  2. при проектировании электрических схем и при монтаже электролитов необходимо соблюдать полярность подключения, иначе они обязательно вздуваются и вытекают, а в худшем случае взрываются(при старой конструкции без насечки)[3]
  3. Способны работать с широким диапазоном частот, начиная от 1 Гц и заканчивая сотнями МГц.

Примечания

  1. Степень диссоциации (α) — отношение числа молекул, диссоциировавших на ионы к общему числу молекул растворенного электролита.
  2. ГОСТ 15596-82 - www.vsegost.com/Catalog/21/21710.shtml Источники тока химические. Термины и определения
  3. Исключением являются специальные неполярные электролитические конденсаторы, которые представляют собой два электролитических конденсатора в одном корпусе, включённые последовательно и обязательно встречной друг другу полярностью (плюс к плюсу или минус к минусу).

wreferat.baza-referat.ru

Электролитическая диссоциация Электролиты и неэлектролиты. Теория электролитической диссоциации

Все вещества делятся на 2 большие группы: электролитыинеэлектролиты.

Электролитами называются вещества (исключая металлы), растворы или расплавы которых проводят электрический ток. К электролитам относятся соединения, образованные ионными или ковалентными полярными связями. Это сложные вещества: соли, основания, кислоты, оксиды металлов (проводят электрический ток только в расплавах).

Неэлектролитаминазываются вещества, растворы или расплавы которых электрический ток не проводят. К ним относятся простые и сложные вещества, образованные малополярными или неполярными ковалентными связями.

Свойства растворов и расплавов электролитов впервые объяснил в конце XIXвека шведский учёный Сванте Аррениус. Им была создана специальнаятеория электролитической диссоциации, основные положения которой, доработанные и развитые другими учёными, в настоящее время формулируются следующим образом.

1. Молекулы (или формульные единицы) электролитов в растворах или расплавах распадаются на положительно и отрицательно заряженные ионы. Этот процесс называется электролитической диссоциацией. Общая сумма зарядов положительных ионов равна сумме зарядов отрицательных ионов, поэтому растворы или расплавы электролитов в целом остаются электронейтральными.Ионы могут быть какпростые, состоящие только из одного атома (Na+,Cu2+,Cl–,S2-), так исложные, состоящие из атомов нескольких элементов (SO42–,PO43–,Nh5+, [Al(OH)4]–).

Простые ионы по своим физическим, химическим и физиологическим свойствам существенно отличаются от нейтральных атомов, из которых они образовались. В первую очередь, ионы являются гораздо более устойчивыми частицами, чем нейтральные атомы, и могут существовать в растворах или расплавах неограничено долгое время, не вступая в необратимое взаимодействие с окружающей средой.

Такое различие в свойствах атомов и ионов одного и того же элемента объясняется разным электронным строением этих частиц.

Так, простые ионы s- иp-элементов находятся в более устойчивом состоянии, чем нейтральные атомы, потому что имеют завершённую электронную конфигурацию внешнего слоя, например:

Nao

– 1ē 

Na+

1s22s22p63s1

1s22s22p6

нейтральный атом натрия; на внешнем электронном слое находится один электронов

положительно заряженный ион натрия; на внешнем электронном слое находится 8 электронов (как у ближайшего благородного газа неона)

Fo

+ 1ē 

F–

1s22s22p5

1s22s22p6

нейтральный атом фтора; на внешнем электронном слое находится 7 электронов

отрицательно заряженный ион фтора; на внешнем электронном слое находится 8 электронов

Распад электролитов на ионы в расплавах осуществляется за счёт действия высоких температур, а в растворах за счёт действия молекул растворителя.

Особенностью ионных соединений является то, что в узлах их кристаллической решётки имеются уже готовые ионы и в процессе таких веществ растворения диполям растворителя (воды) остаётся только разрушить эту ионную решётку (рис. 18).

Вещества, образованные полярными ковалентными связями, переходят в раствор в виде отдельных молекул, которые, как и молекулы Н2О, представляют собой диполи, например:

+ –

В этом случае диполи Н2О, ориентируясь соответствующим образом вокруг растворенной молекулы электролита, вызывают в ней дальнейшую поляризацию ковалентной связи, а затем и её окончательный гетеролитический разрыв (рис. 29).

H–ClH++Cl

Рис. 29.Схема электролитической диссоциации в растворе полярной молекулыHCl

Процесс электролитической диссоциации протекает одновременно с процессом растворения веществ, и поэтому в растворах все ионы находятся в гидратированном состоянии (окружены оболочками из молекул Н2О).

Однако для простоты в уравнениях химических реакций ионы изображаются без окружающих их гидратных оболочек: H+,NO3–,K+и т.д.

2. Ионы электролитов в растворе или расплаве за счёт теплового движения хаотически перемещаются по всем направлениям. Но если в раствор или расплав опустить электроды и пропустить электрический ток, то положительно заряженные ионы электролита начинают двигаться к отрицательно заряженному электроду – катоду (поэтому они иначе называются катионами), а отрицательно заряженные ионы – к положительно заряженному электроду – аноду (поэтому они иначе называются анионами).

Таким образом, электролиты являются проводниками второго рода. Они переносят электрический заряд за счёт направленного движения ионов. Металлы же являются проводниками первого рода, т.к. проводят электрический ток за счёт направленного движения электронов.

3. Процесс электролитической диссоциации обратим. Наряду с распадом молекул на ионы всегда протекает обратный процесс – соединение ионов в молекулы или ассоциация. Поэтому в уравнениях реакций электролитической диссоциации веществ вместо знака равенства «=» ставят знак обратимости «», например:

HF H+ + F–

Ch4COOH Ch4COO– + H+

studfiles.net

Урок №3. Электролиты и неэлектролиты. Электролитическая диссоциация веществ в водных растворах

ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

Растворы всех веществ можно разделить на две группы: проводят электрический ток или проводниками не являются.

С особенностями растворения веществ можно познакомиться экспериментально, исследуя электропроводность растворов этих веществ с помощью прибора, изображённого на рисунке

Пронаблюдайте  за следующим экспериментом «Изучение электрической проводимости веществ».

Для  объяснения  особенностей  водных  растворов  электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание  этой  теории  можно свести к  следующим трем  положениям:

1. Электролиты при растворении в воде или расплавлении  распадаются (диссоциируют) на ионы – положительно (катионы) и отрицательно (анионы) заряженные  частицы.

Ионы  находятся  в  более  устойчивых  электронных  состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na+, Mg2+, Аl3+ и т.д.) - или из нескольких атомов - это сложные ионы (NО3-, SO2-4, РОЗ-4 и т.д.).

2.  В растворах и расплавах электролиты проводят электрический ток.

Под действием  электрического  тока ионы  приобретают  направленное движение: положительно заряженные ионы  движутся  к катоду, отрицатель­но  заряженные - к аноду. Поэтому  первые  называются  катионами, вторые  - анионами. Направленное  движение  ионов  происходит  в  результате  притяжения  их  противоположно заряженными электродами.

ЭЛЕКТРОПРОВОДНОСТЬ РАСПЛАВОВ

ИСПЫТАНИЕ ВЕЩЕСТВ НА ЭЛЕКТРОПРОВОДНОСТЬ

ВЕЩЕСТВА

ЭЛЕКТРОЛИТЫ

НЕЭЛЕКТРОЛИТЫ

Электролиты – это вещества, водные растворы или расплавы которых проводят электрический ток

Неэлектролиты – это вещества, водные растворы или расплавы которых  не проводят электрический ток

Вещества с ионной химической связью или ковалентной сильнополярной химической связью – кислоты, соли, основания

Вещества с ковалентной неполярной химической связью или ковалентной слабополярной  химической связью

В растворах и расплавах образуются ионы

В растворах и расплавах не образуются ионы

 ПАМЯТКА

ЭЛЕКТРОЛИТЫ И НЕЭЛЕКТРОЛИТЫ

ТЕПЛОВЫЕ ЭФФЕКТЫ ПРИ РАСТВОРЕНИИ ВЕЩЕСТВ В ВОДЕ

3.  Диссоциация  - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации  вместо знака равенства ставят  знак обратимости. Например, уравнение диссоциации молекулы электролита КA на катион К+ и анион А- в общем виде записывается так:

КА ↔  K+ + A-

Рассмотрим процесс растворения электролитов в воде

В целом молекула воды не заряжена. Но внутри молекулы Н2О атомы водорода и кислорода располагаются так, что положительные и отрицательные заряды находятся в противоположных концах молекулы (рис. 1). Поэтому молекула воды представляет собой диполь.

Рис. 1. Молекула воды полярна и представляет собой диполь

Растворение в воде веществ с ионной химической связью                        

(на примере хлорида натрия – поваренной соли)

Механизм электролитической диссоциации NaCl при растворении поваренной соли в воде (рис. 2) состоит в последовательном отщеплении ионов натрия и хлора полярными молекулами воды. Вслед за переходом ионов Na+  и Сl–  из кристалла в раствор происходит образование гидратов этих ионов.

Рис. 2. Механизм растворения хлорида натрия в воде:а – ориентация молекул воды на поверхности кристалла NaCl  и отрыв иона Na+;             б – гидратация (окружение молекулами воды) ионов Na+ и  Сl–

Растворение в воде веществ с ковалентной сильнополярной  химической связью  

(на примере соляной кислоты)

При растворении в воде соляной кислоты (в молекулах HCl cвязь между атомами ковалентная сильнополярная) происходит изменение характера химической связи. Под влиянием полярных молекул воды ковалентная полярная связь превращается в ионную. Образовавшиеся ионы остаются связанными с молекулами воды – гидратированными. Если растворитель неводный, то ионы называют сольватированными (рис.3).

Рис. 3. Диссоциация молекул HCl на ионы в водном растворе

Основные положения:

Электролитическая диссоциация – это процесс распада электролита на ионы при растворении его в воде или расплавлении.

Электролиты – это вещества, которые при растворении в воде или в расплавленном состоянии распадаются на ионы.

Ионы – это атомы или группы атомов, обладающие положительным (катионы) или отрицательным (анионы) зарядом.

 Ионы отличаются от атомов как по строению, так и по свойствам

Пример 1. Сравним свойства молекулярного водорода (состоит из двух нейтральных атомов водорода) со свойствами иона.

Атом водорода

Ион водорода

 

+1Н0 1s1

 

 

+1Н+ 1s0

Посмотрите опыт.

Пример 2.  Сравним свойства атомарного и молекулярного хлора со свойствами иона.

Атом хлора

Ион хлора

 +17Cl0 1s22s22p63s23p5

+17Cl- 1s22s22p63s23p6

Атомы хлора имеют незавершённый внешний уровень, поэтому они химически очень активны, принимают электроны и восстанавливаются.

Именно поэтому газообразный хлор ядовит, при вдыхании его наступает отравление организма.

Ионы хлора имеют завершённый внешний уровень, поэтому они химически неактивны, находятся в устойчивом электронном состоянии.

Ионы хлора входят в состав поваренной соли, употребление в пищу которой не вызывает отравления организма.

Запомните!

1.     Ионы отличаются от атомов и молекул по строению и свойствам;

2.     Общий и характерный признак ионов – наличие электрических зарядов;

3.   Растворы и расплавы электролитов проводят электрический ток из-за наличия в них ионов.

 

sites.google.com


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.