КУРСОВАЯ РАБОТА
Электрические машины
Содержание
Введение
1. Техническое задание на курсовую работу
2. Расчёт геометрических размеров сердечника статора, ротора и расчет постоянных
3. Расчёт обмоток статора и ротора
4. Расчёт магнитной цепи
5. Активные и индуктивные сопротивления обмоток статора и ротора
6. Потери в стали, механические и добавочные потери
7. Расчет рабочих характеристик
8. Расчет пускового тока и момента
Список литературы
Введение
Электрические машины в основном объёме любого производства занимают первое место. Они являются самыми массовыми приёмниками электрической энергии и одним из основных источников механической и электрической энергий. Поэтому очень важная роль отведена электрическим машинам в экономике и производстве.
Сделать электрические машины менее энергоёмкими, более дешёвыми с лучшими электрическими и механическими свойствами. Это задача, решаемая постоянно при проектировании машин новых серий. Проектирование электрических машин процесс творческий требующий знания ряда предметов общетехнического цикла, новинок производства в области создания новых конструкционных, изоляционных материалов, требований спроса рынка, условий применения в электроприводе. В настоящее время практикуется создание не индивидуальных машин, а серий электрических машин, на базе которых выполняются различные модификации.
Целью расчета является определение мощности и технических характеристик асинхронного двигателя, рассчитанного на базе вышедшего из строя асинхронного двигателя.
1. Техническое задание для курсовой работы
Спроектировать трёхфазный асинхронный двигатель с короткозамкнутым ротором серии 4А климатического исполнения “У3”. Напряжение обмотки статора U=220/380 В.
Исходные данные для электромагнитного расчета асинхронного двигателя являются:
1. Номинальное фазное напряжение – U1н= 220B.
2. Схема соединение концов обмотки статора –
3. Частота питающей сети – ƒ1= 50 Гц.
4. Синхронная частота вращения поля статора – n1= 3000об/мин.
5. Степень защиты.
6. Геометрические размеры сердечника.
6.1 Наружный диаметр сердечника статора – Da= 0,52м.
6.2 Внутренний диаметр сердечника статора – D = 0,335м.
6.3 Длина сердечника статора – l 1 = 0,05 + 0,3D.
6.4 Воздушный зазор – δ = 0,001м.
6.5 Размеры пазов статора (рис. 1.1) – b11 = 0,0081м.
b12 = 0,011м.
h21 = 0,04м.
bш1 = 0,0045м.
hш1 = 0,001м.
6.6 Размеры пазов ротора (рис. 1.2) – b21 = 0,006м.
b22 = 0,0033м.
h31 = 0,04м.
bш2 = 0,0015м.
hш2 = 0,001м.
7. Число пазов статора – Z1 = 72.
8. Число пазов ротора – Z2 =82.
9. Скос пазов ротора – bск = 0м.
10. Ширина короткозамыкающего кольца – aкл = 0,037м.
11. Высота короткозамыкающего кольца –bкл = 0,042м.
12. Высота оси вращения – h = 280мм.
2. Расчет геометрических размеров сердечников статора, ротора, расчет постоянных
Рис. 1 – Размеры пазов статора.
Расчетная длина сердечника статора. lδ =l 1 = 0,05 + 0,3D = 0,05 + 0,3 · 0,335 = 0,151м
Размеры пазов статора. (см. рис. 1)
– высота паза hn1 = h21 + hш1 = 0,04 + 0,001 = 0,041м
– высота зубца hz1 = hn1= 0,041м
– высота коронки hк1 = (b11 + bш1)/ 3,5 = (0,0081– 0,0045)/ 3,5 = 0,001м
– размер паза h22 = h21 – hк1= 0,04 – 0,001 = 0,039м
Зубцовый шаг статора. t1 = πD/ Z1 = 3,14 · 0,335 / 72 = 0,0146м
Ширина зубца статора^
Средняя ширина зубца статора: bz1 = (b'z1 + b«z1)/2 = (0,0067 + 0,007)/2 = 0,0069м
Высота ярма статора. ha = [Da – (D + 2hn1)]/2 =[0,52 – (0,335 + 2 · 0 041)]/2 = 0,052м
Рис. 2 – Размеры пазов ротора.
Длина сердечника ротора: l 2 = l 1 + 0,005 = 0,151 + 0,005 = 0,156м
Наружный диаметр сердечника ротора: D2 = D – 2δ = 0,335 – 2 · 0,001 = 0,333м
Внутренний диаметр сердечника ротора: DJ = 0,3D = 0,3 · 0,335 = 0,1005м
Размеры пазов ротора. (см. рис. 2)
– высота паза ротора: hn2 = h31 + hш2 = 0,04 + 0,001 = 0,041м
– высота зубца ротора: hz2 = hn2 = 0,041м
– размер паза: h32 = h31 – (b21 + b22)/ 2 = 0,04 – (0,006 + 0,0033)/ 2 = 0,01535м
Зубцовый шаг ротора: t2 = πD2/ Z2 = 3,14 · 0,333/ 82 = 0,0128м
Ширина зубца ротора:
Средняя ширина зубца ротора: bz2 = (b'z2 + b»z2)/ 2 = 0,0064 + 0,008/ 2 = 0,0072м
Высота ярма ротора: hJ = (D2 – DJ – 2hn2)/ 2 = (0,333 – 0,0999 – 2 · 0,041)/ 2 = 0,0756м, где DJ = 0,3D2 = 0,3 · 0,333 = 0,0999м
Относительная величина скоса пазов: b'ск = bск/ t2 = 0/ 0,0128 = 0
Площадь поперечного сечения паза ротора, сечения стержня к.з. обмотки ротора.
[3,14(0,0062 + 0,00332)/8 +
+ 0,01535(0,006 + 0,0033)/2] · 106 = 96мм2
Площадь поперечного сечения короткозамыкающего кольца обмотки ротора: qкл = aкл · bкл · 106 = 0,037 · 0,042 · 106 = 1554мм2
Синхронная угловая скорость вращения магнитного поля: Ω = π · n1/ 60 = 3,14 · 3000/ 60 = 157рад/c
Число пар полюсов машины: p = 2(60ƒ)/ n1 = 2(60 · 50)/ 3000 = 2
Полюсное деление: τ = πD/ 2p = 3,14 · 0,335/ 2 · 2 = 0,263м
Число пазов на полюс и фазу: q = Z1/ 2p · m1 = 72/ 2 · 2 · 3 = 6, где m1 = 3 – число фаз обмотки статора.
3. Расчет обмоток статора и ротора
Выбор типа обмотки статора:
Однослойные обмотки применяются в асинхронных машинах – малой мощности, двухслойные – в машинах средней и большой мощности – как более технологичные для таких мощностей и обеспечивающие оптимальное укорочение шага. Всвязи с этим в машинах с h > 132мм (где h – высота оси вращения) рекомендуется однослойная обмотка, при 280мм > 132мм – двухслойная.
Коэффициент укорочения шага: β = γ/τ, где γ – шаг обмотки
Для двухслойной обмотки β = 0,75 ÷ 0,83.
Отсюда шаг обмотки: γ = β · Z1/2p = 0,75 · 72/ 2 · 2 = 14
Обмоточный коэффициент. kоб = kγ1 · kp1 = 0,924 · 0,956 = 0,882, где kγ1 = sin(β90˚) – коэффициент укорочения, kγ1 = sin(β · 90˚) = sin(0,75 · 90˚) = 0,924, kp1 – коэффициент распределения, является функцией q – числа пазов на полюс и фазу и определяется по таблице 1, откуда kp1 = 0,956
Расчетная мощность асинхронного двигателя.
P' = 1,11D2 ·l δ · Ω · kоб1 · А · Вδ = 1,11 · 0,3352 · 0,151 · 157 · 0,882 ·
· 38000 · 0,6 = 58540Вт
где А – линейная нагрузка, Вδ – магнитная индукция, определяется по графикам зависимостей линейной нагрузки и магнитной индукции от Da(рис. 3).
Номинальный ток обмотки статора. I1н = Р'/ 3E1 = 58540/ 3 · 213,4 = 91,44А, где Е1 = kE· U1н = 0,97 · 220 = 213,4
Сечение проводников фазы обмотки статора. qф = I1н/ J1 = 91,44/ 4 = 22,86 мм2, где J – плотность тока (5,5 ÷ 6,0), А/мм2
Выбор диаметра и сечения элементарного проводника.
Диаметр голого элементарного проводника d должен удовлетворять двум условиям:
d = (0,5 ÷ 1,0) · h / 100 = 0,64 · 280/ 100 = 1,79мм
где h высота оси вращения, h = 280мм, а d < 1,8мм => 1,79 < 1,8мм
Руководствуясь этими условиями, выбираем диаметр голого провода d по приложению Б, округляя его до ближайшего стандартного значения. По той же таблице находим сечение элементарного проводника qэл и диаметр изолированного провода dиз.
qэл = 2,54мм2; dиз = 1,895мм.
Значение диаметра изолированного провода должно удовлетворять условию: dиз + 1,5 bш1, 1,895 + 1,5 4,5мм.
Число параллельных элементарных проводников в фазе.
nф = qф/ qэл = 22,86/ 2,54 = 9
По таблице 2.2 выбираем число параллельных ветвей обмотки – а. а = 3
Число элементарных проводников в одном эффективном, т.е. число проводников в одной параллельной ветви обмотки. nэл = nф /а = 9/ 3 = 3, при этом должны выполняться условия: nэл < 4, а nэл; 3 < 4, 3 3
Уточняем значение плотности потока: J1 = I1н/ qф = 91,44/ 22,86 = 4А/мм2, где qф = qэл · nэл · а = 2,54 · 3 · 3 = 22,86мм2
Расчет магнитного поля и индукции.
Основной магнитный поток и линейная нагрузка:
Ф = Вδ · D · l δ/ p = 0,6 · 0,335 · 0,151/ 2 = 0,015Вб
А = 6w 1 · I1н/ π D = 6 · 72 · 91,44/ 3,14 · 0,335 = 38450А/м
Число витков в фазе (предварительное): w 1 = E1/ (4,44 · kоб1 · ƒ1 · Ф) = 231,4/ 4,44 · 0,882 · 50 · 0,015 = 72
Число эффективных проводников в пазу: Un = 2w 1 · a · m1/Z1 = 2 · 72 · 3 · 3/ 72 = 18.
Уточненное значение числа витков.
w 1
Уточненное значение потока.
ФВб
Уточненное значение магнитной индукции в воздушном зазоре.
Вδ = Ф · р/ D · l δ = 0,015 · 2/ 0,335 · 0,151 = 0,6 Тл
Магнитная индукция в зубцах статора и ротора.
где kc = 0,97 коэффициент заполнения пакета сталью.
Магнитная индукция в ярмах статора и ротора:
Значения магнитных индукций в зубцах и ярмах должны удовлетворять условиям:
Bz1, Bz2 < 1,9 Тл;Ba, BJ < 1,6Тл
1,32; 1,04 < 1,9Тл; 0,99; 0,66 < 1,6Тл
Расчет коэффициента заполнения паза статора.
Размеры b11, b12, h22 .
b'11 = b11 · 103 = 0,0081 · 103 = 8,1мм
b'12 = b12 · 103 = 0,011 · 103 = 11мм
h'12 = h22 · 103 = 0,039 · 103 = 39мм
Свободная площадь паза статора – площадь, занимаемая проводниками – для однослойной обмотки.
S'nc = ½ (b'11 + b'12) · h'12 – Lu · ∆u + ∆b = ½ (8,1 + 11) · 39 – 116,2 · 0,4 +
+ 0,2 = 302,73мм2,
где Lu – длина пазовой изоляции по периметру паза.
Lu = 2h'12 + b'11 + b'12 = 2(39 + 8,1 + 11) = 116,2мм
∆u = 0,4 – толщина пазовой изоляции;
∆b = 0,2 – (для h > 100) припуск на расшихтовку сердечника.
Свободная площадь паза статора для двухслойной обмотки.
S«nc = S'nc – 0,75 · ∆u(b'11 + b'12) = 302,73 – 0,75 · 0,4(8,1 + 11) = 297мм2
Коэффициент заполнения паза статора.
kз = (d2uз · Un · nэл)/ S»nc = (1,8952 · 18 · 3)/ 297 = 0,7,
где Snc = S«nc – для двухслойной обмотки.
Значения коэффициента заполнения должны находиться в пределах
kз = (0,7 ÷ 0,73)
Ток в стержне ротора.
I2 = 0,9(6 · w 1 · kоб) · I1н/ Z2 = 0,9(6 · 72 · 0,882) · 91,44/ 82 = 382,4А
Плотность тока в стержне ротора.
J2 = I2/ qc = 382,4/ 96 = 3,98А
Плотность тока в стержне должна быть в пределах J2 = (2 ÷ 4)А/мм2
Ток кольца короткозамкнутой обмотки ротора.
Iкл = I2/ ∆ = 382,4/ 0,153 = 2499,35А,
где ∆ = 2sin(180˚ · p/Z2) = 2sin(180˚ · 2/ 82) = 0,153
Плотность тока в кольце.Jкл = Iкл / qкл = 2499,35/ 1554 = 1,61А/мм2
Плотность тока в кольце должна быть в пределах Jкл = (1 ÷ 4,5) А/мм2
4. Расчет магнитной цепи
Расчет магнитной цепи проводится для определения МДС и намагничивающего тока статора, необходимого для создания в двигателе требуемого магнитного потока. На рисунке 4 представлена расчетная часть магнитной цепи четырехполюсной машины, которая состоит из пяти последовательно соединенных участков: воздушного зазора, зубцовых слоев статора и ротора, спинки статора и ротора. МДС на магнитную цепь, на пару полюсов Fц определяется как сумма магнитных напряжений всех перечисленных участков магнитной цепи.
Рис. 4 – Магнитная цепь асинхронного двигателя.
Fц = Fδ + Fz1 + Fz2 + Fa + FJ
Магнитное напряжение воздушного зазора на пару полюсов.
Fδ = 1,6 · Bδ · δ · kδ · 106 = 1,6 · 0,6 · 0,001 · 1,31 · 106 = 1257,7А,
где kδ – коэффициент воздушного зазора, учитывающий зубчатость статора и ротора.
kδ = kδ1 · kδ2 = 1,22 · 1,07 = 1,31
Магнитное напряжение зубцового слоя статора.
Fz1 = Hz1 · Lz1 = 584 · 0,082 = 47,89А,
где Hz1 – напряженность магнитного поля в зубцах статора, при трапецеидальных пазах определяется по приложению В для выбранной марки стали и для индукции рассчитанной в п. 3.2.7.
Hz1 = 584А/м
Lz1 = 2 · hz1 = 2 · 0,041 = 0,082м
Магнитное напряжение зубцового слоя ротора.
Fz2 = Hz2 · Lz2 = 360 · 0,082 = 29,52А,
где Hz2 – напряженность магнитного поля в зубцах ротора, определяется по приложению В для выбранной марки стали и для индукции рассчитанной в п. 3.2.7.
Hz2 = 360А/м
Lz2 = 2 · hz2 = 2 · 0,041 = 0,082м
Магнитное напряжение ярма статора.
Fa = Ha · La = 206 · 0,37 = 76,22А,
где Ha – определяется по приложению В для выбранной марки стали и для индукции рассчитанной в п. 3.2.8.
Ha = 206А/м
La = π(Da – ha)/ 2p = 3,14(0,52 – 0,052)/ 2 · 2 = 0,37м
Магнитное напряжение ярма ротора.
FJ = HJ · LJ = 113 · 0,14 = 15,82А,
где HJ – определяется по приложению В для выбранной марки столи и для индукции рассчитанной в п. 3.2.8.
HJ = 113А/м
LJ = π(D2 – 2hz2 – hJ)/ 2p = 3,14(0,333 – 2 · 0,041 – 0,0756)/ 2 · 2 = 0,14м
Суммарное магнитное напряжение магнитной цепи.
Fц = Fδ + Fz1 + Fz2 + Fa + FJ = 1257,7 + 47,89 + 29,52 + 76,22 + 15,82 =
= 1427,15А
Коэффициент насыщения магнитной цепи двигателя.
kµ = Fц / Fδ = 1427,15 / 1257,7 = 1,13
kµ = (1,1 ÷ 1,6)
Расчет намагничивающего тока
Намагничивающий ток.
Относительное значение намагничивающего тока.
Iµ* = Iµ/ I1н = 16,65/ 91,44 = 0,18
5. Активные и индуктивные сопротивления обмоток статора и ротора
Сопротивление обмоток статора.
Среднее значение зубцового деления статора.
tср1 = π(D + hz1)/ Z1 = 3,14(0,335 + 0,041)/ 72 = 0,016м
Средняя ширина катушки (секции) статора.
bср1 = tср1 · y = 0,016 · 14 = 0,224м,
где y – шаг обмотки.
Средняя длина лобовой части (секции) статора.
l л1 = (1,16 + 0,14p)bср1 = (1,16 + 0,14 · 2) · 0,224 = 0,323м
Средняя длина витка обмотки статора.
l ср1 = 2(l 1 +l л 1) = 2(0,151 + 0,323) = 0,948м
Длина вылета лобовой части обмотки статора.
lb 1 = (0,12 + 0,15p) · bср1 + 0,01 = (0,12 + 0,15 · 2) · 0,224 + 0,01 = 0,104м
Длина проводников фазы обмотки.
L1 = l ср1 · w1 = 0,948 · 72 = 68,26м
Активное сопротивление обмотки статора, приведенное к рабочей температуре 115ºС (для класса изоляции F).
ρ115,
где ρ115 = 1/41 (Ом/мм2) – удельное сопротивление меди при 115˚.
То же в относительных единицах.
r1* = r1 · I1н/U1н = 0,11 · 91,44/ 220 = 0,05,
где I1н и U1н – номинальные значения фазного тока и напряжения.
Индуктивное сопротивление рассеяния обмотки статора зависит от проводимостей: пазового рассеяния, дифференциального рассеяния и рассеяния лобовых частей. Коэффициент магнитной проводимости пазового рассеяния при трапецеидальном пазе .
где kβ1, k'β1 – коэффициенты, учитывающие укорочение шага обмотки β, определяется по таблице 3.
Коэффициент проводимости дифференциального рассеяния статора.
λg1 = 0,9t1 · (q · kоб1)2 · kσ · kш1/δ · kδ = 0,9 · 0,0146 · (6 · 0,882)2 · 0,003
· 1,34/ 0,001 · 1,31 = 1,13
где kσ = ƒ(q) – коэффициент дифференциального рассеяния, определяется по таблице 4.
kш1 – коэффициент, учитывающий влияние открытия паза.
kш1 = (1 – 0,033) · b2ш1/t1 · δ = (1 – 0,033) · 0,00452/ 0,0146 · 0,001 = 1,34
Коэффициент проводимости рассеяния лобовых частей обмотки статора.
λл 1 = 0,34(q/l 1) · (l л 1 – 0,064 · β · τ) = 0,34(6/0,151) · (0,323 – 0,64 · 0,75 ·
· 0,263) = 2,6
Коэффициент магнитной проводимости обмотки статора.
λ1 = λn1 + λg1 + λл 1 = 1,74 + 1,13 + 2,6 = 5,47
Индуктивное сопротивление рассеяния фазы обмотки статора.
То же в относительных единицах.
x1* = x1 · I1н/U1н = 0,28 · 91,44/220 = 0,12
Индуктивное сопротивление взаимной индукции основного магнитного потока.
x12 = U1н/Iµ = 220/16.65 = 13,2Ом
Сопротивление обмотки ротора.
Активное сопротивление стержня.
rc= ρ115 · l 2/qc =,
где ρ115 = 1/20,5(Ом/мм2) удельное сопротивление литой алюминиевой обмотки ротора при 115˚. Сопротивление участка кольца между двумя соседними стержнями.
где Dкл.ср – средний диаметр кольца.
Dкл.ср = D2 – bкл = 0,333 – 0,042 = 0,291
Коэффициент приведения тока кольца к току стержня.
∆ = 2Sin (πp/Z2) = 2Sin (3,14 · 2/82) = 0,153
Сопротивление кольца, приведенное к стержню. rкл.пр = rкл /∆2 = 0,00000035/0,1532 = 1,5 · 10-5 Ом
Активное сопротивление обмотки ротора (стержня и двух колец).
r2 = rc + 2 · rкл.пр = 7,9 · 10-5 + 2 · 1,5 · 10-5 = 10,9 · 10-5 Ом
Активное сопротивление обмотки ротора, приведенное к обмотке статора.
То же в относительных единицах.
r'2* = r'2 · I1н/U1н = 0,064 · 91,44/220 = 0,027
Коэффициент магнитной проводимости пазового рассеяния ротора при овальном пазе.
Коэффициент проводимости дифференциального рассеяния ротора.
λg2 = t2/(12 · δ ·kδ) = 0,0128/(12 · 0,001 · 1,31) = 0,81
Коэффициент проводимости лобового рассеяния ротора.
Коэффициент проводимости рассеяния обмотки ротора.
Индуктивное сопротивление обмотки ротора.
x2 = 7,9 · ƒ1 · l 1 · λ2 · 10-6 = 7,9 · 50 · 0,151 · 4,96 · 10-6 = 0,000296Ом
Индуктивное приведенное сопротивление обмотки ротора.
То же в относительных единицах.
x'2* = x'2 · I1н/U1н = 0,17 · 91,44/220 = 0,07
6. Потери в стали. Механические и добавочные потери
Потери в стали (магнитные потери) и механические не зависят от нагрузки, поэтому они называются постоянными потерями и могут быть определены до расчета рабочих характеристик. Расчетная масса стали зубцов статора при трапецеидальных пазах.
Gz1 = 7,8 · Z1 · bz1 · hz1 · l 1 · kc· 103 = 7,8 · 72 · 0,0067 · 0,041 · 0,151 · 0,97 · 103 = 22,6кг
Магнитные потери в зубцах статора для стали 2013. Pz1 = 4,4 ·B2z1 · Gz1 = 4,4 · 1,322 · 22,6 = 173,26Вт
Масса стали ярма статора. Ga1 = 7,8π(Da – hz1) · ha · l1 ·kc · 103 = 7,8 · 3,14(0,52 – 0,041) · 0,052 · 0,151 · 0,97 · 103 = 89,5кг
Магнитные потери в ярме статора. Pa1 = 4,4 · B2a · Ga1 = 4,4 · 0,992 · 89,5 = 385,96Вт
Суммарные магнитные потери в сердечнике статора, включающие добавочные потери встали.
Механические потери.
Вт
Дополнительные потери при номинальной нагрузке определяются по эмпирической формуле.
Pдоп.н = 0,004 · P' = 0,04 · 58539,9 = 2341,6Вт
7. Расчет рабочих характеристик
Под рабочими характеристиками асинхронного двигателя понимаются зависимости:
P1, I1, I'2, cos φ', η, M, n = ƒ(P2),
Где Р1, Р2 – потребляемая и полезная мощности двигателя.
В основу рабочих характеристик положена система уравнений токов и напряжений, полученных из Г- образной схемы замещения асинхронного двигателя с вынесенными на выходные зажимы намагничивающим контуром. Рис. 5.
Рисунок 5 – Г- образная схема замещения и векторная диаграмма.
Коэффициент приведения параметров двигателя к Г- образной схеме замещения.
С1 = 1 + (x1/x12) = 1 + (0,28/13,2) = 1,021
Активное сопротивление обмотки статора, приведенное к Г- образной схеме замещения.
r'1 = C1 · r1 = 1,021 · 0.11 = 0,112Ом
Индуктивное сопротивление короткого замыкания, приведенное к Г- образной схеме замещения.
x'к = С1 · x1 + C21 · x'2 = 1,021 · 0,28 + 1,0212 · 0,17 = 0,463Ом
Активная составляющая тока холостого хода.
Ioa = (Pcm + 3 · I2µ · r1)/3 · U1н = (689 + 3 · 16,652 · 0,11)/3 · 220 = 1,18А
Расчет рабочих характеристик проводим для 5 значений скольжения в диапазоне:
S = 0,005 ÷ 1,25Sн,
где Sн – ориентировочно номинальное скольжение принимаем равным:
Sн = r'2* = 0,027
Все необходимые для расчета характеристик данные формулы сведены в таблицу 5.
Таблица 5
№ п/п | Расчетная формула | Ед. изм. | Скольжение | ||||
0,25Sн | 0,50Sн | 0,75Sн | 1,0Sн | 1,25Sн | |||
1 | C21 · r'2/S | Ом | 9,88 | 4,94 | 3,29 | 2,47 | 1,98 |
2 | R = r'1 + C21 ·r'2/S | Ом | 26,48 | 13,33 | 8,89 | 6,67 | 5,34 |
3 | x = x'к | 0,463 | 0,463 | 0,463 | 0,463 | 0,463 | |
4 | Z = √R2 + x2 | Ом | 26,48 | 13,34 | 8,9 | 6,7 | 5,32 |
5 | I»2 = U1н/Z | А | 8,3 | 16,49 | 24,72 | 32,84 | 40,74 |
6 | cosφ'2 = R/Z | 1 | 0,99 | 0,99 | 0,99 | 0,98 | |
7 | sinφ'2 = x/Z | 0,02 | 0,034 | 0,05 | 0,069 | 0,087 | |
8 | I1a = Ioa + I«2 · cosφ'2 | А | 9,48 | 17,5 | 25,65 | 33,69 | 41,11 |
9 | I1p = Iop + I»2 · sinφ'2 | А | 16,82 | 17,21 | 17,89 | 18,91 | 20,19 |
10 | I'2 = C1 · I«2 | А | 8,47 | 16,83 | 25,24 | 33,53 | 41,6 |
11 | I1 = √I21a + I21p | А | 26,3 | 34,71 | 43,54 | 52,6 | 61,3 |
12 | P1 = 3 · I»22· r'2 · 10-3 | кВт | 9,27 | 11,55 | 16,87 | 22,23 | 27,13 |
13 | Pэ1 = 3 · I21 · r1· 10-3 | кВт | 0,23 | 0,4 | 0,63 | 0,93 | 1,26 |
14 | Pэ2 = 3 · I«22 · r'2 · 10-3 | кВт | 0,013 | 0,05 | 0,12 | 0,21 | 0,32 |
15 | Pдоб = Pдоб.н(I1/I1н)2 | кВт | 0,58 | 1,01 | 1,59 | 2,32 | 3,15 |
16 | ∑P = Pcm + Pмех + Pэ1 + Pэ2 + Pдоб | кВт | 8,092 | 8,729 | 9,609 | 10,729 | 11,999 |
17 | P2 = P1 — ∑P | кВт | 1,178 | 2,821 | 7,261 | 11,501 | 15,131 |
18 | η = 1 — ∑P/P1 | 0,18 | 0,24 | 0,43 | 0,52 | 0,56 | |
19 | cosφ = I1a/I1 | 0,36 | 0,5 | 0,59 | 0,64 | 0,67 | |
20 | Pэм = P1 – Pэ1– Pсm | кВт | 8,351 | 10,46 | 15,55 | 20,61 | 25,18 |
21 | ω1 = 2π · n1/60 | Рад/с | 314 | 314 | 314 | 314 | 314 |
22 | M = Pэм · 103/ω1 | Н.м | 26,6 | 33,3 | 49,5 | 65,6 | 80,2 |
23 | n = n1 ·(1 – S) | Об/мин | 2980 | 2960 | 2940 | 2919 | 2899 |
После расчета рабочих характеристик производим их построение
По номинальному току определяются номинальные параметры двигателя:
Р2н = 7,2кВт
Р1н = 17,5кВт
I'2н = 51,2А
сosφн = 0,61
ηн = 0,40
Мн = 50Н·м
nн = 2800об/мин
Sн = 0,018
Максимальный момент в относительных единицах.
Мmax* =Mmax / Mн =[(Sн /Sm) + (Sm/Sн)]/2 = [(0,018/0,20) + (0,20/0,018)]/2 =5,6
8. Расчет пускового тока и момента
При пуске в роторе АД имеют место два физических явления, оказывающих большое влияние на активное и индуктивное сопротивления, а следовательно, на пусковой ток и момент:
1) Эффект вытеснения тока в верхнюю часть паза, за счет которого расчетная высота паза и индуктивное сопротивление уменьшается, активное сопротивление увеличивается;
2) Эффект насыщения коронок зубцов потоками рассеяния, обусловленными большими пусковыми токами, за счет этого явления магнитные проводимости и индуктивные сопротивления уменьшаются.
Расчет активных и индуктивных сопротивлений обмотки ротора с учетом эффекта вытеснения тока.
Приведенная высота стержня для литой алюминиевой обмотки ротора при температуре 115˚С (класс изоляции F).
ξ = 63,61 · h31 = 63,61 · 0,040 = 2,54м
где h31 – высота стержня в пазу. Расчетный коэффициент увеличения активного сопротивления стержня φ в функции ξ. φ = 1,4. Глубина проникновения тока – расчетная высота стержня.
hr = h31 /(1 + φ) = 0,040/(1 + 1,4) = 0,017
Относительное увеличение активного сопротивления стержня.
kr = qc/qr = 96/81,33 = 1,18
где qr – площадь сечения стержня, ограниченная высотой hr.
qc – площадь сечения всего стержня.
Коэффициент общего увеличения активного сопротивления фазы ротора за счет вытеснения тока.
Приведенное активное сопротивление ротора с учетом вытеснения тока.
Расчетный коэффициент уменьшения индуктивного сопротивления стержня φ' в функции ξ. φ' = 0,6. Расчетный коэффициент уменьшения индуктивного сопротивления фазы ротора за счет вытеснения тока.
kx = λn2ξ /λ2 = 4,14/4,96 = 0,83
где λ2ξ– коэффициент магнитной проводимости рассеяния ротора с учетом вытеснения тока.
λ2ξ = λn2ξ + λл2 + λg2 = 1,23 + 2,1 + 0,81 = 4,14
λ2ξ = λn2 · φ' = 2,05 · 0,6 = 1,23
Приведенное индуктивное сопротивление ротора с учетом вытеснения тока.
x'2ξ =kx · x'2 = 0,83 · 0,17 = 0,14Ом
Расчет индуктивного сопротивления обмотки ротора с учетом влияния насыщения магнитопровода полями рассеяния.
Ток ротора, рассчитанный по Г-образной схеме замещения, без учета насыщения при S = 1.
То же с учетом насыщения. I'2нас ≈ I1нас = I1 · kнас = 458,33 · 1,3 = 595,83А, где kнас – коэффициент насыщения, предварительно выбирается в пределах: kнас = 1,25 ÷ 1,4. Средняя МДС обмотки, отнесенная к одному пазу статора.
Фиктивная индукция потока рассеяния в воздушном зазоре.
Коэффициент γδ, учитывающий отношение потока рассеяния при учете насыщения к потоку рассеяния ненасыщенной машины, по рис.8.
γδ = 0,8
Коэффициент магнитной индукции проводимости пазового рассеяния обмотки статора с учетом насыщения.
С1 = (t1-bш1) ·(1- γδ) = (0,0146 – 0,0045) · (1 – 0,80) = 0,00202
Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора с учетом насыщения. λg1нас = λg1 · γδ = 1,13 · 0,8 = 0,9
Окончательное индуктивное сопротивление фазы обмотки статора с учетом насыщения, Ом
x1нас = x1 · ∑λ1нас/λ1 = 0,28 · 5,16/5,47 = 0,26 Ом
∑λ1нас = λn1нас + λg1нас + λл1 = 1,66 + 0,9 + 2,6 = 5,16
Аналогично для ротора: Коэффициент магнитной проводимости пазового рассеяния с учетом насыщения.
Δλn2нас = hш2/bш2 · С2/bш2 + С2 = 0,001/0,0015 · 0,00226/0,0015 + + 0,00226 = 0,4
С2 = (t2 – bш2) · (1- γδ) = (0,0128 – 0,0015) · (1- 0,80) = 0,00226
Коэффициент магнитной проводимости дифференциального рассеяния обмотки ротора с учетом насыщения.
λg2нас = λg2 · γδ = 0,81 · 0,8 = 0,65
Окончательно приведенное индуктивное сопротивление фазы обмотки ротора с учетом влияния вытеснения тока и насыщения.
x'2ξнас = x'2 · ∑λ2gнас/λ2 = 0,17 · 3,58/4,96 = 0,12Ом
∑λ2gнас = λn2нас + λg2нас + λл2 = 0,83 + 0,65 + 2,1 = 3,58
Коэффициент С1 в Г- образной схеме замещения.
С1nнас = 1 + (x1нас/x12n) = 1 + (0,26/14,92) = 1,02
x12n ≈ x12 · kμ = 13,2 · 1,13 = 14,92
Ток в обмотке ротора с учетом насыщения при S = 1.
аnнас = r1 + C1nнас · r'2ξ = 0,11 + 1,02 · 0,072 = 0,18
bnнас =x1нас + C1nнас · x'2ξнас = 0,26 + 1,02 · 0,12 = 0,38
Ток в обмотке статора при S = 1.
Пусковой ток в относительных единицах.
I1n* = I1n/I1н = 526,59/91,44 = 5,76
Кратность пускового момента.
, Sn = 1
Mn = Mn* · Mн = 2,15 · 50 = 107,5H.м
СПИСОК ЛИТЕРАТУРЫ
1.Костенко Г.Н., Пиотровский Л.М. Электрические машины.- Л.: 1972.
2.Брускин Д.Э., Зорохович А.Е., Хвостов В.С.- Электрические машины. М.: 1979. Ч I. Ч II.
3.Кацман М.М. Электрические машины.- М.: 1983.
4.Копылов И.П. Электрические машины. -Л.: 1972.
5.Проектирование электрических машин. /Под ред. И.П.Копылова М.: 1980.
6.Зимин В.И., Каплай М.Я., Палей А.М. Обмотки электрических машин.- М.: 1975
7.Чичетян В.И. Электрические машины. Сборник задач.- М.: Высшая школа 1988.
www.ronl.ru
Производство электроэнергии является достаточно легким процессом, а электродвигатели могут служить для различных целей — от бурения скважин до обеспечения движения поездов.
Материя состоит из атомов, которые, в свою очередь, складываются из электрически заряженных частиц — протонов и электронов. Еще древние греки знали, что если потереть янтарь кусочком ткани, он будет притягивать легкие предметы, но не понимали причину происходящего. На самом деле в результате трения возникало электричество.
Обычно в любом веществе находится равное количество отрицательно и положительно заряженных частиц. Поэтому их электрические заряды уравновешены, а вещество нейтрально. Однако в результате трения некоторые электроны перемещаются с одного материала на другой. Как следствие, нарушается равновесие зарядов: материал, притянувший электроны, становится отрицательно заряженным, а материал, отдавший их — положительно заряженным.
Заряженные предметы
Термины «электрон» и «электричество» произошли от греческого слова elektron, означающего «янтарь». Хотя греки сделали важный шаг в направлении крупного открытия, первая машина, способная вырабатывать электричество, была изобретена лишь ок. 1650 г. в Германии. Отто фон Герике создал простую машину, включавшую большой шар из серы. При касании рукой шара, насаженного на вал и вращаемого с помощью ручки, тот заряжался в результате трения. К XIX в. были изобретены многие подобные фрикционные генераторы.
В основе работы другого типа генератора лежал принцип электростатической индукции — процесса, при котором предмет заряжается от находящегося поблизости другого заряженного предмета. Такие асинхронные генераторы накапливают индуцированные заряды для получения высокого напряжения. Подобная машина, изобретенная Джеймсом Уимсхерстом в 1883 г., по-прежнему используется в лабораторных опытах для получения напряжения до 50 000 вольт, а иногда и выше.
Мощные электромашины
В 1931 г. Ван-де-Грааф изобрел электростатический генератор широкого практического применения. Движущаяся лента из диэлектрика передает на металлический шар заряд, постепенно увеличивающийся до нескольких миллионов вольт. Генератор Ван-де-Граафа используется при испытаниях изоляторов и другого оборудования, рассчитанного на высокие напряжения, а также в ядерных исследованиях, при этом высокое напряжение служит для разгона заряженных субатомных частиц.
Хотя фрикционные и асинхронные машины могли создавать высокое напряжение, они не годились для выработки сильного постоянного тока. Данная проблема была решена в конце 1790-х гг., когда итальянский ученый Алессандро Вольта изобрел первую батарею. Впоследствии она была усовершенствована, что позволило, начиная с конца XIX в., использовать электричество для освещения. Хотя батареи являются удобным и многоцелевым источником электроэнергии, они постепенно разряжаются и нуждаются в замене или подзарядке. Эксперименты, проведенные в начале XIX в., привели к созданию современных генераторов.
Эрстед и Ампер
В 1819 г. датский профессор Ханс Эрстед сделал открытие: текущий по проводу электрический ток заставлял отклоняться стрелку магнитного компаса. Так Эрстед открыл явление электромагнетизма — магнетизма, создаваемого электричеством. В 1821 г. французский ученый Андре Ампер продемонстрировал связанное с этим механическое взаимодействие токов: при пропускании электрического тока через провод, находящийся рядом с мощным магнитом, наблюдалось перемещение провода, — и установил закон этого взаимодействия. Этот принцип лежит в основе электрического двигателя: преобразование электрической энергии в механическую.
Опыты Ампера были чрезвычайно интересны, но не имели практического применения. Провод просто немного сдвигался при появлении тока. Но в том же году английский ученый Майкл Фарадей создал машину, которая с помощью электричества обеспечивала длительное движение. Нижний конец подвешенного провода помещался в сосуд с ртутью, в центре которого находился стержневой магнит. При подключении батареи между верхним концом провода и ртутью провод начинал вращаться вокруг магнита.
Электромагнитная индукция
Открытое Фарадеем явление электромагнитной индукции, названное им «электрическим вращением», легло в основу принципа работы современных электродвигателей. Первый электродвигатель, нашедший практическое применение, был изобретен в 1837 г. американским инженером Томасом Давенпортом. Он использовал два таких двигателя: для работы сверлильного и деревообрабатывающего станков.
Изучив электричество как движущую силу, Фарадей начал искать пути преобразования механической энергии в электрическую. В 1831 г. он показал, что перемещение стержневого магнита возле проволочной катушки вызывало прохождение электротока через подключенный к ней измерительный прибор. При этом сила тока была намного выше, чем в случае одинарного провода.
Электроснабжение
Фарадей первым использовал электромагнитный эффект для производства электричества. К концу 1870-х гг. появились мощные генераторы, а в 1881 г. заработала первая электростанция в Годалминге (Англия). Она же стала и первой в мире гидроэлектростанцией, так как генератор приводился в движение водяной мельницей.
У электрических двигателей и генераторов много общего, и некоторые машины могут выполнять функции обоих. В простом электродвигателе проволочная катушка крепится на валу, что позволяет ей свободно вращаться между полюсами подковообразного постоянного магнита. Катушка играет роль электромагнита, намагничиваясь при прохождении через нее электрического тока. Находящийся внутри катушки железный сердечник усиливает создаваемый магнитный эффект.
Двигатели постоянного тока
Электрический ток от батареи или другого источника, движущийся только в одном направлении, называется постоянным током. Если батарея подключена к катушке простого электродвигателя, катушка намагничивается, при этом на противоположных ее концах возникают два полюса — отрицательный и положительный. Поскольку противоположные полюсы взаимно притягиваются, северный и южный полюсы катушки стремятся, соответственно, к южному и северному полюсам постоянного магнита. Эти силы притяжения заставляют катушку вращаться вокруг своей оси, и вскоре ее полюсы располагаются у противоположных полюсов постоянного магнита.
Однако в этот момент автоматическое переключающее устройство (коллектор) направляет ток в противоположную сторону. Коллектор простого электродвигателя постоянного тока состоит из медного кольца, разрезанного пополам и крепящегося (с прокладкой из диэлектрика) на оси ротора. Концы катушки подключаются к двум половинкам кольца. Ток проходит через катушку и попадает на пару угольных контактов — щеток, касающихся противоположных сторон коллектора. При вращении ротора каждая щетка поочередно взаимодействует с обеими сторонами катушки.
Автоматическая коммутация
Благодаря автоматической коммутации магнитные полюсы катушки изменяются на противоположные при достижении полюсов постоянного магнита. Теперь они уже не разноименные, а одноименные полюсы по отношению к ближайшим полюсам магнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.
Вращающаяся часть электрической машины называется ротором (или якорем), а неподвижная — статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит — статором.
В некоторых двигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения.
Двигатели переменного тока
Переменный ток периодически меняет направление, обычно 50 или 60 раз в секунду. Некоторые двигатели переменного тока имеют ротор, на который ток подается через коллектор, как в двигателях постоянного тока. Но у многих двигателей этого типа вообще нет соединений с ротором. Их действие основано на принципе индукции. Проходящий через статор переменный ток создает вращающееся магнитное поле, как было бы в случае вращения постоянного магнита. Это движущееся поле заставляет ток течь в направлении обмоток ротора, намагничивая его. В результате ротор вращается, так как его полюсы вынуждает двигаться по кругу вращающееся вокруг ротора магнитное поле. Часто ротор состоит из медных или алюминиевых стержней, концы которых соединяют два металлических кольца. Ротор в сборе похож на клетку, и такие машины называют двигателями с «беличьей клеткой», или короткозамкнутыми двигателями.
Синхронные двигатели
В индукционных (асинхронных) двигателях ротор вращается медленнее, чем движущееся вокруг него магнитное поле. В синхронных двигателях ротор поворачивается одновременно с полем. В простых синхронных двигателях ротор состоит из одного или нескольких постоянных магнитов. Их полюсы притягиваются к разноименным полюсам вращающегося магнитного поля, поэтому они вращаются с одинаковой скоростью. Иногда вместо постоянных магнитов в роторах используются электромагниты, но принцип работы остается неизменным. В другом типе синхронных двигателей используются скачки переменного тока для создания магнитного поля, которое пошагово вращает ротор с зубчатым колесом.
Большинство электродвигателей создают вращательное движение. Но у некоторых из них обмотки статора открыты и расположены на одной линии, благодаря чему создается магнитное поле, движущееся линейно вместе с проводниковым материалом. Такие двигатели называются линейными асинхронными. Они используются для открывания раздвижных дверей, транспортировки багажа в аэропортах, в скоростных поездах.
Генераторы
Если ротор простого электродвигателя постоянного тока вращать вручную, двигатель будет работать как генератор. В катушке возникает переменное напряжение, достигающее пиковых величин, когда ее полюсы проходят полюсы постоянного магнита. Затем напряжение падает до нуля и меняет свое направление, достигая максимума, когда полюсы катушки проходят противоположные полюсы постоянного магнита. Можно подключиться к катушке, соединив концы двух сплошных медных колец (называемых контактными кольцами), находящихся на оси ротора. Угольные щетки трутся об эти кольца и снимают переменное напряжение, в результате чего при подключении к электрической цепи возникает переменный ток. Такой генератор относится к генераторам переменного тока, т. е. электрическим машинам, вырабатывающим переменный ток.
Динамо-машины
Если же используется коллектор (как в электродвигателе постоянного тока), он постоянно будет изменять соединения между катушкой и щетками, что препятствует переменам напряжения в катушке. В результате, вместо переменного тока по щеткам будет протекать пульсирующий постоянный ток. Генераторы, вырабатывающие постоянный ток таким образом, называются динамо-машинами.
В большинстве динамо-машин для создания необходимого магнитного поля используется не постоянный, а электромагнит. Однако сердечник электромагнита немного намагничен, и силы его поля достаточно, чтобы машина начала вырабатывать электричество при включении. Затем часть выработанного тока проходит через обмотку электромагнита для усиления его магнитного поля и увеличения объема электроэнергии.
Некоторые генераторы переменного тока (например, автомобильные) вырабатывают постоянный ток благодаря встроенным выпрямителям — устройствам, допускающим течение тока только в одном направлении.
В большинстве генераторов переменного тока — от служащих для подзарядки аккумуляторов автомобилей до гигантских машин, вырабатывающих электричество для питающей сети — катушки имеются и на роторе, и на статоре, причем именно ротор создает магнитное поле. Относительно слабый ток проходит через обмотки возбуждения на роторе по щеткам и контактным кольцам, а более сильный вырабатываемый ток отбирается непосредственно со статора. Это позволяет избежать потерь мощности и искрения, возможных при отборе сильного вырабатываемого тока с ротора посредством колец и щеток.
www.ronl.ru
Содержание
Введение
1. Принципы деления электромашин
2. Особенности электрических машин малой мощности
2.1 Виды ЭМММ, их функциональное назначение и основные области применения
3. Шаговый двигатель
3.1 Классификация шаговых двигателей
3.2 Режимы работы шаговых двигателей
3.1 Применение
Заключение
Список используемой литературы
Приложение 1
Приложение 2
Введение
Электрические машины являются основными элементами электрических установок. Они используются как источники (генераторы) электрической энергии, как двигатели, чтобы приводить в движение самые разнообразные рабочие механизмы на заводах и фабриках, в сельском хозяйстве, на строительных работах и т. д.
Электрические машины, предназначенные для преобразования механической энергии в электрическую[1], называются генераторами; электрические машины, предназначенные для обратного преобразования электрической энергии в механическую, называются двигателями.
Электрические машины применяются также для преобразования рода тока (например, переменного тока в постоянный), частоты и числа фаз переменного тока, постоянного тока одного напряжения в постоянный ток другого напряжения. Такие машины называются электромашинными преобразователями.
Электрическая машина имеет две основные части — вращающуюся, называемую ротором, и неподвижную, называемую статором (рис. 1).
Рис. 1. Обычная конструктивная схема электрической машины,
1 — статор; 2 — ротор; 3 — подшипники.
1. ПРИНЦИПЫ ДЕЛЕНИЯ ЭЛЕКТРОМАШИН
Классификация электрических машин по мощности: | ||
Машины большой мощности: | Машины средней мощности: | К машинам малой мощности относятся электрические машины, не входящие в первые две группы: |
— коллекторные машины мощностью более 200 кВт; — синхронные генераторы мощностью более 100 кВт; — синхронные двигатели мощностью более 200 кВт; — асинхронные двигатели мощностью более 100 кВт при напряжении более 1000 В. | — коллекторные машины мощностью 1 200 кВт; — синхронные генераторы мощностью до 100 кВт, в том числе высокоскоростные мощностью до 200 кВт; — асинхронные двигатели мощностью 1 200 кВт; — асинхронные машины мощностью 1 400 кВт при напряжении до 1000 В, в том числе двигатели единых серий от 0,25 кВт. | — двигатели постоянного тока коллекторные и универсальные; — асинхронные двигатели, синхронные двигатели и др. |
По принципам создания вращающего момента электрические машины делятся на синхронные, асинхронные и постоянного тока.
В синхронных машинах частота вращения вала синхронизирована с частотой вращения электромагнитного поля, создающего вращающий момент. В синхронной машине поле возбуждения создается обмоткой, расположенной на роторе и питающейся постоянным током. Обмотка статора соединяется с сетью переменного тока. Обращенная схема, когда обмотка возбуждения расположена на статоре, встречается редко. В синхронной машине обмотка, в которой индуцируется ЭДС и протекает ток нагрузки, называется обмоткой якоря, а часть машины с этой обмоткой называется якорем. Часть машины, на которой расположена обмотка возбуждения, называется индуктором. Синхронные машины применяются в качестве генераторов и двигателей.
Условием работы асинхронной машины является неравенство частот вращения электромагнитного поля статора и ротора, что собственно и создает силы, приводящие в движение электрические машины. В асинхронной машине поле создается в обмотке статора и взаимодействует с током, наводимым в обмотке ротора. Среди асинхронных машин коллекторными являются однофазные двигатели малой мощности. Асинхронные машины применяются в основном в качестве двигателей.
Главной особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. Машина постоянного тока по своему конструктивному выполнению сходна с обращенной синхронной машиной, у которой обмотка якоря расположена на роторе, а обмотка возбуждения — на статоре. Благодаря своим хорошим регулировочным свойствам двигатели постоянного тока нашли широкое распространение в промышленности. Они могут работать в качестве и генераторов и двигателей.
Рассмотрим самые распространенные электромашины- машины малой мощности.
2. ОСОБЕННОСТИ ЭЛЕКТРИЧЕСКИХ МАШИН МАЛОЙ МОЩНОСТИ
Электрические машины мощностью до 1 кВт, получившие название электрических машин малой мощности (ЭМММ), вследствие своей специфичности выделены в классификаторах промышленной продукции в отдельную группу.
Электрические машины малой мощности отличаются от электрических машин средней и большой мощности не только массовостью производства и применения, но, главным образом, существенно большим многообразием выполняемых функций и конструктивных исполнений, особенностями применения и эксплуатации. Они выполняют задачи не только преобразования электрической энергии в механическую или электрического сигнала в механическую величину (угол, угловую частоту, момент), но и обратного преобразования механической величины в электрический сигнал по определенной функциональной зависимости. Электрические машины малой мощности оказывают существенное влияние на надежность и на функциональные характеристики систем автоматики и радиоэлектронной аппаратуры, в частности на точность и быстродействие.
2.1 Виды ЭМММ, их функциональное назначение и основные области применения (см. Приложение 1, 2)
3. ШАГОВЫЙ ДВИГАТЕЛЬ
Шаговый двигатель[2] (рис.3) – это электромеханичское устройство, которое преобразует электрические импульсы в дискретные механические перемещения. Так, пожалуй, можно дать строгое определение.
Рис.3 Шаговый двигатель
Шаговые двигатели обладают некоторыми уникальными свойствами, что делает порой их исключительно удобными для применения или даже незаменимыми.
Угол поворота ротора определяется числом импульсов, которые поданы на двигатель двигатель обеспечивает полный момент в режиме остановки (если обмотки запитаны) прецизионное позиционирование и повторяемость. Хорошие шаговые двигатели имеют точность 3-5% от величины шага. Эта ошибка не накапливается от шага к шагу возможность быстрого старта/остановки/реверсирования высокая надежность, связанная с отсутствием щеток, срок службы шагового двигателя фактически определяется сроком службы подшипников однозначная зависимость положения от входных импульсов обеспечивает позиционирование без обратной связи возможность получения очень низких скоростей вращения для нагрузки, присоединенной непосредственно к валу двигателя без промежуточного редуктора может быть перекрыт довольно большой диапазон скоростей, скорость пропорциональна частоте входных импульсов. Однако существуют и отрицательные свойства:
— шаговым двигателем присуще явление резонанса
— возможна потеря контроля положения ввиду работы без обратной связи
— потребление энергии не уменьшается даже без нагрузки
— затруднена работа на высоких скоростях
— невысокая удельная мощность
— относительно сложная схема управления
3.1 Классификация шаговых двигателей
В зависимости от конфигурации обмоток двигатели делятся:
1. Биполярный — имеет четыре выхода, содержит в себе две обмотки(а).
2. Униполярный — имеет шесть выходов. Содержит в себе две обмотки, но каждая обмотка имеет отвод из середины (б).
3. Четырехобмоточный — имеет четыре независимые обмотки. По сути дела представляет собой тот же униполярник, только обмотки его разделены (в).
В зависимости от типа электронного коммутатора управление шаговым двигателем может быть: однополярным или разнополярным; симметричным или несимметричным; ·потенциальным или импульсным. При однополярном управлении напряжение каждой фазе изменяется от 0 до +U, а при разнополярном – от -U до +U. Управление называется симметричным, если в каждом такте коммутации задействуется одинаковое число обмоток, и несимметричным – если разное.
3.2 Режимы работы шаговых двигателей
Характер движения ротора шагового двигателя определяется частотой и характером изменения управляющих импульсов. В зависимости от этого различают следующие режимы работы шаговых двигателей: статический; квазистатический; установившейся; переходный.
Статический:
Реализуется, когда по обмоткам протекает постоянный ток, создающий неподвижное поле.
Характеризуется статическим синхронизирующим моментом стремящимся возвратить ротор в первоначальное положение. ( Режим удержания ).Основной характеристикой этого режима является зависимость статического синхронизирующего момента от угла рассогласования M = f(q).
Квазистатический:
Режим отработки единичных шагов. Характерен тем что все переходные, обычно колебательные, процессы заканчиваются перед началом следующего шага. Частота шагов в этом режиме ограничена временем затухания колебаний. Повысить её можно введением дополнительных устройств. (Применяется там, где подобные колебания недопустимы.)
Установившиеся режимы:
Режим, соответствующий постоянной частоте следования управляющих импульсов. При частоте управляющих импульсов f1, меньшей частоты собственны колебаний двигателя f0, движение ротора носит колебательный характер, что увеличивает динамическую ошибку при отработке заданного перемещения. При малых возмущениях частота собственных колебаний ротора где Mmax – максимальный статический синхронизирующий момент; Jp ,Jн- момент инерции ротора и нагрузки, приведенные к валу двигателя; р –число пар полюсов. При значительных возмущениях При частоте управляющих импульсов f1 = f0/k, где k – целое число, возникает явление электромеханического резонанса, которое при слабом демпфировании колебаний может привести к нарушению нормального движения ротора и выпадению его из синхронизма. При f1> f0 имеют место вынужденные колебания с частотой управляющих импульсов; амплитуда их монотонно уменьшается с увеличением частоты. Для устойчивой работы шагового двигателя необходимо, чтобы
Mн/Mmax < 0,3 — 0,5, a Jн/Jp <1 -2.
Переходные режимы:
Это основной эксплуатационный режим работы шагового двигателя. Он включает в себя пуск, реверс, торможение, переход с одной управляющей частоты на другую. Физические процессы в переходных режимах определяются как параметрами двигателя и его нагрузки, так и начальными условиями, при которых начинается переходный процесс. Основное требование к шаговому двигателю в переходных режимах заключается в отсутствии потери шага, т.е. сохранение синхронизма при любом характере изменения управляющих импульсов. Пуск шагового двигателя осуществляется из неподвижного положения ротора, которое он занимает при установившихся значениях токов в обмотках, путем скачкообразного увеличения частоты управляющих импульсов от нуля до рабочей. При этом ротор вначале отстает от поля, затем, ускорясь, достигает частоты вращения поля, опережает его и вследствие отрицательного синхронизирующего момента снова замедляет свое движение. Вследствие демпфирования колебания скорости вращения быстро затухают, наступает установившийся режим.
Максимальная частота управляющих импульсов, при которой возможен пуск без потери шага, называется частотой приемистости fпр. Частота приемистости растет с увеличением максимального синхронизирующего момента, уменьшением шага, снижением постоянной времени обмоток, нагрузки и момента инерции. Для современных ШД fпр = 100-1000 Гц. Торможение шагового двигателя осуществляется скачкообразным снижение частоты управляющих импульсов от рабочего значения до нуля. Предельная частота, при которой ротор останавливается без потери шага, как правило, выше частоты приемистости, что объясняется внутренним демпфированием – электромагнитным тормозным моментом, моментом сопротивления нагрузки и трением в опорах. Реверс шагового двигателя производится путем изменения последовательности коммутации токов в обмотках, приводящего к изменению направления вращения магнитного поля на обратное. Предельная частота управляющих импульсов, при которой реализуется реверс без потери шага, всегда меньше частоты приемистости и составляет (0,2-0,5)fпр.
3.2 Применение
Шаговые электродвигатели применяются в приводах машин и механизмов, работающих в старт-стопном режиме, или в приводах непрерывного движения, где управляющее воздействие задается последовательностью электрических импульсов, например, в станках с ЧПУ. В отличие от сервоприводов, шаговые приводы позволяют получать точное позиционирование без использования обратной связи от датчиков вращения.
Главное преимущество шаговых приводов — низкая цена, в среднем в 1,5-2 раза дешевле сервоприводов. Шаговый привод как недорогая альтернатива сервоприводу наилучшим образом подходит для автоматизации отдельных узлов и систем, где не требуется высокая динамика.
Заключение
Электрические машины малой мощности имеют, как правило, закрытое конструктивное исполнение, рассчитанное на работу в любом положении в пространстве, длительные сроки сохраняемости. Конструкция этих машин и специфика их применения в аппаратуре исключают возможность их ремонта в процессе эксплуатации. Все ЭМММ рассчитаны на работу в условиях воздействия жесткого комплекса внешних факторов (механических, климатических и др.). Они отличаются повышенной надежностью, обеспечивающейся специальной технологией изготовления и системой контроля качества.
Особенностью применения ЭМММ в аппаратуре является то, что они, как правило, не дублируются, замена их требует весьма трудоемких операций, связанных с регулировкой механических соединений и электромеханических параметров.
Системы параметров и характеристик большинства видов ЭМММ обладают существенными особенностями по сравнению с системами параметров машин средней и большой мощности, что обусловлено в основном спецификой назначения и функционирования ЭМММ. Приводятся данные, наиболее важные для потребителей машин: электрические и электромеханические параметры, характеризующие функциональные свойства различных видов машин; данные о стойкости ЭМММ к воздействию основных механических и климатических факторов, имеющих место в эксплуатации; габаритные и установочно-присоединительные размеры, масса, число фаз, схемы включения.
Список используемой литературы
1. Кацман М.М. « Электрические машины. Учебник», М., 2003 г.
2. Брускин Д.Э., Зорохович А.Е., Хвостов В.С. Электрические машины: Учебник для вузов. М.: Высшая школа, 1987.
3. Ермолин Н.П. Электрические машины малой мощности. – М.: Высшая школа, 1961. – 503 с.
4. Карпенко Б. К Шаговые электродвигатели. М.: 1990
5. Ратмиров В. А., Ивоботенко Б. А. Шаговые двигатели для систем автоматического управления М.: 1962.
6. www. wikipedia.ru
Приложение 1
Рис. 2. Виды и функциональное назначение электрических машин малой мощности
Приложение 2
Рис. 2.1. Основные области применения электрических машин малой мощности
[1] Глоссарий.ru.Словарь по естественным наукам: Электрическая машина.
[2] (Материал из Википедии.) Ша́говый электродви́гатель — это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток подаваемый в одну из обмоток статора вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора.
www.ronl.ru