Реферат на тему "Большой взрыв" по дисциплине Концепции современного естествознания
Выполнила:Студентка II курсаСпециальность «Связи с общественностью»Кожевникова А.
Проверил:Пастушный С. А.
Прага 2002
ОГЛАВЛЕНИЕ
Введение
Большой взрыв и хронология
Был ли большой взрыв?
Красное смещение
Фоновое излучение
Нечто из ничего
Скрытая холодная и темная материя
Рождение и смерть звёзд
Размер и возраст Вселенной
Антропный принцип
Заключение
Список использованной литературы
1). Введение
Эту тему для своей работы я выбрала не случайно. Дело в том, что на втором курсе к изучаемым мною наукам добавилась дисциплина под названием «Концепции современного естествознания». Она изучает природные процессы, их возникновение, течение, взаимодействие и сопутствующие этому процессы. Причем не только процессы, происходящие на земле, но и в космосе. То есть изучаемая нами дисциплина является своего рода связующим звеном между остальными естественными науками (химией, астрономией, физикой, биологией и т.п.). В свою же очередь, каждая из этих наук постоянно открывает новые явления, законы, вещества. И мало кто задается вопросом: С чего всё началось? А концепции современного естествознания (совместно с философией) пытаются на этот вопрос ответить издавна. Таких теорий было несколько. Но подробно рассказывать о них в рамках моей работы я считаю непозволительным, да и тема моей работы звучит несколько иначе, поэтому считаю необходимым перейти к той версии, которую я выбрала в качестве темы своей работы. А в качестве своей темы я выбрала «концепцию большого взрыва». Я конечно осознаю, что подробно рассказать о данной теории в рамках объема, отведенного мне нелегко, но я постараюсь достаточно компактно, но подробно изложить концепцию большого взрыва.
2). Большой взрыв и хронология
Большим взрывом называется явление возникновения Вселенной. В рамках этой концепции полагается, что начальным состоянием Вселенной была точка, называемая точкой сингулярности, в которой были сосредоточены все вещество и энергия. Она характеризовалась бесконечно большой плотностью материи. Конкретные свойства точки сингулярности неизвестны, как неизвестно и то, что предшествовало состоянию сингулярности.
Приблизительная хронология событий, последовавших с нулевого момента времени - начала расширения, представлена ниже:
Время с начала взрыва (сек.) | Температу ра (градусы Кельвина) | Событие | Следствия | |
0 - 5*10—44 | 1,3*1032 | Никаких достоверных сведений нет | ||
5*10-44 – 10-36 | 1,3*1032 – 1028 | Начало действия известных физических законов, эра инфляционного расширения | Расширение Вселенной продолжающееся и поныне | |
10-36 – 10-4 | 1028 – 1012 | Эра промежуточных бозонов, а затем – адронная эра, существование свободных кварков | ||
10-4 - 1-3 | 1012 – 1010 | Возникновение частиц и античастиц из свободных кварков, а также их аннигиляция, возникновение прозрачности вещества для нейтрино | Возникновение барионной асимметрии, появление нейтринного реликтового излучения | |
1-3 - 100-120 | 1010 – 109 | Протекание ядерных реакций синтеза ядер гелия и некоторых других легких химических элементов | Установление первичного соотношения химических элементов | |
Между 300 тысячами – 1 миллионом лет | 3000 – 4500 | Завершение эры рекомбинации | Появление Реликтового излучения и нейтрального газа | |
1 миллион - 1 миллиард лет | 4500 – 10 | Развитие гравитационных неоднородностей газа | Образование звезд и галактик |
Относительно условий и событий, происходивших до наступления момента 5*10-44 секунды - окончания первого кванта времени - никаких достоверных сведений нет. О физических параметрах той эры можно лишь сказать, что тогда температура была 1,3*1032 градуса, а плотность материи около 1096 кг/м3. Приведенные значения являются предельными для применения существующих теорий. Они вытекают из соотношений скорости света, гравитационной постоянной, постоянных Планка и Больцмана (мировые постоянные) и называются “планковскими”.
События периода с 5*10-44 по 10-36 секунды отражает модель “инфляционной Вселенной”, описание, которой затруднительно и не может быть дано в рамках этого изложения. Однако следует отметить, что согласно этой модели расширение Вселенной происходило без уменьшения объемной концентрации энергии и при отрицательном давлении первичной смеси вещества и энергии, т.е., как бы, отталкивании материальных объектов друг от друга, вызвавшем расширение Вселенной, продолжающееся и поныне.
Далее, начиная с момента 10-36 секунды от начала взрыва, события описываются в рамках модели “горячей Вселенной”.
Для понимания процессов, протекавших в период 10-36-10-4 секунд с начала взрыва, требуется глубокое знание физики элементарных частиц. В этот период электромагнитное излучение и элементарные частицы - различные виды мезонов, гипероны, протоны и антипротоны, нейтроны и антинейтроны, нейтрино и антинейтрино и т.п. существовали в равновесии, т.е. их объемные концентрации были равны. Очень важную роль в это время играли вначале поля сильных, а затем слабых взаимодействий.
В период 10-4 - 1-3 секунды происходило формирование всего множества элементарных частиц, которые, преобразуясь одни в другие, и составляют ныне всю Вселенную. Произошла аннигиляция подавляющего большинства элементарных частиц и античастиц, существовавших ранее. Именно в этот период появилась барионная асимметрия которая оказалась следствием очень малого, всего на одну миллиардную долю, превышения количества барионов над антибарионами. Оно возникло, судя по всему, сразу после эры инфляционного расширения Вселенной. При температуре 1011 градусов плотность Вселенной уже снизилась до величины, характерной для атомных ядер, В этот период уменьшение температуры вдвое происходило за тысячные доли секунды. В это же время родилось существующее и ныне реликтовое нейтринное излучение. Однако, несмотря на его значительную плотность, составляющую не менее чем 400 штук/см3, и возможность получить с его помощью важнейшую информацию о том периоде формирования Вселенной, его регистрация пока не реализуема.
В период с 1-3 по 100-120 секунд в результате термоядерных реакций образовались ядра гелия и очень малое количество ядер некоторых других легких химических элементов, а значительная часть протонов - ядер водорода - объединению в атомные ядра не подверглась. Все они остались погруженными в “океан” свободных электронов и фотонов электромагнитного излучения. С этого момента в первичном газе установилось соотношение: 75- 78% водорода и 25-22% гелия - по массам этих газов.
В период между 300 тысячами и 1 миллионом лет температура Вселенной понизилась до 3000 - 45000 К и наступила эра рекомбинации. Свободные прежде электроны объединились с легкими атомными ядрами и протонами. Образовались атомы водорода, гелия и некоторое количество атомов лития. Вещество стало прозрачным и излучение, наблюдаемое до сих пор, “отделилось” от него. Все наблюдаемые ныне особенности реликтового излучения, например, флуктуации температуры его потоков приходящих от разных участков на небесной сфере или их поляризация отражают картину свойств и распределения вещества в то время.
В течение последующего - первого миллиарда лет существования Вселенной ее температура снизилась от 3000 - 45000 К до 300 К. В связи с тем, что к этому периоду времени во Вселенной еще не образовалось источников электромагнитного излучения – звезд, квазаров и т.п., а реликтовое излучение уже остыло, эту эпоху называют “Темным возрастом” Вселенной.
Тогда же неоднородности плотности смеси первичных газов, возникшие, вероятно, еще на этапе “инфляционного расширения” Вселенной, уплотнялись под действием гравитационных сил. Компьютерное моделирование этих процессов показывает, что это должно было приводить к образованию гигантских звезд с массами в миллионы масс Солнца. По причине таких огромных масс, эти звезды разогревались до очень высоких температур и потому проходили весь свой путь эволюции в течение нескольких десятков миллионов лет, а затем взрывались как сверхновые.
Нагретые до огромных температур поверхностей этих звезд порождали мощные потоки ультрафиолетового излучения, которые произвели повторную ионизацию атомов находящихся в свободном от звезд космическом пространстве. Наступила, так называемая, эпоха переионизация. Образовавшаяся плазма сильно рассеивала электромагнитное излучение в его коротковолновых спектральных диапазонах. Вселенная, как бы погрузилась в густой туман. Только для длинноволнового реликтового излучения эта среда оказалась прозрачной.
Эти гигантские звезды послужили первыми во Вселенной источниками более тяжелых, чем литий химических элементов. Вслед за тем появилась возможность формирования космических объектов второго поколения, содержащих ядра этих атомов. Звезды второго поколения начали формироваться из смеси тяжелых атомов, а также атомов первичных водорода и гелия. Они и звезды последующих поколений уже не были столь массивными и горячими, как звезды первого поколения, поэтому потоки ультрафиолетового ионизирующего излучения от них были значительно меньше. Произошла повторная рекомбинация большинства атомов межзвездного и межгалактического газов и пространство вновь стало, в основном, прозрачным для электромагнитного излучения во всех его спектральных диапазонах. Картина Вселенной стала, практически такой, какой мы ее наблюдаем сегодня.
3). Был ли большой взрыв?
В наше время существуют две основных научных теории возникновения Вселенной. Согласно теории стабильного состояния материя, энергия, пространство и время существовали всегда. Но тут же возникает логичный вопрос: почему сейчас никому не удается создать материю и энергию? Это утверждает Первый закон термодинамики, ни одного исключения из которого не удалось обнаружить. Напротив, всё стремится к распаду и разрушению. Энергия иссякает, становясь все менее способной к совершению работы (это называют Вторым законом термодинамики). Бесконечно старая Вселенная должна быть полностью лишена полезной энергии и каких-либо изменений - достигнуть состояния, называемого тепловой смертью.
Самая популярная теория происхождения Вселенной, поддерживаемая большинством теоретиков - теория большого взрыва. Подобно библейскому повествованию о сотворении она утверждает, что Вселенная возникла внезапно, но это было случайное событие, произошедшее миллиарды лет назад Оценка возраста Вселенной последнее время колебалась в пределах 8-20 миллиардов лет. Сейчас речь ведется о 12 миллиардах лет.
Теорию большого взрыва предложили в 20-х годах XX века ученые Фридман и Леметр, в сороковых годах ее дополнил и переработал Гамов. Согласно этой теории когда-то наша Вселенная представляла \собой бесконечно малый сгусток, сверхплотный и раскаленный до очень высоких температур. Это нестабильное образование внезапно взорвалось, пространство быстро расширилось, а температура разлетающихся частиц, обладающих высокой энергией, начала снижаться. Примерно после первого миллиона лет атомы двух самых легких элементов, водорода и гелия, стали стабильными. Под действием сил притяжения начали концентрироваться облака материи. В результате сформировались галактики, звезды, и другие небесные тела Звезды старели, взрывались сверхновые, после чего появлялись более тяжелые элементы. Они формировали звезды более позднего поколения, такие, как наше Солнце. В качестве доказательств того, что в свое время произошел большой взрыв, говорят о красном смещении света от объектов, расположенных на больших расстояниях и микроволновом фоновом излучении.
Красное смещение
Наблюдаемый спектр элементов, находящихся от нас на очень большом расстоянии, в общем таков же, как и на Земле, но спектральные линии сдвинуты в низкочастотную область - к большей длине волны. Это явление называют красным смещением. Его пытаются объяснить тем, что Земля и объект разлетаются с большой скоростью в разные стороны. Следуя такой теории, если проследить этот процесс в прошлое, все должно было начаться из одной точки большого взрыва.
Вполне возможно, что красное смещение в спектре дальних галактик происходит из-за их удаления от нас. Библия говорит о том, что Господь распростер небеса. Действие этого движения противоположно действию сил притяжения, что стабилизирует всю систему. Однако если небеса были созданы со “встроенной” кинетической энергией только несколько тысяч лет назад, то при попытке заглянуть в более древнее время мы можем прийти к ложным заключениям. Положение, сложившееся в обозримой Вселенной, к нашему времени может дать нам некоторое понимание происходящего в прошлом, но утверждать что-либо с полной уверенностью мы не можем.
Еще одно возможное объяснение красного смещения - гравитационное притяжение света, исходящего от галактики или звезды. Крайним случаем этого эффекта может быть черная дыра, в которой свет вовсе не может преодолеть гравитационное притяжение (В соответствии с теорией черные дыры возникли в результате гравитационного свертывания (коллапса) старых, истощенных звезд-гигантов. Из-за особенностей строения и функционирования черных дыр обнаружить их чрезвычайно трудно. К нынешнему дню мы не можем с уверенностью утверждать, найдена ли хоть одна из них).
Ученые предположили, что красное смещение может происходить из-за снижения со временем скорости света. Такой эффект способен породить и фоновое излучение.
Фоновое излучение
Теоретики предположили, что “эхо” первичного большого взрыва тоже претерпело красное смещение, и искать его теперь нужно в микроволновом диапазоне спектра. В 1965 году Пенциас и Уилсон обнаружили микроволновое фоновое излучение с температурой всего 30 выше абсолютного нуля. Может ли это быть доказательством большого взрыва?
Фоновое излучение приблизительно в 30К совершенно одинаково во всех направлениях, т.е. изотропно. Вселенная состоит из огромных пустых пространств и гигантских скоплений галактик. Если излучение свидетельствует о прошлом Вселенной, то оно не должно быть изотропным. Именно из-за этого несоответствия НАСА послала специальный спутник с целью более точного измерения фонового излучения. И опять-таки оказалось, что излучение совершенно одинаково во всех направлениях. Однако с помощью многократного компьютерного усиления сигнала астрономы получили, наконец, долгожданную анизотропию. Разница температур составляла миллионные доли градуса. 1 мая 1992 года в журнале “Science” была напечатана статья, в которой сказано, что разница температур “находится намного ниже уровня шумов измерительных приборов”.
Нечто из ничего
Астроном Дэвид Дарлинг в статье в “New Scientist” предостерегает: “Не позволяйте толкователям космологии одурачить вас. У них тоже нет ответов на вопросы, хотя они хорошенько поработали над тем, чтобы убедить всех в своей компетентности... На самом же деле объяснение того, как и откуда все началось - до сих пор серьезная проблема. Не помогает даже обращение к квантовой механике. Либо не существовало ничего, с чего все могло бы начаться - ни квантового вакуума, ни прегеометрической пыли, ни времени, в котором могло происходить что-либо, ни каких бы то ни было физических законов, в соответствии с которыми ничто могло превратиться в нечто. Либо же существовало нечто, и в этом случае оно требует объяснения”.
Первый Закон, о котором мы уже говорили, гласит: нельзя получить что-либо из ничего.
Согласно Второму Закону термодинамики порядок, наблюдаемый в нашей Солнечной системе, не может быть следствием взрыва. Взрыв не ведет к порядку. Для того, чтобы получить некий порядок, необходимо введение не только энергии, но и информации
Скрытая холодная темная материя
Огромная проблема теории большого взрыва в том, как предполагаемое изначальное излучение высокой энергии, якобы разлетаясь в разные стороны, могло объединиться в такие структуры, как звезды, галактики и скопления галактик. Эта теория предполагает наличие дополнительных источников массы, обеспечивающих соответствующие значения силы притяжения. Материя, обнаружить которую так и не удалось, была названа Холодной темной материей (ХТМ). Подсчитали, что для образования галактик необходимо, чтобы такая материя составляла 95-99% Вселенной. Эта материя сродни новому наряду короля из сказки Андерсена - все говорят о нем, но никто не видел.
Какие только источники ХТМ ни изобретались. М. Хокинс в своей книге “Huntig down the Universe” (1997) предположил, что 99% всей массы Вселенной составляют мини-черные дыры, каждая размером с двуспальную кровать. Но если эти таинственные черные дырочки образовались в результате свертывания звезд, как предполагает теория, они вряд ли бы могли быть причиной возникновения звезд - звезды образуются только из звезд.
Еще один претендент на потерянный источник притяжения - извивающиеся полосы волокнистого вещества, простирающиеся в космосе на миллионы километров, а также сверхтяжелые сгустки энергии, имеющие форму кренделя. Имеют ли красные карлики какое-то отношение к искомой гравитации? Нет, отвечают специалисты по космологии, их слишком мало и плотность, которую они имеют, не настолько высока. К августу 1997 года были зарегистрированы только шесть коричневых карликов, вернее, только о шести можно говорить с уверенностью. 30 апреля 1992 года журнал “Nаture” написал: “Вне области космологии, для которой они и были изобретены, ни темная материя, ни расширение вселенной не имеют заслуживающей доверия поддержки”.
Если материя возникла благодаря излучению высокой энергии, порожденному большим взрывом, одновременно с ней должно было образоваться такое же количество антиматерии Но если бы это произошло, материя и антиматерия аннигилировали бы друг друга.
Рождение и смерть звезд
В Библии сказано, что Создатель завершил. Свою работу в шесть дней Согласно теории большого взрыва звезды рождаются и умирают попеременно. Считается, что звезды формируются при сгущении пылевых облаков. Поскольку этот процесс занимает миллионы лет, как утверждают некоторые ученые, никто не видел, как родилась хотя бы одна звезда Астрономы могут показать на любую туманность и заявить, что это и есть протозвезда. Но так ли это? Со временем звезда сгорает и начинает сжиматься собственной гравитацией. В результате происходит взрыв сверхновой. Подобное зрелище можно было наблюдать в 1987 году, причем в течение нескольких месяцев. 4 июля 1054 года согласно китайским летописям такое же явление наблюдали в том районе неба, где сейчас находится Крабовидная туманность. Смерть и разрушение постигнет все существующее, об этом говорит. Второй закон термодинамики. Звезды подразделяются на три основных категории: главная последовательность (как наше Солнце), красные гиганты и белые карлики. Считается, что звезда за миллионы лет своей жизни должна пройти все эти три стадии. Диаграммы, отражающие яркость звезд в зависимости от их температуры, ясно показывают существование трех типов звезд. Сириус - самая яркая из видимых нами звезд и пятая из ближайших к Земле. Вокруг нее вращается тусклая белая звезда-карлик. Но, судя по записям хроник, всего полторы тысячи лет назад эта звезда-спутник была красным гигантом. Смерть и разрушение звезд, очевидно, процесс не такой уж и медленный.
Размер и возраст Вселенной
Расстояния в космосе оцениваются по постоянной Хаббла, соотносящей расстояние и скорость удаления. То есть, чтобы узнать расстояние, мы используем то же самое расстояние! Говоря о неопределенности значения этой константы, редактор журнала “Nature” отметил: “Досадно, что пока сохраняются расхождения, специалисты по космологии не будут знать, как же относиться к вопросам, например, был ли большой взрыв на самом деле”.
Магнитные поля, обнаруженные у Ганимеда, Марса и других планет, не поддаются объяснению, если исчислять их возраст миллионами лет. Несмотря на то, что вопрос о времени накоплении пыли на Луне был кардинально пересмотрен, до сих пор не решена проблема - почему все-таки на Луне так мало пыли. Не решен вопрос и о нестабильности колец Сатурна.
Антропный принцип
Ядро атома любого химического элемента состоит из протонов и нейтронов. По величине протоны чуть больше нейтронов. Если бы протон весил на 0, 2% больше, он был бы нестабилен и распался бы на нейтрон, позитрон и нейтрино. В ядре атомов водорода - один протон. Если бы протон был нестабилен, не существовали бы ни звезды, ни вода, ни органические молекулы. Стабильность протона не является предметом естественного отбора, значит, он должен быть именно таким с самого начала Притягивающая сила гравитации обратно пропорциональна квадрату расстояния R между массами. Если бы это соотношение не было таким сверхточным, Вселенная не была бы единым целым.
От Солнца Земля находится на расстоянии, оптимальном для существования на нашей планете жизни. Скорость вращения Земли; ее океаны и атмосфера; Луна; массивный Юпитер, который отклоняет кометы, угрожающие нашей планете (как комета Шумейке-ра-Леви) своим притяжением - все это служит поддержанию жизни на Земле. Похоже, что и Вселенная, и Солнечная система, и Земля созданы специально для человека. Наука признает этот факт и называет его антропным принципом.
То, что Создателя нельзя обнаружить и измерить с помощью научных инструментов, отнюдь не значит, что Его нет. Но это толкает ученых на поиски альтернативных объяснений. Один астроном предположил, что наша Вселенная была создана невесть откуда взявшимися разумными существами. Другой считает, что Вселенная - одна из миллиардов вселенных, единственная, имеющая все условия для существования жизни...
Сэр Фред Хойл, известный астроном, как-то писал: “Картина Вселенной, образования галактик и звезд, по крайней мере, как она предстает в астрономии, удивительно нечетка, как пейзаж, видимый в тумане. Очевидно, что в изучении космологии упущен один компонент, который предполагает разумный замысел”.
Так был ли большой взрыв? Красное смещение и фоновое излучение не могут служить убедительными доказательствами этому. Законы термодинамики; гравитации и теория информации, тем не менее, дают достаточно однозначный ответ. Никакого взрыва не было.
Но ведь можно учесть, что Если концепция о "Большом Взрыве" верна, то он должен был бы оставить в космосе своего рода "след", "эхо". Такой "след" был обнаружен. Пространство Вселенной оказалось пронизано радиоволнами миллиметрового диапазона, разбегающимися равномерно по всем направлениям. Это "реликтовое излучение Вселенной" и есть приходящий из прошлого след сверхплотного, сверхраскаленного ее состояния, когда не было еще ни звезд, ни туманностей, а материя представляла собой дозвездную, догалактическую плазму.
Теоретически концепция "расширяющейся Вселенной" была выдвинута известным ученым А.А.Фридманом в 1922-1924 годах. Десятилетия спустя она получила практическое подтверждение в работах американского астронома Э.Хаббла, изучавшего движение галактик. Хаббл обнаружил, что галактики стремительно разбегаются, следуя некоему импульсу, заданному в момент "Большого Взрыва". Если разбегание это не прекратится, будет продолжаться неограниченно, то расстояние между космическими объектами будет возрастать, стремясь к бесконечности. По расчетам Фридмана, именно так должна была бы проходить дальнейшая эволюция Вселенной. Однако при одном условии - если средняя плотность массы Вселенной окажется меньше некоторой критической величины (эта величина составляет примерно три атома на кубический метр). Какое-то время назад данные, полученные американскими астрономами со спутника, исследовавшего рентгеновское излучение далеких галактик, позволили рассчитать среднюю плотность массы Вселенной. Она оказалась очень близка к той критической массе, при которой расширение Вселенной не может быть бесконечно.
Обратиться к изучению Вселенной посредством исследования рентгеновских излучений пришлось потому, что значительная часть ее вещества не воспринимается оптически. По крайней мере 50% массы нашей Галактики мы "не видим", писал журнал английских ученых "New Scientist". Об этом не воспринимаемом нами веществе свидетельствуют, в частности, гравитационные силы, которые определяют движение нашей и других галактик, движение звездных систем. Вещество это может существовать в виде "черных дыр", масса которых составляет сотни миллионов масс нашего Солнца, в виде нейтрино или других каких-то неизвестных нам форм. Не воспринимаемые, как и "черные дыры", короны галактик могут быть, считают некоторые, в 5-10 раз больше массы самих галактик.
Предположение, что масса Вселенной значительно больше, чем принято считать, нашло новое весьма веское подтверждение в работах физиков. Ими были получены первые данные о том, что один из трех видов нейтрино обладает массой покоя. Если остальные нейтрино имеют те же характеристики, то масса нейтрино во Вселенной в 100 раз больше, чем масса обычного вещества, находящегося в звездах и галактиках.
Это открытие позволяет с большей уверенностью говорить, что расширение Вселенной будет продолжаться лишь до некоторого момента, после которого процесс обратится вспять - галактики начнут сближаться, стягиваясь снова в некую точку. Вслед за материей будет сжиматься в точку пространство. Произойдет то, что астрономы обозначают сегодня словами "Схлопывание Вселенной".
Заметим ли мы или, скажем, обитатели других миров, существующих в космосе, сжатие Вселенной, начало страшного ее возврата в первоначальный, первозданный хаос? Нет и никогда. Слишком несоизмеримы периоды жизни разумных существ и даже их цивилизаций с эпохами жизни Вселенной. Мы не можем заметить поворота времени, который должен будет произойти, когда Вселенная, достигнув максимума своего разбега, начнет сжиматься. Поворот течения времени, в масштабах Вселенной, аналогичен подобному же событию, происходящему на сжимающейся, "коллапсирующей" звезде. Условные часы, находящиеся на поверхности такой звезды, сначала должны будут замедлить свой ход, затем, когда сжатие достигнет критического гравитационного "горизонта событий", они остановятся. Когда же звезда "провалится" из нашего пространства-времени, условные стрелки на условных часах двинутся в противоположную сторону - время пойдет обратно. Но всего этого сам гипотетический наблюдатель, находящийся на такой звезде, не заметит. Замедление, остановку и изменение направления времени мог бы воспринять только некто наблюдающий происходящее как бы со стороны, находящийся вне "схлопывающейся" системы. Если наша Вселенная единственная и нет ничего вне ее - ни материи, ни времени, ни пространства, - то не может быть и некоего взгляда со стороны, который мог бы заметить, когда время изменит ход и потечет вспять.
Некоторые ученые считают, что событие это в нашей Вселенной уже произошло, галактики падают друг на друга, и Вселенная вступила в эпоху своей гибели. Существуют математические расчеты и соображения, подтверждающие эту мысль. Сторонники этой точки зрения вспоминают в этой связи одно из "темных мест" Платона. В диалоге "Политик" Платон говорит о времени, которое некогда внезапно "потекло вспять", о странных космических явлениях, сопровождавших это событие. Многие века это сообщение не поддавалось расшифровке, пока в современной космогонии не появились данные, позволяющие попытаться понять его с позиций сегодняшнего знания. Что произойдет после того, как Вселенная вернется в некую исходную точку? После этого начнется новый цикл, произойдет очередной "Большой Взрыв", праматерия ринется во все стороны, раздвигая и творя пространство, снова возникнут галактики, звездные скопления, жизнь. Такова, в частности, космологическая модель американского астронома Дж.Уиллера, модель попеременно расширяющейся и "схлопывающейся" Вселенной. Известный математик и логик Курт Гёдель математически обосновал то положение, что при определенных условиях наша Вселенная действительно должна возвращаться к своей исходной точке с тем, чтобы потом опять совершить тот же цикл, завершая его новым возвращением к исходному своему состоянию. Этим расчетам соответствует и модель английского астронома П.Дэвиса, модель "пульсирующей Вселенной". Но что важно - Вселенная Дэвиса включает в себя замкнутые линии времени, иначе говоря, время в ней движется по кругу. Число возникновений и гибели, которые переживает Вселенная, бесконечно.
И снова - свидетельства прошлого. За тысячи лет до того, как современное логически выдержанное, рациональное знание пришло к этой картине мира, подобное представление устойчиво присутствовало в сознании древнего человека. Вселенная, писал шумерский философ и жрец Бероуз (III в.н.э.), периодически уничтожается и потом воссоздается снова. Из древнего Шумера эта концепция пришла в эллинский мир, Рим, Византию. А как представляет себе гибель Вселенной современная космогония? Известный американский физик С.Вайнберг описывает это так. После начала сжатия в течение тысяч и миллионов лет не произойдет ничего, что могло бы вызвать тревогу наших отдаленных потомков. Однако, когда Вселенная сожмется до 1/100 теперешнего размера, ночное небо будет источать на Землю столько же тепла, сколько сегодня дневное. Затем через 70 миллионов лет Вселенная сократится еще в десять раз и тогда "наши наследники и преемники (если они будут) увидят небо невыносимо ярким". Еще через 700 лет космическая температура достигнет десяти миллионов градусов, звезды и планеты начнут превращаться в "космический суп" из излучения, электронов и ядер.
4). Заключение
После сжатия в точку, после того, что мы именуем гибелью Вселенной (но что, может, вовсе и не есть ее гибель), начинается новый цикл. Вспомним об упомянутом уже реликтовом излучении, эхе "Большого Взрыва", породившего нашу Вселенную. Излучение это, оказывается, приходит не только из прошлого, но и "из будущего"! Это отблеск "мирового пожара", исходящего от следующего цикла, в котором рождается новая Вселенная. Температура реликтового излучения, наблюдаемого сегодня, на 3? выше абсолютного нуля. Это и есть температура "электромагнитной зари", знаменующей рождение новой Вселенной. Реликтовое излучение - только ли оно пронизывает наш мир, приходя как бы с двух сторон - из прошлого и грядущего? Только ли это? Материя, составляющая мир, Вселенную и нас, возможно, несет в себе некую информацию. Исследователи с долей условности, но говорят уже о "внутреннем опыте", своего рода "памяти" молекул, атомов, элементарных частиц. Атомы углерода, побывавшего в живых существах "биогенные". Коль скоро в момент схождения Вселенной в точку материя не исчезает, то не исчезает, неуничтожима и информация, которую она несет. Наш мир заполнен ею, как он заполнен, материей, составляющей его. Вселенная, что придет на смену нашей, будет ли она её повторением? Вполне возможно, отвечают некоторые космологи. Вовсе не обязательно, возражают другие. Нет никаких физических обоснований, считает, например, доктор Р.Дик из Принстонского университета, чтобы всякий раз в момент образования Вселенной физические закономерности были те же, что и в момент начала нашего цикла. Если же эти закономерности будут отличаться даже самым незначительным образом, то звезды не смогут впоследствии создать тяжелые элементы, включая углерод, из которого построена жизнь. Цикл за циклом Вселенная может возникать и уничтожаться, не зародив ни искорки жизни. Такова одна из точек зрения. Ее можно было бы назвать точкой зрения "прерывистости бытия". Оно прерывисто, даже если в новой Вселенной и возникает жизнь: никакие нити не связывают ее с прошлым циклом. По другой же точке зрения, наоборот, «Вселенная помнит всю свою предысторию, сколь бы далеко (даже бесконечно далеко) в прошлое она ни уходила», а выяснять, какая теория верна в рамках моей работы будет просто лишне...
5). Список использованной литературы
1. Гивишвили Г.В. Антропогенная вселенная // Химия и жизнь.- 1993.- № 6.2. Гласс Л., Мэкки М. От часов к хаосу. Ритмы жизни.- М.: Мир, 1991. 3. Грибов Л.А., Прокофьева Н.И. Основы физики.- М.: Наука, 1995. 4. Детская иллюстрированная энциклопедия.- Лондон-Нью-Йорк-Штутгарт-Москва: Дорлинг Киндерсли, 1997.5. Жвирблис В.Е. Почему летит "стрела времени" // Химия и жизнь.- 1993.- № 12.6. Капра Ф. Дао физики.- СПб.: Орис, 1994.7. Карпенков С.Х. Основные концепции естествознания.- М.: Культура и спорт, ЮНИТИ, 1998.
refdb.ru
Размеры мужского члена во многом зависят от того, кто его измеряет и с какой позиции он это делает. В частных объявлениях, в публикациях для мужчин полно фальшивых изображений мужских орудий, владельцы которых утверждают, что они достигают длины 20, 23, а то и 25 сантиметров. В таком фаллическом надувательстве повинны, главным образом, "модели" и "массажисты" (эвфемизм для людей, энергично проталкивающих сексуальную рекламу). Обычно они преувеличивают размер на 2,5-5 см.
Если бы вам пришлось брать интервью, подобное тому, какие проводят Мастере и Джонсон, и опросить 100 человек о величине их пениса, то наверняка 99% из них добавят немного лишнего. Многие из этих мужчин вообще никогда не измеряли свой член и называют лишь приблизительные цифры (с известной долей преувеличения). Другие просто не знают, как это нужно Правильно делать. Но логическое объяснение заключается в том, что любому мужчине неприятен тот факт, что "он в меньшей степени мужчина", чем тот, кто стоит рядом. Кроме того, если кто-то не желает открыть истинное положение вещей, то кто ему мешает прибегнуть к обману? Мой приятель рассказал мне, что на выставках кошек и котов длину хвоста самки измеряют от прямой кишки до его кончика. Вероятно, многие мужчины прибегают к такому же методу измерения.
В недавно опубликованном докладе Института Кинси по поводу сексуальных предпочтений американцев исследователи попросили как мужчин, так и женщин назвать длину среднего мужского члена в возбужденном состоянии. Большинство из респондентов-мужчин ответили: «от двадцати до тридцати сантиметров». От женщин был получен совершенно другой ответ: "менее десяти сантиметров".
Почему же мужчины так переоценивают длину своего члена в состоянии эрекции (как это имело место в опросе Института Кинси)? Просто потому, что они при этом руководствуются в основном собственной фантазией. Большинство мужчин-гетеросексуалов никогда в глаза не видели член другого человека в возбужденном состоянии. Все их сравнения, главным образом, базируются на том, что они видели в раздевалках, где их можно было увидеть только в обычном, спокойном состоянии, и в порнографических видеофильмах, в которых специально подбирают актеров, отличающихся повышенной эрекцией. Когда эти мужчины видят актрис, дрожащих от страсти и испытываемого ими оргазма, вызванного гигантскими членами, они приходят к выводу, что женщины получают наслаждение только от сверхбольшого члена.
Список использованной литературы:
1. Основы сексологии (HUMAN SEXUALITY). Уильям Г. Мастерc, Вирджиния Э. Джонсон, Роберт К. Колодни. Пер. с англ. — М.: Мир, 1998. — х + 692 с., ил. ISBN 5-03-003223-1
В журнале "Нью сайнтист" была опубликована заметка одного исследователя из Каирского университета. В результате своего двухгодичного изучения проблемы он пришел к выводу, что у мужчин, носящих 100%-ное полиэстровое нижнее белье, гораздо реже наступает эрекция, чем у тех, кто предпочитают белье из чистого хлопка.
Пропагандистское поклонение большому пенису поддерживается в пользующейся большим спросом литературе. В книгах "Бетси" Гарольда Роббинса и "Крестный отец" Марио Пьюзо, есть такие эпизоды, Б которых некоторые женщины откровенно заявляют о своей страсти к громадным мужским членам. Они постоянно жалуются, что их романтические увлечения приводят их обычно к контакту с мужчинами с плохо развитыми половыми органами.
Когда мужчина постоянно получает подсознательные сигналы о том, что его партнерше жизненно необходим большой член, который доставляет ему удовлетворение, то он волей-неволей создает образ своей фаллической неполноценности, терзаясь, что у него маленький член. Доктор философии Берни Зилбергельд заметил: "Реальное всегда теряет в сравнении с созданным человеческим воображением". На самом деле по-настоящему большие (более 20 см) члены существуют, но как мы сами убедимся на следующих страницах этой книги, это, по статистическим данным, весьма редкое явление.
Если бы у всех мужчин были действительно большие члены, то нам удалось бы покончить с многочисленными проявлениями импотенции, тревоги, сексуальных разочарований, которые мы так часто наблюдаем в современном мире. А вдруг мне в это поверить? Может, был бы положен конец междоусобицам, войнам и вражде глобального масштаба? Скорее всего, это наивное представление, но кто знает? В конце концов люди постоянно борются за власть, господство и престиж, которые являются символами, представленными нам большим членом.
Сверхсекретное, как утверждают, исследование, проведенное Пентагоном, показало, что мужчины с маленькими пенисами - самые свирепые солдаты. В этом есть свой смысл - разве агрессивность, этот капризный юношеский инстинкт, не используют взрослые мужчины для господства одного над другим? По слухам, Гитлер ужасно переживал из-за своих весьма скромных мужских достоинств, а такой непревзойденный мегаоманьяк, как Наполеон, страдал от гормональной недостаточности, следствием которой был его маленький, вялый, атрофированный член. Это достоверный факт. Как знать, может, именно этот факт во многом способствовал его агрессивности и раздражительности? Увы, бедняжка Жозефина! Но какого человека не раздражает этот мир?
Список использованной литературы:
1. Основы сексологии (HUMAN SEXUALITY). Уильям Г. Мастерc, Вирджиния Э. Джонсон, Роберт К. Колодни. Пер. с англ. - М.: Мир, 1998. - х + 692 с., ил. ISBN 5-03-003223-1
www.neuch.ru
На две тысячи триста километров от острова Новая Гвинея до тропика Козерога протянулась вдоль восточного берега Австралии почти непрерывная гряда из трех тысяч рифов и тысячи островов, составляющих вместе удивительное и прекраснейшее творение природы Большой Барьерный риф. Из-за того, что многие острова увеличивают свою площадь во время отлива, а иные и вообще появляются из-под воды только в эти часы, точный размер территории этого уникального природного сооружения установить невозможно. По осторожным оценкам, площадь кораллового барьера достигает трехсот пятидесяти тысяч квадратных километров, то есть почти равна территории Германии. Среди островов Большого Барьерного рифа различают коралловые, почти не поднимающиеся над поверхностью моря, и так называемы высокие, сложенные древними горными породами и покрытые лесом. Вокруг них обычно образуется собственное коралловое ожерелье. Но все они, вместе с подводными рифами и отмелями, образуют единую возвышенность, по протяженности равную расстоянию от Мурманска до Одессы и уходящую местами на триста метров в глубину. Создатели этого, без преувеличения, исполинского сооружения крохотные живые организмы, коралловые полипы. Они, как и их родственники-актинии и губки, принадлежат к классу кишечно-полостных. Но, в отличие от своих мягких родичей, коралловые полипы прячут свое тело в жесткий известковый панцирь. Миллионы этих сросшихся панцирей и формируют коралловый риф. Так что Большой Барьерный риф самое грандиозное сооружение на Земле, построенное живыми организмами. И с ним не могут соперничать ни Великая Китайская стена, ни туннель под Ла-Маншем. Исследованию этого исполинского барьера у побережья Австралии положил начало великий мореплаватель Джеймс Кук. Его парусник Индевор стал первым кораблем, прошедшим по узкому проливу между Большим Барьерным рифом и берегом материка. Пройти больше тысячи километров без карт по сложнейшему фарватеру, изобилующему мелями и подводными скалами, было, конечно, чудом мореходного искусства. Но даже знаменитому Куку пришлось испытать на себе коварство здешних вод. Его Индевор наткнулся все же на коралловый риф, повредил корпус, и только выбросив за борт все пушки и часть груза, английскому капитану удалось сняться со скалы и добраться до берега. За прошедшие с тех пор два с лишним века на рифах австралийского кораллового барьера пострадали или пошли ко дну сотни судов. Даже в XX веке случались тут морские катастрофы. Географические названия в этой части Кораллового моря говорят сами за себя: мыс Беды, Мучительная бухта, острова Надежды…
Не зря воды в районе Большого Барьерного рифа как магнитом притягивают многочисленных искателей сокровищ затонувших кораблей. Первые коралловые рифы на месте гигантского кораллового барьера возникли миллионы лет назад. Но основная его часть имеет возраст около пятисот тысяч лет. За это время коралловые полипы сумели возвести постройки средней высотой в сто двадцать метров. Строительство рифа продолжается и сейчас, хотя заметить это непросто. Ведь растут домики полипов очень медленно. Чтобы веточка коралла выросла всего на пять сантиметров, нужен целый год. Ширина Большого Барьерного рифа колеблется от трехсот метров на севере до пяти километров в южной части, а от берега материка он удален на расстояние от тридцати километров (у полуострова Кейп Йорк) до двухсот пятидесяти (у тропика Козерога). Описывая потрясающее по красоте и разнообразию жизни подводное царство Большого Барьерного рифа, люди не скупятся на пышные эпитеты и сравнения: Мир голубой мечты, Величайшее архитектурное сооружение природы на всей планете, Восхитительный подводный лес, Восьмое чудо света, Захватывающий дух подводный пейзаж, Богатейшая морская экосистема мира. Действительно, по количеству обитателей и их поразительно живописной внешности Большой Барьерный риф не имеет себе равных в Мировом океане. Одних только кораллов здесь насчитывается около четырехсот видов. Иные из них похожи на человеческий мозг (их так и называют мозговые ), другие на странные кружевные грибы, ветви или занавеси, третьи на оленьи рога. Они бывают жесткими и мягкими, белыми и цветными, и, попав в их сказочное подводное царство, начинаешь думать, что очутился в каком-то фантастическом саду среди диковинных неземных цветов: синих, голубых, зеленых, желтых, оранжевых, розовых, красных и даже черных. Но кораллы составляют только десятую часть населения подводного барьера. Кроме них, на рифе живут больше четырех тысяч видов моллюсков, от улиток до гигантских метровых двустворчатых тридакн, а также губки, актинии, раки, крабы, морские звезды, морские ежи и множество водорослей. Но главное украшение вод Большого Барьерного рифа конечно, рыбы. По экзотичности раскраски и многочисленности видов и форм с царством коралловых рыб не сравнится ни цветущий горный луг, ни мир сказочных фильмов Диснея. Лишь малую толику этого многоцветья можно увидеть в морских аквариумах зоопарков. Ведь количество видов рыб в причудливых коралловых лесах нашей планеты достигает нескольких тысяч! И Большой Барьерный риф не исключение.
Полторы тысячи представителей ихтиофауны пасутся в его подводных чашах, омываемых теплыми водами Кораллового моря. Названия многих их них говорят сами за себя: рыба-бабочка, губан, рыба-клоун, скалозуб, рыба-попугай, морская собачка, еж-рыба, кардинал и даже… рыба-муха. А кроме них водятся здесь морские окуни и мурены, скаты и акулы, груперы и морские щуки и многие другие представители рыбьего царства. На острова южной части Большого Барьерного рифа по ночам приплывают большие морские черепахи, чтобы отложить в вырытые на пляже ямки свои яйца. Затем они засыпают кладку песком, утрамбовывают и уплывают обратно в море. Появившемуся на свет потомству приходится самостоятельно откапывать себе путь на поверхность и добираться до родной морской стихии по влажному песку кораллового пляжа. Тут-то черепашат, у которых даже панцирь еще не затвердел, и подстерегают опасности. Тысячи морских птиц, живущих на островах, только и ждут этого момента. Пикируя вниз, они хватают черепашьих малышей одного за другим, и лишь немногим удается добраться до спасительной воды. На островах Большого Барьерного рифа обитает целых двести сорок видов птиц. Это буревестники, фаэтоны, фрегаты, олуши, крачки, глупыши, белобрюхие орланы и многие другие. А вот млекопитающих в водах, омывающих риф, немного. Преимущественно это киты и дельфины. А кроме них пасется в зарослях водорослей между островами и дюгонь, близкий родственник морской коровы. Красивые подводные леса и луга, сверкающие всеми цветами радуги, кажутся на первый взгляд неуязвимыми. Еще бы ведь они каменные, а что может грозить камню? Но, оказывается, коралловые рифы так же ранимы, как и всякое другое детище живой природы. И недавняя беда, случившаяся с австралийским рифом, лишний раз напомнила об этом. В 1960-1970-е годы существование Большого Барьерного рифа было поставлено под угрозу из-за резкого увеличения численности морских звезд. Опасность исходила от одного из видов этих иглокожих, носящего красивое название терновый венец. Огромная, достигающая полуметра в диаметре, морская звезда с многочисленными щупальцами оказалась страшным врагом коралловых полипов. Присасываясь к их постройкам, терновый венец выпускает в отверстия коралловых домиков пищеварительный сок и переваривает полипов, оставляя за собой мертвую зону. За год одна звезда может уничтожить жизнь на шести квадратных метрах рифа. Чрезмерное увеличение числа этих прежде довольно редких пожирателей полипов, как оказалось, было связано с исчезновением во многих местах Большого Барьерного рифа их естественных врагов хищных улиток-тритонов.
Из-за больших красивых раковин охотники за сувенирами тоннами собирали тритонов для продажи туристам. В результате, избавленные от природного ограничителя их численности, морские звезды стали усиленно размножаться, и целые участки кораллового барьера превратились в безжизненную морскую пустыню. Сейчас охота на улиток-тритонов запрещена, с терновым венцом ведут борьбу аквалангисты, вооруженные шприцами с ядом, и мало-помалу естественное равновесие на рифе восстанавливается. Но во многие уничтоженные районы Большого Барьерного рифа жизнь вернется лишь лет через двадцать-тридцать. Теплые воды, пустынные пляжи, обилие небольших уединенных островков и возможность долгие часы проводить в исключительном по живописности подводном царстве привлекает в этот удивительный уголок Земли сотни тысяч туристов. Одни из них ограничиваются экскурсиями на теплоходах и катерах с тем, чтобы посвятить остальное время знакомству с не менее уникальным животным миром австралийского побережья. Но более целеустремленные любители морской фауны поселяются на островах на две-три недели, без устали наблюдая и снимая видеокамерой коралловые миры. Хотя австралийцы и организовали здесь морской заповедник, под строгой охраной находятся лишь несколько особенно уязвимых районов Большого Барьерного рифа. И, по отзывам путешественников, немало постранствовавших по планете и погружавшихся с аквалангом у берегов Мальдивов и Сейшел, Гавайских островов и архипелага Галапагос, повидавших коралловые чащи Карибского и Красного моря, Французской Полинезии и островов Палау, подводный мир Большого Барьерного рифа не имеет себе равных по масштабам и разнообразию. Недаром в далекую Австралию летят и плывут через полсвета тысячи туристов, чтобы насладиться ни с чем не сравнимым очарованием голубых лагун и проливов, в которых таятся неисчислимые живые сокровища Большого Барьерного рифа.
www.ronl.ru
План Введение 1 Исторические предпосылки 2 Политика Большого скачка 2.1 Социальные преобразования 2.2 Малая металлургия 2.3 Реформы сельского хозяйства 3 Последствия Большого скачка 3.1 Наступление голода 3.2 Лушаньская партконференция и её последствия 3.3 Отголоски
Список литературы
Введение
Большо́й скачо́к (кит. 大跃进/大躍進, пиньинь Dàyuèjìn ) — экономическая и политическая кампания в Китае с 1958 по 1960 год, нацеленная на укрепление индустриальной базы и резкий подъём экономики страны. В это время Китай представлял собой на 90 % аграрную страну, которой была остро необходима модернизация. Мао Цзэдун обосновывал политику Большого скачка при помощи марксистской теории производительных сил, однако его попытка усилить экономический рост путём резкой коллективизации и подменить профессионализм энтузиазмом обернулись катастрофой: следствием Большого скачка стала смерть от 20 до 40 миллионов человек[1], и это сделало его крупнейшей социальной катастрофой XX века.
1. Исторические предпосылки
Большому скачку предшествовали сложные события китайской истории. С одной стороны, Китай постепенно восстанавливался после долгой войны, организовывалась промышленность.
С другой стороны кампании типа «Пусть расцветают сто цветов» привели к трудностям управления и разгрому интеллигенции.
Был проведен ряд реформ — в частности, запрещены религиозные организации и мистические ритуалы, проведена частичная коллективизация и образованы малые крестьянские хозяйства, государство взяло на себя контроль за распределением сельскохозяйственной продукции. Китай поначалу старался подражать опыту СССР и использовал советских специалистов.
После разоблачения культа личности Сталина, не одобренного Мао, между Китаем и СССР возникли трения, и Китай решил обходиться своими силами. Около 1960 года из страны были выведены советские специалисты.
В левой части Коммунистической партии Китая появилась идея форсировать развитие экономики, опираясь на всеобщий энтузиазм населения. Более прагматичные правые коммунисты противились этой политике, но проиграли борьбу. Была уверенность, что за короткий срок можно «догнать и перегнать» ведущие страны, если заменить мелкие коммуны крупными и затеять глобальные преобразования, начиная с производства стали.
Международным фоном для Большого скачка стали Венгерское восстание 1956 года, Суэцкий кризис и образование республики Ирак.
Дополнительное напряжение создалось вследствие Тибетского восстания 1959 года, повлекшего за собой отъезд Далай Ламы 14-го в Индию и последующее ухудшение китайско-индийских отношений.
2. Политика Большого скачка
Большой скачок вылился в ряд массовых всекитайских кампаний, к которым привлекалось практически всё население, приближающееся по численности к миллиарду человек.
Большим скачком была названа вторая китайская пятилетка (1958—1963).
2.1. Социальные преобразования
На основе опыта коллективизации в СССР Мао Цзэдун готовил преобразования социальной структуры. Для того, чтобы выполнить задачи Большого скачка, необходимо было объединение. С 1958 года стали создаваться «народные коммуны» — крупные самодостаточные группы, живущие и работающие совместно, питающиеся в общей столовой. Инструментом обмена вместо денег в этих группах служили «трудодни». Народные коммуны были уже достаточным образованием для строительства печей малой металлургии или для сельскохозяйственных работ. Основным занятием коммун была сельскохозяйственная деятельность. К концу 1958 г. было создано 25 тысяч коммун, средний размер коммуны составлял 5000 семей.
2.2. Малая металлургия
Главной проблемой подъёма экономики и индустриализации считалось производство стали. Повсюду стали строиться мастерские по производству стали из руды, при этом отсутствовала надлежащая инфраструктура и фундаментальные знания о стали и мартеновских печах. В соответствием с директивами Партии, повсюду стали строиться малые печи из глины, которые топили дровами. Рабочих набирали из близлежащих деревень.
Ещё в 1959 году, после изучения проблемы и первых опытов, стало ясно, что хорошего качества сталь можно производить только в крупных печах на больших фабриках, используя каменный уголь в качестве топлива, однако проект продолжался, население организовывало на местах добычу угля и пыталось модернизировать печи.
Результатом был низкокачественный чугун, требующий для превращения в сталь дополнительной обработки и непригодный для широкомасштабного использования сам по себе. Он мог использоваться преимущественно для изготовления плугов и мотыг и расходовался в пределах коммуны.
Руководство, однако, было восхищено всеобщим подъёмом, а специалисты боялись выступать с критикой после кампании Пусть расцветают сто цветов.
В 1958 году производство «стали» возросло на 45 %, а в 1959 году — ещё на 30 %. Однако в 1961 году неэффективность малой металлургии стала очевидна, производство стали резко упало, и вернулось к уровню 1958 года только в 1964 году.
2.3. Реформы сельского хозяйства
Сельское хозяйство в годы Большого скачка было полигоном для широкомасштабных социальных и агропромышленных экспериментов.
Велось строительство ирригационной системы, частично неэффективное из-за отсутствия квалифицированных инженеров.
Эксперименты по засеву зерновых базировались также на разработках советского академика (позже подвергнутого критике) Лысенко и его последователей. Пробовалось, например, засевать семена более густо с глубокой вспашкой, из расчёта, что система корней, уходящих вглубь, позволит избежать конкуренции растений, и появятся более плотные урожаи.
Кампания по уничтожению воробьёв привела к тяжёлым нарушениям экологического баланса, в результате которых резко увеличилась популяция насекомых, истреблявших урожаи.
Волюнтаристские эксперименты в сочетании с коллективизацией привели к обширному голоду.
3. Последствия Большого скачка
3.1. Наступление голода
В 1958 году была хорошая погода и ожидался хороший урожай. Отвлечение большого количества людей на выплавку стали и кампания по уничтожению воробьёв привели к тому, что урожай оказался невысоким, хотя официальные цифры рапортовали об успехах. Рапорты основывались также на количестве зерна, поставленного в зернохранилища. Увеличение поставок достигалось путём уменьшения доли зерна у крестьян, которые стали страдать от недоедания.
В 1959 и 1960 годах два года подряд стояла плохая погода, что привело к крайне низким урожаям и голоду в ряде провинций. На это наложилось крупное наводнение из-за разлива реки Янцзы, от которого погибло два миллиона человек.
Особенно сильная засуха была в 1960 г., она поразила северные провинции. Засуха наложилась на перегибы коллективизации и на последствия экспериментов по уничтожению воробьёв. Огромное количество людей вымерло от голода в самой плодородной провинции Сычуань. При этом официальная статистика опять мало соответствовала реальному положению дел, так как урожай конфисковывался у крестьян для заполнения государственных хранилищ в соответствии с планом (что вошло в статистические данные), а крестьянам почти ничего не оставалось для пропитания, гибель от голода приобрела массовый характер.
В январе 1961 года состоялся IX пленум ЦК КПК, который решил приостановить политику Большого скачка в сельском хозяйстве и принял чрезвычайные меры по закупке зерна в Канаде и Австралии.
3.2. Лушаньская партконференция и её последствия
Первая жёсткая критика политики Большого скачка прозвучала на Лушаньской партконференции в июле—августе 1959 года, выступал маршал Пэн Дэхуай, он подготовил уничтожающий анализ работы в деревне и малой металлургии. В дальнейшем он был смещён Мао Цзэдуном со всех постов, на его место был назначен Линь Бяо.
В партии возникло серьёзное противостояние, которое продолжалось вплоть до Культурной Революции. В итоге Мао Цзэдун публично признал допущенные ошибки, он даже покинул пост Председателя КНР, уступив его Лю Шаоци (он оставался Председателем КПК и Председателем Военного Совета). Хозяйственной деятельностью занялись вплотную Лю Шаоци и Дэн Сяопин, им пришлось принять ряд прагматических мер, чтобы хотя бы частично выправить ситуацию. Они занялись де-коллективизацией и частичным возвратом к «капиталистическим» методам управления. Мао Цзэдун жестоко отомстил за это поражение во время Культурной революции, в ходе которой развернулась борьба с «идущими по капиталистическому пути», а Пэн Дэхуай, Лю Шаоци и Дэн Сяопин были подвергнуты репрессиям.
3.3. Отголоски
После смерти Мао Хуа Гофэн (новый и значительно менее авторитетный лидер КНР) пытался укрепить свои позиции путём попытки проведения нового Большого Скачка. За прообраз предполагалось брать Дацин и Дачжай, выдвинутые еще Линь Бяо как истинно коммунистические предприятия, работающие на военной дисциплине — без материальных стимулов. Эта инициатива была подавлена авторитетом Дэн Сяопина и других ветеранов партии.
Список литературы:
1. Dennis Tao Yang. «China’s Agricultural Crisis and Famine of 1959—1961: A Survey and Comparison to Soviet Famines.» Palgrave MacMillan, Comparatrive economic Studies (2008) 50, 1-29.
Источник: ru.wikipedia.org/wiki/Большой_скачок
www.ronl.ru
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТАЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»
КАФЕДРА БУХГАЛТЕРСКОГО УЧЕТА
ОЦЕНКА
ПРЕПОДАВАТЕЛЬ
проф., д. экон. наук | А.В. Самойлов | |
должность, уч. степень, звание | подпись, дата | инициалы, фамилия |
ДОКЛАД |
БОЛЬШОЙ АДРОННЫЙ КОЛЛАЙДЕР |
по дисциплине: КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ |
РАБОТУ ВЫПОЛНИЛ
СТУДЕНТ ГР. | 8961 | Д.Ю. Лукинская |
подпись, дата | инициалы, фамилия |
Санкт-Петербург2010
Содержание
Введение. 3
Предыстория. 4
История строительства и эксплуатация LHC.. 6
Цели эксперимента. 9
Финансирование проекта. 11
Технические характеристики. 13
Детекторы.. 15
Распределенная компьютерная сеть GRID.. 17
Вывод. 18
Список литературы.. 19
Большой адронный коллайдер (LHC, от английского Large Hadron Collider) – одна из наиболее впечатляющих по своим масштабам экспериментальных установок современной физики. БАК – самый мощный в мире ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (CERN), на границе Швейцарии и Франции, недалеко от Женевы.
Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26,659 м; адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; коллайдером (англ.collide— сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.
БАК будет ускорять протоны до самых высоких энергий, когда-либо достигавшихся в ускорителях, сталкивать их лоб в лоб 30 млн раз в секунду, создавая при каждом столкновении тысячи частиц, разлетающихся почти со скоростью света.
С 2009 года проектом БАК руководит генеральный директор CERN Рольф-Дитер Хойер.
В международном во всех отношениях проекте БАК участвуют 20 государств — членов ЦЕРН в Европе, государства-наблюдатели, такие как США, Япония, Россия, а также другие страны, например Канада и Китай.
Физики ожидают, что БАК откроет новую эру в физике элементарных частиц, и это поможет найти ответ на главные загадки строения материи и энергии во Вселенной.
Впервые ускорители частиц стали использоваться в науке в конце 20-х годов XX века для исследования свойств материи. Первый кольцевой ускоритель, циклотрон, был создан в 1931 году американским физиком Эрнестом Лоуренсом (Ernest Lawrence). В 1932 году англичанин Джон Кокрофт (John Cockcroft) и ирландец Эрнест Уолтон (Ernest Walton) при помощи умножителя напряжения и первого в мире ускорителя протонов сумели впервые осуществить искусственное расщепление ядра атома: при бомбардировке лития протонами был получен гелий. Ускорители частиц работают за счет электрических полей, которые используются для ускорения (во многих случаях до скоростей, приближенных к скорости света) и удержания на заданной траектории заряженных частиц (например, электронов, протонов или более тяжелых ионов). Простейший бытовой пример ускорителей - это телевизоры с электронной лучевой трубкой.
Ускорители используются для разнообразных экспериментов, в том числе для получения сверхтяжелых элементов. Для исследования элементарных частиц также используются коллайдеры (от collide - "столкновение") - ускорители заряженных частиц на встречных пучках, предназначенные для изучения продуктов их соударений. Ученые придают пучкам большие кинетические энергии. При столкновениях могут образоваться новые, ранее неизвестные частицы. Специальные детекторы призваны уловить их появление. На начало 1990-х годов наиболее мощные коллайдеры действовали в США и Швейцарии. В 1987 году в США недалеко от Чикаго был запущен коллайдер Тэватрон (Tevatron) с максимальной энергией пучка 980 гигаэлектронвольт (ГэВ). Он представляет собой подземное кольцо длиной 6,3 километра. В 1989 году в Швейцарии под эгидой Европейского центра по ядерным исследованиям (CERN) был введен в эксплуатацию Большой электрон-позитронный коллайдер (LEP). Для него на глубине 50-175 метров в долине Женевского озера был построен кольцевой тоннель длинной 26,7 километра, в 2000 году на нем удалось добиться энергии пучка в 209 ГэВ.
В СССР в 1980-е годы был создан проект Ускорительно-накопительного комплекса (УНК) - сверхпроводящего протон-протонного коллайдера в Институте физики высоких энергий (ИФВЭ) в Протвино. Он превосходил бы по большинству параметров LEP и Тэватрон и должен был позволить разгонять пучки элементарных частиц с энергией 3 тераэлектронвольта (ТэВ). Его основное кольцо длиной 21 километр было построено под землей в 1994 году, однако из-за нехватки средств проект в 1998 году был заморожен, построенный в Протвино тоннель - законсервирован (были достроены только элементы разгонного комплекса), а главный инженер проекта Геннадий Дуров уехал на работу в США. По мнению некоторых российских ученых, если бы УНК был достроен и введен в строй, не было бы необходимости в создании более мощных коллайдеров: высказывалось предположение, что для получения новых данных о физических основах мироустройства достаточно было преодолеть на ускорителях порог энергии в 1 ТэВ. США тоже отказались от строительства собственного Сверхпроводимого суперколлайдера (SSC) в 1993 году, причем по финансовым соображениям.
Вместо строительства собственных коллайдеров физики разных стран решили объединиться в рамках международного проекта, идея создания которого зародилась еще в 1984 году и была официально одобрена десятью годами позже. Больше десяти лет специалисты по физике элементарных частиц с нетерпением ждали шанса исследовать диапазон, где энергии достигают тераэлектронвольт (1 ТэВ = 10 12 эВ), — терадиапазон. При таких энергиях, возможно, проявятся новые физические явления, такие как неуловимые частицы Хиггса (ответственные, как полагают, за существование массы у других частиц), а также частицы, которые образуют темную материю, составляющую большую часть вещества во Вселенной. БАК позволит проникнуть в физику самых малых расстояний (вплоть до нанонанометра, или 10 –18 м) и достичь самых высоких из когда-либо исследованных энергий.
Процесс ввода в действие предполагает на первом этапе получение одного пучка, затем двух и, наконец, их столкновение; переход от низких энергий до терамасштаба; от пробных пучков малой интенсивности к более мощным, пригодным для получения экспериментальных данных с достаточной скоростью. На каждом этапе этого пути будут появляться трудности, которые предстоит преодолевать коллективу из 5 тыс. ученых, инженеров и студентов, участвующих в гигантском проекте.
После окончания экспериментов на швейцарском LEP его оборудование было демонтировано, и на его месте в 2001 году начато строительство Большого адронного коллайдера (БАК, Large Hadron Collider, LHC).
Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года. 27 ноября этого же года установлен в туннеле последний сверхпроводящий магнит.
11 августа 2008 года успешно завершена первая часть предварительных испытаний.Во время испытаний пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАК.
10 сентября 2008 года был произведён официальный запуск коллайдера.Запущенные пучки протонов успешно прошли весь периметр коллайдера по и против часовой стрелки.
12 сентября 2008 года команде БАК удалось запустить и непрерывно удерживать циркулирующий пучок. На этом задача по установлению циркулирующего пучка завершилась, и физики приступили к подробным тестам магнитной системы.
19 сентября 2008 года в ходе тестов магнитной системы сектора 3-4 (34) произошёл инцидент, в результате которого БАК вышел из строя. Один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения (криогенной системы), что привело к выбросу около 6 тонн жидкого гелия в туннель и, как следствие, резкому росту температуры, в трубах ускорителя был нарушен вакуум. Ремонт коллайдера занял остаток 2008-го и большую часть 2009-го годов.
21 октября 2008 года состоялась торжественная церемония официального открытия (инаугурация) БАК.
16 октября 2009 года завершено охлаждение всех восьми секторов коллайдера.
20 ноября 2009 года — впервые после аварии 19 сентября 2008 года пучок протонов успешно прошёл по всему кольцу Большого адронного коллайдера.
29-30 ноября учёные довели энергию каждого из пучков протонов до значения 1180 ГэВ. Таким образом, БАК стал самым мощным ускорителем частиц в мире.
9 декабря 2009 года — столкновения пучков протонов на рекордной энергии — 2,36 ТэВ.
4 января 2010 года - возобновились технические работы на БАК после рождественских каникул.
В феврале-марте 2010-го года ожидается окончание технических работ, закрытие коллайдера на несколько дней и начало рабочих столкновений вперемешку с тестовыми. Энергия протонов при этом не будет превышать 3.5ТэВ на пучок. В таком режиме коллайдер должен проработать до лета или осени 2011-го года, когда будет закрыт на долговременный ремонт. Ремонт займёт год или более длительное время. После ремонта ожидается повышение энергии протонов до проектной энергии в 7 ТэВ на пучок.
В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·109электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010-го года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США). В будущем, когда наладка оборудования будет завершена, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры.
Основной целью строительства БАК было уточнение или опровержение Стандартной модели - теоретической конструкции в физике, описывающей элементарные частицы и три из четырех фундаментальных взаимодействия: сильное, слабое и электромагнитное, за исключением гравитационного. Формирование Стандартной модели было завершено в 1960-1970-х годах, и все сделанные с тех пор открытия, по мнению ученых, описывались естественными расширениями этой теории. При этом Стандартная модель объясняла, каким образом взаимодействуют элементарные частицы, но не отвечала на вопрос, почему именно так, а не иначе.
· Экспериментальное доказательство существования бозона Хиггса. Существование этой частицы было предсказано еще в 1960 году британским физиком Питером Хиггсом. Физиков интересует, на самом деле, не столько сам хиггсовский бозон, сколько хиггсовский механизм нарушения электрослабой симметрии. Именно изучение этого механизма, возможно, натолкнет физиков на новую теорию нашего мира, более глубокую, чем Стандартная модель. Хиггсовский бозон — это «частица-отголосок» этого механизма; его просто удобнее всего изучать именно через открытие и изучение хиггсовского бозона. Научная программа LHC, разумеется, не ограничивается одним лишь обнаружением бозона Хиггса, но и включает в себя многочисленные задачи по доскональному изучению его свойств.
· Поиск суперсимметрии.Суперсимметрия — это очень сильная и глубокая теоретическая идея об устройстве нашего мира. Она пока не подтверждена экспериментом, но, возможно, LHC сможет найти ее проявления.
· Изучение топ-кварков. Топ-кварки — самые тяжелые из известных на сегодня фундаментальных частиц, причем они намного тяжелее всех остальных кварков. Это наводит физиков на мысль, что топ-кварки могут играть важную роль в самом процессе нарушения электрослабой симметрии. Кроме того, топ-кварки могут оказаться удобным рабочим инструментом для поиска хиггсовского бозона. Всё это требует внимательного изучения свойств топ-кварков на LHC.
· Изучение кварк-глюонной плазмы. На LHC будут происходить не только протон-протонные столкновения, но и столкновения ядер свинца (ожидается, что примерно 1 месяц в году будет проходить в режиме ядерных столкновений). При лобовом столкновении двух ультрарелятивистских ядер на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход в состояние кварк-глюонной плазмы и ее остывание) очень нужно для построения более совершенной теории сильных взаимодействий, которое окажется очень полезным как для ядерной физики, так и для астрофизики.
· Изучение фотон-адронных и фотон-фотонных столкновений. Протоны электрически заряжены, поэтому ультрарелятивистский протон порождает облако почти реальных фотонов, летящих рядом с протоном. Этот поток фотонов становится еще сильнее в режиме ядерных столкновений, из-за большого электрического заряда ядра. Эти фотоны могут столкнуться со встречным протоном, порождая типичные фотон-адронные столкновения, или даже друг с другом.
· Проверка экзотических теорий. Теоретики за последние годы выдвинули огромное число интересных и необычных идей относительно устройства нашего мира, которые все вместе называются «экзотическими моделями». Сюда относятся теории с сильной гравитацией на масштабе энергий порядка 1 ТэВ и т. д. Все эти теории могут показаться странными и необычными, но они не вступают в противоречие с имеющимися пока экспериментальными данными. Поскольку в этих теориях можно сделать конкретные предсказания для LHC, экспериментаторы планируют проверять эти предсказания и искать следы тех или иных теорий в своих данных. Ожидается, что результаты, полученные на LHC, смогут ограничить фантазию теоретиков, закрыв некоторые из предложенных конструкций. Впрочем, остается, конечно, и шанс, что какая-то из этих экзотических теорий «попадет в точку». Если это открытие произойдет, то за ним последует новый период бурного развития физики элементарных частиц.
· При помощи БАК физики надеются лучше понять, что представляла из себя Вселенная в первые мгновения после Большого Взрыва. Ученые отмечали, что если на БАК не удастся добиться открытия бозона Хиггса (в прессе его иногда называли "частицей бога") - это поставит под вопрос всю Стандартную модель, что потребует полного пересмотра существующих представлений об элементарных частицах. В то же время, если Стандартная модель будет подтверждена, некоторые области физики потребуют дальнейшей экспериментальной проверки: в частности, нужно будет доказать существование "гравитонов" - гипотетических частиц, которые отвечают за гравитацию.
Оценить общую стоимость проекта сложно, так как строительство самого ускорителя и его экспериментов (детекторов) финансируется отдельно, в финансировании участвует много стран, и не все деньги идут непосредственно через CERN. К тому же, ремонт ускорителя уже обошёлся дороже, чем ожидалось.
Ожидалось в 2001 году, что общая стоимость проекта составит около 4,6 млрд швейцарских франков (3 млрд евро) за сам ускоритель (без детекторов) и 1,1 млрд швейцарских франков (700 млн евро) составит доля CERN в проведении экспериментов (то есть в строительстве и обслуживании детекторов).
Строительство БАК было одобрено в 1995 году с бюджетом 2,6 млрд швейцарских франков (1,6 млрд евро), с добавочными 210 млн франков (140 млн евро) на эксперименты. Однако, как следствие сокращения бюджета CERN, стоимость была сокращена в 2001 году до 480 млн франков (300 млн евро) за ускоритель и 50 млн франков (30 млн евро) на эксперименты, что привело к сдвигу планируемых сроков введения с 2005 года на апрель 2007 года. Запуск БАК переносился не только из-за проблем с финансированием. В 2007 году выяснилось, что поставленные Fermilab детали для сверхпроводящих магнитов не удовлетворяли конструкционным требованиям, из-за чего запуск коллайдера был перенесен на год.
Бюджет проекта по состоянию на ноябрь 2009 года составил — 6 млрд долларов, что делает его самым дорогим научным экспериментом в истории человечества. Именно столько было инвестировано в строительство установки, которое продолжалось семь лет. Ускоритель частиц создавался под руководством Европейской организации ядерных исследований. Доля российских учёных в этом международном проекте тоже немаленькая. В нём задействовано 700 специалистов из России. Общая стоимость заказов, которые получили российские предприятия, по некоторым оценкам, достигает 120 миллионов долларов.
Также следует учесть, что официальная стоимость проекта БАК не включает стоимость ранее существовавших в CERN инфраструктуры и наработок. Так, основное оборудование LHC смонтировано в тоннель ранее существовавшего коллайдера LEP, и используется многокилометровое кольцо SPS в качестве предварительного ускорителя. В противном случае, если бы БАК пришлось бы строить с нуля, то стоимость БАК возросла бы в разы.
Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,659 км проложен под землёй на территории Франции и Швейцарии. Глубина залегания туннеля — от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Тоннель содержит две трубы, которые почти на всей своей протяженности идут параллельно и пересекаются в местах расположения детекторов, в которых будут осуществляться столкновения адронов - частиц, состоящих из кварков (для столкновений будут использоваться ионы свинца и протоны).
Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме. Разгоняться протоны начинают не в самом БАК, а во вспомогательных ускорителях. Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию(«впрыскивание») протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон) длиной 6,9 километра, где энергия частиц достигает 450 ГэВ.Ускорители, работающие десятилетия, в том числе Протонный синхротрон (PS) и Протонный суперсинхротрон (SPS), создают протоны со скоростью 99,99975% от скорости света. Затем пучок направляют в главное 26,7-километровое кольцо, БАК повышает энергию протонов еще почти в 16 раз, т.е. доводя энергию протонов до максимальных 7 ТэВ и сталкивает их между собой 30 млн раз в секунду в течение 10 часов и в точках столкновения детекторы фиксируют происходящие события.
В течение всего пути протоны направляет мощное магнитное поле, создаваемое 1624 сверхпроводящими электромагнитами, общая длина которых превышает 22 км. Они же в свою очередь состоят из катушек специального электрического кабеля, функционирующего как сверхпроводник, т.е. проводящего электрическую энергию без сопротивления и потерь. Для этого магниты должны быть охлаждены до -271°C, что, кстати, ниже температуры в открытом Космосе. Это и есть причина по которой большая часть ускорителя связана с системой распределения жидкого гелия, который охлаждает как сами магниты, так и другие вспомогательные системы.
Протоны будут двигаться в виде 3 тыс. сгустков, распределенных вдоль всей 27-километровой окружности коллайдера. Каждый сгусток, содержащий до 100 млрд протонов, в точках столкновений будет иметь длину в несколько сантиметров (как швейная игла) и диаметр всего 16 микронов (как самый тонкий человеческий волос). Иглы, сталкиваясь в зонах расположения детекторов, создадут более 600 млн столкновений частиц в секунду. Эти столкновения, или события, как их называют физики, фактически будут происходить между частицами, из которых состоят протоны, — кварками и глюонами. При максимальной энергии частиц будет высвобождаться приблизительно одна седьмая энергии, содержащейся в исходных протонах, или приблизительно 2 ТэВ. Четыре гигантские системы детекторов, самый большой из которых занял бы половину собора Нотр-Дам в Париже, а самый тяжелый содержит железа больше, чем Эйфелева башня, будут измерять параметры тысяч частиц, разлетающихся при каждом столкновении. Несмотря на огромный размер детекторов, монтаж отдельных элементов должен производиться с точностью 50 микронов.
Важно также, что БАК рассчитан на то, чтобы создавать пучки с интенсивностью в 40 раз большей, чем удается достичь на Теватроне. При выходе на проектную мощность все циркулирующие в нем частицы будут нести энергию, примерно равную кинетической энергии 900 автомобилей, едущих со скоростью 100 км/ч, или достаточную, чтобы вскипятить 2 тыс. л воды.
Светимость БАК во время первого пробега составит всего 1029частиц/см²·с. Это весьма скромная величина. Однако, после запуска БАК для экспериментальных исследований, светимость будет постепенно повышаться от начальной 5·1032до номинальной 1,7·1034частиц/см²·с. Выход на номинальную светимость планируется в 2010 году.
Все системы контроля над ускорителем и его технической инфраструктурой сосредоточены в Контрольном центре CERN. Именно из этого центра будет приведен в действие процесс столкновения частиц, и именно сюда будет поступать вся информация с детекторов.
На БАК работают 4 основных и 2 вспомогательных детектора:
· ALICE (A Large Ion Collider Experiment)
· ATLAS (A Toroidal LHC ApparatuS)
· CMS (Compact Muon Solenoid) - Компактный мюонный соленоид
· LHCb (The Large Hadron Collider beauty experiment)
· TOTEM (TOTal Elastic and diffractive cross section Measurement)
· LHCf (The Large Hadron Collider forward).
ATLAS, CMS, ALICE, LHCb — большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf — вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.
Два наиболее крупных проекта под кодовыми названиями ATLAS и CMS имеют в распоряжении 2 поливалентных детектора, предназначенные для анализа несметного числа частиц, которые образуются во время столкновения в ускорителе, что таким образом позволит изучить самые различные аспекты физики. Благодаря двум детекторам, разработанным независимо друг от друга, полученная информация, в случае открытия, сможет быть сравнена и проверена. Проект ATLAS направлен на изучение широкого спектра областей физики от исследования бозона Хиггза до частиц других размеров, а также поиск тех частиц, которые могли бы образовывать темную материю.
ALICE — для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца. В рамках проекта ALICE, в коллайдере столкнутся ионы свинца, чтобы создать в лаборатории условия, подобные которым существовали сразу после Большого Взрыва. Полученные данные позволят изучать эволюцию материи с момента зарождения Вселенной до наших дней.
Столкновения, которые произойдут в БАКе, вызовут температуру в 100 000 раз превышающую температуру, царящую в центре Солнца. Ученые-физики надеятся что при такой температуре протоны и нейтроны «расплавятся», высвободив кварки от влияния глюонов. Они предполагают, что подобное состояние существовало сразу после Большого Взрыва, когда Вселенная была так же раскалена. Частицы, из которых состоит сегодня наша Вселенная, протоны и нейтроны, вероятно сформировались в этой плазме.
LHCb— для исследования физикиb-кварков, что позволит лучше понять различия между материей и антиматерией,
Последние два опыта, гораздо более скромного масштаба, TOTEM и LHCf подвергнут анализу адроны, высвобождающиеся в момент лобового столкновения. Далеко не все частицы, двигаясь в противоположных направлениях, ударяются друг о друга. Их лишь малая доля. Некоторые едва лишь касаются друг друга, в то время как большая часть, не встретив препятствий на своем пути, продолжают свободное движение. Объектом исследования TOTEM и LHCf становится вторая группа частиц, то есть те которые слегка задевают другие, и в силу этого минимально отклоняются от траектории пучка. Так же в рамках проекта ТОТЕМ будет произведено перевычисление размеров протонов. Использование частиц в проекте LHCf направлено на искусственное создание космических лучей в условиях лаборатории. Космические лучи – это заряженные частицы межзвездного пространства, которые беспрестанно бомбардируют верхние слои атмосферы Земли.
Почти 100 млн каналов данных, идущих от каждого из двух основных детекторов, могли бы за секунду заполнять 100 тыс. компакт-дисков, которые за шесть месяцев могли бы образовать штабель, достигающий Луны. Поэтому вместо того чтобы записывать всю информацию, в экспериментах предлагается использовать системы запуска и сбора данных, действующие как фильтр. Записывать и помещать в архив центральной вычислительной системы БАК в ЦЕРН (Европейская лаборатория по физике элементарных частиц и «родной дом» коллайдера) будут только 100 событий в секунду, представляющих наибольший интерес.
Для обработки результатов экспериментов на БАК будет использоваться выделенная распределенная компьютерная сеть GRID, способная передавать до 10 гигабит информации в секунду в 11 вычислительных центров по всему миру. Каждый год с детекторов будет считываться более 15 петабайт (15 тысяч терабайт) информации: суммарный поток данных четырех экспериментов может достигать 700 мегабайт в секунду.
При 20 столкновениях, происходящих в центре каждого детектора через каждые 25 нс, БАК создает больше данных, чем можно зарегистрировать. Так называемые системы запуска выбирают крошечную долю данных, представляющих наибольших интерес, и отбрасывают остальные. Распределенная сеть (GRID), предоставляет тысячам исследователей во всем мире доступ к сохраненным данным и вычислительные мощности для обработки и анализа.
Сегодня можно уже с уверенностью сказать, что мы станем свидетелями принципиально новых явлений того или иного рода. Ученые надеются обнаружить давно разыскиваемые частицы, которые могли бы дать более полное представление о природе материи. Возможны и неординарные открытия, например обнаружение признаков существования новых измерений.
Физики ожидают, что БАК откроет новую эру в физике элементарных частиц, и это поможет найти ответ на главные загадки строения материи и энергии во Вселенной.
В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·109электронвольт) на каждую пару сталкивающихся нуклонов. На начало 2010-го года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США). В будущем, когда наладка оборудования будет завершена, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры.
В 2013 году CERN планирует модернизировать БАК, установив на него более мощные детекторы и увеличив общую мощность коллайдера. Проект модернизации называют Супер большим адронным коллайдером (Super Large Hadron Collider, SLHC). Также планируется строительство Международного линейного коллайдера (International Linear Collider, ILC). Его труба будет длиной в несколько десятков километров, и он должен быть дешевле БАК за счет того, что в его конструкции не требуется применять дорогостоящие сверхпроводящие магниты. Строить ILC, возможно, будут в Дубне.
Также некоторые специалисты CERN и ученые США и Японии предлагали после окончания работы БАК начать работу над новым Очень большим адронным коллайдером (Very Large Hadron Collider, VLHC).
1.И.М. Дремин.Физика на Большом адронном коллайдере. //УФН: журнал. — 2009. — Т. 179. — № 6.
2. Н. Никитин, Время искать Хиггс
3. http://elementy.ru/LHC (Большой адронный коллайдер — научно-популярный проект, посвящённый БАК)
4. http://www.abitura.com/modern_physics/bac.htm
5. http://www.studies-science.ru/chto-takoe-bolshoj-adronnyj-kollajder-i-pochemu-on-ne-rabotaet
superbotanik.net
Реферат на тему:
Согласно теории Большого взрыва, Вселенная в момент образования была в чрезвычайно плотном и горячем состоянии, называемом космологической сингулярностью
Большо́й взрыв (англ. Big Bang) — космологическая теория начала расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.
Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.
По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,13 млрд лет назад[1] из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.
Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.
Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).
После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.
Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит при использовании общей теории относительности и некоторых других альтернативных теорий гравитации к бесконечной плотности и температуре в конечный момент времени в прошлом. Более того, теория не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому, что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость: при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва), а размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью и сигнализирует о недостаточности описания Вселенной классической общей теорией относительности. Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» (или «сотворением») Вселенной. Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана в числе прочих теорем о сингулярностях Р. Пенроузом и С. Хокингом в конце 1960-х годов. Её существование является одним из стимулов построения альтернативных и квантовых теорий гравитации, которые стараются разрешить эту проблему.
Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.
Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.
Первоначально теория Большого взрыва называлась «динамической эволюционирующей моделью». Впервые термин «Большой взрыв» применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы «непрерывного рождения» материи при расширении Вселенной). Он сказал:
«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».
На русский язык Big Bang можно было бы перевести как «Большой хлопок», что, вероятно, точнее соответствует уничижительному смыслу, который хотел вложить в него Хойл. После того, как его лекции были опубликованы, термин стал широко употребляться.
Некоторые противники[кто?] теории Большого взрыва считают, что Вселенная стационарна, то есть не эволюционирует, и не имеет ни начала, ни конца во времени. Сторонники такой точки зрения отвергают расширение Вселенной, а красное смещение объясняют гипотезой о «старении» света. Однако, как выяснилось, эта гипотеза противоречит наблюдениям, например, наблюдаемой зависимости продолжительности вспышек сверхновых от расстояния до них.
Существует также точка зрения[кого?] о том, что законы Большого Взрыва действуют лишь в наблюдаемой нами части Вселенной (Метагалактике).
Кроме того, ТБВ не даёт удовлетворительного ответа на вопрос о причинах возникновения сингулярности, или материи/энергии для её возникновения, обычно просто постулируя её безначальность.
Категории: Космология, Астрофизика.
Текст доступен по лицензии Creative Commons Attribution-ShareAlike.wreferat.baza-referat.ru
КОНТРОЛЬНАЯ РАБОТА
(РЕФЕРАТ)
Большой Взрыв и эволюция горячей Вселенной
2008
Содержание
Введение. 3
1 Концепция Большого взрыва.. 4
1.1 Теории происхождения Вселенной.. 4
1.2 Теория Большого взрыва.. 7
2 Эволюция горячей Вселенной.. 12
2.1 Расширение горячей Вселенной.. 12
2.2 Сценарии будущего Вселенной.. 16
Заключение. 19
Библиографический список.. 20
Введение
Исследуя удаленные области пространства, мы заглядываем в прошлое. Самые удаленные галактики мы видим такими, какими они были очень давно, когда испущенный ими свет начал свое долгое путешествие в пространстве.
Исследованием Вселенной стал заниматься еще самый древний Человек. Небо было доступно для его обозрения – оно было для него интересным. Не потерял интереса к изучению проблем космоса и современный человек. Но он смотрит уже немного глубже. Ему не просто интересно, что есть Вселенная сейчас, он жаждет знаний о том что было, когда Вселенная рождалась? Как давно это было и как происходило?
Для поиска ответа на все эти непростые ответы была отведена специальная ниша в астрономии – космология.
Космология попыталась дать ответы на эти вопросы. Была создана теория Большого Взрыва, а так же теории, описывающие первые мгновения рождения Вселенной, ее появление и структуризации. Всё это позволяет нам понять сущность физических процессов, показывает источники, создающие современные законы физики, даёт возможность прогнозировать дальнейшую судьбу Вселенной. Поэтому космология, как и любая другая наука, живет и бурно развивается, принося все новые и новые фундаментальные знания об окружающем нас мире
Данная работа посвящена проблеме изучения происхождения нашей Вселенной. В соответствии с указанной целью были поставлены и решались следующие задачи: рассмотреть теорию Большого Взрыва, а так же первый мгновения жизни Вселенной.
При написании реферата были использованы монографические работы, учебная литература таких авторов как Дж. Силк, Дж. Э. Лидсей, Найдыш, С. Вайнберг, Карпенков, Горелов.
1 Концепция Большого взрыва
1.1 Теории происхождения Вселенной
Наука о Вселенной в целом называется космологией. Одна из первоочередных ее задач состоит в том, чтобы понять, как Вселенная за время своего развития пришла к нынешнему состоянию, и затем предсказать, как она поведет себя в будущем. В последние годы многих ученых занимал важный вопрос о том, как на наблюдаемой сейчас структуре Вселенной отразились физические процессы, действовавшие в течение Большого взрыва.
Основные положения современной космологии начали формироваться после создания в 1917 году Эйнштейном первой релятивистской модели, основанной на теории гравитации и претендовавшей на описание всей Вселенной. Эта модель характеризовала стационарное состояние Вселенной и, как показали астрофизические наблюдения, оказалось неверной.
Важный шаг в развитии космологии сделал в 1922 году профессор Петроградского университета А.А.Фридман. В результате решения космологических уравнении он пришел к выводу: Вселенная не может находиться в стационарном состоянии – она должна расширяться либо сужаться.
Следующий шаг был сделан в 1924 году, когда Хаббл измерил расстояние до ближайших галактик и тем самым открыл мир галактик. В 1929 году по красному смещению линий в спектре излучения галактик экспериментально подтвердил теоретический вывод Фридмана о расширении Вселенной. Из результатов наблюдения следует, что разбегания галактик увеличивается примерно на 75 км/с на каждый миллион парсек (1 парсек = 3,3 светового года). При данной скорости экстраполяция к прошлому приводит к выводу: возраст Вселенной составляет около 15 млрд. лет, а это означает, что вся Вселенная 15 млрд. лет назад была сосредоточена в очень маленькой области. Предполагается, что плотность вещества Вселенной была сравнимой с плотностью атомного ядра, и вся Вселенная представляла собой огромную ядерную каплю. По каким-то причинам ядерная капля оказалась в неустойчивом состоянии и взорвалась. Это предположение лежит в основе концепции Большого взрыва. В данной концепции предполагается, что расширение Вселенной происходило с одинаковой скоростью, начиная с момента взрыва ядерной капли.
В настоящее время обсуждается и другая гипотеза – гипотеза пульсирующей Вселенной: Вселенная не всегда расширялась, а пульсирует между конечными пределами плотности. Из нее следует, что в некотором прошлом скорость удаления галактик была меньше, чем сейчас, и были периоды, когда Вселенная сжималась, то есть галактики приближались друг к другу и с тем большей скоростью, чем больше расстояние их разделяло.
По мере развития естествознания и особенно ядерной физики выдвигались различные гипотезы о физических процессах на ранних этапах космологического расширения. В основе современных представлений об эволюции Вселенной лежит модель горячей Вселенной, или «Большого Взрыва», основы которой были заложены в трудах американского физика русского происхождения Дж. Гамова и его сотрудников в конце 40-х гг. ХХ века. В ней рассмотрены ядерные процессы, протекавшие в начальный момент расширения Вселенной в очень плотном веществе с чрезвычайно высокой температурой. По мере расширения Вселенной плотное вещество охлаждалось.
Из этой модели следуют два вывода:
· Вещество, из которого зарождались первые звезды, состояло в основном из водорода (75%) и гелия (25%)
· В сегодняшней Вселенной должно наблюдаться слабое электромагнитное излучение, сохранившее память о начальном этапе развития Вселенной, и поэтому названное реликтовым.
Ключ к пониманию ранних этапов эволюции Вселенной – в гигантском количестве теплоты, выделившейся при Большом взрыве. В теории горячей Вселенной предполагается, что Вселенная возникла спонтанно в результате взрыва из состояния с очень большой плотностью и энергией (состояние сингулярности). По мере расширения Вселенной температура падала (сначала быстро, а затем все медленнее) от очень большой до довольно низкой, обеспечивающей возникновение условий, благоприятных для образования звезд и галактик. На протяжении долгого периода времени температура превышала несколько тысяч градусов, что препятствовало образованию атомов, и, следовательно, космическое вещество имело вид разогретой плазмы, состоящей из ионизированных водорода и гелия. Лишь когда температура Вселенной понизилась приблизительно до температуры поверхности Солнца, возникли первые атомы. Таким образом, атомы – это реликты эпохи, наступившей после Большого Взрыва.
Возможность установить процессы, происходившие в первые секунды и минуты существования Вселенной, безусловно, следует рассматривать как блестящее достижения современного естествознания. Моделирование первой секунды существования Вселенной приближает нас к главной загадке природы – самому акту «сотворения мира»! Первые секунды Вселенной – это время таинственных состояний вещества и неведомых сил природы.
Конечно, здесь надо быть осторожным. Наши представления об этом отрезке времени основаны во многом на гипотезах и гипотетических экстраполяциях, теоретическом моделировании.
1.2 Теория Большого взрыва
«Температура Вселенной в любой данный момент времени непосредственно связана с ее размером и возрастом. Часто, оказывается, удобно измерять возраст Вселенной, непосредственно с точки зрения ее температуры. Более высокая температура, таким образом, соответствует более раннему времени.»[1]Например, когда возраст Вселенной был около одной секунды, ее температура составляла приблизительно 10 млрд. градусов.
Самая ранняя Вселенная была значительно горячее, чем 10 млрд. градусов. Материя в форме атомов существовать не могла. Атомы не появлялись пока возраст Вселенной не достиг примерно трехсот тысяч лет. Кроме того ядра стали устойчивыми лишь через несколько минут. Когда Вселенная была еще моложе, она состояла из очень плотной смеси частиц и античастиц разнообразных типов.
Для того чтобы представить молодую, расширяющуюся Вселенную, полезно рассмотреть следующую аналогию. Предположим, что в зимнюю холодную ночь мы так нагрели духовку, что температура в ней превысила сто градусов. Если мы поместим в духовку пар, он сохранится в такой форме, пока включен нагреватель. Но что будет, если мы отключим печку и вынесем ее туда, где температура значительно ниже точки замерзания воды? Ясно, что духовка начнет остывать. Как только температура понизиться, пар сгуститься в воду, а потом вода замерзнет, и превратиться в лед. Последовательные переходы от пара к воде и от воды ко льду происходят, как только температура становиться достаточно низкой. Историю воды внутри охлаждающегося духового шкафа может быть разделена на три различных периода, соответсвующих времени, когда вода была в газообразной, жидкой или твердой фазе.
Развитие ранней Вселенной также можно представить состоящей из отдельных периодов. Эти периоды ограничены особыми свойствами, в которые появляется материя в течение определенного времени. Материя в пределах расширяющейся Вселенной охлаждается во многом также, как пар внутри термостата. Когда Вселенная расширяется, температура падает и, в конечном счете, достигает критического значения, заставляя материю изменять свои фундаментальные свойства.
В течение Большого взрыва произошел целый ряд фундаментальных изменений, которые отделяли эти периоды друг от друга.
Первое существенное событие в истории Вселенной было ее возникновение. В принципе, этот момент можно использовать для определения нулевой точки отсчета времени. Первые 10-43сек. Истории Вселенной известны как Планковское время. Когда Вселенная достигла этого возраста начался суперструнный период. Расстояние, которое может пройти свет за Планковское время составляет 10-35метров. Этот масштаб известен как длина Планка, так как ничего не может перемещаться быстрее, чем свет, длина Планка представляет размер наблюдаемой в то время Вселенной. Поэтому суперструнный период иногда называют Планковским периодом.
В его начале температура равнялась 1032градусов. Это критическая температура, при которой, четыре силы природы, как полагают, объединяются в суперсилу. Струнный характер материи также начинает проявляться при таких энергиях. Суперструнная теория предсказывает, что Вселенная имела, по крайней мере, девять пространственных измерений. Они существовали в сопоставимых размерах на этой стадии.
Суперструнный период шел к завершению, когда суперсила разбилась на силу гравитации и силу великого объединения. Это было начало периода великого объединения. Гравитация начала действовать как отдельная сила, однако три из пространственных измерений продолжали расширяться. Снижение температуры заставило струны сжаться, и они начали походить на точечные объекты, которые мы наблюдаем сегодня как элементарные частицы и античастицы. Они непрерывно сталкиваются друг с другом, потому что для свободного движения объем пространства был очень мал. Вселенная в это время может рассматриваться как горячий, плотный «суп» из частиц и античастиц. Температура была все еще достаточно высока, поэтому кварки и лептоны были способны обмениваться Х-частицами. Эти частицы были ответственны за перенос силы великого объединения. Она заставляла кварки распадаться на лептоны наоборот. Кварки и лептоны были эффективно неразделимы на этой стадии в истории Вселенной.
Поскольку расширение Вселенной продолжалось, температура продолжала падать. Как только она упала ниже критического уровня, обмен Х-частицами между кварками и лептонами стал почти невозможен. Сила великого объединения эффективно перестала действовать и это определило конец периода великого объединения. Эта критическая стадия была достигнута, когда Вселенная была в возрасте примерно 10-35секунд, ее температура равнялась 1027градусов. Сила великого объединения разбилась на сильные и электрослабые силы, и это провозгласило начало электрослабой эры.
Этот период продолжался приблизительно 10-10секунд. Кварки вели себя как свободные частицы в течение этого периода. По мере того, как температура падала, столкновение между частицами становились все менее энергичными. Воздействие слабых и электромагнитных сил на частицы стало различным. Таким образом, во Вселенной в возрасте 10-10секунд произошло расщепление электрослабых сил на слабые силы и электромагнитные.
За электрослабой эрой последовала кварковая. Она длилась пока Вселенная не достигла возраста 10-4секунд. Кварки взаимодействовали друг с другом через сильную силу (ее особенность в том, что она ослабевает на малых расстояниях). Постепенно, по мере охлаждения Вселенной они теряли энергию, и сильная сила стала более влиятельной, поскольку температура падала. В конечном счете, кварки оказались заключенными в группы по два и три. Температура приблизительно равнялась 1012градусов. После того кварки уже не могли существовать во Вселенной как отдельные частицы, и кварковая эра пришла к концу. Триплеты, содержащие два u-кварка и один d-кварк сформировали протоны, триплеты, содержащие два d-кварка и один u-кварк сформировали нейтроны. Таким образом, нейтроны и протоны, которые существуют сегодня в ядрах атомов, были сформированы вскоре, после того как кварки оказались связанными, то есть когда Вселенная постарела приблизительно до 10-4секунд.
Вселенная охлаждалась по мере расширения, и это позволило, в конечном счете, сформироваться атомным ядрам. Процесс образования ядер известен как нуклеосинтез. Полностью этот процесс был закончен в течение примерно 3 минут. Температура приблизительно равнялась 1 млрд. градусов. В то время были сформированы ядра гелия – 4, дейтерия, гелия – 3, лития, бериллия, водорода.
Вселенная продолжала расширяться после того, как нуклиосинтез был закончен, но ничего существенного не произошло в последующие 300 000 лет или около того. К тому времени температура понизилась до 3 000 градусов. Это была уже достаточно низкая температура, чтобы электроны и ядра сформировали нейтральные атомы. Формирование атомов определило начало эры вещества. Формирование атомов закончилось исчезновением голых электрических зарядов во Вселенной. Излучению стало чрезвычайно трудно взаимодействовать с веществом. Такое взаимодействие могло иметь место только для излучения с энергией, точности необходимом для того, чтобы электроны могли перейти с одного энергетического уровня на другой. Это была очень маленькая доля всего существовавшего излучения. Вещество и излучение отделились друг от друга. Появление атомов представляет собой заключительный этап превращений в истории ранней Вселенной. В некотором смысле, он может рассматриваться как момент, когда закончился Большой взрыв.
Итак, теория Большого Взрыва рисует грандиозную картину космической эволюции. В концепции предполагается, что Вселенная возникла спонтанно в результате взрыва из состояния с очень большой плотностью и энергией (состояние сингулярности). По мере расширения Вселенной температура падала (сначала быстро, а затем все медленнее) от очень большой до довольно низкой. На протяжении долгого периода времени температура превышала несколько тысяч градусов, что препятствовало образованию атомов, и, следовательно, космическое вещество имело вид разогретой плазмы, состоящей из ионизированных водорода и гелия. Лишь когда температура Вселенной понизилась приблизительно до температуры поверхности Солнца, возникли первые атомы.
2 Эволюция горячей Вселенной
2.1 Расширение горячей Вселенной
После того как Большой взрыв закончился, Вселенная продолжала расширяться. Наблюдения астрономов показывают, что данный процесс продолжался, по крайней мере, 10 - 15 млрд. лет.
Давайте рассмотрим дальнейшие последствия этого расширения. Мы можем рассмотреть физические расстояния во Вселенной на примере расстояния между двумя воображаемыми частицами. Одна из них принадлежит нашей Галактике Млечный Путь, а другую поместим в соседнюю Галактику Андромеда. Расширение Вселенной означает тогда, что расстояние, отделяющие эти две частицы, увеличивается. Вот это и имеется в виду, когда говорят о возрастании размеров Вселенной или ее расширение.
Если мы отправимся назад во времени, то расстояние между нашими двумя частицами станет несколько меньше, чем сегодня. Это позволит нам представить себе, на что могла быть похожа Вселенная в более ранние времена. Если расстояния между всеми точками уменьшились, то разумно было бы предположить, что и вся Вселенная была меньше, чем в настоящее время. Следовательно, галактики были ближе друг к другу, чем сегодня, а плотность и температура материи были выше.
Если продвинутся еще дальше в прошлое, то можно достичь момента, когда расстояние, разделяющие наши две частицы, окажется намного меньше, чем размер типичной галактики. В те очень ранние времена галактики, какими мы их знаем сегодня, могли и не существовать. Вся материя во Вселенной, возможно, вела себя так, как если бы она состояла из сверхгорячей и сверхплотной жидкости.
Период расширения, когда Вселенная увеличивалась в размере в огромное число раз, ученые называют инфляцией или раздуванием. Процесс раздувания происходил действительно очень быстро и, возможно, закончился меньше чем за 10-33секунды. Но расширение не было строго равномерным. Этого следовало ожидать.
В чрезвычайно плотной среде ранней Вселенной материя была распределена несколько беспорядочно. Более высокая плотность в данном объеме пространства означает, что в нем имеется большее количество вещества, чем в окружающих областях. Следовательно, в эти области большей плотности должно притягиваться еще больше вещества из окрестностей. Области высокой плотности должны становиться еще плотнее, пока вся окрестность не опустеет. В конечном счете, гравитационное притяжение вещества в более плотных областях должно стать преобладающим над обратным эффектом расширения Вселенной.
Эти плотные области, сформированные в отдельные «острова» материи, в конце концов, начинали сжиматься (коллапсировать) из-за собственной гравитации. Каждый остров разбивался на отдельные мини-острова, их температура повышалась и стала достаточно высокой для слияния водородных ядер и ядра гелия. Такой процесс «горения водорода» происходит в центре звезд и освобождает значительное количество энергии в форме гамма-лучей. В свою очередь, гамма-лучи обеспечили давление, направленное наружу, и оно действовало на внешние области мини-островов. Установился механизм, поддерживающий равновесие, в результате чего внутренний эффект гравитации был точно сбалансирован давлением гамма-лучей, направленным наружу. Мини-острова сформировались в звезды, а первоначальные острова вещества представляют собой галактики, которые мы наблюдаем сегодня. Для завершения этого процесса потребовалось около 1 млрд. лет.
Первые звезды, которые формировались во вселенной были лишены тяжелых металлов. Звезды светят, это означает, что некоторая часть излучения, произведенная в ядерных реакциях в центре звезд, выходит на поверхность. Количество доступного водорода в пределах звезды ограничено, и в ядре постепенно начинает преобладать гелий. Тогда излучение уменьшается, и это позволяет начаться новой фазе коллапса.
Электроны остановят коллапс звезды, которая не была слишком массивна. Такая звезда, в конечном счете, превратиться в белого карлика.
Массивные же звезды превращаются в сверхновые. Подробнее рассмотрим процессы, происходящие в ядре звезд, имеющих большую массу.
Ядро звезды представляет собой термоядерный реактор, в котором горючим служат в основном ядра водорода (протоны). Огромная температура заставляет протоны преодолевать электростатическое отталкивание и соударяться друг с другом. При соударении протоны сближаются до радиуса сильного ядерного взаимодействия и могут слиться в одно ядро (синтез). Правда, ядро, состоящее из двух протонов, неустойчиво. Но если один из протонов (в результате слабого взаимодействия) превратится в нейтрон, то образуется устойчивое ядро дейтерия.
Такая реакция высвобождает значительную энергию, способствующую поддержанию в недрах звезды высокой температуры. Последующие реакции синтеза приводят к превращению дейтерия в гелий, образованию углерода, а затем и все более сложных ядер.
По мере исчерпания запасов ядерного горючего звезды ее внутренняя структура представлена слоями различных химических элементов, каждый из которых отражает различные стадии ядерного синтеза. Так на протяжении своей «жизни» звезда постепенно превращается из смеси первичного водорода и гелия в хранилище тяжелых химических элементов.
На заключительном этапе эволюции такой звезды ядерные реакции уже не могут поддерживать необходимые значения температуры и давления, которые обеспечивают ее устойчивость. Неустойчивость звездной массы постепенно нарастает. В результате гравитация, выйдя из-под контроля, вызывает мгновенное сжатие звезды. Но внутреннее давление противостоит сжатию и приводит к выбросу гигантской энергии: внешние слои звезды буквально сдуваются в окружающее пространство, разбрасывая тяжелые элементы по просторам галактики. Подобный выброс обычно называют взрывом сверхновой. Каждый взрыв сверхновой обогащает галактику тяжелыми элементами.
Многие из первоначально родившихся звезд были массивными, чтобы взорваться, как сверхновые. Выброшенные остатки этих звезд остыли через какое-то время. Часть вещества, в конечном счете, коллапсировала вокруг областей повышенной плотности. Из них в последствии и могут образоваться планетарные системы, где возможны зарождения и эволюция жизни. Одна такая область превратилась в то, что является теперь нашей Солнечной системой, с Солнцем и планетами, приблизительно 5 млрд. лет назад. За всю историю развития нашей галактики в ней вспыхнуло примерно один миллиард сверхновых звезд!
«Модель горячей Вселенной получила экспериментальное подтверждение после открытия в 1965 году реликтового излучения – микроволнового фонового излучения с температурой около 3 К. Косвенным подтверждением этой модели служит также наблюдаемое обилие гелия, превышающее повсеместно 22% по массе, а так же обнаруженное в межзвездном газе неожиданно высокое содержание дейтерия, происхождение которого можно объяснить лишь ядерными реакциями синтеза легких элементов в горячей Вселенной.»[2]Зная современную температуру реликтового излучения, можно провести экстраполяцию в прошлое, используя хорошо известные и проверенные законы механики, термодинамики, статистической, атомной и ядерной физики, физики элементарных частиц и др.
2.2 Сценарии будущего Вселенной
Единой точки зрения по поводу будущего Вселенной среди ученых нет.
Точка зрения Карпенкова С.Х. заключается в следующем. Теоретическое моделирование будущего Вселенной существенно различается в «открытых» и «закрытых» ее моделях.
«Закрытые» модели предполагают, что примерно через 30 млрд. лет она начнет сжиматься и через 50 млрд. лет вновь вернется в сингулярное состояние (состояние с очень большой плотностью и энергией). Полный цикл расширения и сжатия Вселенной составляет примерно 100 млрд. лет, таким образом, Вселенная может быть представлена как грандиозная закрытая система, испытывающая множество эволюционных циклов. При переходе от одного цикла к другому некоторые общие параметры Вселенной могут изменяться. Например, могут изменяться фундаментальные физические константы.
Совершенно иначе предстает будущее Вселенной в «открытых» космологических моделях, которые, по сути, представляют собой сценарии «тепловой смерти» Вселенной. В соответствии с ними уже через 1014лет многие звезды остынут, что приведет к тому, что планеты начнут отрываться от своих звезд, а звезды покидать свои галактики. Затем звезды превратятся в «черные карлики»; центральные области галактик коллапсируют, образуя «черные дыры» и тем самым прекратят свое существование.
Дальнейшая эволюция будущего Вселенной не вполне ясна. Если обнаружится, что протон действительно нестабилен, то он распадется на у-квант и нейтрино. Вселенная будет представлять собой совокупность нейтрино, квантов света с убывающей энергией и черных дыр. Самые массивные черные дыры испарятся и во Вселенной останется лишь электронно-позитронная плазма ничтожной плотности.
Если же протон стабилен, тогда через 1065лет любое вещество превратится в жидкость. Все оставшиеся «черные карлики» станут жидкими каплями. А через 101500лет любое вещество станет радиоактивным, и все жидкие капли станут железными. От разнообразной Вселенной останутся только жидкие холодные железные капли! Через невообразимое число лет они превратятся в «черные дыры». Затем они испарятся, превратив Вселенную в поток сверхдлинноволновых квантов и электронно-позитронной плазмы. Такое состояние – окончательная «смерть» Вселенной.
Точка зрения Стивена Вайнберга. Еще некоторое время Вселенная, безусловно, будет продолжать расширяться. Что же касается ее судьбы, после того, то стандартная модель дает двусмысленное представление: все зависит от того, меньше или больше космическая плотность определенного критического значения.
Если космическая плотность меньше критической плотности, тогда Вселенная имеет бесконечную протяженность, и будет продолжать расширяться всегда. Наши потомки, если они у нас тогда будут, увидят, как медленно подходят к концу термоядерные реакции во всех звездах, оставляя после себя различные сорта шлака: черные карликовые звезды, черные дыры. Планеты могут продолжать свое движение по орбитам, немного замедляясь за счет излучения гравитационных волн, но никогда не переходя в состояние покоя за любое конечное время. Температура космического фонового излучения будет продолжать падать, но оно не исчезнет, даже сейчас мы едва можем детектировать трехградусный фон микроволнового излучения.
Если космическая плотность больше критического значения, тогда Вселенная конечна и ее расширение, в конце концов, прекратиться, уступив место все ускоряющемуся сжатию. По началу не будет никаких тревожных сигналов – в течение тысяч миллионов лет фон излучения будет так холоден, что нужны будут большие усилия, чтобы вообще его обнаружить. Однако, когда Вселенная сократится до одной сотой теперешнего размера, фон излучения начнет преобладать в небе: ночное небо станет таким же теплым, как наше теперешнее небо днем. 7 млн. лет спустя Вселенная сократится еще в 10 раз и наши наследники и преемники (если они будут) увидят небо невыносимо ярким. Молекулы в атмосферах планет и звезд и в межзвездном пространстве начнут диссоциировать на составляющие их атомы, а атомы начнут разбиваться на свободные электроны и атомные ядра. Еще после 700000 лет сами звезды и планеты начнут диссоциировать в космический суп из излучения, электронов и ядер. В последующие 22 дня температура поднимется до 10 млрд. градусов. Тогда ядра начнут разбиваться на составляющие их протоны и нейтроны. Вскоре после этого электроны и позитроны станут в больших количествах рождаться в фотон-фотонных столкновениях, а космический фон, нейтрино и антинейтрино снова достигнут теплового союза с остальным содержимым Вселенной.
Таким образом, какая бы космологическая модель не оказалась правильной, ни в одной из них мы не находим утешения. Сегодня трудно представить, что сегодняшняя Вселенная развивалась из невыразимо незнакомых начальных условий и что ей предстоит будущее угасание в бескрайнем холоде или невыносимой жаре.
Заключение
Теория Большого Взрыва рисует грандиозную картину космической эволюции. Около 10-15 млрд. лет назад началось космологическое расширение. Ранняя Вселенная была очень горячей, очень плотной и, возможно, очень нерегулярной. Но она постепенно исчезла. В течение считанных минут после Большого Взрыва протекали некоторые ядерные реакции, по существу весь гелий во Вселенной синтезировался в то время. По мере расширения Вселенная охлаждалась примерно так же, как, расширяясь, охлаждается горячий воздух. По мере того, как вещество во Вселенной остывало, оно конденсировалось в галактики. Галактики, фрагментировали (разбивались) на звезды и собирались вместе, образуя большие скопления, охватывающие огромные области пространства. В процессе рождения и умирания первых поколений звезд постепенно синтезировались тяжелые элементы, такие, как углерод, кислород, кремний и железо. Когда звезды превращались в красные гиганты, они выбрасывали наружу вещество, которое конденсировалось в пылевых структурах. Из газово-пылевых облаков образовывались новые звезды. Сталкиваясь, частицы пыли слипались одна с другой, собирались в более крупные тела, которые увеличивались в размере под действием собственного гравитационного притяжения, так возникло многообразие космических тел – от крошечных астероидов до гигантских планет, составляющих нашу Солнечную систему.
Будущее же нашей Вселенной неопределенно. Какая бы космологическая модель не оказалась правильной, ни в одной из них мы не находим утешения. Сегодня трудно представить, что сегодняшняя Вселенная развивалась из невыразимо незнакомых начальных условий и что ей предстоит будущее угасание в бескрайнем холоде или невыносимой жаре.
Теория Большого Взрыва показывает нам эволюцию Вселенной в целом, от первых микросекунд после ее возникновения до образования Земли и развития жизни и дальше – может быть, в бесконечное будущее.
Библиографический список
1. Вайнберг С. первые три минуты: Современные взгляд на происхождение Вселенной / Пер. с англ. под ред. с пред. и доп. Зельдовича Я.Б. М.: Энергоиздат, 1981. 208 с.
2. Горелов А.А. Концепции современного естествознания. М.: ВЛАДОС, 2003. 512 с.
3. Карпенков С.Х. Концепции современного естествознания. М.: Академический Проспект, 2006. 654 с.
4. Лидсей Дж.Э. Рождение Вселенной / Пер. с англ. М.: Весь Мир, 2005. 200 с.
5. Найдыш В.М. Концепции современного естествознания. М.: Гардарики, 2003. 476 с.
6. Силк Дж. Большой взрыв: Рождение и эволюция Вселенной / Пер. с англ.; перевод Полнарева А.Г.; под ред. и с предисловием Новикова И.Д. М.: Мир, 1982. 391 с.
[1]Лидсей Дж.Э. Рождение Вселенной / Пер. с англ. М.: Весь Мир, 2005. С. 70.
1.Вайнберг С. первые три минуты: Современные взгляд на происхождение Вселенной / Пер. с англ. под ред. с пред. и доп. Зельдовича Я.Б. М.: Энергоиздат, 1981. С. 82.
superbotanik.net