works.tarefer.ru

Астероиды и кометы

   МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

   ВОСТОЧНО-КАЗАХСТАНСКИЙ  ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ 

   ИМ. С.АМАНЖОЛОВА   

   Факультет экологии и естественных наук

   Кафедра экологии и БЖ     

     РЕФЕРАТ 

     на  тему: 

     Астероиды и кометы 

                                                     Выполнил:

                                                     студент ЭК-08-А

                                                     Вагнер А.А. 

                                                     Проверил:

                                                     доцент кафедры

                                                     экологии и

                                                     безопасности

                                                     жизнедеятельности

                                                     Майоров В.Н.             

г. Усть-Каменогорск, 2010 г.      

                                 

  

ПЛАН 

1.     Астероиды

2.     Метеориты

3.     Мелкие  осколки

4.     Кометы                                     

                                 Введение                                

В Солнечной системе  кроме больших планет и их спутников  движется множество

так называемых малых  тел: астероидов, комет и метеоритов. Малые тела

Солнечной системы  имеют размеры от сотен микрон до сотен километров.

Астероиды. С точки  зрения физики астероиды или, как  их еще называют, малые

планеты - это плотные  и прочные тела. По составу и  свойствам их можно условно

разделить на три группы: каменные, железокаменные и железные. Астероид

является холодным телом. Но он, как, например, и Луна, отражает солнечный

свет, и поэтому  мы можем наблюдать его в виде звездообразного объекта. Отсюда

и происходит название "астероид", что в переводе с  греческого означает

звездообразный. Так  как астероиды движутся вокруг Солнца, то их положение по

отношению к звездам  постоянно и довольно быстро меняется. По этому

первоначальному признаку наблюдатели и открывают астероиды.

Кометы, или "хвостатые  звезды", известны с незапамятных времен. Комета - это

сложное физическое явление, которое кратко можно описать  с помощью нескольких

понятий. Ядро кометы представляет собой смесь или, как  говорят, конгломерат

пылевых частиц, водяного льда и замерзших газов. Отношение  содержания пыли к

газу в кометных ядрах составляет примерно 1:3. Размеры  кометных ядер, по

оценке ученых, заключены  в интервале от 1 до 100 км. Сейчас дискутируется

возможность существования  как более мелких, так и более  крупных ядер.

Известные короткопериодические кометы имеют ядра размером от 2 до 10 км.

Размер же ядра ярчайшей кометы Хейли-Боппа, которая наблюдалась  невооруженным

глазом в 1996 году, оценивается  в 40 км.

Метеороид – это  небольшое тело, обращающееся вокруг Солнца. Метеор – это

метеороид, влетевший  в атмосферу планеты и раскалившийся до блеска. А если

его остаток упал на поверхность планеты, его называют метеоритом. Метеорит

считают «упавшим», если есть очевидцы, наблюдавшие его полет  в атмосфере; в

противном случае его  называют «найденным».

     Рассмотрим выше указанные малые тела Солнечной системы более подробно.    

                       1. Астероиды                      

Эти космические тела отличаются от планет прежде всего  своими размерами. Так,

самая большая из маленьких  планет Церера имеет в поперечнике 995 км;

следующая за ней (по размеру): Палада-560 км, Хигея - 380 км, Психея - 240 км

и т.д. Для сравнения  можно указать, что наименьшая из больших планет Меркурий

имеет диаметр 4878 км, т.е. в 5 раз превосходит -  поперечник Цереры, а массы

их различаются во многие сотни раз.

Общее число малых  планет, доступных наблюдению современными телескопами,

определяется в 40 тыс., но общая их масса в 1 тыс. раз меньше массы Земли.

Движение малых  планет вокруг Солнца происходит по эллиптическим  орбитам, но

более вытянутым (средний  эксцентриситет орбит у них 0,51), чем  у больших

планет, а наклон орбитальных  плоскостей к эклептике у них  больше, чем у

больших планет (средний  угол 9,54). Основная масса планет вращается  вокруг

Солнца между орбитами Марса и Юпитера, образуя так называемый пояс

астероидов. Но имеются  и малые планеты, орбиты которых  располагаются ближе к

Солнцу, чем орбита Меркурия. Самые же далекие находятся  за Юпитером и даже за

Сатурном.

Исследователи космоса  высказывают различные соображения  о причине большой

концентрации астероидов в сравнительно узком пространстве межпланетной среды

между орбитами Марса  и Юпитера. Одной из наиболее распространенных гипотез

происхождения тел  пояса астероидов является представление  о разрушении

мифической планеты Фаэтон. Сама по себе идея о существовании планеты

поддерживается многими  учеными и даже как будто подкреплена  математическими

расчетами. Однако необъяснимой остается причина разрушения планеты.

Высказываются различные  предположения. Одни исследователи  считают, что

разрушение Фаэтона  произошло вследствии его столкновения с каким-то крупным

телом. По мнению других, причинами распада планеты были взрывные процессы в

ее недрах. В настоящее  время проблема происхождения тел  астероидного пояса

входит составным  элементом в обширную программу исследований космоса на

международном и национальных уровнях.

Среди малых планет выделяется своеобразная группа тел, орбиты которых

пересекаются с  орбитой Земли, а следовательно, имеется потенциальная

возможность их столкновения с нею. Планеты этой группы стали называть Apollo

object, или просто Apollo (Wetherill, 1979). Впервые о существовании Apollo

стало известно с 30-х  годов текущего столетия. В 1932 г. был  обнаружен

астероид. Его назвали

Apollo 1932 HA. Но он не  возбудил особого интереса, хотя его название стало

нарицательным для  всех астероидов, пересекающих земную орбиту.

В 1937 г. космическое  тело с поперечником приблизительно в 1 км прошло в 800

тыс. км от Земли и  в двукратном расстоянии от Луны. Впоследствии его назвали

Гермес. На сегодняшний  день выявлено 31 такое тело, и каждое из них получило

собственное название. Размеры их поперечников колеблются от 1 до 8 км, а

наклон орбитальных  плоскостей к эклиптике находиться в пределах от 1 до 68.

Пять из них вращаются  на орбитах между Землей и Марсом, а остальные 26 -

между Марсом и Юпитером (Wetherill, 1979). Полагают, что из 40 тыс. Малых

планет астероидного пояса с поперечником более 1 км может  оказаться несколько

сот Apollo. Поэтому столкновение таких небесных тел с Землей вполне вероятно,

но через весьма длительные интервалы времени.

Можно полагать, что  раз в столетие одно из таких космических  тел может пройти

вблизи Земли на расстоянии меньше, чем от нас до Луны, а раз за 250 тыс. лет

может произойти столкновение его с нашей планетой. Удар такого тела выделяет

энергию равную 10 тыс. Водородных бомб каждая мощностью 10 Мт. При этом

должен образоваться кратер диаметром около 20 км. Но такие  случаи редки и за

человеческую историю  неизвестны. Гермес относится к астероидам III класса, а

ведь много таких  тел и более крупного размера - II и I классов. Удар при

столкновении их с  Землей, естественно, будет еще более  значительным.

Когда в 1781 г.  был  открыт Уран  его средняя гелиоцентричекое расстояние

оказалось соответствующим  правилу Тициуса - Бодэ, то с 1789 г. начались

поиски планеты, которая, согласно этому правилу, должна была находиться между

орбитами Марса  и Юпитера, на среднем расстоянии а=2,8 а.е. от солнца. Но

разрозненные обзоры неба не приносили успеха, и поэтому 21 сентября 1800 г.

несколько немецких астрономов во главе с К. Цахом решили организовать

коллективные поиски. Они разделили весь поиск зодиакальных созвездий на 24

участка  и распределили между собой для тщательных исследований. Но не успели

они поступить к  систематическим розыскам, как 1-го января 1871г. итальянский

астроном Дж. Пиации (1746-1826) обнаружил в телескоп звездообразный объект

седьмой звездной величины, медленно перемещавшийся по созвездию  Тельца.

Вычисленная К. Гаусом (1777-1855) орбита объекта оказалась планетой,

соответствующей правилу  Тициуса-Бодэ: большая полуось а=2,77 а.е. и

эксцентриситет е=0,080. Вновь открытую планету Пиации назвал Церерой.

28 марта 1802 г. немецкий  врач и астроном В.Ольберс (1758-1840) обнаружил

вблизи Цереры еще  одну планету (8m) , названную Палладой (а=2,77 а.е.,

е=0,235). 2-го сентября 1804 г. была открыта третья планета, Юнона (а=2,67

а.е.), а 29 марта 1807 г.- 4, Веста (а=2,36 а.е.). Все вновь открытые планеты

имели звездообразный вид, без дисков, свидетельствующий  об их небольших

геометрических размерах. Поэтому эти небесные тела назвали  малыми планетами

или, по предложению  В. Гершеля , астероидами ( от греч. «астр» - звездный  и

«еидос»- вид).

К 1891 г.  визуальными  методами было обнаружено около 320 астероидов. В конце

1891 г. немецкий астроном  М. Вольф (1863-1932) предложил фотографический

метод поисков: при 2-3- часовой экспозиции изображения  звезд на фотопластинке

получались точечные , а след движущегося астероида - в виде небольшой

черточки. Фотографические  методы привели к резкому увеличению открытий

астероидов. Особенно интенсивные исследования  малых  планет проводятся сейчас

в Институте теоретической  астрономии ( в Петербурге ) и в  Крымской

астрофизической обсерватории  Академии наук России.

Астероидам , орбиты которых надежно определены, присваивают имя и порядковый

номер. Таких астероидов сейчас известно свыше 3500, но в Солнечной  системе

значительно больше.

Из указанного числа  известных астероидов астрономы  Крымской астрофизической

обсерватории открыли  около 550, увековечив в их названиях имена известных

людей.

Подавляющее большинство ( до 98% ) известных астероидов движется между

орбитами Марса  и  Юпитера, на средних расстояниях  от Солнца от 2,06 до 4,30

а.е. ( периоды обращения  от 2,96 до 8,92 года). Однако встречаются астероиды

с уникальными орбитами,  и им присваиваются мужские имена, как правило из

греческой мифологии.

Первые три из этих малых планет движутся вне пояса  астероидов, причем в

перигелии Икар подходит к Солнцу вдвое ближе Меркурия, а Гермес и Адонис -

ближе Венеры. Они  могут сближаться с Землейна расстоянии от 6 млн. до 23 млн.

км, а Гермес в 1937 г. прошел вблизи Земли даже  на расстоянии 580 тыс. км,

т.е. всего лишь в  полтора раза дальше Луны. Гидальго же в афелии уходит за

орбиту Сатурна. Но Гидальго не является исключением. За последние годы

открыто около 10 астероидов, перигелии которых расположены  вблизи орбит

планет земной группы, а афелии - вблизи орбит Юпитера. Такие орбиты

характерны для  комет семейства Юпитера и  указывают на возможное общее

происхождение астероидов и комет.

В 1977 г. обнаружен уникальный астероид, который обращается вокруг Солнца по

орбите с большой  полуосью а=13,70 а.е. и эксцентриситетом е=0,38, так что в

перигелии (q=8,49 а.е.) он заходит внутрь орбиты Сатурна, а  в афелии (Q=18,91

а.е.) приближается к  орбите Урана. Он назван Хироном. По-видимому, существуют

и другие подобные далекие  астероиды, поиски которых продолжаются.

Блеск большинства  известных астероидов во время противостояния от 7m

до 16m, но есть и более слабые объекты. Самым ярким (до 6m

                                ) является Веста.                               

Поперечники астероидов вычисляются по их блеску и отражательной  способности в

визуальных и инфракрасных лучах. Оказалось, что крупных астероидов не так уж

много. Наиболее крупные - это Церера (поперечник 1000 км), Паллада (610 км),

Веста (540 км) и Гигия (450 км). Только у 14 астероидов поперечники  более 250

км, а у остальных  меньше, вплоть до 0,7 км. У тел   таких малых размеров не

может быть сфероидальной формы,  и все астероиды (кроме, может быть, наиболее

крупных) представляют собой бесформенные глыбы.

Массы астероидов крайне различные: наибольшей,  близкой  к 1,5.

1021 кг (т.е. в 4 тыс. раз меньше массы земли), обладает Церера.

Суммарная масса всех астероидов не превышает 0,001 массы Земли. Конечно, все

эти небесные тела лишены атмосферы. У многих  астероидов по регулярному

изменению их блеска обнаружено осевое вращение.

В частности, период вращения Цереры равен 9,1 ч , а Паллады - 7,9ч .

Быстрее всех вращается Икар, за 2ч 16м.

Изучение отражательной  способности многих астероидов позволило  объединить их

в три основные группы: темные, светлые и металлические. Поверхность темных

астероидов отражает всего лишь до 5% падающего на нее  солнечного света и

состоит из веществ, сходными с черными базальтовыми и углистыми  породами. Эти

астероиды часто называют углистыми. Светлые астероиды отражают от 10% до 25%

солнечного света, что роднит их поверхность с кремниевыми  соединениями - это

каменные астероиды. Металлические астероиды (их абсолютное меньшинство) тоже

светлые, но по своим  отражательным свойствам их поверхность  похожа на

железоникелевые сплавы. Такое подразделение астероидов подтверждается и

химическим составом выпадающих на Землю метеоритов . Незначительное число

изученных астероидов  не относится ни к одной из трех основных групп.

Показательно, что  в спектрах  углистых астероидов обнаружена полоса

поглощения воды (l= 3мкм). В частности, поверхность астероида  Цереры состоит

из минералов, похожих  на земные глины и содержащих около 10% воды.

При небольших размерах и массах астероидов давление в их недрах невелико:  даже

у самых крупных  астероидов оно не превышает 7 105

8 10 5  Гпа (700 - 800 атм) и не может вызвать разогрева их твердых

холодных недр. Лишь поверхность астероидов очень слабо нагревается далеким от

них Солнцем, но и эта  незначительная энергия излучается в межпланетное

пространство. Вычисленная  по законам физики температура  поверхности

подавляющего большинства  астероидов оказалась близкой к 150 - 170 К

(-120...-100°С).

И только у немногих астероидов, которые проходят вблизи Солнца, поверхность в

такие периоды сильно нагревается . Так, температура поверхности  Икара

повышается почти  до 1000 К (+730°С), а при удалении от Солнца снова резко

понижается.

Орбиты остальных  астероидов подвержены значительным возмущениям  от

гравитационного воздействия  больших планет, главным образом  Юпитера. Особенно

сильные возмущения испытывают небольшие астероиды, что приводит к

столкновениям этих тел  и их дроблению на соколки самых разнообразных размеров

-б от сотен метров  в поперечнике до пылинок.

В настоящее время  физическая  природа  астероидов изучается, потому что по

ней можно проследить эволюцию (развитие) вещества, из которого сформировалась

Солнечная система.

                             2.     Метеориты                            

В околоземном космическом  пространстве движутся самые различные  метеороиды

(космические осколки  больших астероидов и комет). Их  скорости лежат в

диапазоне от 11 до 72 км/с. Часто бывает так, что пути их движения

пересекаются с  орбитой Земли и они залетают в её атмосферу.

Метеориты - каменные или железные тела, падающие на Землю  из межпланетного

пространства. Падение  метеоритов на Землю сопровождается звуковым, световым и

механическим явлением. По небу проносится яркий огненный шар называемый

болидом, сопровождаемый хвостом и разлетающимися  искрами. После того как

болид исчезает, через  несколько секунд раздаются похожие  на взрывы удары,

называемые ударными волнами, которые иногда вызывают значительное сотрясение

грунта и зданий.

    Явления  вторжения космических тел в  атмосферу имеют три основные  стадии:   

1. Полёт в разреженной  атмосфере (до высот около 80 км), где взаимодействие

молекул воздуха носит  карпускулярный характер. Частицы воздуха соударяются с

телом, прилипают к  нему или отражаются и передают ему  часть своей энергии. Тело

нагревается от непрерывной  бомбардировки молекулами воздуха, но не испытывает

заметного сопротивления, и его скорость остаётся почти  неизменной. На этой

стадии, однако, внешняя  часть космического тела нагревается  до тысячи градусов

и выше. Здесь характерным  параметром задачи является отношение  длины свободного

пробега к размеру  тела L, которое называется числом Кнудсена Kn. В

аэродинамике принято  учитывать молекулярный подход к сопротивлению воздуха при

Kn>0.1.

2. Полёт в атмосфере  в режиме непрерывного обтекания  тела потоком воздуха, то

есть когда воздух считается сплошной средой и атомно-молекулярный характер

его состава явно не учитывается. На этой стадии перед телом возникает

головная ударная  волна, за которой резко повышается давление и температура.

Само тело нагревается  за счет конвективной теплопередачи, а  так же за счет

радиационного нагрева. Температура может достигать  несколько десятков тысяч

градусов, а давление до сотен атмосфер. При резком торможении появляются

значительные перегрузки. Возникают деформации тел, оплавление и испарение их

поверхностей, унос массы  набегающим воздушным потоком (абляция).

3. При приближении  к поверхности Земли плотность воздуха растёт,

сопротивление тела увеличивается, и оно либо практически останавливается  на

какой-либо высоте, либо продолжает путь до прямого столкновения с Землёй. При

этом часто крупные  тела разделяются на несколько частей, каждая из которых

падает отдельно на Землю. При сильном торможении космической массы над Землёй

сопровождающие его  ударные волны продолжают своё движение к поверхности

Земли, отражаются от неё и производят возмущения нижних слоёв атмосферы, а

так же земной поверхности.

Процесс падения каждого метеороида индивидуален. Нет возможности в кратком

рассказе описать  все возможные особенности этого  процесса.

«Найденных» метеоритов значительно больше, чем «упавших». Часто их находят

туристы или крестьяне, работающие в поле. Поскольку метеориты имеют темный

цвет и легко  различимы на снегу, прекрасным местом для их поиска служат

ледяные поля Антарктики, где уже найдены тысячи метеоритов. Впервые метеорит

в Антарктике обнаружила в 1969 группа японских геологов, изучавших  ледники.

Они нашли 9 фрагментов, лежавших рядом, но относящихся к четырем разным типам

метеоритов. Оказалось, что метеориты, упавшие на лед  в разных местах,

собираются там, где  движущиеся со скоростью несколько  метров в год ледниковые

поля останавливаются, упираясь в горные хребты. Ветер разрушает и высушивает

верхние слои льда (происходит его сухая возгонка – абляция), и метеориты

концентрируются на поверхности  ледника. Такие льды имеют голубоватый  цвет и

легко различимы с  воздуха, чем и пользуются ученые при изучении мест,

перспективных для  сбора метеоритов.

Важное падение  метеорита произошло в 1969 в Чиуауа (Мексика). Первый из

множества крупных  осколков был найден вблизи дома в  деревеньке Пуэблито де

Альенде, и, следуя традиции, все найденные фрагменты этого  метеорита были

объединены под  именем Альенде. Падение метеорита  Альенде совпало с началом

лунной программы  «Аполлон» и дало ученым возможность  отработать методы

анализа внеземных  образцов. В последние годы установлено, что некоторые

метеориты, содержащие белые обломки, внедренные в более темную материнскую

породу, являются лунными  фрагментами.

Метеорит Альенде  относится к хондритам – важной подгруппе каменных

метеоритов. Их называют так, потому что они содержат хондры (от греч.

chondros, зёрнышко) –  древнейшие сферические частицы, сконденсировавшиеся в

протопланетной туманности и затем вошедшие в состав более  поздних пород.

Подобные метеориты  позволяют оценивать возраст  Солнечной системы и ее

исходный состав. Богатые  кальцием и алюминием включения  метеорита Альенде,

первыми сконденсировавшиеся  из-за своей высокой температуры  кипения, имеют

измеренный по радиоактивному распаду возраст 4,559 ± 0,004 млрд. лет. Это

наиболее точная оценка возраста Солнечной системы. К тому же все метеориты

несут в себе «исторические  записи», вызванные длительным влиянием на них

галактических космических  лучей, солнечного излучения и солнечного ветра.

Изучив повреждения, нанесенные космическими лучами, можно  сказать, как долго

метеорит пребывал на орбите до того, как попал под  защиту земной атмосферы.

Прямая связь между  метеоритами и Солнцем следует  из того факта, что

элементный состав наиболее старых метеоритов – хондритов  – точно повторяет

состав солнечной  фотосферы. Единственные элементы, содержание которых

различается, – это  летучие, такие, как водород и гелий, обильно испарявшиеся

из метеоритов в  ходе их остывания, а также литий, частично «сгоревший» на

Солнце в ядерных  реакциях. Понятия «солнечный состав»  и «хондритный состав»

используют как  равнозначные при описании упомянутого  выше «рецепта солнечного

вещества». Каменные метеориты, состав которых отличается от солнечного,

называют ахондритами.

                          3.     Мелкие осколки.                         

Околосолнечное пространство заполнено мелкими частицами, источниками  которых

служат разрушающиеся  ядра комет и столкновения тел, в  основном, в поясе

астероидов. Самые  мелкие частицы постепенно приближаются к Солнцу в результате

эффекта Пойнтинга  – Робертсона (он заключается в  том, что давление солнечного

света на движущуюся частицу направлено не точно по линии Солнце – частица, а в

результате аберрации  света отклонено назад и поэтому  тормозит движение

частицы). Падение  мелких частиц на Солнце компенсируется их постоянным

воспроизводством, так  что в плоскости эклиптики  всегда существует скопление

пыли, рассеивающее солнечные  лучи. В самые темные ночи оно  заметно в виде

зодиакального света, тянущегося широкой полосой вдоль  эклиптики на западе после

захода Солнца и  на востоке перед его восходом. Вблизи Солнца зодиакальный свет

переходит в ложную корону (F-корона, от false – ложный), которая видна

только при полном затмении. С ростом углового расстояния от Солнца яркость

зодиакального света  быстро падает, но в антисолнечной  точке эклиптики она вновь

усиливается, образуя  противосияние; это вызвано тем, что мелкие пылевые частицы

                         интенсивно отражают свет назад.                        

Время от времени метеороиды попадают в атмосферу Земли. Скорость их движения

так велика (в среднем 40 км/с), что почти все они, кроме самых мелких и самых

крупных, сгорают на высоте около 110 км, оставляя длинные  светящиеся хвосты –

метеоры, или падающие звезды. Многие метеороиды связаны  с орбитами отдельных

комет, поэтому метеоры  наблюдаются чаще, когда Земля  в определенное время

года проходит вблизи таких орбит. Например, ежегодно в  районе 12 августа

наблюдается множество  метеоров, поскольку Земля пересекает поток Персеиды,

связанный с частицами, потерянными кометой 1862 III. Другой поток  – Ориониды

– в районе 20 октября  связан с пылью от кометы Галлея.

Частицы размером менее 30 мкм могут затормозиться в  атмосфере и упасть на

землю, не сгорев; такие  микрометеориты собирают для лабораторного  анализа.

Если частицы размером в несколько сантиметров и  более состоят из достаточно

плотного вещества, то они также не сгорают целиком и выпадают на поверхность

Земли в виде метеоритов. Более 90% из них каменные; отличить их от земных

пород может только специалист. Оставшиеся 10% метеоритов железные (в

действительности  они состоят из сплава железа и никеля).

Метеориты считаются  осколками астероидов. Железные метеориты  были когда-то в

составе ядер этих тел, разрушенных соударениями. Возможно, некоторые рыхлые и

богатые летучими веществами метеориты произошли от комет, но это

маловероятно; скорее всего, крупные частицы комет сгорают в атмосфере, а

сохраняются лишь мелкие. Учитывая, как трудно достигнуть Земли  кометам и

астероидам, ясно, сколь  полезным является изучение метеоритов, самостоятельно

«прибывших» на нашу планету из глубин Солнечной системы.

                              4.     Кометы                             

Кометы являются самыми эффективными небесными телами в  Солнечной системе.

Кометы - это своеобразные космические айсберги, состоящие  из замороженных

газов, сложного химического  состава, водяного льда и тугоплавкого

минерального вещества в виде пыли и более крупных  фрагментов.

Хотя кометы подобно  астероидам движутся вокруг Солнца по коническим кривым,

внешне они разительно отличаются от астероидов. Если астероиды  светят

отражённым солнечным светом и в поле зрения телескопа напоминают медленно

движущиеся слабые звёздочки, то кометы интенсивно рассеивают солнечный свет в

некоторых наиболее характерных  для комет участках спектра, и  поэтому многие

кометы видны невооружённым  глазом, хотя диаметры их ядер редко превышают 1 -

5 км.

Кометы интересуют многих учёных: астрономов, физиков, химиков, биологов,

газодинамиков, историков  и др. И это естественно. Ведь кометы подсказали

ученым, что в межпланетном пространстве дует солнечный ветер; возможно кометы

являются "виновниками" возникновения жизни на Земле, так  как могли занести в

атмосферу Земли сложные  органические соединения. Кроме того, кометы, по-

видимому, несут в  себе ценную информацию о начальных  стадиях протопланетного

облака, из которого образовались также Солнце и планеты.

При первом знакомстве с яркой кометой может показаться, что хвост - самая

главная часть кометы. Но если в этимологии слова "комета" хвост явился

главной причиной для  подобного наименования, то с физической точки зрения

хвост является вторичным  образованием, развившимся из довольно крохотного

ядра, самой главной  части кометы как физического  объекта. Ядра комет -

первопричина всего  остального комплекса кометных явлений, которые до сих пор

всё ещё не доступны телескопическим наблюдениям, так как они вуалируются

окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя

большие увеличения, можно заглянуть в более глубокие слои светящейся вокруг

ядра газо-пылевой  оболочки, но и то, что остаётся, будет  по своим размерам

всё ещё значительно  превышать истинные размеры ядра. Центральное сгущение,

видимое в диффузной  атмосфере кометы визуально и  на фотографиях, называется

фотометрическим ядром. Считается, что в центре его находится  собственно ядро

кометы, т.е. располагается центр масс кометы.

Туманная атмосфера, окружающая фотометрическое ядро и  постепенно сходящая на

нет, сливаясь с фоном  неба, называется комой. Кома вместе с  ядром составляют

голову кометы. Вдали  от Солнца голова выглядит симметричной, но с

приближением к Солнцу она постепенно становится овальной, затем голова

удлиняется ещё  сильнее, и в противоположной  от Солнца стороне из неё

развивается хвост.

Итак, ядро - самая  главная часть кометы. Однако, до сих пор нет единодушного

мнения, что оно  представляет собой на самом деле. Ещё во времена Бесселя и

Лапласа существовало представление о ядре кометы как  о твердом теле,

состоящем из легко  испаряющихся веществ типа льда или  снега, быстро

переходящих в газовую  фазу под действием солнечного тепла. Эта ледяная

классическая модель кометного ядра была существенно  дополнена и разработана в

последнее время. Наибольшим признанием среди исследователей комет  пользуется

разработанная Уиплом модель ядра - конгломерата из тугоплавких  каменистых

частиц и замороженной летучей компоненты (СН4, СО2, Н2О и др.). В таком ядре

ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере

прогревания солнечным  теплом газы типа испаряющегося "сухого льда"

прорываются наружу, увлекая за собой облака пыли. Это  позволяет, например,

объяснить образование  газовых и пылевых хвостов  у комет, а также способность

небольших ядер комет  к активному газовыделению.

Головы комет при  движении комет по орбите принимают  разнообразные формы.

Вдали от СОЛНЦА головы комет круглые, что объясняется слабым воздействием

солнечных излучений  на частицы головы, и её очертания  определяются изотропным

расширением кометного  газа в межпланетное пространство. Это бесхвостые

кометы, по внешнему виду напоминающие шаровые звездные скопления. Приближаясь

к Солнцу, голова кометы принимает форму параболы или цепной линии.

Параболическая форма  головы объясняется "фонтанным" механизмом. Образование

голов в форме цепной линии связано с плазменной природой кометной атмосферы и

воздействием на неё  солнечного ветра и с переносимым им магнитным полем.

Иногда голова кометы столь мала, что хвост кометы кажется  выходящим

непосредственно из ядра. Кроме изменения очертаний в  головах комет то

появляются, то исчезают различные структурные образования: галсы, оболочки,

лучи, излияния из ядра и т.п.

Большие кометы с хвостами, далеко простиравшимися по небу, наблюдались  с

древнейших времен. Некогда предполагалось, что кометы принадлежат к числу

атмосферных явлений. Это заблуждение опроверг Браге, который обнаружил, что

комета 1577 года занимала одинаковое положение среди звёзд при наблюдениях из

различных пунктов, и, следовательно, отстоит от нас дальше, чем Луна.

Движение комет  по небу объяснил впервые Галлей (1705г.), который нашёл, что

их орбиты близки к  параболам. Он определил орбиты 24 ярких комет, причём

оказалось, что кометы 1531 и 1682 г.г. имеют очень сходные  орбиты. Отсюда

Галлей сделал вывод, что эта одна и та же комета, которая  движется вокруг

Солнца по очень  вытянутому эллипсу с периодом около 76 лет. Галлей

предсказал, что в 1758 году она должна появиться вновь и в декабре 1758 года

она действительно  была обнаружена. Сам Галлей не дожил  до этого времени и не

мог увидеть, как блестяще подтвердилось его предсказание. Эта комета (одна из

самых ярких) была названа  кометой Галлея.

Кометы обозначаются по фамилиям лиц, их открывших. Кроме  того, вновь открытой

комете присваивается  предварительное обозначение по году открытия с

добавлением буквы, указывающей  последовательность прохождения кометы через

перигелий в данном году.

Лишь небольшая часть комет, наблюдаемых ежегодно, принадлежит к числу

периодических, т.е. известных  по своим прежним появлениям. Большая  часть

комет движется по очень  вытянутым эллипсам, почти параболам. Периоды

обращения их точно  не известны, но есть основания полагать, что они достигают

многих миллионов  лет. Такие кометы удаляются от Солнца на расстояния,

сравнимые с межзвездными. Плоскости их почти параболических орбит не

концентрируются к  плоскости эклиптики и распределены в пространстве случайным

образом. Прямое направление движения встречается так же часто, как и

обратное.

Периодические кометы движутся по менее вытянутым эллиптическим  орбитам и

имеют совсем иные характеристики. Из 40 комет, наблюдавшихся более, чем 1

раз, 35 имеют орбиты, наклоненные меньше, чем на 45^ к плоскости эклиптики.

Только комета Галлея имеет орбиту с наклонением, большим 90^ и,

следовательно, движется в обратном направлении. Среди короткопериодических

(т.е. имеющих периоды  3 - 10 лет) комет выделяется "семейство  Юпитера"

большая группа комет, афелии которых удалены от Солнца на такое же

расстояние, как орбита Юпитера. Предполагается, что "семейство  Юпитера"

образовалось в  результате захвата планетой комет, которые двигались ранее по

более вытянутым орбитам. В зависимости от взаимного расположения Юпитера и

кометы эксцентриситет кометной орбиты может, как возрастать, так и

уменьшаться. В первом случае происходит увеличение периода  или даже переход

на гиперболическую  орбиту и потеря кометы Солнечной  системой, во втором -

уменьшение периода.

Орбиты периодических  комет подвержены очень заметным изменениям. Иногда

комета проходит вблизи Земли несколько раз, а потом  притяжением планет-

гигантов отбрасывается  на более удаленную орбиту и становится ненаблюдаемой.

В других случаях, наоборот, комета, ранее никогда не наблюдавшаяся,

становится видимой  из-за того, что она прошла вблизи Юпитера или Сатурна и

резко изменила орбиту. Кроме подобных резких изменений, известных  лишь для

ограниченного числа  объектов, орбиты всех комет испытывают постепенные

изменения.

Изменения орбит не являются единственной возможной причиной исчезновения

комет. Достоверно установлено, что кометы быстро разрушаются. Яркость

короткопериодических  комет ослабевает со временем, а  в некоторых случаях

процесс разрушения наблюдался почти непосредственно. Классическим примером

является комета Биэли. Она была открыта в 1772 году и наблюдалась  в 1813,

1826 и 1832. г.г. В  1845 году размеры кометы оказались  увеличенными, а в

январе 1846г. наблюдатели  с удивлением обнаружили две очень близкие кометы

вместо одной. Были вычислены относительные движения обеих комет, и оказалось,

что комета Биэли разделилась  на две ещё около года назад, но вначале

компоненты проектировались  один на другой, и разделение было замечено не

сразу. Комета Биэли наблюдалась ещё один раз, причём один компонент много

слабее другого, и  больше её найти не удалось. Зато неоднократно наблюдался

метеорный поток, орбита которого совпадала с орбитой  кометы Биэли.

При решении вопроса  о происхождении комет нельзя обойтись без знания

химического состава  вещества, из которого сложено кометное ядро. Казалось бы,

что может быть проще? Нужно сфотографировать побольше спектров комет,

расшифровать их - и химический состав кометных ядер нам сразу же станет

известным. Однако, дело обстоит не так просто, как кажется на первый взгляд.

Спектр фотометрического ядра может быть просто отражённым солнечным или

эмиссионным молекулярным спектром. Отражённый солнечный спектр является

непрерывным и ничего не сообщает о химическом составе  той области, от которой

он отразился - ядра или пылевой атмосферы, окружающей ядро. Эмиссионный

газовый спектр несёт  информацию о химическом составе  газовой атмосферы,

окружающей ядро, и  тоже ничего не говорит нам о химическом составе

поверхностного слоя ядра, так как излучающие в видимой области молекулы,

такие как С2, СN, СH, МH, ОН и др., являются вторичными, дочерними  молекулами

- "обломками"  более сложных молекул или  молекулярных комплексов, из которых

складывается кометное ядро. Эти сложные родительские молекулы, испаряясь в

околоядерное пространство, быстро подвергаются разрушительному  действию

солнечного ветра  и фотонов или распадаются  или диссоциируются на более

простые молекулы, эмиссионные  спектры которых и удаётся  наблюдать от комет.

Сами родительские молекулы дают непрерывный спектр.

Первым наблюдал и  описал спектр головы кометы итальянец  Донати. На фоне

слабого непрерывного спектра кометы 1864 он увидел три  широкие светящиеся

полосы: голубого, зелёного и жёлтого цвета. Как оказалось  это стечение

принадлежало молекулам углерода С2, в изобилии оказавшегося в кометной

атмосфере. Эти эмиссионные  полосы молекул С2 получили название полос Свана,

по имени ученого, занимавшегося исследованием спектра  углерода. Первая

щелевая спектрограмма  головы Большой Кометы 1881 была получена англичанином

Хеггинсом, который  обнаружил в спектре излучение  химически активного радикала

циана СN.

Вдали от Солнца, на расстоянии 11 а.е., приближающаяся комета выглядит

небольшим туманным пятнышком, порой с признаками начинающегося образования

хвоста. Спектр, полученный от кометы, находящейся на таком  расстоянии, и

вплоть до расстояния 3-4 а.е., является непрерывным, т.к. на таких  больших

расстояниях эмиссионный  спектр не возбуждается из-за слабого  фотонного и

корпускулярного солнечного излучения.

Этот спектр образуется в результате отражения солнечного света от пылевых

частиц или в  результате его рассеивания на многоатомных молекулах или

молекулярных комплексах. На расстоянии около 3 а.е. от Солнца, т.е. когда

кометное ядро пересекает пояс астероидов, в спектре появляется первая

эмиссионная полоса молекулы циана, которая наблюдается почти  во всей голове

кометы. На расстоянии 2 а.е. возбуждаются уже излучения  трёхатомных молекул

С3 и NН3, которые наблюдаются  в более ограниченной области головы кометы

вблизи ядра, чем  все усиливающиеся излучения  СN. На расстоянии 1,8 а.е.

появляются излучения  углерода - полосы Свана, которые сразу  становятся

заметными во всей голове кометы: и вблизи ядра и у границ видимой головы.

Механизм свечения кометных молекул был расшифрован ещё в 1911г.

К.Шварцшильдом и Е.Кроном, которые, изучая эмиссионные спектры  кометы Галлея

(1910), пришли к заключению, что молекулы кометных атмосфер  резонансно

переизлучают солнечный  свет. Это свечение аналогично резонансному свечению

паров натрия в известных  опытах Ауда, который первый заметил, что при

осещении светом, имеющим  частоту желтого дублета натрия, пары натрия сами

начинают светиться  на той же частоте характерным  жёлтым светом. Это -

механизм резонансной  флуоресценции, являющийся частым случаем более общего

механизма люминесценции. Всем известно свечение люминесцентных ламп над

витринами магазинов, в лампах дневного света и т.п. Аналогичный механизм

заставляет светиться  и газы в кометах.

Для объяснения свечения зеленой и красной кислородных линий (аналогичные

линии наблюдаются  и в спектрах полярных сияний) привлекались различные

механизмы: электронный  удар, диссоциативная рекомбинация и  фотодиссациация.

Электронный удар, однако, не в состоянии объяснить более  высокую

интенсивность зелёной линии в некоторых кометах по сравнению с красной.

Поэтому больше предпочтения отдаётся механизму фотодиссоциации, в пользу

которого говорит  распределение яркости в голове кометы. Тем не менее, этот

вопрос ещё окончательно не решён и поиски истинного механизма свечения атомов

в кометах продолжаются. До сих пор остается нерешённым вопрос о родительских,

первичных молекулах, из которых состоит кометное ядро, а этот вопрос очень

важен, так как именно химизм ядер предопределяет необычно высокую активность

комет, способных из весьма малых по размерам ядер развивать  гигантские

атмосферы и хвосты, превосходящие по своим размерам все известные тела в

Солнечной системе.

                  

                               

    

                                Литература                               

    1.     В.А. Браштейн “Планеты и их  наблюдение” Москва  “Наука”  1979 год.   

2.     С. Доул  “Планеты для людей” Москва  “Наука” 1974 год.

3.     К.И.  Чурюмов “Кометы и их наблюдение”  Москва  “Наука” 1980 год.

4.     Е.Л.  Кринов “Железный дождь” Москва  “Наука” 1981 год.

5.     К.А.  Куликов, Н.С. Сидоренков “Планета  Земля” Москва  “Наука”

6.     Б.А.  Воронцов - Вельяминов “Очерки о  Вселенной” Москва  “Наука”

7.     Н.П.  Ерпылеев “Энциклопедический словарь юного астронома” Москва

“Педагогика” 1986 год.

8.      Е.П.Левитан  “Астрономия” Москва  “Просвещение”  1994 год

    

stud24.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Доклад: Малые тела Солнечной системы. Реферат астероиды и кометы солнечной системы


Реферат - Солнечная система - Астрономия

Содержание: 1. Введение 2. Общие сведения о Солнечной системе 3. Объекты Солнечной системы - Меркурий - Венера - Земля - Марс - Юпитер - Сатурн - Уран - Нептун - Плутон - Солнце - Черные дыры - Кометы - Астероиды - Пояс Койпера 4. Законы Кеплера 5. Список используемой литературы Введение.

Давным-давно люди смотрели в небо и видели звезды, только звезды, россыпи сверкающих алмазов. И каждую ночь они собирались вместе под необъятных размеров лоскутом черного бархата, усеянном миллионами звезд. Вся их жизнь была наполнена сказкой... Сказкой, которой нет конца, ибо все бесконечно. И каждый день в одно и тоже время тускнели алмазы, скрываясь под пеленой Нового Дня. Темные краски Ночи сменялись переливающейся симфонией пламени, пришествие Дня ознаменовывалось появлением яркого огня. "Бог Огня вернулся..." - говорили древние. Огонь... Люди поклонялись Ему вечно, со времен своего появления на этой земле. Он дал нам жизнь, пищу, все вокруг. Он дал нам Землю, на которой мы живем. Да будет Он вечен... Огонь, имя которому Солнце, действительно, дал нам свет, чтобы мы жили, дал нам тепло, чтобы мы чувствовали себя комфортно. Все вокруг возникло благодаря ему, Солнцу. Захватив из внешней среды газово-пылевое облако, Солнце обладает достаточной гравитационной силой, чтобы удержать вблизи не только нашу Землю, но и еще восемь планет и пояс астероидов. Периодически пролетают кометы, также движимые солнечной гравитацией. Все это вместе: Солнце, планеты, астероиды, кометы - в совокупности образует Солнечную систему.

Общие сведения о Солнечной системе.

Солнечная система состоит из Солнца, планет, спутников планет, астероидов и их осколков, комет и межпланетной среды. Внешняя граница, по-видимому, находится на расстоянии около 200 тыс. а.е. от Солнца. Возраст Солнечной системы около 5 млрд. лет. Расположена вблизи плоскости галактики на расстоянии около 26 тыс. световых лет (около 250 тыс. млрд. км) от галактического центра и вращается вокруг него с линейной скоростью около 220 км/с.

Солнечная система вместе с миллионами других звезд и звездных систем образует Млечный путь. Так как Солнце находится на окраине Млечного Пути, то в ясную ночь мы видим его в виде широкого раскинувшегося слабо мерцающего "пояса".

В последнее время человечество узнало о планетах и звездах достаточно много: нам стали известны их размеры и вес, состав и приблизительные расстояния от них до Солнца, скорости их вращения. Помимо всего прочего, современная аппаратура, приборы позволили выяснить, как возникла Вселенная, звезды (в частности, и наша Солнечная система).

Наше Солнце и планеты возникли приблизительно пять миллиардов лет назад из частиц газа и пыли, которых и в настоящее время во Вселенной предостаточно. Частицы эти взаимно притягиваются, со временем собираясь в разнообразных местах Вселенной в своего рода облака высокой плотности. Далее возросшая сила тяготения привела к дальнейшему сжатию облака, в котором при этом повышалась температура (и давление тоже). В конце концов облако начинает пылать - так, возможно, возникло наше Солнце. Остальные частицы собирались вместе и дальше уплотнялись, начиная все быстрее вращаться вокруг нового светила. Увеличивающаяся скорость вращения увеличивала и центробежную силу остальных частиц, которая не позволяла веществу упасть на светило (Солнце), заставляя определенную часть собираться вокруг центрального светила. Оставшиеся частицы сформировали кольцо, подобное кольцам Сатурна, но больших, естественно. В кольце возникли вихри (более или менее упорядоченные), в которых вещество под воздействием силы тяготения стало концентрироваться. Причем все зависело от величины образовавшегося вихря. Позднее из вихрей разного размера и сформировались разные планеты.

Общая структура Солнечной системы была раскрыта в середине 16 в. Н. Коперником, который обосновал представление о движении планет вокруг Солнца. Такая модель Солнечной системы получила название гелиоцентрической. В 17 в. И. Кеплер открыл законы движения планет, а И. Ньютон сформулировал закон всемирного тяготения. Изучение физических характеристик космических тел, входящих в состав Солнечной системы, стало возможным только после изобретения Г. Галилеем в 1609 телескопа. Так, наблюдая солнечные пятна, Галилей впервые обнаружил вращение Солнца вокруг своей оси.

Давно установлено, что Вселенная состоит на 98% из простейших газов (на 73% из водорода, и на 25% из гелия; более тяжелые элементы - азот, углерод, металлы - вместе составляют незначительную часть - всего приблизительно 2%.) Из вихрей, находящихся вблизи Солнца, водород и гелий испарился в глубины Вселенной. Так возникли планеты земной группы: Меркурий, Венера, Земля и Марс. Они строили свои тела из оставшихся 2% тяжелых веществ. Более отдаленные вихри сохранили в своем составе газы. Так образовались планеты-гиганты: Юпитер, Сатурн, Уран, Нептун, которые представляют собой газовые шары.

Объекты солнечной системы.

Меркурий.

Меркурий - ближайшая к Солнцу планета, среднее расстояние от Солнца 0,387 а.е (58 млн. км), средний диаметр 4880 км, масса 3,3 * 10^23 кг (0,055 массы Земли). Меркурий практически лишен атмосферы, поверхность подобна лунной. Период обращения вокруг Солнца (меркурианский год) составляет около 88 суток, период вращения вокруг своей оси равен 58,6 суткам (меркурианские звездные сутки), меркурианские солнечные сутки (например, промежуток времени между двумя последовательными восходами Солнца) равны 176 суткам, т.е двум меркурианским годам.

Разница температур:

днем 750 градусов по Фаренгейту, ночью - минус 320 по Фаренгейту.

Как и остальные планеты земной группы: Венера, Земля и Марс, - Меркурий состоит преимущественно из камня и металла. Этот своеобразный маленький мир "изрыт" кратерами, причем сама планета внешне похожа на соседку Земли - Луну. А если сравнить с Землей:

- масса: 5,6% земной массы; - диаметр: 38% земного.

Венера.

Венера - вторая по удаленности от Солнца планета, среднее расстояние от Солнца 0,72 а.е. (108,2 млн. км), средний диаметр 12100 км, масса - 4,9 * 10^24 кг (0,82 массы Земли). Плотная атмосфера состоит в основном из углекислого газа, давление у поверхности около 94 атмосфер, температура около 479 Цельсия. Поверхность в основном равнинная, сложена базальтами, обнаружены следы вулканической деятельности, ударные кратеры. Период обращения вокруг Солнца 224,7 суток, период вращения вокруг своей оси 243 сутки. Температура днем достигает 895 градусов по Фаренгейту (480 градусов Цельсия). Из-за плотной атмосферы и неблагоприятного состава газа планета не подходит для жизни человека. После Луны Венера - самый яркий объект на земном небе. Состав - преобладают каменисто-пустынные ландшафты. Планета состоит также преимущественно из камня и металла.

А если сравнить с Землей: - масса: 82% земной; - диаметр: 95% земного.

Интересные сведения: в то время как остальные планеты Солнечной системы движутся по эллиптической орбите (орбите в форме эллипса), орбита Венеры - почти идеальная окружность. Кроме того, это единственная планета Солнечной системы, на которой год (225 земных дней) длится меньше, чем день (241 земной день).

Земля.

Среднее расстояние от Солнца 149,6 миллионов км Экваториальный диаметр 12756 км Период вращения 23,93 часа Период обращения 365,26 суток Скорость движения по орбите 29,79 км/сек Температура на поверхности от -55 гр C до +70 гр C Масса (Земля=1) 1,00 Средняя плотность вещества (вода=1) 5,52 Сила тяжести на поверхности (Земля=1) 1,00 Кол-во спутников 1

Земля, третья планета от Солнца, является крупнейшей из 4-х внутренних планет, имеющих схожую с земной внутреннюю структуру. В процессе движения нашей планеты по орбите вокруг Солнца плоскость земного экватора (наклоненная к плоскости орбиты на угол 23o45') перемещается параллельно самой себе таким образом, что в одних участках орбиты земной шар наклонен к Солнцу своим северным полушарием, а в других- южным, именно это и является причиной смены времён года. Кроме того расстояние от Земли до Солнца в различных точках орбиты неодинаковые, в перигелии (3 января) оно приблизительно на 2.5 млн. км. меньше, а в афелии (3 июля)- на столько же больше среднего расстояния, составляющего 149, 6 млн. км. Большую часть поверхности Земли занимает Мировой океан (361 млн. км.2, или 71%), суша составляет 149 млн.км.2 (29%). Средняя глубина Мирового океана- 3 900 м. Существование осадочных пород, возраст которых (по данным радиоизотопного анализа) превосходит 3,7 млрд. лет, служит доказательством существования на Земле обширных водоемов уже в ту далекую эпоху, когда, предположительно появились первые живые организмы. Форма Земли, как известно близкая к шарообразной, при более детальных измерениях оказывается очень сложной, даже если обрисовать ее ровной поверхностью океана (не искаженной приливами, ветрами и течениями) и условным продолжением этой поверхности под континенты. Неровности поддерживаются неравномерным распределением массы в недрах Земли. Такая поверхность называется геоидом. Геоид (с точностью порядка сотен метров) совпадает с эллипсоидом вращения, экваториальный радиус которого 6 378 км., а полярный радиус на 21,38 км. меньше экваториального. Разница этих радиусов возникла за счет центробежной силы, создаваемой суточным вращением Земли.

Одна из особенностей Земли как планеты - ее магнитное поле,благодаря которому мы можем пользоваться компасом. Магнитный полюс Земли, к которому притягивается северный конец стрелки компаса, не совпадает с Северным географическим полюсом, а находится в пункте с координатами приблизительно 76o с.ш. 101o з.д. Магнитный полюс, расположенный в южном полушарии Земли, имеет координаты 66o ю.ш. и 140o в.д. (в Антарктиде).Кроме того, ось магнитного поля не проходит через центр Земли, а отстоит от него на 430 км. Магнитное поле Земли несимметрично. Под действием исходящего от Солнца течения плазмы (солнечного ветра) магнитное поле Земли искажается и приобретает "шлейф" в направлении от Солнца, который простирается на сотни тысяч километров.

Наша планета окружена обширной атмосферой, которая благодаря присутствию небольшого озонового слоя, нейтрализует опасное для жизни коротковолновое солнечное и космическое излучение. Из-за содержащегося в атмосфере углекислого газа на нашей планете имеет место парниковый эффект. Он проявляется не так сильно, как на Венере, но все же поднимает среднюю (равновесную) температуру на Земле с теоретических минус 23 до плюс 15. Действуя подобно хорошей одежде, атмосфера оберегает земную поверхность и от температурных перепадов. В отсутствие атмосферы в некоторых точках Земли температура в течение суток колебалась бы между 160-ю тепла и 100 градусами мороза. Основными газами, входящими в состав нижних слоев атмосферы Земли, являются азот (~78%), кислород (~21%) и аргон (~1%). Других газов в атмосфере Земли очень мало, например, углекислого газа около 0,03%. Атмосферное давление на уровне поверхности океана составляет при нормальных условиях ~0,1 MПа. Полагают, что земная атмосфера сильно изменилась в процессе эволюции: обогатилась кислородом и приобрела современный состав в результате длительного химического взаимодействия с горными породами и при участии биосферы, то есть растительных и живых организмов. Доказательством того, что такие изменения действительно произошли, служат, например, залежи каменного угля и мощные пласты отложений карбонатов в осадочных породах. Они содержат громадное количество углерода, который раньше входил в состав земной атмосферы в виде углекислого газа и окиси углерода. Ученые считают, что древняя атмосфера произошла из газообразных продуктов вулканических извержений; о ее составе судят по химическому анализу образцов газа, "замурованных" в полостях древних горных пород. В исследованных образцах, возраст которых более 3,5 млрд. лет, содержится приблизительно 60% углекислого газа, а остальные 40% - это соединения серы (сероводород и сернистый газ), аммиак, а также хлористый и фтористый водород. В небольшом количестве были найдены азот и инертные газы. Доказательством того, что в земной атмосфере в течение первых 4 млрд. лет ее существования не было свободного кислорода, являются обнаруженные в геологических пластах соответствующего возраста чрезвычайно легко окисляемые, но не окисленные вещества такие, как сернистый натрий. Кислород, который выделялся в ничтожном количестве из водяного пара под действием солнечного облучения, полностью затрачивался на окисление содержавшихся в атмосфере горючих газов: аммиака, сероводорода, а также, вероятно, метана и окиси углерода. В результате окисления аммиака освобождался азот, который постепенно накапливался в атмосфере. 600 млн. лет назад количество свободного кислорода в земной атмосфере достигло 1% от его современного содержания. В это время уже существовало значительное число различных примитивных одноклеточных живых организмов. Около 400 млн. лет назад содержание свободного кислорода в земной атмосфере стало быстро увеличиваться благодаря широкому распространению зарослей крупных растений, характерных для этой эпохи. Прежде предполагали, что Земля вначале была расплавленной, а затем остывала. Но эта точка зрения не подтверждается современными выводами науки. Большое процентное содержание на Земле некоторых летучих веществ указывает на то, что температура частиц, из которых образовалась наша планета, не могла быть очень высокой. Средний химический состав первичной Земли, вероятно, соответствовал химическому составу известных сегодня типов метеоритов. В результате естественного распада радиоактивных элементов и некоторых других процессов в недрах Земли в течение долгого времени выделялась и накапливалась тепловая энергия. Это привело к сильному разогреву и частичному расплавлению вещества в недрах и к постепенному формированию и росту центрального ядра из наиболее тяжелых элементов и наружной коры из менее плотных веществ. О внутреннем строении Земли прежде всего судят по особенностям прохождения сквозь различные слои Земли механических колебаний, возникающих при землетрясениях или взрывах. Ценные сведения дают также изменения величины теплового потока, выходящего из недр, результаты определений общей массы, момента инерции и полярного сжатия нашей планеты.

СЛОЙ ТОЛЩИНА СОСТАВ Кора 6-40 км Твердые кремниевые породы Мантия 2800 км В основном, твердые кремниевые породы Внешнее ядро 2300 км Расплавленные железо и никель Ядро (радиус) 1200 км Твердые железо и никель Масса Земли найдена из экспериментальных измерений физической постоянной тяготения и ускорения силы тяжести (на экваторе ускорение силы тяжести равно 978,05 гал; 1 гал = 1 см/с2). Для массы Земли получено значение 5,976*1024кг., что соответствует средней плотности вещества 5517 кг/м3. Определено, что средняя плотность минералов на поверхности Земли приблизительно вдвое меньше средней плотности Земли. Из этого следует, что плотность вещества в центральных частях планеты выше для всей Земли. Полученный из наблюдений момент инерции Земли, который сильно зависит от распределения плотности вещества вдоль радиуса Земли, свидетельствует также о значительном увеличении плотности от поверхности к центру. Поток тепла из недр, различных в разных участках поверхности Земли, в среднем близок к 1,6*10-6 кал*см-2*сек-1, что соответствует суммарному выходу энергии 1028 эрг в год. Поскольку тепло может передаваться только от более нагретого к менее нагретому веществу, температура вещества в недрах Земли должна быть выше, чем на ее поверхности. Действительно, согласно измерениям, проведенным в шахтах и буровых скважинах, температура повышается приблизительно на 20o на каждый километр глубины. Твердую оболочку Земли называют литосферой. Ее можно сравнить со "скорлупой", охватывающей всю поверхность Земли. Но эта "скорлупа" как бы растрескалась на части и состоит из нескольких крупных литосферных плит, медленно перемещающихся одна относительно другой. По их границам концентрируется подавляющее большинство очагов землетрясений. Верхний слой литосферы- эта земная кора, минералы которой состоят преимущественно из окислов кремния и алюминия, окислов железа и щелочных металлов. Земная кора имеет неравномерную толщину: 35-65 км. на континентах и 6-8 км. подо дном океанов. Верхний слой земной коры состоит из осадочных пород, нижний- из базальтов. Между ними находится слой гранитов, характерный только для континентальной коры. Под корой расположена так называемая мантия, имеющая иной химический состав и большую плотность. Граница между корой и мантией называется поверхностью Мохоровичича. В ней скачкообразно увеличивается скорость распространения сейсмических волн. На глубине 120-250 км. под материками и 60-400 км. под океанами залегает слой мантии, называемой астеносферой. Здесь вещество находится в близком к плавлению состоянию, вязкость его сильно понижена. Все литосферные плиты как бы плавают в полужидкой астеносфере, как льдины в воде. Более толстые участки земной коры, а также участки, состоящие из менее плотных пород, поднимаются по отношению к другим участкам коры. В то же время дополнительная нагрузка на участок коры, например, вследствие накопления толстого слоя материковых льдов, как это происходит в Антарктиде, приводит к постепенному погружению участка. Такое явление называется изостатическим выравниванием. Ниже астеносферы, начиная с глубины около 410 км., "упаковка" атомов в кристаллах минералов уплотнена под влиянием большого давления. Резкий переход обнаружен сейсмическими методами исследований на глубине около 2 920 км. Выше этой отметки плотность вещества составляет 5 560 кг/м3, а ниже ее- 10 080 кг/м3. Здесь начинается земное ядро, или, точнее говоря, внешнее ядро, так как в его центре находится еще одно- внутреннее ядро, радиус которого 1 250 км. Внешнее ядро, очевидно, находится в жидком состоянии, поскольку поперечные волны, не способные распространяться в жидкости, через него не проходят. С существованием жидкого внешнего ядра связывают происхождение магнитного поля Земли. Внутреннее ядро, по-видимому, твердое. У нижней границы мантии давление достигает 130 ГПа, температура там не выше 5 000К. В центре Земли температура, возможно, поднимается до 10 000К.

Марс.

Марс - четвертая планета от Солнца, среднее расстояние от Солнца составляет 1,5 а.е. (227,9 млн. км), средний диаметр 6780 км, масса 6,4*10^23 кг (0,108 массы Земли). Разреженная атмосфера состоит в основном из углекислого газа, среднее давление у поверхности 0,006 атм. Поверхность Марса - пыле-песчаная пустыня с каменистыми россыпями, потухшими вулканами, ударными кратерами, ветвящимися каньонами типа высохших русел рек. Период обращения вокруг Солнца 687 суток, период вращения вокруг своей оси 24 ч 37 мин. Два известных спутника Марса - Фобос и Деймос. Значительный научный материал о Марсе получен с помощью космических аппаратов "Маринер" и "Марс".

Надо сказать, эта планета всегда будоражила наше воображение, и пока ученые не доказали, что на Марсе разумной жизни нет, эта пыльная планета привлекала (да и все еще привлекает) огромное внимание к себе.

Поверхность Марса более интересная, нежели поверхность большинства планет. Как Меркурий, Венера и Земля, Марс преимущественно состоит из камня и металла. Горы и кратеры Марса покрывают "рубцами" его неровную поверхность. Пыльные железные окислы придают планете специфическую красновато-бурую окраску (поэтому Марс еще называют "Красной планетой").

Тонкий слой атмосферы и эллиптическая орбита вместе влияют на температуру, которая колеблется от минус 207 градусов по Фаренгейту к комфортным 80 градусам по тому же Фаренгейту в летний период (опять же если находиться на экваторе).

В последнее время на Марсе исследуются огромные штормы, кружащиеся над Марсом . Эти штормы очень похожи на земные ураганы.

А есть ли вода на Марсе?

Существуют сведения, что Марс был наиболее комфортным и влажным около 3,7 млрд. лет назад. Но планета постепенно остывала, и вода, в конце концов, замерзла. Остатки существуют в виде ледяных глыб на полюсах - это так называемые полярные "шапки" Марса, которые частично тают в летний период.

А есть ли жизнь на Марсе?

NASA в свое время заявило о наличии микроорганизмов в метеорите в 1996 году, но эта информация не нашла подтверждения. Короче говоря, целью этого сообщения было...убеждение обывателей в возможном существовании жизни на этой планете. Но не более того. А поиски продолжаются... Не так давно зонд Mars Global Surveyor на Марсе обнаружил 120 русел рек, испарившихся 3 млн. лет назад. Профессор - геохимик из университета Аризоны Л.Лешин считает, что обширные запасы воды могли сохраниться и по сей день под марсианской поверхностью. Причем эту же гипотезу подтверждает и Р.Кузьмин из Института геохимии и аналитической химии. Он утверждает, что жидкая вода находится в самой мерзлоте планеты. Помимо рек, на Красной планете были и океаны, по своему составу схожие с земными океанами (это доказал анализ марсианского метеорита Nahkla, упавшего в 1911 году в Египте; впоследствии в нем обнаружили ионы кальция, магния и калия, которые содержатся и в воде земных океанов). Таким образом, можно утверждать, что жизнь на Марсе БЫЛА. А существует ли она сегодня, даже в виде простейших бактерий, можно будет с уверенностью сказать только после исследований во время экспедиции на Марс в 2001 году.

А если сравнить с Землей: - масса: 11% земной; - диаметр: 53% земного

Юпитер.

Юпитер - пятая по счету от Солнца, а также крупнейшая планета нашей Солнечной системы, среднее расстояние от Солнца 5,2 а.е.(778 млн. км), экваториальный диаметр около 142 800 км, полярный - около 134100 км, масса 1,9*10^27 кг (317,8 массы Земли).

Представляет собой газо-жидкое тело, твердой поверхности не имеет. Состоит в основном из водорода и гелия. В верхних слоях Юпитера (атмосфере) наблюдаются бурные движения, грозовая активность. Период обращения вокруг Солнца 11,9 года, период вращения вокруг своей оси 9 ч 45 мин (для полярной зоны) и 9 ч 50,5 мин для экваториальной зоны. Обнаружено кольцо шириной около 6000 км и толщиной около 1 км, состоящее из частиц размером от нескольких мкм до нескольких метров.

Юпитер так массивен, что мог притянуть к себе все остальные планеты Солнечной системы. Так что же можно увидеть сквозь высокие облака толстого слоя атмосферы этого гиганта, состоящего из гелия и водорода, которые, взаимодействуя, придают планете такой цвет.

Наиболее известная особенность Юпитера - это его вихреобразный сгусток облаков, которые располагаются выше остальных, причем являясь более холодными, нежели окружающие их облака. Этот вихрь назван Великим Красным Пятном. Красное Пятно похоже на гигантский ураган, который вызывает штормовые ветры, несущиеся с огромной скоростью над быстро поворачивающейся планетой. Ветры дуют против часовой стрелки вокруг этого гигантского вихревого образования со скоростью до 250 миль в час (450 км в час). Для сравнения: штормы на Земле редко "разгоняются" до скорости, превышающей 180 миль в час. По площади Красное Пятно размером с 2 наши планеты!!! Причем этот вихрь бушует примерно 300 лет. Надо сказать, что Красное Пятно - лишь одно из нескольких штормовых образований Юпитера.

Внутри Юпитера.

В центре Юпитера имеется каменное ядро, массой во много раз больше массы Земли. Но основная масса Юпитера - это довольно внушительный слой газообразных облаков, которые закрывают ядро.

Быстрый поворот Юпитера приводит к деформации планеты: диаметр экватора на 7% больше, чем диаметр полюсный. Вокруг Юпитера существует несколько тонких колец и, по меньшей мере, 16 спутников. Крупнейшие: Ганимед (диаметр около 5260 км), Каллисто (диаметр около 4800 км), Ио (около 3600 км), Европа (около 3130 км) - так называемые галилеевы спутники планеты. Состоят в основном из "скальных" пород и водяного льда.

А если сравнить с Землей: - масса: 317,8 масс Земли; - диаметр: 112 земных диаметров

Сатурн.

Сатурн - следующая планета Солнечной системы, среднее расстояние от Солнца 9,54 а.е. (1,427 млрд. км), средний экваториальный диаметр около 120500 км, полярный - около 107500 км, масса 5,68*10^26 кг (95,1 массы Земли). Средняя плотность Сатурна меньше плотности воды (около 0,7 г/см^3) - наименьшая для планет Солнечной системы. По строению и химическому составу в основном похож на Юпитер. Период обращения вокруг Солнца 29,5 года, период вращения вокруг своей оси около 10,7 ч (экваториальные области вращаются на 5% быстрее полярных). Систему Сатурна входят также знаменитые кольца толщиной около 1 км.

Как и Юпитер, его сосед, Сатурн имеет твердое ядро и газообразную остальную часть. Но Сатурн больше известен своими кольцами. Километровой толщины кольца состоят из бессчетного количества частиц разного размера: от дюйма (примерно 2,5 см) до нескольких метров. Ясно, что планета обладает гораздо большим количеством колец, чем можем мы увидеть и сосчитать. Но хотя мы не можем увидеть и сосчитать все кольца, однако мы способны различить 3 больших кольца (они различимы в хороший телескоп).

Открыто 18 спутников, состоящих преимущественно изо льда и камня; крупнейший из них - Титан, диаметр около 5200 км. Титан облетает вокруг Сатурна каждые 16 дней, и мы можем увидеть его в любительский телескоп с хорошим увеличением. Помимо всего прочего, этот спутник размером больше Меркурия, имеет внушительной толщины слой атмосферы, обволакивающий его поверхность. Хотя ученые не уверены, сколько "лун" у Сатурна, но приблизительно их количество равно 20, а может быть, и более.

А если сравнить с Землей: - масса: 95 масс Земли; - диаметр: 9,4 земных диаметра

Уран.

Уран - седьмая от Солнца планета Солнечной системы. Среднее расстояние от Солнца 19,18 а.е. (2871 млн. км), диаметр 50540 км, масса 8,69*10^25 (14,54 массы Земли). По строению и химическому составу в основном подобен Юпитеру, но содержит значительно больше метана и аммиака. Период обращения вокруг Солнца 84 года, периодического вращения вокруг своей оси около 17 ч 14 мин. Открыты 15 спутников Урана (крупнейшие Титания, диаметр около 1600 км, и Оберон, диаметром около 1550 км) и кольца, подобные по строению кольцу Юпитера.

Как и его соседи, преимущественно состоит из газа (поверхность) и маленького каменного ядра.

А если сравнить с Землей: - масса: 15 земных масс; - диаметр: 4 земных.

Нептун.

Нептун - предпоследняя планета Солнечной система, среднее расстояние от Солнца 30,1 а.е. (4497 млн. км), средний диаметр около 50000 км, масса 1,02*10^26 кг (17,2 массы Земли). В целом подобен Урану, но отличается бурными процессами в атмосфере. Период обращения вокруг Солнца 164,8 года, период вращения вокруг своей оси 16 ч 6 мин. Открыт в 1846 году немецким астрономом И.Галле по теоретическим предсказаниям французского астронома У.Ж.Леверье и английского астронома Дж.К.Адамса.

Состав - каменное ядро, покрытое льдом, водород, гелий, метан. Как и остальные газообразные планеты, в своей атмосфере Нептун имеет быстрые ураганные ветры, но планета содержит, как предполагается, глубокий океан, состоящий из воды. Быстрое вращение планеты снабжает энергией свирепые ветры и множество штормов. Имеется также незначительный слой колец и 8 спутников (крупнейший - Тритон, диаметр около 3200 км).

Из-за странной орбиты Плутона Нептун иногда оказывается самой удаленной от Солнца планетой. С 1979 года Нептун был 9-й планетой от Солнца. 11 февраля 1999 года он пересек орбиту Плутона и еще раз стал 8-й планетой от Солнца, где и останется на следующие 228 лет.

А если сравнить с Землей: - масса: 17 земных; - диаметр: 4 земных.

Плутон.

Плутон - последняя и самая удаленная от Солнца планета Солнечной системы. Среднее расстояние от Солнца 39,44 а.е. (5,9*10^12 км), диаметр около 2300 км, масса 1,2*10^22 (0,22 массы Земли). Период обращения вокруг Солнца 248,6 года, период вращения вокруг своей оси 6,4 суток. Плутон имеет спутник - Харон, сопоставимый по размерам с планетой (диаметр около км).

Плутон, размером с 2-3 Луны (естественного спутника Земли), холодная, темная и "замороженная" планета. Относительно немного известно о ней - этой планете со странной орбитой.

Состав Плутона - предположительно включает в себя камень и лед, имеет тонкую атмосферу, состоящую из азота, метана и углеродной одноокиси.

248-летняя орбита Плутона проходит так, что планете приходится пересекать путь Нептуна. Как уже было сказано в разделе "Нептун", с 1979 года и до начала 1999 года Плутон был 8-й планетой от Солнца. Но теперь Плутон останется 9-й планетой в течение последующих 228 лет. Орбита этой удивительной планеты наклонена под углом в 17 градусов к орбите Земли. Интересно, что имеются сведения о том, что Плутон "ушел" от Нептуна. Таким образом, Плутон может расцениваться как бывший спутник Нептуна. Но существует мнение, что Плутон - большой астероид или даже, что планета - это комета. В этой области ведутся активные споры.

Однако достоверно известно, что у Плутона имеется один спутник - Харон, открытый в 1978 году. Возможная гипотеза его происхождения такова - возможно, это осколок столкнувшегося с Плутоном большого космического тела.

А если сравнить с Землей: - масса: 0,2% земной; - диаметр: 18% земного.

Солнце.

Солнце - это чудовищных размеров атомная "печь". Причем температура по мере приближения к ядру возрастает приблизительно с 6000 градусов до 15 миллионов градусов. Это необходимые условия для термоядерных реакций, в результате которых выделяется столь необходимая Земле энергия, без которой на нашей планете и в помине не было бы жизни.

Говоря о строении Солнца, надо заметить, что огромная масса газа сконцентрировалась в определенном месте Вселенной. Итак, Солнце примерно на 72% состоит из водорода, остальную же часть занимает гелий. Сами по себе эти газы довольно легкие, но принимая в расчет то, что Солнце весит примерно столько же, сколько бы весили примерно 330 тысяч наших планет. Следовательно, концентрация газов огромна.

Внешние частицы газа оказывают огромное давление на частицы внутренние. Но почему-то Солнце сохраняет все же свою форму. Почему? Для этого надо рассмотреть внешнюю газовую оболочку нашего светила. О ней можно сказать, что она разрежена, ее толщина - не более 100 километров. При этом оболочка давит с огромной силой на лежащие под ней слои. Анализируя данные, можно заявлять, что присутствует некоторая сила, уравновешивающая это давление. Горячий газ стремится расшириться; чем он горячее, тем больше стремится он к расширению. Ученые-астрофизики полагают, что по направлению к ядру Солнца температура слоев возрастает, что связано прежде всего с тем, что лежащий ближе к ядру слой должен выдерживать давление предыдущих слоев. Постепенно считая, можно дойти и до значения температуры ядра Солнца.

Но возникает вопрос: как же Солнце не охлаждается? Как поддерживает такую гигантскую температуру? Известно, что на протяжении последних 5 млрд лет не изменились в сущности ни мощность излучения Солнца, ни его размер. Но как температура ядра остается постоянной? Такое возможно только в том случае, если у Солнца внутри присутствует атомная "печка", которая постоянно вырабатывает энергию. Дальше энергия проходит все остальные слои Солнца и потом излучается в космическое пространство. Что же является источником колоссальной энергии Солнца? Оказывается, при огромных температурах в солнечных недрах происходит так называемое слияние ядер в более тяжелые. В результате этой термоядерной реакции водород превращается в гелий и выделяется огромное количество энергии.

Итак, единственное место в Солнечной системе, где ядра сливаются "мирно", - это Солнце, поистине великое изобретение природы. Энергия при выходе в космическое пространство излучается в виде света. Нам же достается лишь малая часть энергии Солнца, но и ее достаточно для согревания нашей планеты и поддержания на ней жизни, давая Земле свет и тепло. Завершая разговор о Солнце, скажем: сейчас Солнце - обычная звезда. Но через 5 млрд. лет оно невероятно увеличится и уничтожит всю жизнь на Земле. Затем он сожмется и превратится в белого карлика. Но те, кто будет читать этот материал, вряд ли доживут до этого момента. Хотя как знать - может быть, мы будем бессмертны в будущем?

Черные дыры.

Наверное, черные дыры - космические тела, которые привлекают к себе не меньше внимания, чем поиски планеты, подобной по условиям Земле. Во Вселенной имеются небесные тела на поверхности которых существует огромная сила тяжести. К ним относятся и черные звезды, притяжение которых так велико, что они не отпускают от себя даже собственный свет. Следовательно, они не светятся, оставаясь при этом черными. Итак, черная дыра - это место, где сосредоточена огромная масса вещества (или сжатия в очень ограниченном объеме). Черные дыры "растут", как сорняки, в космосе: в центре каждой галактики имеется громадная черная дыра. Из-за особенностей черной дыры ее, разумеется, нельзя увидеть, а можно лишь определить ее местоположение (что и сделал космический телескоп им. Хаббла, вычислив скорость газового облака, вращающегося вокруг центра галактики; по этим числам можно определить массу центральной области. Результат - такая черная дыра сопоставима по массе с 3-5 млрд. солнц!!!). Кроме того, ежегодно черные дыры поглощают эквивалентное 1 млн. солнц количество раскаленного газа.

Что касается галактик, то можно сказать что галактики сами формируют друг друга: одни галактики пожирают другие, из уплотняющегося газа зарождаются новые звезды и т.д.

Кометы.

Кометы - космические тела, хвостатые звезды. Это небольшие, размером до нескольких километров, глыбы изо льда, пыли, камня, аммиака и метана; походят на снежки. По законам Кеплера кометы движутся по эллиптическим орбитам. Но их орбиты более вытянутые, иногда уходят дальше орбиты Плутона. Причем в этом отдаленном пространстве нашей Солнечной системы обитают миллиарды планет, 1-2 из которых ежегодно появляются вблизи нас. Комета, приближаясь к Солнцу становится видна, приобретая при этом "голову" и "хвост", которые формируются из газа, составляющего комету. Большинство комет появляется только раз, исчезая после навсегда в глубины Солнечной системы, туда, откуда они пришли. Но существуют и кометы периодические. Астероиды.

Астероиды - или так называемые "малые планеты". Известно, что их количество составляет многие тысячи (в пределах нашей Солнечной системы). В основном астероиды располагаются между Марсом и Юпитером. Когда-то Юпитер "разогнал" эти космические тела, и теперь астероиды не так часто сталкиваются, не образуя планеты. Но все же когда астероиды сталкиваются, их фрагменты могут долететь до Земли, в атмосфере которой они уже становятся метеорами, а при падении на поверхность планеты или в воду - метеоритами. Ясно, что, падая, астероиды могут вызывать бедствия на Земле. Астероиды - сравнительно небольшие тела, состоящие преимущественно из камня и железа. Причем они делятся на 2 группы: "светлые" и "темные" астероиды. "Светлые" астероиды легче "темных". Понятно, что "темные" астероиды тяжелее. Существует предположение, что астероиды раньше (где-то около 4,7 млрд. лет назад) имели металлическое ядро, средний слой из камня железа и камня и поверхность из камня. Но сталкиваясь, они распадались. Сегодня же астероиды классифицируются на: металлические, каменно-металлические и каменные. Откуда появились эти космические тела? 1 версия - это остатки существовавшей когда-то между Марсом и Юпитером планеты; 2 версия - вероятнее, это остатки от процесса формирования планет. Астероиды, сближающиеся с Землей Вблизи внутреннего края главного пояса астероидов существуют и другие группы тел, орбиты которых далеко выходят за пределы главного пояса и могут даже пересекаться с орбитами Марса, Земли, Венеры и даже Меркурия. В первую очередь, это группы астероидов Амура, Аполлона и Атона (по названиям крупнейших представителей, входящих в эти группы). Орбиты таких астероидов уже не являются такими стабильными, как у тел главного пояса, а относительно быстро эволюционируют под действием гравитационных полей не только Юпитера, но и планет земной группы. По этой причине такие астероиды могут переходить из одной группы в другую, а само деление астероидов на вышеназванные группы является условным, основанным на данных о современных орбитах астероидов. В частности амурцы движутся по эллиптическим орбитам, перигелийное расстояние (минимальное расстояние до Солнца) которых не превышает 1,3 а.е. Аполлонцы движутся по орбитам с перигелийным расстоянием меньшим 1 а.е. (напомним, что это среднее удаление Земли от Солнца) и проникают внутрь земной орбиты. Если у амурцев и аполлонцев большая полуось орбиты превосходит 1 а.е., то у атонцев она менее или порядка этой величины и эти астероиды, следовательно, движутся в основном внутри земной орбиты. Очевидно, что аполлонцы и атонцы, пересекая орбиту Земли могут создавать угрозу столкновения с ней. Существует даже общее определение этой группы малых планет как "астероиды, сближающиеся с Землей" - это тела, размеры орбит которых не превосходят 1,3 а.е. На сегодняшний день таких объектов обнаружено около 800. Но их общее количество может быть значительно большим - до 1500-2000 с размерами более 1 км и до 135000 с размерами более 100 м. Существующая угроза Земле со стороны астероидов и других космических тел, которые находятся или могут оказаться в земных окрестностях, широко обсуждается в научных и общественных кругах.

Но сейчас астрологи пришли к выводу, что Хирон - комета! Хирон не является астероидом. Фотографирование показало наличие газовой оболочки, и теперь твердо установлено, что объект 2060 Сhiron является активной кометой со слабой, но постоянной комой. Теперь объект 2060 Сhiron находится как в кометном, так и в астероидном каталогах. Его орбита настолько неустойчива, что по самым последним данным она уверенно определяется в периоде с 700 года н.э. по 4650 г. н.э. И заканчивается столкновением с Сатурном в сентябре 4560 г. н.э. До 700 года любые положения Хирона крайне приблизительны. По приблизительным данным, в 4 веке до н.э. и далее назад во времени орбита Хирона пересекает орбиту Урана и постепенно уходит в сторону пояса Койпера - место образования большинства подобных объектов.

Пояс Койпера.

На краю солнечной системы: астероиды пояса Койпера 30 августа 1992г. был открыт первый астероид пояс Койпера, получивший номер 1992 QВ1, называемый в узком кругу астрономов “Smiley”. Этому открытию предшествовало 5 лет кропотливых наблюдений и поисков с помощью самых современных, на то время, электронных детекторов, пристроенных к одному из крупнейших телескопов Гавайев. Усилия увенчались успехом, подтвердив теорию астронома Джерарда Койпера (Gerard Р. Kuiper) о существовании на краю солнечной системы тысяч ледяных астероидов, которую он сформировал еще в 1951 году. Койпер и другие астрономы рассуждали, что диск солнечной системы не должен заканчиваться резко на Нептуне и Плутоне, а должен продолжаться поясами остаточного материала, не сформировавшего следующие планеты. Именно эти пояса и являются источником комет на протяжении миллиардов лет.

Происхождение комет и кентавров. Сейчас точно установлено, что на протяжении большого периода времени гравитация планет - газовых гигантов сильно повлияла на сам пояс Койпера, подвергнув его ближайший край небольшому рассеиванию, из-за чего возникли кометы как с длинными, так и с короткими периодами, а также астероиды - кентавры (такие, как Фол, Хирон и др.) Компьютерное моделирование показало, что астероиды-кентавры не могли образоваться в пределах существующих орбит, которые к тому же чрезвычайно неустойчивы, из-за гравитации планет-гигантов.

У объектов пояса Койпера существует классификация: плутинос, классические и совершенно необычный вид сверхдальних астероидов (сокр. SDO - Scattered Disk Objects) типа 1996 TL66. Они отличаются друг от друга своей большой полуосью, а значит - периодом обращения вокруг Солнца.

С астрологической точки зрения изучение плутинос-группы вряд ли приведет к чему-то новому, так как все эти астероиды наверняка имеют функции крупнейшего своего представителя - планеты Плутон, те же качества, только с гораздо меньшей силой проявленные. Такой вывод был сделан на основании изучения их орбит и резонансного соотношения с орбитой Нептуна как 2:3, т.е. два периода обращения Плутона со своей “семьей” равны трем периодам обращения Нептуна. Возможно, что Плутон как бы аккумулирует на себе и проявляет сразу все астероиды своей группы. Может именно поэтому астрологическое срабатывание такой маленькой и далекой планеты такое сильное.

Классические КВО представляют собой самую многочисленную и самую распространенную группу. Преобладающее большинство открываемых объектов пояса относятся именно к ней. По приблизительным подсчетам астрономов, в этой группе находится около 35 тыс. астероидов диаметром более 100 км. Точные элементы орбит определены только для нескольких десятков объектов. Самыми крупными из них на октябрь 99 года являются 1996 ТО 66 и 1998 Wh34. Период обращения классических объектов пояса Койпера около 300 лет.

Следует упомянуть о третьей группе КВО, имеющих просто огромные периоды обращения - от 700 до 1200 лет. Один их довольно крупный, диаметром 500 км, с периодом 790 лет. Его номер 1996 TL66. По наблюдениям, его действие тоже чрезвычайно негативное и разрушительное, носит деструктивный характер. В третьей группе есть еще один уникальный объект, с самой огромной орбитой из всех известных астероидов. Его номер 1999 CF119, период обращения вокруг Солнца приблизительно 1220 лет, и в своем афелии он удаляется почти на 200 астрономических единиц.

Астрономы предполагают, что эта дальняя группа КВО насчитывает около 10000 объектов, и обнаруживаются только те, которые проходят свои перигелии, так как становятся видимы в современные средства наблюдения.

Предположительно объектов пояса Койпера около 70 тыс. Их общая масса в сотни раз превосходит массу общеизвестного пояса астероидов между Марсом и Юпитером. Если предположение ученых верны, то в каждом градусе зодиака должно находиться около 200 КBO! Конечно, разобраться в таком количестве "неиспользованного строительного материала", находящегося на краю нашей Солнечной системы, с точки зрения астрологии, совершенно невозможно. Было бы интересно попробовать поработать с самыми крупными представителями нового пояса астероидов.

Седна является самым далеким объектом Солнечной системы и находится в поясе Койпера на окраинах Солнечной системы. Седна имеет очень большой период вращения вокруг своей оси, что многие исследователи связывают с наличием у этого объекта спутника. Однако по своим размерам Седна крупнее всех объектов пояса Койпера и уступает по этому показателю только Плутону.

Законы Кеплера (законы движения планет).

Законы Кеплера - это три закона движения планет относительно Солнца. Установлены Иоганном Кеплером в начале XVII века как обобщение данных наблюдений Тихо Браге. Причем особенно внимательно Кеплер изучал движение Марса. Рассмотрим законы подробнее.

Первый закон Кеплера:

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Форму эллипса степень его сходства с окружностью будет тогда характеризовать отношение: e=c/a, где с - расстояние от центра эллипса до его фокуса; а - большая полуось. Величина "е" называется эксцентриситетом эллипса. При с=0 и е=0 эллипс превращается в окружность.

Второй закон Кеплера:

Каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом-вектором планеты, изменяется пропорционально времени. Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий - ближайшая к Солнцу точка орбиты, и афелий - наиболее удаленная точка орбиты. Тогда можно утверждать, что планета движется вокруг Солнца неравномерно: имея линейную скорость в перигелие больше, чем в афелие.

Третий закон Кеплера:

Квадраты времен обращения планеты вокруг Солнца относятся как кубы их средних расстояний от Солнца. Этот закон, равно как и первые два, применим не только к движению планет, но и к движению как их естественных, так и искусственных спутников.

Кеплеровские законы были уточнены и объяснены на основе закона всемирного тяготения Исааком Ньютоном. Закон же всемирного тяготения гласит: Сила F взаимного притяжения между материальными точками массами m1 и m2, находящиеся на расстоянии r друг от друга, равна: F=Gm1m2/r^2, где G - гравитационная постоянная. Закон открыт Ньютоном также в XVII веке (понятно, что на основе законов Кеплера).

Таким образом в формулировке Ньютона законы Кеплера звучат так:

- первый закон: под дествием силы тяготения одно небесное тело может двигаться по отношению к другому по окружности, эллипсу, параболе и гиперболе. Надо сказать, что он справедлив для всех тел, между которыми действует взаимное притяжение. - формулирование второго закона Кеплера не дана, так как в этом не было необходимости. - третий закон Кеплера сформулирован Ньютоном так: квадраты сидерических периодов планет, умноженные на сумму масс Солнца и планеты, относятся как кубы больших полуосей орбит планет.

Таковы три закона Кеплера - три закона движения планет.

СПИСОК ЛИТЕРАТУРЫ: 1. Угроза с неба: рок или случайность? (Под ред. А.А. Боярчука). М: "Космосинформ", 1999, 218 с. 2. Флейшер М. Словарь минеральных видов. М: "Мир", 1990, 204 с. 3. М.Я.Маров. Планеты Солнечной системы. М.: Наука, 1986. 4. В.Н.Жарков, В.П.Трубицин. Физика планетных недр. М.: Наука, 1980. 5. В.А.Бронштэн. Планеты и их наблюдения. М.: Наука, 1979. 6. Л.В.Ксанфомалити. Планеты, открытые заново. М.: Наука, 1978. 7. У. Кауфман. Планеты и луны. М.: Мир, 1982. 8. Ф.Л.Уипл. Семья Cолнца. М.: Мир, 1984. 9. Л.В.Ксанфомалити. Планета Венера. М.: Наука, 1985. 10. В.В.Шевченко. Современная селенография. М.: Наука, 1980. 11. К.И.Чурюмов. Кометы и их наблюдение. М.: Наука, 1980. 12. А.Н.Симоненко. Астероиды. М.: Наука, 1985.

www.ronl.ru

Доклад - Малые тела Солнечной системы

 

Астероиды.

 

    Если начертить план орбитпланет, то окажется, что расстояния планет от Солнца возрастают приблизительнов геометрической прогрессии. Данная закономерность получила название правилаТициуса — Боде по именам обнаруживших её немецких учёных. Этот план в общемдовольно правильно даёт значения средних расстояний планет от Солнца вастрономических единицах. Обращает на себя внимание тот факт, что между Марсоми Юпитером имеется промежуток: планеты, соответствующей пятому члену ряда, нет.Астрономы более трёх десятков лет с досадой и надеждой взирали на эту неувязку.Реальность здесь нарушала математическую гармонию.

    В ночь на 1 января 1801 г. наобсерватории в Палермо (остров Сицилия) астроном Джузеппе Пиацци, занимаясьсоставлением каталога звёзд в созвездии Близнецов, обнаружил слабую звёздочкупримерно 7-й звёздной величины, которая отсутствовала на звёздных картах. Черезнесколько дней учёный к удивлению своему заметил, что звёздочка движется,причём так, как должна перемещаться по небу планета, расположенная дальшеМарса. К сожалению, сначала болезнь, потом неблагоприятные условия наблюденийпрервали работу Пиацци. В результате слабый небесный объект затерялся средизвёзд. Об открытии узнал молодой немецкий математик Карл Фридрих Гаусс. Он разработалновый метод, позволявший по немногим наблюдениям рассчитать точнуюэллиптическую орбиту небесного тела и затем вычислить его положение на будущеевремя. Это стало большим достижением в области небесной механики. Через годутерянную планету нашли в предсказанном месте и больше уже не теряли. Пиацципредложил назвать её Церерой — по имени древнеримской богини плодородия,покровительницы Сицилии. Вдохновлённые успехом, европейские астрономы следилиза движением Цереры (самый крупный астероид из всех обнаруженных — его диаметр 933 км) и неожиданно в марте 1802 г. вблизинеё обнаружили ещё одну похожую маленькую планету. Ей дали имя Паллада в честьдревнегреческой богини Афины Паллады. Удивительным оказалось то, что среднеерасстояние от Солнца обеих планет практически совпадает и составляет 2,8 а. е.Именно на этом расстоянии должна была бы обращаться пятая планета (между Марсоми Юпитером) в соответствии с правилом Тициуса — Боде. В 1804 г была открытатретья представительница этой семьи, получившая имя Юнона, а в 1807 г — четвёртая, Веста. Все они были настолько малы, что даже при тысячекратныхувеличениях выглядели слабыми звёздочками, не имеющими заметного диска. ПоэтомуУильям Гершель предложил называть новые планеты астероидами, то есть«звездоподобными». В последующие годы усовершенствование телескопов иизобретение фотографии вызвали всё увеличивающийся поток открытий астероидов. К1880 г. их было известно около 200, в 1923 г. замечен тысячный, на 1980 г. всписки занесено почти 2500. По данным на 1991 г., постоянные номера в каталогахи названия получили 4б4б астероидов, сейчас их известно значительно больше.Пока открыты лишь самые крупные астероиды. Мелких — ещё многие миллионы.

Пояс астероидов.

 

    Орбиты98% пронумерованных астероидов расположены между орбитами Марса и Юпитера. Ихсредние расстояния от Солнца составляют от 2,2 до 3,6 астрономических единиц.Они образуют так называемый главный пояс астероидов. Все астероиды, как ибольшие планеты, движутся в прямом направлении. Периоды их обращения вокругСолнца составляют, в зависимости от расстояния, от трёх до девяти лет. Нетруднососчитать, что линейная скорость приблизительно равна 20 км/с. Орбиты многихастероидов заметно вытянуты. Эксцентриситеты редко превышают 0,4. Большинствоорбит располагается близко к плоскости эклиптики, т. е. к плоскости орбитыЗемли. Наклоны обычно составляют несколько градусов, однако бывают иисключения. Так, орбита Цереры имеет наклон 35°, известны и большие наклонения.Если на макете Солнечной системы орбиты астероидов изобразить проволочнымикольцами, то получится рыхлый ажурный тор хаотически переплетённых впространстве эллипсов.

Астероиды вблизи Земли.

 

    Возможно, нам, жителям Земли, наиболее важнознать астероиды, орбиты которых близко подходят к орбите нашей планеты. Обычновыделяют три семейства сближающихся с Землёй астероидов: 1221 Амур, 1862Аполлон, 2962 Атон. К семейству Амура относятся астероиды, орбиты которых вперигелии почти касаются орбиты Земли. «Аполлонцы» пересекают земнуюорбиту с внешней стороны, их перигелийное расстояние меньше 1 астрономическойединицы. «Атонцы» имеют орбиты с большой полуосью меньше земной ипересекают земную орбиту изнутри. Представители всех указанных семейств могутвстретиться с Землёй. Что же касается близких прохождений, то они случаютсянередко.

Астероиды на орбите Юпитера.

 

    Основное количество астероидовсосредоточено в главном поясе, но имеются важные исключения. Задолго дооткрытия первого астероида французский математик Жозеф Луи Лагранж изучал такназываемую задачу трёх тел, то есть исследовал, как движутся три тела поддействием сил тяготения. Задача очень сложна и в общем виде не решена до сихпор. Однако Лагранжу удалось найти, что в системе трёх гравитируюших тел(Солнце — планета — малое тело) существуют пять точек, где движение малого телаоказывается устойчивым. Две из этих точек находятся на орбите планеты, образуяс ней и Солнцем равносторонние треугольники. Спустя много лет, уже в XX в., теоретические построения воплотились вреальность. Вблизи лагранжевых точек на орбите Юпитера было открыто около двухдесятков астероидов, которым дали имена героев Троянской войны.Астероиды-«греки» (Ахилл, Аякс, Одиссей и др.) опережают Юпитер на60°, «трояны» (Приам, Эней, Троил и др.) следуют на таком жерасстоянии сзади. Согласно оценкам, число астероидов около точек Лагранжа можетдостигать нескольких сот.

   

Астероиды за орбитой Юпитера.

 

    Долгоевремя не было известно астероидов, орбиты которых целиком лежали бы запределами орбиты Юпитера. Но в 1977 г. удалось обнаружить такую малую планету — это 2060 Хирон. Наблюдения показали, что его перигелий лежит внутри орбитыСатурна, а афелий — почти у самой орбиты Урана, на далёких, холодных и тёмныхокраинах планетной системы. Расстояние Хирона в перигелии 8,51 а. е., а вафелии — 18,9 а. е. Были обнаружены и более дальние астероиды. Предполагается,что они образуют второй, внешний пояс астероидов (пояс Койпера).

Размеры и вещественный составастероидов.

 

    Чтобы узнать размер какого-либоастрономического объекта (если расстояние до него известно), необходимоизмерить угол, под которым он виден с Земли. Однако не случайно астероидыназываются малыми планетами. Даже в крупные телескопы при отличных атмосферныхусловиях, применяя очень сложные, трудоёмкие методики, удаётся получитьдовольно нечёткие очертания дисков лишь нескольких самых крупных астероидов.Гораздо эффективнее оказался фотометрический метод. Существуют весьма точные приборы, измеряющие блеск, т. е. звёздную величинунебесного светила. Кроме того, хорошо известна освещённость, создаваемаяСолнцем на астероиде. При прочих равных условиях блеск астероида определяетсяплощадью его диска. Необходимо, правда, знать, какую долю света отражает даннаяповерхность. Эта отражательная способность называется альбедо. Разработаныметоды его определения по поляризации света астероидов, а также по различиюяркости в видимой области спектра и в инфракрасном диапазоне. В результатеизмерений и расчётов получены размеры самых крупных астероидов. Считается, чтоастероидов с диаметрами более 200 км три десятка. Почти все они навернякаизвестны. Малых планет с поперечниками от 80 до 200 км, вероятно, около 800. Суменьшением размеров число астероидов быстро возрастает. Фотометрическиеисследования показали, что астероиды сильно различаются по степени чернотывещества, слагающего их поверхность.              52 Европа, в частности, имеетальбедо 0,03. Это соответствует тёмному веществу, по цвету похожему на сажу.Подобные тёмные астероиды условно называют углистыми и относят к классу Ц.Астероиды другого класса (класса С) условно именуются каменными, так как они,по-видимому, напоминают глубинные горные породы Земли. Альбедо С-астероидовзначительно выше. К примеру, у 44 Низы оно достигает 0,38. Это самый светлыйастероид. Изучение спектров отражения и поляриметрия позволили выделить ещёодин класс — металлические, или М-астероиды. Вероятно, на их поверхностиприсутствуют выходы металла, например никелистого железа, как у некоторыхметеоритов. С помощью весьма чувствительных фотометров были исследованы периодическиеизменения яркости астероидов. По форме кривой блеска можно судить о периодевращения астероида и о положении оси вращения. Периоды встречаются самые разные- от нескольких часов до сотен часов. Изучение кривой блеска позволяет такжесделать определённые выводы о форме астероидов. Большинство из них имеетнеправильную, обломочную форму. Лишь самые крупные приближаются к шару.Характер изменения блеска некоторых астероидов даёт основание предполагать, чтоу них есть спутники. Некоторые из малых планет, возможно, являются близкимидвойными системами или даже перекатывающимися по поверхности друг друга телами.Но достоверные сведения об астероидах могут дать только наблюдения с близкогорасстояния — с космических аппаратов. Такой опыт уже имеется. 29 октября 1991г. американский космический аппарат «Галилео» передал на Землюизображение астероида 951 Гаспра. Снимок сделан с расстояния 16 тыс.километров. На нём хорошо просматриваются угловато-сглаженная форма астероида иего кратерированная поверхность. Уверенно можно определить размеры: 12 х 16 км.28 августа 1993 г. «Галилео» прошёл мимо астероида 243 Ида и получилстоль же информативный снимок. На фотографии виден ещё один крошечный астероид,который получил имя Дактиль, — по-видимому, спутник Иды.

Кометы.

 

    В Солнечной системе кроме больших и малых планет существуюти другие небесные тела. Прежде всего это кометы, которые еще называютхвостатыми звездами. Это небольшие, размером в несколько километров, глыбы изкамня и льда. По законам Кеплера кометы, подобно прочим телам Солнечнойсистемы, движутся по эллиптическим орбитам. Но их орбиты очень вытянуты, такчто самая удаленная от Солнца точка обычно расположена намного дальше орбитысамой далекой планеты — Плутона.

Когда комета из холодной глубины космоса приближается к Солнцу, онастановится видна даже невооруженным глазом. По мере приближения к Солнцу егосильное излучение начинает нагревать тело кометы и замерзшие газы испаряются.Они расширяются, окутывая твердое тело кометы и образуя ее гигантскую газовую«голову». Солнечное излучение так сильно воздействует на газ, чточасть его выдувается из головы кометы и образует кометный «хвост»,сопровождающий ее на всем пути вблизи Солнца. Большинствокомет появляется только один раз и затем навсегда исчезает в глубинах Солнечнойсистемы, там, откуда они пришли. Но есть и исключения — периодические кометы. Размеры орбит большинства комет в тысячи разбольше поперечника планетной системы. Вблизи афелиев своих орбит кометынаходятся большую часть времени, так что на далеких окраинах Солнечной системысуществует облако комет — так называемое облако Оорта. Его происхождениесвязано, по-видимому, с гравитационным выбросом ледяных тел из зоны планет — гигантов во время их образования. Облако Оорта содержит миллиарды кометныхядер. У всех комет при их движении в области, занятой планетами, орбитыизменяются под действием притяжения планет. При этом среди комет, пришедших спериферии облака Оорта, около половины приобретает гиперболические орбиты итеряется в межзвездном пространстве. У других, наоборот, размеры орбитуменьшаются, и они начинают чаще возвращаться к Солнцу. Изменения орбит бываютособенно велики при тесных сближениях комет с планетами-гигантами. Известнооколо 100 короткопериодических комет, которые приближаются к Солнцу черезнесколько лет или десятков лет и поэтому сравнительно быстро растрачиваютвещество своего ядра.  Орбиты комет скрещиваются с орбитами планет, поэтому изредкадолжны происходить столкновения комет с планетами. Часть кратеров на Луне,Меркурии, Марсе и других телах образовались в результате ударов ядер комет.

Комета Галлея.

 

   В 1705 году Эдмонд Галлей, используя Ньютоновские законыдвижения, предсказал, что комета, которую наблюдали в 1531, 1607 и 1682 годах,должна возвратиться в 1758 году (что, увы, было уже после его смерти). Кометадействительно возвратилась, как было предсказано, и позже была названа в егочесть. Cредний период обращения кометы Галлея вокруг Солнца равен 76 годам.Последнее ее прохождение через через перигелий наблюдалось в феврале 1986 года.Ядро кометы Галлея имеет размеры приблизительно 16x8x8 километров. Вопрекиожиданиям, оно очень темное: его альбедо составляет всего лишь 0.03, что делаетего еще более темным, чем каменный уголь. Таким образом, ядро кометы Галлеяявляется одним из самых темных объектов в Солнечной системе. Плотность ядракометы Галлея очень низкая, всего около 0.1 грамма на кубич. см, что говорит отом, что оно имеет пористую структуру, поскольку состоит в основном из пыли сольдом. Комета Галлея вернется во внутреннюю Солнечную систему в следующий раз в2061 году.

Комета Шумейкера – Леви.

   Комета Шумейкера-Левибыла открыта Евгением и Кэролин Шумейкерами и Дэвидом Леви в 1993 году. Вскорепосле их открытия было определено, орбита кометы проходит очень близко кЮпитеру. В 1992 году комета была захвачена Юпитером внутрь области пределаРоша. Предел Роша — это минимальный радиус круговой орбиты, на которой спутникне разрушается под действием притяжения центрального тела (приливных сил).Комета разрушилась на отдельные фрагменты, которые рассредоточились нанесколько миллионов километров вдоль ее орбиты. Размер и масса первоначальноготела кометы и ее отдельных фрагментов неизвестны. По оценкам ученых размерыкометы составляли от 2 до 10 км в диаметре. Между 16 июля 1994 года и 22 июля1994 года фрагменты вошли в верхние слои атмосферы Юпитера. Это было первымслучаем, когда ученые имели возможность наблюдать столкновение двух внеземныхтел. Cтолкновение наблюдалось с помощью больших наземных телескопов, тысячмалых и любительских телескопов и космическим кораблем “Галилео”. Последствиястолкновения были видны на Юпитере еще почти в течение года после этого события.

Комета Хиакутаке.

    Первые месяцы 1996 годаознаменовались открытием новой кометы — кометы Хиакутаке, которая на протяжениинескольких недель являлась одним из наиболее ярких объектов на небесной сфере.Она была открыта, когда была удалена от Земли на расстояние в 300 млн. км.Предварительные данные не исключают возможности того, что предыдущий визит этойкометы в солнечную систему происходил 10-20 тысяч лет тому назад, однакоокончательный ответ требует детальных исследований. Одной из основных особенностейкометы Хиакутаке является большой наклон ее орбиты к плоскости эклиптики. Этимопределялись чрезвычайно удачные условия ее наблюдений. По мере приближения кЗемле яркость кометы постоянно возрастала, и 23 марта комету можно былонаблюдать даже невооруженным взглядом. С 23 по 27 марта 1996 года она быстропереместилась из созвездия Волопаса в созвездие Большой Медведицы и далее — кПолярной звезде. На минимальном расстоянии в 17 млн. км от Земли кометаХиакутаке находилась 25 марта 1996 года, двигаясь со скоростью 50 км/сек. Внастоящее время она удаляется от Солнца.

Метеоры и метеориты.

    Метеоромназывается световое явление, возникающее на высоте от 130 до 80 км привторжении в земную атмосферу частиц — метеорных тел из межпланетного пространства.Скорости движения метеорных тел по отношению к Земле могут быть различными — от11 до 75 км/сек в зависимости от того, догоняет ли метеорное тело Землю при ееобращении вокруг Солнца или же движется ей навстречу. На протяжении суток можнозарегистрировать около 28 000 метеоритов. Масса метеорного тела, вызывающеготакое явление, составляет всего 4.6 грамма. Кроме единичных (спорадических)метеоров несколько раз в год можно наблюдать целые метеорные потоки (метеорныедожди). И если обычно за один час наблюдатель регистрирует 5-15 метеоритов, тово время метеорного дождя — 100, 1000 и даже до 10 000. Это означает, что вмежпланетном пространстве движутся целые рои метеорных частиц. Метеорные потокина протяжении нескольких ночей появляются примерно в одной и той же областинеба. Если их следы продолжить назад, то они пересекутся в одной точке, котораяназывается радиантом метеорного потока. Источником практически всех малыхметеорных частиц являются, по-видимому, кометы. Крупные метеорные тела имеют астероидноепроисхождение. В отдельных случаях крупное метеорное тело при своем движении ватмосфере не успевает испариться и достигает поверхности Земли. Этот остатокметеорного тела называется метеоритом. На протяжении года на Землю выпадаетпримерно 2000 метеоритов. В зависимости от химического состава метеоритыподразделяются на каменные хондриты (их относительное количество 85.7%),каменные ахондриты (7.1%), железные (5.7%) и железо-каменные метеориты (1.5%).Хондрами называют мелкие круглые частицы серого цвета, часто с коричневымоттенком, обильно вкрапленные в каменную массу. Железные метеориты практическиполностью состоят из никелистого железа. Из расчетов следует, что наблюдаемаяструктура железных метеоритов образуется в случае, если в интервале температурпримерно от 600 до 400 С вещество охлаждается со скоростью 1 — 10 градусов С замиллион лет. Каменные метеориты, в которых нет хондр, называются ахондритами.Анализ показал, что в хондрах содержатся практически все химические элементы.Крупнейший из известных метеоритов находится на месте падения в пустыне Адрар(Западная Африка), его вес оценивается в 100 000 тонн. Второй по величинежелезный метеорит Гоба, весом 60 тонн, находится в Юго-Западной Африке, третий,весом 50 тонн, хранится в Нью-йоркском музее естественной истории. Если ватмосферу Земли влетает метеорное тело, вес которого превышает 1 000 000 тонн,то оно углубляется в грунт на 4-5 своих диаметров, вся его огромнаякинетическая энергия превращается в тепло. Возникает сильнейший взрыв, прикотором метеорное тело в значительной степени испаряется. На месте взрываобразуется воронка — кратер. Одним из наиболее эффектных является кратер вштате Аризона (США). Его диаметр составляет 1200 м, а глубина — 175 м; валкратера поднят над окружающей пустыней на высоту около 37 метров. Возраст этогократера — около 5000 лет.

/>/>/>/>/>/>

  1)Хондрит (каменный метеорит).

  2)Железный метеорит.

  3)Ахондрит (каменный метеорит, несодержащий хондр).

/>/>

/> /> /> /> /> /> />

/>/>

/> /> /> /> /> /> />

/>

/>

                1) и 4)КометаГаллея.

                2)Комета Хиакутаке.

                3)КометаХейла-Боппа.

                5)Последовательныестадии падения кометы Шумейкера-Леви 9 на Юпитер.

www.ronl.ru

Малые тела Солнечной системы (работа 1)

Малые тела Солнечной системы

Введение

В данном реферате будут рассмотрены малые тела Солнечной системы, такие как астероиды, кометы, метеоры и метеориты. Меня очень заинтересовала эта тема, так как раньше я думала, что в Солнечной системе существуют только лишь планеты, но когда на уроке астрономии нам рассказали о других телах, мне захотелось узнать о них больше. Я посмотрела фильм на эту тему, поискала информацию в различных источниках и пришла к выводу, что это не только любопытно и интересно, не ещё и очень полезно знать!

Все эти тела различны и каждое представляет интерес в отдельности. Кометы, их называют ещё «Хвостатые звёзды», запоминаются в первую очередь по своим хвостам, которые могут иметь разную форму. Наиболее известная и знаменитая комета Галлея, её можно увидеть только один раз на протяжении человеческой жизни.

Так же обращают на себя не малое внимание метеоры. Метеором называется световое явление, возникающее на высоте от 130 до 800 км. А раз в год можно наблюдать целые метеорные потоки или как их ещё называют «метеорные дожди».

И самые интересные, на мой взгляд, тела - это астероиды. Астероидами называют малые планеты Солнечной системы, которые на снимках звёздного неба неотличимы от звёзд. Про них много говорят и пишут в газетах. И многие задаются вопросом, правда ли, что астероиды опасны для Земли и, что при столкновении с ним может наступить конец света? Учёные ведут всевозможные исследования и наблюдения. Наука не стоит на месте. И я думаю, что такую науку как астрономия можно назвать наукой будущего! Я считаю, что она необходима и её нужно изучать как можно больше и глубже.

Астероиды

С точки зрения физики астероиды или, как их ещё называют, малые планеты – это плотные и прочные тела, которые на снимках звёздного неба неотличимы от звёзд (большие планеты обладают заметными дисками). По составу и свойствам их можно условно разделить на три группы: каменные, железокаменные и железные. Астероид является холодным телом. Но он, как, например, и Луна, отражает солнечный свет, и поэтому мы можем наблюдать его в виде звездообразного объекта. Отсюда и происходит название «астероид», что в переводе с греческого означает звездообразный. Так как астероиды движутся вокруг Солнца, то их положение по отношению к звёздам постоянно и довольно быстро меняется. По этому первоначальному признаку наблюдатели и открывают астероиды.

Открытие астероидов.

В первую ночь XIX столетия (1 января 1801 г.) Пиацци в Палермо трудолюбиво производил свои систематические измерения координат звезд для составления каталога звездных положений. В следующую ночь, производя для проверки повторные наблюдения, Пиацци заметил, что одна из наблюдавшихся им слабых звездочек (7-й величины) имеет не те координаты, которые он отметил для нее накануне. На третью ночь обнаружилось, что тут нет никакой ошибки, а что эта звездочка медленно движется. Пиацци решил, что он открыл новую комету. Шесть недель тщательно следил он за своим светилом, пока болезнь не свалила его с ног и не прервала наблюдений, из которых сам Пиацци не мог вывести орбиту открытого им светила в пространстве. После болезни Пиацци снова стал просиживать ночами у телескопа, но он уже не мог больше найти свое светило. Так и не завершив до конца свое открытие, Пиацци вынужден был разослать письма другим астрономам с описанием своих наблюдений и с просьбой поискать найденное и утерянное им светило. Наблюдателям помог математик Гаусс. Гаусс тотчас же принялся за вычисления и в ноябре опубликовал уже элементы орбиты планеты, а также и ее положения на небе в будущем, — где планета должна была быть видна с Земли. Вычисления Гаусса показали, что Пиацци открыл не комету, а планету, обращающуюся около Солнца как раз между Марсом и Юпитером. Кому, как не Пиацци, принадлежало первое слово в вопросе о том, как назвать новооткрытого члена семьи планет? И Пиацци пожелал назвать ее Церерой, богиней-покровительницей острова Сицилии во времена римлян. Этим Пиацци отдал дань местности, в которой он успешно вел свою научную работу, и вместе с тем «выдержал стиль», так как взял название планеты из того же сонма богов римской мифологии, из которого в древности были почерпнуты имена других планет. (Астероидам сначала давали имена героев римской и греческой мифологии, а потом открыватель получал право назвать его как угодно, хоть своим именем. Поначалу, имена давали только женские. Лишь астероиды, имеющие необычные орбиты, получали мужские (к примеру, Икар, приближающийся к Солнцу ближе Меркурия). После, и это правило перестало соблюдаться. Получить имена могут не все астероиды, а только те, для которых имеются более или менее надежно высчитанные орбиты. Бывали случаи, когда астероид получал имя спустя десятки лет после открытия. До тех пор, пока орбита не рассчитана, астероиду приписывается порядковый номер, отражающий дату его открытия, например, 1950 DA. Цифры означают год. Первая буква - номер полумесяца в году, в котором был открыт астероид, всего их, следовательно, 24. В приведенном примере, это вторая половина февраля. Вторая буква обозначает порядковый номер астероида в указанном полумесяце, в нашем примере, астероид был открыт первым. В обозначении не используются буквы I и Z, так как полумесяцев 24, а букв - 26. Буква I не используется из-за сходства с единицей. Если же количество астероидов, открытых в течение полумесяца, превысит 24, вновь возвращаются к началу алфавита, приписывая второй букве индекс 2, при следующем возвращении - 3, и т.д. Астероиды иногда открываются сотнями в год. Сведения о ярких астероидах и об условиях их наблюдения можно найти в астрономических календарях.)

Церера была предметом постоянного внимания, и, наблюдая ее путь, астрономы хорошо изучили расположение слабых звезд в окрестностях этого пути. 28 марта 1802 г., недалеко от места, где незадолго перед тем среди звезд виднелась Церера, Ольберс заметил новую звездочку и уже через два часа убедился в ее движении относительно ее соседок. Дело пахло открытием еще одной планеты, и Гаусс снова показал, что это действительно так и есть. Особенно удивительно то, что орбита второй, слабо светящейся планеты оказалась весьма близкой к орбите Цереры. Вторую планету назвали Палладой (эпитет Афины — богини войны, победы, мудрости и науки у греков). На этом открытие астероидов не заканчиваются. После долгих раздумий Ольберс высказал смелую мысль, что то место Солнечной системы, которое некоторыми предоставлялось для одной лишь планеты, действительно когда-то было занято единственной планетой. Две из них, обнаруженные тут, — по мысли Ольберса, — это ее осколки, образованные некогда какой-то катастрофой. Этих осколков, наверно, даже не два, а много, и есть смысл поискать остальные. Если некогда планета, помещавшаяся между Марсом и Юпитером, разорвалась на куски, то через ту точку пространства, где произошел взрыв, должны пройти орбиты всех полученных осколков. Это — известный закон механики, который должен быть справедлив и тут. Раз так, то чем шарить по большой области неба в поисках новых планет, проще подстерегать их, когда они будут проходить через те точки, где пересеклись орбиты Цереры и Паллады. Три года Ольберс сам терпеливо подстерегал новые планеты в созвездии Девы, где была видна с Земли точка пересечения орбит Цереры и Паллады. Его труд был вознагражден в 1807 г. открытием Весты. Но еще в 1804 г. Гардинг открыл планетку, названную Юноной, в созвездии Кита, где находилась вторая точка пересечения орбит. Таким образом получилось, что орбиты четырех найденных осколков пересеклись почти в одних и тех же точках.

Открытые впоследствии планеты (все там же, между Юпитером и Марсом) совсем не проходят через места, где пересеклись орбиты первых четырех открытых планет. Первоначальное впечатление о правильности предположения Ольберса оказалось основанным на случайном совпадении... Все это выяснилось, впрочем, уже значительно позже, чем Ольберс нашел четвертую планету. Когда уже все, принимавшие участие в открытии этих планет, скончались, пятая планета все еще не попадалась наблюдателям. Только в 1845 г., почти через 40 лет, она была открыта. Открыл ее отставной почтовый чиновник Генке, терпению которого поистине можно изумляться. 15 долгих лет, из вечера в вечер, он разыскивал попутчиков Цереры и ее товарок, и каждый новый вечер, приносивший разочарование, не ослаблял его энтузиазма. Через два года после первого успеха он открыл еще планету, и вскоре затем открытия подобных планет стали производиться непрерывно. Все планеты, обнаруженные между орбитами Марса и Юпитера , получили общее название малых планет или астероидов, что в переводе с греческого означает «звездоподобные». Действительно, даже в самые сильные телескопы эти планеты выглядят как звездочки, так они малы.

Самый большой — Церера имеет около 1000 км в поперечнике и по объему во столько раз меньше Луны, во сколько раз Луна меньше Земли. У Паллады диаметр около 600 км, у Юноны около 250 км и у Весты около 540 км . Только у них, и то с помощью величайших в мире рефракторов, можно заметить крошечный диск. Их поперечники можно измерить, но никаких подробностей на них рассмотреть нельзя.

Чем меньше астероиды по размерам и чем меньше их блеск, тем больше оказывается их число, и потому с течением времени открывают астероиды все менее и менее яркие. Например, наибольшее число открытых в 1930 г. астероидов падает на 14-ю звездную величину, а в 1938 г. оно приблизилось уже к 15-й звездной величине.

Размер и масса астероидов в той или иной мере пропорциональны их блеску (приведенному к условиям одинакового расстояния от Земли и Солнца), поэтому распределение астероидов по их, как говорят, «абсолютному блеску» (т. е. блеску, который имел бы астероид на расстоянии одной астрономической единицы от Земли и от Солнца) характеризует распределение их и по массе (если принять, что их отражательная способность одинакова).

Открытие астероидов

Годы

Открыто

Занумеровано

Всего занумеровано

1800—1809

4

4

4

1810—1819

0

0

4

1820 — 1829

0

0

4

1830—1839

0

0

4

1840—1849

6

6

10

1850—1859

47

47

57

1860—1869

53

52

109

1870 — 1879

105

102

211

1880—1889

80

76

287

1890—1899

264

165

452

1900—1909

776

213

665

1910—1919

788

249

914

1920—1929

1262

202

1116

1930—1939

2799

373

1489

к 1962

1650

Изучая астероиды, ученые надеются побольше узнать о том материале, из которого образовались планеты. Из всех небесных тел только астероиды и кометы способны воздействовать на Землю, грозя ей катастрофой. Однако вероятность того, что подобная вещь может действительно случиться, очень мала. Значительная часть человечества подвергается гораздо большему риску из-за землетрясений, извержений вулканов, болезней и голода.

Главный пояс астероидов

Когда формировался протопланетный диск, он имел неравномерную плотность. Ближе к центру он был разреженным, потом шёл плотный участок, а край снова был разреженный. Поэтому расстояния между планетами получились разными: чем ближе к Солнцу, тем теснее расположены планеты. Эту закономерность ещё в 18 в. обнаружили немецкие астрономы И.Д. Тициус и И.Э. Боде. Вскоре после этого был открыт Уран, расположение которого согласовывалось с их правилом. Единственное, с чем правило не сходилось, - слишком большое пустое пространство между Марсом и Юпитером. Там должна была находиться ещё одна планета, а её не было.

И вот в 1801г. Итальянский астроном Джузеппе Пиацци (1746-1826) открыл в этом пустом поясе небольшое тело, которое назвали астероидом, то есть «звёздоподобным». Астероиду дали имя Церера. Орбита его отвечала соотношению Тициуса-Боде. В 1802г. немецкий астроном Г.В. Ольберс открыл примерно на том же расстоянии от Солнца ещё один астероид – Палладу, а дальше открытия посыпались, как из рога изобилия. Оказалось, что между Марсом и Юпитером расположился целый пояс малых планет. Сейчас их известно несколько тысяч. Кроме крупных обломков пояс астероидов содержит много мелких, от десятков метров до миллиметра. Орбиты астероидов не такие правильные, как планетные, они значительно выходят за плоскость эклиптики, многие сильно вытянуты, так что время от времени астероиды пролетают довольно близко от Земли.

Крупнейшим астероидом является Церера (диаметр 900 км), далее идёт Паллада с диаметром примерно 520 км. Всего известно 26 малых планет с диаметром более 200 км и 73 с диаметром более 150 км. А вообще по данным на 2000 г. всего известно около 10 000 астероидов. При открытии астероидов им сначала присваивают номера: первые четыре цифры – это год открытия, а буквы обозначают класс по химическому составу.

Формы астероидов могут быть различными, крупные астероиды бывают круглыми, сферическими, а иногда и гантелеобразными. Приблизительно 17% астероидов имеют спутники. Современные исследования показали, что астероиды различают по химическому составу, поэтому говорят о каменных, углистых и металлических астероидах.

Большинство астероидов расположено между орбитами планет Марс и Юпитер (в основном на расстоянии от 2,2 до 3,6 а.е. от Солнца) – это Главный пояс астероидов. Но известны и астероиды, орбиты которых выходят далеко за пределы главного пояса, например Гидальго или Икар, последний входит даже внутрь орбиты Меркурия и пролетает между Меркурием и Солнцем (именно за полёт к Солнцу он получил название в честь героя греческого мифа).

Фаэтон.

Уже Ольберс предположил, что астероиды между Марсом и Юпитером представляют собой обломки распавшейся планеты. Гипотетическую планету назвали Фаэтоном – по имени героя древнегреческого мифа, который погиб, попытавшись проехать по небу в колеснице своего отца, Гелиоса-Солнца. Колесница разбилась на множество маленьких кусочков. Согласно гипотезе Ольберса, под действием сил притяжения со стороны Солнца и планет-гигантов или вследствие столкновения с большим небесным телом Фаэтон распался на множество кусочков, продолживших движение по орбите погибшей планеты. Увы, эта красивая гипотеза не выдержала проверку временем и была отвергнута учеными последующих поколений: астероидный пояс – не остатки погибшей, а куски несформировавшейся планеты. По каким-то причинам в период формирования планет Солнечной системы из протопланетного облака они не сошлись вместе, и теперь по орбите, где могла бы находиться пятая от Солнца планета, движется рой астероидов.

На орбите Юпитера.

Наряду с астероидами Главного пояса, в 1907г. были открыты астероиды, движущиеся вокруг Солнца по орбитам, близким к орбите Юпитера. Причём эти астероиды можно разделить на две группы: двигающиеся впереди Юпитера и за ним. Все астероиды этих групп получили название «троянцы» - в честь героев Троянской войны, описанной в поэмах Гомера. Те, которые опережают Юпитер, получили название «греки» и носят имена героев греческого войска (Ахилл, Патрокл, Нестор, Агамемнон и др.). А двигающиеся позади Юпитера астероиды называются «собственно троянцы» (Гектор, Приам и др.). Юпитер, «греки» и «троянцы» делят орбиту Юпитера на три примерно равные части: расстояние от планеты до группы «греков» равно расстоянию от «греков» до «троянцев» и от «троянцев» до Юпитера. «Греки» никогда не настигнут своих врагов, а «троянцы» никогда не укроются от грозных воинов в спасительной близости Юпитера.

Пояс Койпера и облако Оорта.

В Солнечной системе существует ещё один пояс астероидов, помимо того, который расположен между орбитами Марса и Юпитера. На окраине Солнечной системы, за орбитой Нептуна, находится второй пояс астероидов – так называемый пояс Койпера, получивший имя в честь американского астронома Джерарда Койпера (1905-1973), высказавшего в 1951г. гипотезу о его существовании. Пояс Койпера, состоящий из астероидов и ядер комет, является источником короткопериодических (с оборотом вокруг Солнца менее 200 лет) комет, он расположен на расстоянии 35000 – 50000 а.е. от Солнца.

Однако поясом Койпера Солнечная система не кончается. За орбитой Плутона, на внешней границе Солнечной системы, находится обширный пояс некрупных холодных тел, очевидно, так же, как и пояс Койпера, представляющий собой остатки протопланетного облака. Этот пояс называют облаком Оорта – в честь нидерландского астронома Я.Х.Оорта (1900-1992). В 1950г. он высказал гипотезу о существовании на периферии Солнечной системы большого резервуара кометных тел – облака, простирающегося на расстояние около 150000 а.е. от Солнца. Возмущения от ближайших к Солнцу звёзд имеют орбиты некоторых комет, заставляя их приблизиться к Солнцу. Эти долгопериодические (обращающиеся вокруг Солнца с периодом более 200 лет) кометы становятся доступными наблюдению. Недавно внутри облака Оорта было обнаружено несколько сравнительно массивных планетоподобных тел, но, поскольку они уступают размерам Плутона, их не стали включать в число планет.

Типы астероидов

Тип астероида

Описание

А

Редкий тип астероида, характеризуемый умеренно высоким альбедо и интенсивным красном цветом. Сильное поглощение в ближнем инфракрасном диапазоне интерпретируется как свидетельство присутствия оливина.

B

Подкласс астероидов типа С, отличающихся более высоким альбедо.

С

Категория темно-серых астероидов с альбедо около 5%. "C" - означает “углистый”, поскольку они, как полагают, состоят из вещества того же типа, что и углистые хондриты. Астероиды типа С распространены во внешней части главного пояса.

D

Тип астероидов красноватого цвета, редко встречающихся в главном поясе, но обнаруживаемых все чаще на больших расстояниях от Солнца.

F

Подкласс астероидов типа C, отличающийся слабым ультрафиолетовым поглощением в спектрах или полным его отсутствием.

G

Подкласс астероидов типа C, отличающихся сильным ультрафиолетовым поглощением в спектре.

М

Распространенный тип астероидов с умеренным альбедо, предположительно имеющих металлический состав, подобный составу железных метеоритов.

P

Астероид с низким альбедо. Астероиды типа P наиболее часто встречаются во внешней части главного пояса.

Q

Редкий тип астероидов, похожих по своим свойствам на метеориты, относящиеся к хондритам. К этому классу астероидов принадлежит Аполлон и несколько других приближающихся к Земле астероидов.

R

Редкий тип астероида с умеренно высоким альбедо, примером которого является астероид Дембовска (349).

S

Категория астероидов с промежуточным значением альбедо, которые, как предполагают, подобно каменным метеоритам, состоят из кремнистого вещества. Астероиды типа S во внутренней части пояса астероидов встречаются относительно часто.

T

Тип астероидов, характеризующихся очень низким альбедо.

V

Класс астероидов, единственным известным членом которого является Веста.

Троянцы

Два семейства астероидов, находящихся на одной орбите с Юпитером и группирующихся вокруг точек Лагранжа, отстоящих на 60° в обе стороны от планеты. Известно более двухсот таких астероидов, большинство из которых находится в "предшествующей" группе. Они не остаются на одном месте орбиты, а колеблются вокруг точек Лагранжа с периодами в 150-200 лет, удаляясь или приближаясь к Юпитеру в пределах 45-80°. Первым их троянцев был открыт Ахиллес, что и стало причиной присвоения всем открытым впоследствии астероидам имен героев Троянских войн. Наибольший из Троянцев астероид Патрокл имеет диаметр 272 км.

Хильды

Группа астероидов у внешнего края главного пояса астероидов на расстоянии 4,0 а.е. от Солнца. Названы по имени астероида 153 Хильда диаметром 180 км, открытого Ж. Пализа в 1875г. Их орбитальные периоды соизмеримы с периодом обращения Юпитера в отношении 3:2. От остальной части пояса астероидов они отделены пробелом Кирквуда.

Фокеи

Группа астероидов с орбитами, наклоненными на 24° к плоскости Солнечной системы и находящимися на расстоянии 2,36 а.е. от Солнца. Группа отделена от главного пояса астероидов одним из пробелов Кирквуда. Астероиды этой группы не имеют общего происхождения и не принадлежат к одному семейству. Группа названа по имени астероида Фокея(25) с диаметром около 70 км.

Хираямы

Группы астероидов, имеющих подобные орбиты и поэтому расположенных в пространстве близко друг к другу. Существование подобных группировок впервые было отмечено японским астрономом Киоцуго Хираяма в 1918 г. С тех пор обнаружено больше сотни таких семейств. Во многих случаях членами семейства оказываются астероиды, относящиеся к подобным или связанным типам, что заставляет думать, что они образовались при разрушении одного исходного тела. К семействам Хираямы, как полагают, принадлежит примерно половина всех астероидов.

Корониды

Одно из семейств Хираямы, астероиды которого находятся в среднем на расстоянии 2,88 а.е. от Солнца. Члены семейства относятся к типу силикатных астероидов и, как предполагается, происходят из одного родительского тела, имевшего в диаметре около 90 км. Самый большой член семейства – Лакримоза (208), около 45 км в диаметре. Семейство названо по имени астероида Коронида (158) диаметром 35 км, открытого в 1876г.

Фемиды

Одно из астероидных семейств Хираямы, находящееся на расстоянии 3,13 а.е. от Солнца. Все члены семейства принадлежат к углистому типу астероидов, что предполагает их общее происхождение от одного родительского тела.

Кометы. Свойства комет

Особое место среди малых тел Солнечной системы занимают кометы – небесные тела, движущиеся вокруг Солнца по очень вытянутым орбитам. С приближением к Солнцу лёд тает и у комет образуется огромный газовый хвост. Хвост возникает за счёт того, что ядро кометы под действием солнечных лучей начинает кипеть и испаряться, поскольку состоит из водяного льда с примесью пыли. Выкипающее вещество сдувается с ядра солнечным ветром, поэтому хвост направлен от Солнца, а не вдоль траектории движения кометы, так что иногда хвост движется даже перед кометой! Обычно, облетев солнце, кометы возвращаются на границы солнечной системы. Периодические кометы через определённый промежуток времени снова приближаются к Солнцу, их появление можно предсказать – например, знаменитая комета Галлея (названа в честь своего первооткрывателя, английского астронома Э.Галлея), которую наблюдали ещё до нашей эры, появляется раз в 76 лет. Комета Галлея стала первой из класса периодических комет.

Периодические кометы движутся по менее вытянутым эллиптическим орбитам и имеют совсем иные характеристики. Из 40 комет, наблюдавшихся более одного раза, 35 имеют орбиты, наклоненные меньше, чем на 45º к плоскости эклиптики. Только комета Галлея имеет орбиту с наклонением, большим 90º и, следовательно, движется в обратном направлении. Среди короткопериодических (т.е. имеющих периоды 3-10 лет) комет выделяется «семейство Юпитера» большая группа комет, афелии которых удалены от Солнца на такое же расстояние, как отбита Юпитера. Предполагается, что «семейство юпитера» образовалось в результате захвата планетой комет, которые двигались ранее по более вытянутым орбитам. В зависимости от взаимного расположения Юпитера и кометы эксцентриситет кометной орбиты может, как возрастать, так и уменьшаться. В первом случае происходит увеличение периода или даже переход на гиперболическую орбиту и потеря кометы Солнечной системой, во втором - уменьшение периода.

Орбиты периодических комет подвержены очень заметным изменениям. Иногда комета проходит вблизи Земли несколько раз, а потом притяжением планет-гигантов отбрасывается на более удалённую орбиту и становится ненаблюдаемой. В других случаях, наоборот, комета, ранее никогда не наблюдавшаяся, становится видимой из-за того, что она прошла вблизи Юпитера или Сатурна и резко изменила орбиту. Кроме подобных резких изменений, известных лишь для ограниченного числа объектов, орбиты всех комет испытывают постепенные изменения.

Изменения орбит не являются единственной возможной причиной исчезновения комет. Достоверно установлено, что кометы быстро разрушаются. Яркость короткопериодических комет ослабевает со временем, а в некоторых случаях процесс разрушения наблюдался почти непосредственно. Классическим примером является комета Биэли. Она была открыта в 1772 году и наблюдалась в 1813г., 1826г.,1832г. В 1845 году размеры кометы оказались увеличенными, а в январе 1846 года наблюдатели с удивлением обнаружили две очень близкие кометы вместо одной. Били вычислены относительные движения обеих комет, и оказалось, что комета Биэли разделилась на две ещё около года назад, но вначале компоненты проектировались один на другой, и разделение было замечено не сразу. Комета Биэли наблюдалась ещё один раз, причём один компонент много слабее другого, и больше её найти не удалось. Зато неоднократно наблюдался метеорный поток, орбита которого совпадала с орбитой кометы Биэли.

При решении вопроса о происхождении комет нельзя обойтись без знания химического состава вещества, из которого сложено кометное ядро. Казалось бы, что может быть проще? Нужно сфотографировать побольше спектров комет, расшифровать их – и химический состав кометных ядер нам сразу же станет известным. Однако дело обстоит не так просто, как кажется на первый взгляд. Спектр фотометрического ядра может быть просто отражённым солнечным или эмиссионным молекулярным спектром. Отражённый солнечный спектр является непрерывным и ничего не сообщает о химическом составе той области, от которой он отразился – ядра или пылевой атмосферы, окружающей ядро. Эмиссионный газовый спектр несёт информацию о химическом составе газовой атмосферы, окружающей ядро, и тоже ничего не говорит нам о химическом составе поверхностного слоя ядра, так как излучающие в видимой области молекулы, такие как C2, CN, CH, MH, OH и др., являются вторичными, дочерними молекулами – «обломками» более сложных молекул или молекулярных комплексов, из которых складывается кометное ядро. Эти сложные родительские молекулы, испаряясь в околоядерное пространство, быстро подвергаются разрушительному действию солнечного ветра и фотонов или распадаются, или диссоциируются на более простых молекулах, эмиссионные спектры которых и удаётся наблюдать от комет. Сами родительские молекулы дают непрерывный спектр.

Но бывают кометы и непериодические – они улетают и не возвращаются, а некоторые падают на Солнце и сгорают. Хвост кометы можно наблюдать только в тёмную ночь. Ядро выглядит как более или менее яркая звезда, которая за несколько дней пересекает небо.

В Солнечной системе, по-видимому, сотни миллиардов комет, но лишь немногие доступны наблюдению с Земли. Редкое и необычное зрелище, кометы издавна привлекали внимание людей. В древности их появление считали дурным предзнаменованием. В наши дни обнаружение комет популярно у астрономов-любителей; комету называют в честь первооткрывателей.

Исследование комет

Проект «Вега» был одним из самых сложных в истории исследований Солнечной системы при помощи космических аппаратов. Он состоял из трёх частей: изучение атмосферы и поверхности Венеры при помощи посадочных аппаратов, изучение динамика атмосферы Венеры посредствам аэростатных зондов (аэростаты были впервые в мире запущены в атмосферу с другой планеты), пролёт через газопылевую атмосферу (кому) и плазменную оболочку кометы Галлея.

Автоматическая межпланетная станция «Вега-1» стартовала с космодрома Байконур 15 декабря 1984г. Через 6 дней за ней последовала «Вега-2». Курс был взят на планету Венера. В июне 1985г. Они друг за другом прошли вблизи Венеры. Перед пролетом планеты от них отделились спускаемые аппараты, которые вошли на второй космической скорости, а атмосферу Венеры, и каждый из них разделился на две части – посадочный аппарат и аэростатный зонд. С помощью посадочного аппарата была проведена серия экспериментов по исследованию атмосферы и поверхности планеты. Аэростатные зонды дрейфовали на высоте около 54 километров, и в течение двух суток их перемещение фиксировалось сетью наземных радиотелескопов. Успешно были выполнены первые две части программы, посвященные исследованиям Венеры.

Но самой интересной была все же третья часть проекта-исследования кометы Галлея. Это небесное тело оставило глубокий след в памяти человечества, на протяжении 2-х тысячелетий около тридцати раз приблизившись к Солнцу. А, начиная со смелой гипотезы, выдвинутой Э.Галлеем, оно было объектом систематических исследований в астрономии. Неумолимой логикой космической эры и кометы должны были стать объектами прямых исследований. Космическим аппаратом впервые предстояло «увидеть» ядро кометы, неуловимое для наземных телескопов. Встреча «Веги-1» с кометой произошло 6 марта, а «Веги-2» - 9 марта 1986г. Они прошли на расстоянии 8900 8000 километров от её ядра.

Проект был осуществлён при широкой международной кооперации и с участием научных организаций многих стран.

К комете Галлея кроме «Веги-1» и «Веги-2», к ней направились и другие космические аппараты – «Джотто», снаряженный Европейским космическим агентством, и два маленьких японских аппарата «Суисей» («Комета») и «Сакигаке» («Пионер»).

Возрос интерес к кометным исследованиям. За последние 20 лет СССР и США направили к планетам более 30 межпланетных автоматических станций. Их полёты расширяли представления о планетах и их спутниках. Но пришла пора вспомнить и о других членах семьи, в частности о кометах.

Кометы – это гости, прибывшие с очень далеких окраин Солнечной системы. Предполагается, что около 100 млрд. комет постоянно находятся в кометном облаке, окружающем Солнце на расстоянии, в 10 тысяч раз больше, чем от Солнца до Земли. Судьба их различна. Большинство их остаётся миллиарды лет, некоторые покидают Солнечную систему, а некоторые переходят, а её внутреннюю часть и даже попадают на орбиты с относительно небольшим периодом, подобно комете Галлея.

Кометное облако, по-видимому, образовалось вместе с Солнечной системой. В этом случае, исследуя вещество комет, мы получим сведения о первичном материале, из которого 4,5 миллиарда лет назад сформировались планеты и спутники.

В свойствах комет много загадочного. Кометы становятся хорошо видимыми, когда они приближаются к Солнцу на расстоянии, примерно втрое большее, чем радиус земной орбиты. Она в начале выглядит как круглое светлое пятнышко (голова или кома), потом в сторону от Солнца вытягивается хвост. В самом центре головы находится невидимое тело, которое называется ядро. В ядре сосредоточена вся масса кометы. Главной особенностью ядра является то, что оно содержит много «летучего», то есть легкоиспаряющегося вещества. Это обычный водный лёд с вкраплением других молекул. Летучий материал перемешан с тугоплавкими частицами – силикатными, углистыми, металлическими. По мере приближения к Солнцу испарение льда идёт все сильнее и сильнее, потоки газа покидают ядро, увлекая за собой пыль. Как будто бы многое ясно, но до сих пор не было ответа на главный вопрос – какова физическая структура ядра кометы, единое ли это тело, рой из многих тел, связанных тяготением или просто летящих рядом. Ученые отдавали предпочтения первой модели, но не было оснований решительно отвергать и другие.

Поэтому самой важной задачей в проекте «Вега» было исследование физических характеристик ядра кометы. Кометные ядра наблюдались ранее с Земли, но только как звёздообразные объекты (далеко за орбитой Юпитера, когда активность отсутствует), да и таких наблюдений очень мало.

В проекте «Вега» впервые ядро кометы исследовалось как пространственно разрешенный объект, определены его строение, размеры, инфракрасная температура, получены оценки его состава и характеристика поверхностного слоя.

Мы не имели, и долго ещё не будем иметь технической возможности совершить посадку аппарата на ядро кометы. Слишком велики скорости встречи – в случае кометы Галлея это 78 км\с. Опасно и пролетать на слишком близком расстоянии, так как кометная пыль очень опасна для космического аппарата. Расстояние пролета чуть меньше 10000 км было выбрано с учетом существовавших ранее представлений о количественных характеристик кометной пыли. Использовалось два подхода: во-первых, дистанционные измерения при помощи оптических приборов и, во-вторых, прямые измерения вещества (газа и пыли), покидающего ядро и пересекающего траекторию, по которой движется аппарат.

Оптические приборы были размещены на специальной платформе, которая поворачивалась во время полета и автоматически отслеживал направление на ядро. Эта платформа была разработана совместно с чехословацкими и советскими специалистами и изготовлена в ЧССР. Три научных эксперимента выполнялись при помощи приборов, установленных на платформе. Один из них – это телевизионная съемка ядра.

Другой прибор – это инфракрасный спектрометр ИКС, при помощи которого одновременно проводилось два разных эксперимента – измерялись поток инфракрасного излучения от ядра (тем самым определялась температура его поверхности) и спектр инфракрасного излучения внутренних «околоядерных» частей комы на длинах волн от 2,5 до 12 микрометров с целью определения и её состава.

Итоги исследований ядра кометы Галлея, проведённых при помощи оптических приборов, можно сформулировать следующим образом – это монолитное тело, вытянутое, форма не правильная, размеры 14 км большой оси, около 7 км в поперечнике. Каждые сутки его покидает несколько миллионов тонн водяного пара. Вычисления показывают, что такая «производительность» требует, чтобы испарение шло по всей поверхности. Этим свойством могла бы обладать поверхность ледяного тела. Но вместе с тем приборы, «Веги» установили, что она черная (отражательная способность менее 5%) и горячая (примерно 100 тыс. град. Цельсия).

Важные данные о составе ядра получены при помощи прямых измерений химического состава пыли, газа и плазмы в коме вдоль траектории полета. Эти измерения показали, что по относительному содержанию в потоке газа, уходящего от кометы, больше всего водяного пара, но есть также много других компонентов – атомных (водород, кислород, углерод) и молекулярных (моноокись и двуокись углерода, гидроксил, циан и другие). Особый интерес представляет вопрос о том, какие молекулы принадлежат к числу «родительских», то есть входящих непосредственно в состав ядра. По-видимому, среди них главные – вода и углекислота, но многое указывает и на присутствие в ядре других молекул, в том числе и органических.

Вещество ядра, скорее всего, представляет собой так называемый «клатрат», то есть обычный водный лед, в кристаллическую решетку которого «вкраплены» другие молекулы. С клатратом перемешаны частицы метеоритного состава, каменистые и металлические. Химический состав твердых частиц, которые входили в состав ядра, оказался очень сложным и не однородным. Есть частицы с преобладанием металлов, таких, как натрий, магний, кальций, железо и других, с примесью силикатов. Наконец, есть пылинки, в которых присутствует значительное количество углерода. Наличие разнородных пылинок указывает на сложную тепловую историю первичного материала Солнечной системы.

В результате экспедиции «Вега» ученые впервые увидели кометное ядро, получили большой объём данных о его составе и физических характеристик. Грубая схема заменена картиной реального природного объекта, ранее никогда не наблюдавшегося. Внешне он несколько напоминает спутники Марса-Фобос и Деймос, но ещё более близким аналогом могут оказаться некоторые малые спутники Сатурна и Урана. Гипотеза, предполагает, что кометные ядра образовались сравнительно от Солнца, примерно там, где находятся планеты-гиганты от Юпитера до Нептуна, и были отброшены на большие расстояния при формировании этих планет. Эксперименты с пылевыми счетчиками показали, что около миллиона тонн космической пыли покидает кометное ядро ежесекундно.

Газ, испаряющийся с ядра кометы и распространяющийся в межпланетную среду со скоростью около 1 км/сек., в конечном счете полностью ионизируется солнечным излучением.

В результате возникает гигантское плазменное образование размером около 1 миллиона км. Перед кометой в сверх звуковом потоке солнечной плазы образуется своеобразная ударная волна, не похожая по своей структуре на ударные волны перед Землёй и другими планетами. Прямые измерения плазмы и плазменных волн во внутренней части комы могут понять особенности образования плазмы и излучения газа не только в кометах, но и в ряде других атмосферных объектов, в которых взаимодействие плазм играет большую роль.

Влияние солнечного ветра

Солнечный ветер – непрерывный поток плазмы солнечного происхождения, распространяющийся приблизительно радиально от Солнца и заполняющий собой Солнечную систему до гелиоцентрический расстояний порядка 100 а.е. Солнечный ветер образуется при газодинамическом расширении солнечной короны в межпланетное пространство.

О взаимодействии солнечного ветра с кометами можно говорить только тогда, когда комета имеет довольно протяжённую и плотную атмосферу. В этом случае атмосфера должна непрерывно расширяться в окружающий межпланетный газ очень низкого давления, поскольку маленькое кометное ядро имеет пренебрежимо малую гравитацию и не может удерживать свою атмосферу в равновесии. Основной причиной возникновения атмосферы является испарение твёрдого вещества, из которого состоит ядро, вследствие его прогревания солнечным излучением. При этом испарение происходит прямо из твёрдого состояния без перехода в жидкую фазу (возгонка). Поскольку кометное ядро почти невидимо при помощи астрономических приборов, то важным представляется построение его теоретических моделей. В настоящее время считается, что ядро – это конгломерат каменистых частиц и замороженной летучей компоненты ( это могут быть молекулы CO2, h3O, Ch5 и т.п.). В ядре ледяные соли из замороженных газов чередуются с пылевыми слоями. По мере прогревания солнечным излучением газы (типа испаряющегося «сухого» льда) истекают наружу (в окружающий комету вакуум), увлекая за собой облака пыли. В результате ядро кометы является источником газопылевого потока, вытекающего навстречу солнечному ветру.

«Знаменитые» кометы

Название

Год открытия

Описание

Комета Галлея

1705

Возвращается каждые 76 лет, начиная с 240 г. до н.э.

Комета Лекселя

1770

Ближайшая к Земле комета, проходит от нее в 2,2 млн км.

Комета Энке

1786

Очень короткий период обращения - всего 3,3 года

Большая мартовская комета

1843

Имеет гигантский хвост длинной 320 млн км.

Большая комета

1861

Эффектный веерообразный хвост

Комета Свифта-Туттля

1862

Порождает метеорный поток Персеид

Комета Аренда-Ролана

1956

Имеет хвост, повернутый к Солнцу

Комета Икейя-Секи

1965

Яркая комета, пролетает близко от Солнца, период обращения 880 лет

Комета Беннета

1970

Эффектно загнутый хвост и струи из ядра

Комета Когоутека

1973

Сфотографирована АМС "Пионер"

Комета Уэста

1975

Самая яркая после Икейя-Секи

Комета Шумейкера-Леви

1993

Распалась на куски и упала на Юпитер (1994)

Комета Хейла-Боппа

1995

Была видима невооруженным глазом в 1997 году

Комета Якутаке

1996

Самая яркая после кометы Уэста

Комета Тайбера

1996

Предполагается, что может быть яркой, но сейчас потускнела

Когда комета наблюдается впервые, обычно на расстоянии нескольких астрономических единиц от Солнца, она выглядит, как размытая звезда. По мере приближения к Солнцу у кометы обнаруживается хвост, почти всегда направленный от Солнца.

Ежегодно наблюдается около десятка комет, из них 6-7 новых, а 4-5 наблюдавшихся ранее, причем об их повторном появлении известно заранее.

Комета Шумейкеров-Леви 9

Комета, которая врезалась в планету Юпитер в июле 1994 г. Когда эта комета была впервые обнаружена на фотографиях 25 марта 1993 г. Каролин и Юджином Шумейкерами и Дэвидом Леви, она находилась на удлиненной орбите вокруг Юпитера с 2-летним периодом обращения и представляла собой цепочку, состоящую примерно из 20 отдельных фрагментов. Расчеты показали, что она вращалась вокруг Юпитера в течение нескольких десятилетий, но разделилась под действием приливных сил при близком подходе к Юпитеру в июле 1992 г. Эта встреча обусловила и изменение движения фрагментов, вызвав их столкновение с планетой. Они друг за другом ударились о поверхность Юпитера между 16 и 22 июля 1994 г. В результате ударов в атмосфере Юпитера появились большие темные облака, причем в инфракрасном свете были заметны и яркие вспышки. Темные облака наблюдались в течение нескольких месяцев, пока не были рассеяны ветрами и турбулентными движениями.

Комета Галлея

Самая известная из всех периодических комет, которая движется по удлиненной эллиптической орбите вокруг Солнца, возвращаясь к Земле каждые 76 лет. Из исторических записей следует, что комета Галлея наблюдается в течение более 2200 лет. Эдмунд Галлей (1656-1742), в честь которого названа комета, не был ее открывателем, но он был первым, кто понял связь между кометой, которую он наблюдал в 1682 г., и некоторыми другими зарегистрированными появлениями комет, отделенными друг от друга интервалами в 76 лет. Он вычислил орбиты ряда комет, основываясь на недавно опубликованной теории Исаака Ньютона. Заметив подобие орбит комет, наблюдавшихся в 1531, 1607 и 1682 гг., он предсказал возвращение кометы в 1758-1759 гг., которое действительно наблюдалось, но уже после его смерти. Перигелий орбиты кометы Галлея лежит на расстоянии 0,59 а.е. (между орбитами Меркурия и Венеры). Наиболее удаленная точка орбиты находится вне орбиты Нептуна. Орбита наклонена к основной плоскости солнечной системы на 162°, и комета движется по орбите в направлении, противоположном движению планет. Возвращение 1986 г. было очень неблагоприятным для наблюдения с Земли, но космические зонды, запущенные несколькими странами, провели успешные исследования кометы. Ближе всех к комете подошел европейский зонд "Джотто", который 14 марта 1986 г. прошел примерно в 605 км от ее ядра. Советские зонды "Вега-1" и "Вега-2" наблюдали ядро 6 и 9 марта 1986 г. с расстояний 8890 и 8030 км, и собранная ими информация была использована для корректировки курса "Джотто" на последнем участке. Были запущены также два маленьких японских зонда. Результаты наблюдений окончательно подтвердили существование у кометы твердого ядра, вероятно, состоящего из льда и пыли. Оно имеет неправильную удлиненную форму, напоминающую картофелину, размерами 16 x 8 км. Ядро темное, отражающее только 4% падающего солнечного света. Оно медленно вращается, совершая один оборот за 7,1 суток (с 3,7-суточной прецессией). На обращенной к Солнцу стороне измеренная температура достигала 350 K, что достаточно для таяния льда, и там наблюдались выбросы вещества. С кометой Галлея связаны два метеорных потока (Эта-Аквариды и Ориониды).

Kомета Хиякутаке

Большая комета, которая по яркости достигла нулевой величины в марте 1996 г. и образовала хвост, протяженность которого оценивается по крайней мере в 7°. Ее видимая яркость в значительной степени объясняется близостью к Земле - комета прошла от нее на расстоянии менее 15 млн.

Метеориты

Метеорит – кусок внеземного вещества, упавший на поверхность Земли; дословно – «камень с неба».

Метеориты – это старейшие из известных минералов (4,5 млрд. лет), поэтому в них должны сохраниться следы процессов, сопровождавших формирование планет. Пока на Землю не были доставлены образцы лунного грунта, метеориты оставались единственными образцами внеземного вещества. Геологи, химики, физики и металлурги собирают и изучают метеориты уже более 200 лет. Из этих исследований возникла наука о метеоритах. Хотя первые сообщения о падении метеоритов появились давно, ученые относились к ним весьма скептически. Разнообразные факты заставили их, в конце концов, поверить в существование метеоритов. В 1800–1803 несколько известных европейских химиков сообщили, что химический состав «метеорных камней» из разных мест падения схож, но отличается от состава земных пород. Наконец, когда в 1803 в Эгле (Франция) разразился ужасный «каменный дождь», усыпавший землю осколками и засвидетельствованный множеством возбужденных очевидцев, Французская академия наук вынуждена была согласиться, что это действительно были «камни с неба». Теперь считается, что метеориты – это фрагменты астероидов и комет.

Метеориты делят на «упавшие» и «найденные». Если человек видел, как метеорит падал сквозь атмосферу и затем действительно обнаружил его на земле (событие редкое), то такой метеорит называют «упавшим». Если же он был найден случайно и опознан, что типично для железных метеоритов, то его называют «найденным». Метеоритам дают имена по названиям мест, где их нашли. В некоторых случаях обнаруживается не один, а несколько осколков. Например, после метеоритного дождя 1912 в Холбруке (шт. Аризона) было собрано более 20 тыс. фрагментов.

Типы метеоритов.

Встречаются метеориты из различного вещества. Некоторые в основном состоят из сплава железа и никеля, содержащего до 40% никеля. Среди упавших метеоритов всего 5,7% железных, но в коллекциях их доля значительно больше, поскольку они медленнее разрушаются под влиянием воды и ветра, к тому же их легче обнаружить по внешнему виду. Если отполировать срез железного метеорита и слегка протравить кислотой, то часто на нем можно увидеть кристаллический рисунок из пересекающихся полос, образованный сплавами с различным содержанием никеля. Этот рисунок называют «видманштеттеновы фигуры» в честь А.Видманштеттена (1754–1849), первым наблюдавшего их в 1808.

Каменные метеориты подразделяют на две большие группы: хондриты и ахондриты. Наиболее часто встречаются хондриты, составляя 84,8% от всех упавших метеоритов. Они содержат округлые зерна миллиметрового размера – хондры; некоторые из метеоритов почти целиком состоят из хондр. В земных породах хондры не найдены, но похожие по размеру стекловидные зерна обнаружены в лунном грунте. Химики тщательно изучили их, поскольку химический состав хондр, вероятно, представляет первичное вещество Солнечной системы. Этот стандартный состав называют «космическим обилием элементов». В хондритах определенного типа, содержащих до 3% углерода и 20% воды, усиленно искали признаки биологического вещества, но ни в этих, ни в других метеоритах не обнаружили никаких признаков живых организмов. Ахондриты лишены хондр и по виду напоминают лунную породу.

Родительские тела метеоритов. Изучение минералогического, химического и изотопного состава метеоритов показало, что они являются осколками более крупных объектов Солнечной системы. Максимальный радиус этих родительских тел оцениваются в 200 км. Примерно такой размер имеют самые крупные астероиды. Оценка основана на скорости остывания железного метеорита, при которой получаются два сплава с никелем, образующие видманштеттеновы фигуры. Каменные метеориты, вероятно, были выбиты с поверхности небольших планет, лишенных атмосферы и покрытых кратерами, как Луна. Космическое излучение разрушило поверхность этих метеоритов так же, как и лунных камней. Тем не менее, химический состав метеоритов и лунных образцов настолько различается, что совершенно очевидно – метеориты прибыли не с Луны. Ученые смогли сфотографировать два метеорита в процессе падения и вычислить по фотографиям их орбиты: оказалось, что эти тела пришли из пояса астероидов. Вероятно, астероиды служат основными источниками метеоритов, хотя некоторые из них могут быть частицами испарившихся комет.

Падение метеоритов

Иногда пути малых небесных тел пересекаются с земной орбитой, и странники могут столкнуться с нашей планетой. Небесные тела врезаются в земную атмосферу, но большинство сгорает в ней, не долетев до поверхности, - это так называемые падающие звёзды. Сгорающие полностью называются метеорами, а достигающие Земли – метеоритами. Болиды – яркие метеоры, превосходящие блеском звёзды, - видны даже днём.

Учёные выделяют несколько типов метеоритов: одни состоят из камня, другие из железа и никеля, в-третьих, много углерода. Метеорит может упасть в любую точку земного шара в любое время; крупный способен наделать много бед, и если за всю историю не зафиксировано гибели человека от метеорита, то только потому, что люди недостаточно плотно населяют земную поверхность. Однако встреча Земли с крупным метеоритом может привести к природной катастрофе: учёные считают, что столкновение с небесным телом диаметром около 10 км, происшедшее 65 млн.лет назад, привело к изменению климата и вымиранию динозавров.

До тех пор пока метеорит не достиг Земли, его называют метеороидом. Метеороиды влетают в атмосферу со скоростями от 11 до 30 км/с. На высоте около 100 км из-за трения о воздух метеороид начинает нагреваться; его поверхность раскаляется, и слой толщиной в несколько миллиметров плавится и испаряется. В это время его видно как яркий метеор. Расплавленное и испарившееся вещество непрерывно сносится напором воздуха – это называют абляцией. Иногда под напором воздуха метеор дробится на множество фрагментов. Проходя сквозь атмосферу, он теряет от 10 до 90% начальной массы. Тем не менее, внутреняя часть метеора обычно остается холодной, поскольку не успевает прогреться за те 10 с, что длится падение. Преодолевая сопротивление воздуха, небольшие метеориты к моменту удара о землю существенно снижают скорость полета и углубляются в грунт обычно не более чем на метр, а иногда просто остаются на поверхности. Крупные метеориты тормозятся незначительно и при ударе производят взрыв с образованием кратера, такого, например, как в Аризоне или на Луне. Крупнейшим из найденных метеоритов считается железный метеорит Гоба (Южн. Африка), вес которого оценивается в 60 т. Его никогда не сдвигали с того места, где нашли.

Каждый год несколько метеоритов подбирают сразу после их наблюдавшегося падения. К тому же все больше обнаруживают старых метеоритов. В двух местах на востоке шт. Нью-Мексико, где ветер постоянно выдувает почву, было найдено 90 метеоритов. На поверхности испаряющихся ледников в Антарктиде были обнаружены сотни метеоритов. Недавно упавшие метеориты покрыты остеклованной спекшейся коркой, которая темнее внутренней части. Метеориты представляют большой научный интерес; в большинстве крупных естественно-научных музеев и во многих университетах есть специалисты по метеоритам.

Звёздные дожди

Когда астероид или комета распадаются на части, их обломки рассеиваются на прежней орбите. Если её пересекает Земля, происходит так называемый звёздный дождь – массовое падение метеоритов. Звездопады представляют собой незабываемое зрелище: «падающие звезды» словно разлетаются во все стороны из одной точки – радианты.

Не все метеорные дожди имеют равную интенсивность. Они классифицируются в соответствии с зенитным часовым коэффициентом, который определятся как количество метеоров, видимых невооруженным глазом при идеальных условиях, когда радиант находится в зените, или прямо над головой наблюдателя. На практике таких условий не существует, поэтому фактически коэффициент ниже, чем теоретический предел. Метеорные потоки носят названия тех созвездий, где расположен их радиант. Так, метеорный поток с радиантом в созвездии Льва называется Леонидами, а с радиантом в созвездии Дракона – Драконидами.

Метеорный дождь Леонид, например, последний раз наблюдался в середине ноября 1966 года – он продолжался всего 20 минут, и каждую минуту вспыхивало свыше 1000 метеоров.

Почти из года в год наблюдается в августе месяце поток Персеид с радиантом в созвездии Персея. Этот поток является едва ли не самым популярным объектом любительских астрономических наблюдений.

Тунгусский метеорит

Один из самых знаменитых метеоритов так никогда и не был найден. 30 июня 1908г. в бассейне сибирской реки Подкаменная Тунгуска (Красноярский край) прогремел оглушительный взрыв. Яркая вспышка света была видна за сотни километров от места происхождения, а грохот разнёсся на тысячи километров. Взрывная волна обрушила в близлежащем селении несколько домов (к счастью, никто из местных жителей не пострадал), буквально снесла тайгу на огромной территории. Очевидцы наблюдали, как по небу летело нечто огромное и светящееся. За падающим телом тянулся след, характерный для метеоритов, слышался мощный гул. Огромный шар очень скоро превратился в огненный столб высотой 20 км, а когда он исчез, появился вначале дым, а потом – огромная туча.

Прибыв на место взрыва, учёные обнаружили, что деревья повалены по кругу диаметром более 60 км, а у уцелевших деревьев начисто срезаны ветви, остались только голые, как телеграфные столбы, стволы. Однако не было найдено никаких обломков небесного тела: скорее всего, метеорит состоял из рыхлого снега, превратившегося в пар ещё на высоте 10 км, а повалила лес его упавшая на Землю ударная волна.

В районе Тунгусской катастрофы в почве были обнаружены микроскопические силикатные и магнетитовые шарики, внешне сходные с метеоритной пылью и представляющие собой распыленное при взрыве вещество ядра кометы. Ночное свечение могло быть связано с рассеянием солнечного света пылевым хвостом кометы в верхних слоях атмосферы. Тунгусский метеорит, или как его часто называют в научной литературе, Тунгусское падение, до конца еще не изучен. Некоторые результаты исследований еще требуют своего объяснения, хотя они и не противоречат кометной гипотезе. Тем не менее в течение последних десятилетий были предложены и другие гипотезы, которые не подтвердились при детальных исследованиях.

Согласно одной из гипотез, Тунгусский метеорит состоял из "антивещества". Взрыв, наблюдавшийся при падении Тунгусского метеорита, – результат взаимодействия "вещества" Земли с "антивеществом" метеорита, которое сопровождается выделением огромного количества энергии. Однако предположение о таком ядерном взрыве противоречит тем фактам, что в районе тунгусского падения не наблюдается повышенная радиоактивность, что в горных породах нет радиоактивных элементов, которые должны были бы быть, если бы там действительно произошел ядерный взрыв. Была предложена также гипотеза о том, что Тунгусский метеорит представлял собой микроскопическую черную дыру, которая войдя в Землю в Тунгусской тайге, пронзила ее насквозь и вышла из Земли в Атлантическом океане. Однако явления, которые должны были бы произойти при таком событии (не говоря уже о возможности существования черных дыр малой массы) – синее свечение, вытянутая форма вывала леса, отсутствие потери массы и другие, – противоречат фактам, наблюдавшимся при Тунгусском падении. Таким образом, и эта гипотеза оказалась несостоятельной.

Заключение

Грозит ли Земле гибель от астероидов? Многих волнует этот не простой вопрос. В средствах массовой информации мы видим устрашающие заголовки: «Апокалипсис грядёт» или «Конец света близок!» Многие такие заголовки и статьи заставляют всерьёз задуматься и поволноваться. Так как все знаю, что нет «дыма без огня». Так откуда же у прессы такая информация и почему конец света ещё не наступил? Оказывается, что астероиды действительно подходят к Земле достаточно близко по космическим меркам.

В 1968 году по подсчётам австралийских астрономов астероид Икар(1566), при сближение с нашей планетой, должен рухнуть в Индийский океан в районе африканского побережья. Но после перепроверки этих подсчётов выяснилось, что Икар действительно тесно должен сблизиться с Землёй, но эта теснота сугубо астрономическая. И в момент максимального сближения оба небесных тела будут находиться на расстоянии примерно 6,5 миллионов километров. 14 июня 1968 года Икар действительно прошёл мимо Земли, и был доступен для наблюдений любительскими средствами наблюдений неба.

В наши дни тоже много говорят о столкновениях астероидов с Землёй. Астрономы конечно не стоят на месте и изучают эту проблему и вероятность подобного. Например астронавты Расти Швейцкарт и Эд Лу обратились к NASA с просьбой предотвратить возможную гибель цивилизации в 2036 году, когда траектории Земли и астероида Apophis (2004 MN4) могут пересечься. Для этого ими был учрежден специальный фонд. Ученые считают столкновение маловероятным, однако исключить его полностью не готовы.

На сегодняшний момент науке неизвестно ни одного астероида, который по Туринской шкале (шкала астероидной опасности, аналогична шкале Рихтера) имел бы оценку свыше 0 баллов. Однако, если быть до конца справедливым, стоит отметить, что на данный момент обнаружено около 20% потенциально опасных астероидов. Но, тем не менее, оценивая ближайшее будущее, можно сказать, что астероидов выше 0 баллов по Туринской шкале не ожидается. Ни один из известных околоземных астероидов в обозримом будущем опасности для землян не представляет!

Список использованной литературы

  1. Энциклопедия «Астрономия» Москва «Росмэн» 2006 год

  2. Астрономия с Патриком Муром Москва 1999 год

  3. В.Н. Комаров «Час звездочета» Москва 2001 год

  4. В.В. Порфирьев «Астрономия» учебник для 11 класса общеобразовательных учреждений «Просвещение» АО «Московские учебники» 2004 год

  5. Глобальная сеть Интернет

topref.ru

Реферат Астрономия Малые тела солнечной системы

ПЛАН Введение 1. Астероиды 2. Метеориты 3. Мелкие осколки 4. Кометы 5. Поиск планет в Солнечной системе Литература Введение В Солнечной системе кроме больших планет и их спутников движется множество так называемых малых тел: астероидов, комет и метеоритов. Малые тела Солнечной системы имеют размеры от сотен микрон до сотен километров. Астероиды. С точки зрения физики астероиды или, как их еще называют, малые планеты - это плотные и прочные тела. По составу и свойствам их можно условно разделить на три группы: каменные, железокаменные и железные. Астероид является холодным телом. Но он, как, например, и Луна, отражает солнечный свет, и поэтому мы можем наблюдать его в виде звездообразного объекта. Отсюда и происходит название "астероид", что в переводе с греческого означает звездообразный. Так как астероиды движутся вокруг Солнца, то их положение по отношению к звездам постоянно и довольно быстро меняется. По этому первоначальному признаку наблюдатели и открывают астероиды. Кометы, или "хвостатые звезды", известны с незапамятных времен. Комета - это сложное физическое явление, которое кратко можно описать с помощью нескольких понятий. Ядро кометы представляет собой смесь или, как говорят, конгломерат пылевых частиц, водяного льда и замерзших газов. Отношение содержания пыли к газу в кометных ядрах составляет примерно 1:3. Размеры кометных ядер, по оценке ученых, заключены в интервале от 1 до 100 км. Сейчас дискутируется возможность существования как более мелких, так и более крупных ядер. Известные короткопериодические кометы имеют ядра размером от 2 до 10 км. Размер же ядра ярчайшей кометы Хейли-Боппа, которая наблюдалась невооруженным глазом в 1996 году, оценивается в 40 км. Метеороид – это небольшое тело, обращающееся вокруг Солнца. Метеор – это метеороид, влетевший в атмосферу планеты и раскалившийся до блеска. А если его остаток упал на поверхность планеты, его называют метеоритом. Метеорит считают «упавшим», если есть очевидцы, наблюдавшие его полет в атмосфере; в противном случае его называют «найденным». Рассмотрим выше указанные малые тела Солнечной системы более подробно. 1. Астероиды Эти космические тела отличаются от планет прежде всего своими размерами. Так, самая большая из маленьких планет Церера имеет в поперечнике 995 км; следующая за ней (по размеру): Палада-560 км, Хигея - 380 км, Психея - 240 км и т.д. Для сравнения можно указать, что наименьшая из больших планет Меркурий имеет диаметр 4878 км, т.е. в 5 раз превосходит - поперечник Цереры, а массы их различаются во многие сотни раз. Общее число малых планет, доступных наблюдению современными телескопами, определяется в 40 тыс., но общая их масса в 1 тыс. раз меньше массы Земли. Движение малых планет вокруг Солнца происходит по эллиптическим орбитам, но более вытянутым (средний эксцентриситет орбит у них 0,51), чем у больших планет, а наклон орбитальных плоскостей к эклептике у них больше, чем у больших планет (средний угол 9,54). Основная масса планет вращается вокруг Солнца между орбитами Марса и Юпитера, образуя так называемый пояс астероидов. Но имеются и малые планеты, орбиты которых располагаются ближе к Солнцу, чем орбита Меркурия. Самые же далекие находятся за Юпитером и даже за Сатурном. Исследователи космоса высказывают различные соображения о причине большой концентрации астероидов в сравнительно узком пространстве межпланетной среды между орбитами Марса и Юпитера. Одной из наиболее распространенных гипотез происхождения тел пояса астероидов является представление о разрушении мифической планеты Фаэтон. Сама по себе идея о существовании планеты поддерживается многими учеными и даже как будто подкреплена математическими расчетами. Однако необъяснимой остается причина разрушения планеты. Высказываются различные предположения. Одни исследователи считают, что разрушение Фаэтона произошло вследствии его столкновения с каким-то крупным телом. По мнению других, причинами распада планеты были взрывные процессы в ее недрах. В настоящее время проблема происхождения тел астероидного пояса входит составным элементом в обширную программу исследований космоса на международном и национальных уровнях. Среди малых планет выделяется своеобразная группа тел, орбиты которых пересекаются с орбитой Земли, а следовательно, имеется потенциальная возможность их столкновения с нею. Планеты этой группы стали называть Apollo object, или просто Apollo (Wetherill, 1979). Впервые о существовании Apollo стало известно с 30-х годов текущего столетия. В 1932 г. был обнаружен астероид. Его назвали Apollo 1932 HA. Но он не возбудил особого интереса, хотя его название стало нарицательным для всех астероидов, пересекающих земную орбиту. В 1937 г. космическое тело с поперечником приблизительно в 1 км прошло в 800 тыс. км от Земли и в двукратном расстоянии от Луны. Впоследствии его назвали Гермес. На сегодняшний день выявлено 31 такое тело, и каждое из них получило собственное название. Размеры их поперечников колеблются от 1 до 8 км, а наклон орбитальных плоскостей к эклиптике находиться в пределах от 1 до 68. Пять из них вращаются на орбитах между Землей и Марсом, а остальные 26 - между Марсом и Юпитером (Wetherill, 1979). Полагают, что из 40 тыс. Малых планет астероидного пояса с поперечником более 1 км может оказаться несколько сот Apollo. Поэтому столкновение таких небесных тел с Землей вполне вероятно, но через весьма длительные интервалы времени. Можно полагать, что раз в столетие одно из таких космических тел может пройти вблизи Земли на расстоянии меньше, чем от нас до Луны, а раз за 250 тыс. лет может произойти столкновение его с нашей планетой. Удар такого тела выделяет энергию равную 10 тыс. Водородных бомб каждая мощностью 10 Мт. При этом должен образоваться кратер диаметром около 20 км. Но такие случаи редки и за человеческую историю неизвестны. Гермес относится к астероидам III класса, а ведь много таких тел и более крупного размера - II и I классов. Удар при столкновении их с Землей, естественно, будет еще более значительным. Когда в 1781 г. был открыт Уран его средняя гелиоцентричекое расстояние оказалось соответствующим правилу Тициуса - Бодэ, то с 1789 г. начались поиски планеты, которая, согласно этому правилу, должна была находиться между орбитами Марса и Юпитера, на среднем расстоянии а=2,8 а.е. от солнца. Но разрозненные обзоры неба не приносили успеха, и поэтому 21 сентября 1800 г. несколько немецких астрономов во главе с К. Цахом решили организовать коллективные поиски. Они разделили весь поиск зодиакальных созвездий на 24 участка и распределили между собой для тщательных исследований. Но не успели они поступить к систематическим розыскам, как 1-го января 1871г. итальянский астроном Дж. Пиации (1746-1826) обнаружил в телескоп звездообразный объект седьмой звездной величины, медленно перемещавшийся по созвездию Тельца. Вычисленная К. Гаусом (1777-1855) орбита объекта оказалась планетой, соответствующей правилу Тициуса-Бодэ: большая полуось а=2,77 а.е. и эксцентриситет е=0,080. Вновь открытую планету Пиации назвал Церерой. 28 марта 1802 г. немецкий врач и астроном В.Ольберс (1758-1840) обнаружил вблизи Цереры еще одну планету (8m) , названную Палладой (а=2,77 а.е., е=0,235). 2-го сентября 1804 г. была открыта третья планета, Юнона (а=2,67 а.е.), а 29 марта 1807 г.- 4, Веста (а=2,36 а.е.). Все вновь открытые планеты имели звездообразный вид, без дисков, свидетельствующий об их небольших геометрических размерах. Поэтому эти небесные тела назвали малыми планетами или, по предложению В. Гершеля , астероидами ( от греч. «астр» - звездный и «еидос»- вид). К 1891 г. визуальными методами было обнаружено около 320 астероидов. В конце 1891 г. немецкий астроном М. Вольф (1863-1932) предложил фотографический метод поисков: при 2-3- часовой экспозиции изображения звезд на фотопластинке получались точечные , а след движущегося астероида - в виде небольшой черточки. Фотографические методы привели к резкому увеличению открытий астероидов. Особенно интенсивные исследования малых планет проводятся сейчас в Институте теоретической астрономии ( в Петербурге ) и в Крымской астрофизической обсерватории Академии наук России. Астероидам , орбиты которых надежно определены, присваивают имя и порядковый номер. Таких астероидов сейчас известно свыше 3500, но в Солнечной системе значительно больше. Из указанного числа известных астероидов астрономы Крымской астрофизической обсерватории открыли около 550, увековечив в их названиях имена известных людей. Подавляющее большинство ( до 98% ) известных астероидов движется между орбитами Марса и Юпитера, на средних расстояниях от Солнца от 2,06 до 4,30 а.е. ( периоды обращения от 2,96 до 8,92 года). Однако встречаются астероиды с уникальными орбитами, и им присваиваются мужские имена, как правило из греческой мифологии. Первые три из этих малых планет движутся вне пояса астероидов, причем в перигелии Икар подходит к Солнцу вдвое ближе Меркурия, а Гермес и Адонис - ближе Венеры. Они могут сближаться с Землейна расстоянии от 6 млн. до 23 млн. км, а Гермес в 1937 г. прошел вблизи Земли даже на расстоянии 580 тыс. км, т.е. всего лишь в полтора раза дальше Луны. Гидальго же в афелии уходит за орбиту Сатурна. Но Гидальго не является исключением. За последние годы открыто около 10 астероидов, перигелии которых расположены вблизи орбит планет земной группы, а афелии - вблизи орбит Юпитера. Такие орбиты характерны для комет семейства Юпитера и указывают на возможное общее происхождение астероидов и комет. В 1977 г. обнаружен уникальный астероид, который обращается вокруг Солнца по орбите с большой полуосью а=13,70 а.е. и эксцентриситетом е=0,38, так что в перигелии (q=8,49 а.е.) он заходит внутрь орбиты Сатурна, а в афелии (Q=18,91 а.е.) приближается к орбите Урана. Он назван Хироном. По-видимому, существуют и другие подобные далекие астероиды, поиски которых продолжаются. Блеск большинства известных астероидов во время противостояния от 7m до 16m, но есть и более слабые объекты. Самым ярким (до 6m ) является Веста. Поперечники астероидов вычисляются по их блеску и отражательной способности в визуальных и инфракрасных лучах. Оказалось, что крупных астероидов не так уж много. Наиболее крупные - это Церера (поперечник 1000 км), Паллада (610 км), Веста (540 км) и Гигия (450 км). Только у 14 астероидов поперечники более 250 км, а у остальных меньше, вплоть до 0,7 км. У тел таких малых размеров не может быть сфероидальной формы, и все астероиды (кроме, может быть, наиболее крупных) представляют собой бесформенные глыбы. Массы астероидов крайне различные: наибольшей, близкой к 1,5. 1021 кг (т.е. в 4 тыс. раз меньше массы земли), обладает Церера. Суммарная масса всех астероидов не превышает 0,001 массы Земли. Конечно, все эти небесные тела лишены атмосферы. У многих астероидов по регулярному изменению их блеска обнаружено осевое вращение. В частности, период вращения Цереры равен 9,1 ч , а Паллады - 7,9ч . Быстрее всех вращается Икар, за 2ч 16м. Изучение отражательной способности многих астероидов позволило объединить их в три основные группы: темные, светлые и металлические. Поверхность темных астероидов отражает всего лишь до 5% падающего на нее солнечного света и состоит из веществ, сходными с черными базальтовыми и углистыми породами. Эти астероиды часто называют углистыми. Светлые астероиды отражают от 10% до 25% солнечного света, что роднит их поверхность с кремниевыми соединениями - это каменные астероиды. Металлические астероиды (их абсолютное меньшинство) тоже светлые, но по своим отражательным свойствам их поверхность похожа на железоникелевые сплавы. Такое подразделение астероидов подтверждается и химическим составом выпадающих на Землю метеоритов . Незначительное число изученных астероидов не относится ни к одной из трех основных групп. Показательно, что в спектрах углистых астероидов обнаружена полоса поглощения воды (l= 3мкм). В частности, поверхность астероида Цереры состоит из минералов, похожих на земные глины и содержащих около 10% воды. При небольших размерах и массах астероидов давление в их недрах невелико: даже у самых крупных астероидов оно не превышает 7 105 8 10 5 Гпа (700 - 800 атм) и не может вызвать разогрева их твердых холодных недр. Лишь поверхность астероидов очень слабо нагревается далеким от них Солнцем, но и эта незначительная энергия излучается в межпланетное пространство. Вычисленная по законам физики температура поверхности подавляющего большинства астероидов оказалась близкой к 150 - 170 К (-120...-100°С). И только у немногих астероидов, которые проходят вблизи Солнца, поверхность в такие периоды сильно нагревается . Так, температура поверхности Икара повышается почти до 1000 К (+730°С), а при удалении от Солнца снова резко понижается. Орбиты остальных астероидов подвержены значительным возмущениям от гравитационного воздействия больших планет, главным образом Юпитера. Особенно сильные возмущения испытывают небольшие астероиды, что приводит к столкновениям этих тел и их дроблению на соколки самых разнообразных размеров -б от сотен метров в поперечнике до пылинок. В настоящее время физическая природа астероидов изучается, потому что по ней можно проследить эволюцию (развитие) вещества, из которого сформировалась Солнечная система. 2. Метеориты В околоземном космическом пространстве движутся самые различные метеороиды (космические осколки больших астероидов и комет). Их скорости лежат в диапазоне от 11 до 72 км/с. Часто бывает так, что пути их движения пересекаются с орбитой Земли и они залетают в её атмосферу. Метеориты - каменные или железные тела, падающие на Землю из межпланетного пространства. Падение метеоритов на Землю сопровождается звуковым, световым и механическим явлением. По небу проносится яркий огненный шар называемый болидом, сопровождаемый хвостом и разлетающимися искрами. После того как болид исчезает, через несколько секунд раздаются похожие на взрывы удары, называемые ударными волнами, которые иногда вызывают значительное сотрясение грунта и зданий. Явления вторжения космических тел в атмосферу имеют три основные стадии: 1. Полёт в разреженной атмосфере (до высот около 80 км), где взаимодействие молекул воздуха носит карпускулярный характер. Частицы воздуха соударяются с телом, прилипают к нему или отражаются и передают ему часть своей энергии. Тело нагревается от непрерывной бомбардировки молекулами воздуха, но не испытывает заметного сопротивления, и его скорость остаётся почти неизменной. На этой стадии, однако, внешняя часть космического тела нагревается до тысячи градусов и выше. Здесь характерным параметром задачи является отношение длины свободного пробега к размеру тела L, которое называется числом Кнудсена Kn. В аэродинамике принято учитывать молекулярный подход к сопротивлению воздуха при Kn>0.1. 2. Полёт в атмосфере в режиме непрерывного обтекания тела потоком воздуха, то есть когда воздух считается сплошной средой и атомно-молекулярный характер его состава явно не учитывается. На этой стадии перед телом возникает головная ударная волна, за которой резко повышается давление и температура. Само тело нагревается за счет конвективной теплопередачи, а так же за счет радиационного нагрева. Температура может достигать несколько десятков тысяч градусов, а давление до сотен атмосфер. При резком торможении появляются значительные перегрузки. Возникают деформации тел, оплавление и испарение их поверхностей, унос массы набегающим воздушным потоком (абляция). 3. При приближении к поверхности Земли плотность воздуха растёт, сопротивление тела увеличивается, и оно либо практически останавливается на какой-либо высоте, либо продолжает путь до прямого столкновения с Землёй. При этом часто крупные тела разделяются на несколько частей, каждая из которых падает отдельно на Землю. При сильном торможении космической массы над Землёй сопровождающие его ударные волны продолжают своё движение к поверхности Земли, отражаются от неё и производят возмущения нижних слоёв атмосферы, а так же земной поверхности. Процесс падения каждого метеороида индивидуален. Нет возможности в кратком рассказе описать все возможные особенности этого процесса. «Найденных» метеоритов значительно больше, чем «упавших». Часто их находят туристы или крестьяне, работающие в поле. Поскольку метеориты имеют темный цвет и легко различимы на снегу, прекрасным местом для их поиска служат ледяные поля Антарктики, где уже найдены тысячи метеоритов. Впервые метеорит в Антарктике обнаружила в 1969 группа японских геологов, изучавших ледники. Они нашли 9 фрагментов, лежавших рядом, но относящихся к четырем разным типам метеоритов. Оказалось, что метеориты, упавшие на лед в разных местах, собираются там, где движущиеся со скоростью несколько метров в год ледниковые поля останавливаются, упираясь в горные хребты. Ветер разрушает и высушивает верхние слои льда (происходит его сухая возгонка – абляция), и метеориты концентрируются на поверхности ледника. Такие льды имеют голубоватый цвет и легко различимы с воздуха, чем и пользуются ученые при изучении мест, перспективных для сбора метеоритов. Важное падение метеорита произошло в 1969 в Чиуауа (Мексика). Первый из множества крупных осколков был найден вблизи дома в деревеньке Пуэблито де Альенде, и, следуя традиции, все найденные фрагменты этого метеорита были объединены под именем Альенде. Падение метеорита Альенде совпало с началом лунной программы «Аполлон» и дало ученым возможность отработать методы анализа внеземных образцов. В последние годы установлено, что некоторые метеориты, содержащие белые обломки, внедренные в более темную материнскую породу, являются лунными фрагментами. Метеорит Альенде относится к хондритам – важной подгруппе каменных метеоритов. Их называют так, потому что они содержат хондры (от греч. chondros, зёрнышко) – древнейшие сферические частицы, сконденсировавшиеся в протопланетной туманности и затем вошедшие в состав более поздних пород. Подобные метеориты позволяют оценивать возраст Солнечной системы и ее исходный состав. Богатые кальцием и алюминием включения метеорита Альенде, первыми сконденсировавшиеся из-за своей высокой температуры кипения, имеют измеренный по радиоактивному распаду возраст 4,559 ± 0,004 млрд. лет. Это наиболее точная оценка возраста Солнечной системы. К тому же все метеориты несут в себе «исторические записи», вызванные длительным влиянием на них галактических космических лучей, солнечного излучения и солнечного ветра. Изучив повреждения, нанесенные космическими лучами, можно сказать, как долго метеорит пребывал на орбите до того, как попал под защиту земной атмосферы. Прямая связь между метеоритами и Солнцем следует из того факта, что элементный состав наиболее старых метеоритов – хондритов – точно повторяет состав солнечной фотосферы. Единственные элементы, содержание которых различается, – это летучие, такие, как водород и гелий, обильно испарявшиеся из метеоритов в ходе их остывания, а также литий, частично «сгоревший» на Солнце в ядерных реакциях. Понятия «солнечный состав» и «хондритный состав» используют как равнозначные при описании упомянутого выше «рецепта солнечного вещества». Каменные метеориты, состав которых отличается от солнечного, называют ахондритами. 3. Мелкие осколки. Околосолнечное пространство заполнено мелкими частицами, источниками которых служат разрушающиеся ядра комет и столкновения тел, в основном, в поясе астероидов. Самые мелкие частицы постепенно приближаются к Солнцу в результате эффекта Пойнтинга – Робертсона (он заключается в том, что давление солнечного света на движущуюся частицу направлено не точно по линии Солнце – частица, а в результате аберрации света отклонено назад и поэтому тормозит движение частицы). Падение мелких частиц на Солнце компенсируется их постоянным воспроизводством, так что в плоскости эклиптики всегда существует скопление пыли, рассеивающее солнечные лучи. В самые темные ночи оно заметно в виде зодиакального света, тянущегося широкой полосой вдоль эклиптики на западе после захода Солнца и на востоке перед его восходом. Вблизи Солнца зодиакальный свет переходит в ложную корону (F-корона, от false – ложный), которая видна только при полном затмении. С ростом углового расстояния от Солнца яркость зодиакального света быстро падает, но в антисолнечной точке эклиптики она вновь усиливается, образуя противосияние; это вызвано тем, что мелкие пылевые частицы интенсивно отражают свет назад. Время от времени метеороиды попадают в атмосферу Земли. Скорость их движения так велика (в среднем 40 км/с), что почти все они, кроме самых мелких и самых крупных, сгорают на высоте около 110 км, оставляя длинные светящиеся хвосты – метеоры, или падающие звезды. Многие метеороиды связаны с орбитами отдельных комет, поэтому метеоры наблюдаются чаще, когда Земля в определенное время года проходит вблизи таких орбит. Например, ежегодно в районе 12 августа наблюдается множество метеоров, поскольку Земля пересекает поток Персеиды, связанный с частицами, потерянными кометой 1862 III. Другой поток – Ориониды – в районе 20 октября связан с пылью от кометы Галлея. Частицы размером менее 30 мкм могут затормозиться в атмосфере и упасть на землю, не сгорев; такие микрометеориты собирают для лабораторного анализа. Если частицы размером в несколько сантиметров и более состоят из достаточно плотного вещества, то они также не сгорают целиком и выпадают на поверхность Земли в виде метеоритов. Более 90% из них каменные; отличить их от земных пород может только специалист. Оставшиеся 10% метеоритов железные (в действительности они состоят из сплава железа и никеля). Метеориты считаются осколками астероидов. Железные метеориты были когда-то в составе ядер этих тел, разрушенных соударениями. Возможно, некоторые рыхлые и богатые летучими веществами метеориты произошли от комет, но это маловероятно; скорее всего, крупные частицы комет сгорают в атмосфере, а сохраняются лишь мелкие. Учитывая, как трудно достигнуть Земли кометам и астероидам, ясно, сколь полезным является изучение метеоритов, самостоятельно «прибывших» на нашу планету из глубин Солнечной системы. 4. Кометы Кометы являются самыми эффективными небесными телами в Солнечной системе. Кометы - это своеобразные космические айсберги, состоящие из замороженных газов, сложного химического состава, водяного льда и тугоплавкого минерального вещества в виде пыли и более крупных фрагментов. Хотя кометы подобно астероидам движутся вокруг Солнца по коническим кривым, внешне они разительно отличаются от астероидов. Если астероиды светят отражённым солнечным светом и в поле зрения телескопа напоминают медленно движущиеся слабые звёздочки, то кометы интенсивно рассеивают солнечный свет в некоторых наиболее характерных для комет участках спектра, и поэтому многие кометы видны невооружённым глазом, хотя диаметры их ядер редко превышают 1 - 5 км. Кометы интересуют многих учёных: астрономов, физиков, химиков, биологов, газодинамиков, историков и др. И это естественно. Ведь кометы подсказали ученым, что в межпланетном пространстве дует солнечный ветер; возможно кометы являются "виновниками" возникновения жизни на Земле, так как могли занести в атмосферу Земли сложные органические соединения. Кроме того, кометы, по- видимому, несут в себе ценную информацию о начальных стадиях протопланетного облака, из которого образовались также Солнце и планеты. При первом знакомстве с яркой кометой может показаться, что хвост - самая главная часть кометы. Но если в этимологии слова "комета" хвост явился главной причиной для подобного наименования, то с физической точки зрения хвост является вторичным образованием, развившимся из довольно крохотного ядра, самой главной части кометы как физического объекта. Ядра комет - первопричина всего остального комплекса кометных явлений, которые до сих пор всё ещё не доступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся вокруг ядра газо-пылевой оболочки, но и то, что остаётся, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в диффузной атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, т.е. располагается центр масс кометы. Туманная атмосфера, окружающая фотометрическое ядро и постепенно сходящая на нет, сливаясь с фоном неба, называется комой. Кома вместе с ядром составляют голову кометы. Вдали от Солнца голова выглядит симметричной, но с приближением к Солнцу она постепенно становится овальной, затем голова удлиняется ещё сильнее, и в противоположной от Солнца стороне из неё развивается хвост. Итак, ядро - самая главная часть кометы. Однако, до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Бесселя и Лапласа существовало представление о ядре кометы как о твердом теле, состоящем из легко испаряющихся веществ типа льда или снега, быстро переходящих в газовую фазу под действием солнечного тепла. Эта ледяная классическая модель кометного ядра была существенно дополнена и разработана в последнее время. Наибольшим признанием среди исследователей комет пользуется разработанная Уиплом модель ядра - конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (СН4, СО2, Н2О и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания солнечным теплом газы типа испаряющегося "сухого льда" прорываются наружу, увлекая за собой облака пыли. Это позволяет, например, объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер комет к активному газовыделению. Головы комет при движении комет по орбите принимают разнообразные формы. Вдали от СОЛНЦА головы комет круглые, что объясняется слабым воздействием солнечных излучений на частицы головы, и её очертания определяются изотропным расширением кометного газа в межпланетное пространство. Это бесхвостые кометы, по внешнему виду напоминающие шаровые звездные скопления. Приближаясь к Солнцу, голова кометы принимает форму параболы или цепной линии. Параболическая форма головы объясняется "фонтанным" механизмом. Образование голов в форме цепной линии связано с плазменной природой кометной атмосферы и воздействием на неё солнечного ветра и с переносимым им магнитным полем. Иногда голова кометы столь мала, что хвост кометы кажется выходящим непосредственно из ядра. Кроме изменения очертаний в головах комет то появляются, то исчезают различные структурные образования: галсы, оболочки, лучи, излияния из ядра и т.п. Большие кометы с хвостами, далеко простиравшимися по небу, наблюдались с древнейших времен. Некогда предполагалось, что кометы принадлежат к числу атмосферных явлений. Это заблуждение опроверг Браге, который обнаружил, что комета 1577 года занимала одинаковое положение среди звёзд при наблюдениях из различных пунктов, и, следовательно, отстоит от нас дальше, чем Луна. Движение комет по небу объяснил впервые Галлей (1705г.), который нашёл, что их орбиты близки к параболам. Он определил орбиты 24 ярких комет, причём оказалось, что кометы 1531 и 1682 г.г. имеют очень сходные орбиты. Отсюда Галлей сделал вывод, что эта одна и та же комета, которая движется вокруг Солнца по очень вытянутому эллипсу с периодом около 76 лет. Галлей предсказал, что в 1758 году она должна появиться вновь и в декабре 1758 года она действительно была обнаружена. Сам Галлей не дожил до этого времени и не мог увидеть, как блестяще подтвердилось его предсказание. Эта комета (одна из самых ярких) была названа кометой Галлея. Кометы обозначаются по фамилиям лиц, их открывших. Кроме того, вновь открытой комете присваивается предварительное обозначение по году открытия с добавлением буквы, указывающей последовательность прохождения кометы через перигелий в данном году. Лишь небольшая часть комет, наблюдаемых ежегодно, принадлежит к числу периодических, т.е. известных по своим прежним появлениям. Большая часть комет движется по очень вытянутым эллипсам, почти параболам. Периоды обращения их точно не известны, но есть основания полагать, что они достигают многих миллионов лет. Такие кометы удаляются от Солнца на расстояния, сравнимые с межзвездными. Плоскости их почти параболических орбит не концентрируются к плоскости эклиптики и распределены в пространстве случайным образом. Прямое направление движения встречается так же часто, как и обратное. Периодические кометы движутся по менее вытянутым эллиптическим орбитам и имеют совсем иные характеристики. Из 40 комет, наблюдавшихся более, чем 1 раз, 35 имеют орбиты, наклоненные меньше, чем на 45^ к плоскости эклиптики. Только комета Галлея имеет орбиту с наклонением, большим 90^ и, следовательно, движется в обратном направлении. Среди короткопериодических (т.е. имеющих периоды 3 - 10 лет) комет выделяется "семейство Юпитера" большая группа комет, афелии которых удалены от Солнца на такое же расстояние, как орбита Юпитера. Предполагается, что "семейство Юпитера" образовалось в результате захвата планетой комет, которые двигались ранее по более вытянутым орбитам. В зависимости от взаимного расположения Юпитера и кометы эксцентриситет кометной орбиты может, как возрастать, так и уменьшаться. В первом случае происходит увеличение периода или даже переход на гиперболическую орбиту и потеря кометы Солнечной системой, во втором - уменьшение периода. Орбиты периодических комет подвержены очень заметным изменениям. Иногда комета проходит вблизи Земли несколько раз, а потом притяжением планет- гигантов отбрасывается на более удаленную орбиту и становится ненаблюдаемой. В других случаях, наоборот, комета, ранее никогда не наблюдавшаяся, становится видимой из-за того, что она прошла вблизи Юпитера или Сатурна и резко изменила орбиту. Кроме подобных резких изменений, известных лишь для ограниченного числа объектов, орбиты всех комет испытывают постепенные изменения. Изменения орбит не являются единственной возможной причиной исчезновения комет. Достоверно установлено, что кометы быстро разрушаются. Яркость короткопериодических комет ослабевает со временем, а в некоторых случаях процесс разрушения наблюдался почти непосредственно. Классическим примером является комета Биэли. Она была открыта в 1772 году и наблюдалась в 1813, 1826 и 1832. г.г. В 1845 году размеры кометы оказались увеличенными, а в январе 1846г. наблюдатели с удивлением обнаружили две очень близкие кометы вместо одной. Были вычислены относительные движения обеих комет, и оказалось, что комета Биэли разделилась на две ещё около года назад, но вначале компоненты проектировались один на другой, и разделение было замечено не сразу. Комета Биэли наблюдалась ещё один раз, причём один компонент много слабее другого, и больше её найти не удалось. Зато неоднократно наблюдался метеорный поток, орбита которого совпадала с орбитой кометы Биэли. При решении вопроса о происхождении комет нельзя обойтись без знания химического состава вещества, из которого сложено кометное ядро. Казалось бы, что может быть проще? Нужно сфотографировать побольше спектров комет, расшифровать их - и химический состав кометных ядер нам сразу же станет известным. Однако, дело обстоит не так просто, как кажется на первый взгляд. Спектр фотометрического ядра может быть просто отражённым солнечным или эмиссионным молекулярным спектром. Отражённый солнечный спектр является непрерывным и ничего не сообщает о химическом составе той области, от которой он отразился - ядра или пылевой атмосферы, окружающей ядро. Эмиссионный газовый спектр несёт информацию о химическом составе газовой атмосферы, окружающей ядро, и тоже ничего не говорит нам о химическом составе поверхностного слоя ядра, так как излучающие в видимой области молекулы, такие как С2, СN, СH, МH, ОН и др., являются вторичными, дочерними молекулами - "обломками" более сложных молекул или молекулярных комплексов, из которых складывается кометное ядро. Эти сложные родительские молекулы, испаряясь в околоядерное пространство, быстро подвергаются разрушительному действию солнечного ветра и фотонов или распадаются или диссоциируются на более простые молекулы, эмиссионные спектры которых и удаётся наблюдать от комет. Сами родительские молекулы дают непрерывный спектр. Первым наблюдал и описал спектр головы кометы итальянец Донати. На фоне слабого непрерывного спектра кометы 1864 он увидел три широкие светящиеся полосы: голубого, зелёного и жёлтого цвета. Как оказалось это стечение принадлежало молекулам углерода С2, в изобилии оказавшегося в кометной атмосфере. Эти эмиссионные полосы молекул С2 получили название полос Свана, по имени ученого, занимавшегося исследованием спектра углерода. Первая щелевая спектрограмма головы Большой Кометы 1881 была получена англичанином Хеггинсом, который обнаружил в спектре излучение химически активного радикала циана СN. Вдали от Солнца, на расстоянии 11 а.е., приближающаяся комета выглядит небольшим туманным пятнышком, порой с признаками начинающегося образования хвоста. Спектр, полученный от кометы, находящейся на таком расстоянии, и вплоть до расстояния 3-4 а.е., является непрерывным, т.к. на таких больших расстояниях эмиссионный спектр не возбуждается из-за слабого фотонного и корпускулярного солнечного излучения. Этот спектр образуется в результате отражения солнечного света от пылевых частиц или в результате его рассеивания на многоатомных молекулах или молекулярных комплексах. На расстоянии около 3 а.е. от Солнца, т.е. когда кометное ядро пересекает пояс астероидов, в спектре появляется первая эмиссионная полоса молекулы циана, которая наблюдается почти во всей голове кометы. На расстоянии 2 а.е. возбуждаются уже излучения трёхатомных молекул С3 и NН3, которые наблюдаются в более ограниченной области головы кометы вблизи ядра, чем все усиливающиеся излучения СN. На расстоянии 1,8 а.е. появляются излучения углерода - полосы Свана, которые сразу становятся заметными во всей голове кометы: и вблизи ядра и у границ видимой головы. Механизм свечения кометных молекул был расшифрован ещё в 1911г. К.Шварцшильдом и Е.Кроном, которые, изучая эмиссионные спектры кометы Галлея (1910), пришли к заключению, что молекулы кометных атмосфер резонансно переизлучают солнечный свет. Это свечение аналогично резонансному свечению паров натрия в известных опытах Ауда, который первый заметил, что при осещении светом, имеющим частоту желтого дублета натрия, пары натрия сами начинают светиться на той же частоте характерным жёлтым светом. Это - механизм резонансной флуоресценции, являющийся частым случаем более общего механизма люминесценции. Всем известно свечение люминесцентных ламп над витринами магазинов, в лампах дневного света и т.п. Аналогичный механизм заставляет светиться и газы в кометах. Для объяснения свечения зеленой и красной кислородных линий (аналогичные линии наблюдаются и в спектрах полярных сияний) привлекались различные механизмы: электронный удар, диссоциативная рекомбинация и фотодиссациация. Электронный удар, однако, не в состоянии объяснить более высокую интенсивность зелёной линии в некоторых кометах по сравнению с красной. Поэтому больше предпочтения отдаётся механизму фотодиссоциации, в пользу которого говорит распределение яркости в голове кометы. Тем не менее, этот вопрос ещё окончательно не решён и поиски истинного механизма свечения атомов в кометах продолжаются. До сих пор остается нерешённым вопрос о родительских, первичных молекулах, из которых состоит кометное ядро, а этот вопрос очень важен, так как именно химизм ядер предопределяет необычно высокую активность комет, способных из весьма малых по размерам ядер развивать гигантские атмосферы и хвосты, превосходящие по своим размерам все известные тела в Солнечной системе. 5. Поиск планет в Солнечной системе. Не раз высказывались предположения о возможности существования планеты, более близкой к Солнцу, чем Меркурий. Леверье (1811–1877), предсказавший открытие Нептуна, исследовал аномалии в движении перигелия орбиты Меркурия и на основе этого предсказал существование внутри его орбиты новой неизвестной планеты. Вскоре появилось сообщение о ее наблюдении и планете даже присвоили имя – Вулкан. Но открытие не подтвердилось. В 1977 американский астроном Коуэл открыл очень слабый объект, который окрестили «десятой планетой». Но для планеты объект оказался слишком мал (ок. 200 км). Его назвали Хироном и отнесли к астероидам, среди которых он был тогда самым далеким: афелий его орбиты удален на 18,9 а.е. и почти касается орбиты Урана, а перигелий лежит сразу за орбитой Сатурна на расстоянии 8,5 а.е. от Солнца. При наклоне орбиты всего 7° он действительно может близко подходить к Сатурну и Урану. Вычисления показывают, что такая орбита неустойчива: Хирон либо столкнется с планетой, либо будет выброшен из Солнечной системы. Время от времени публикуются теоретические предсказания о существовании крупных планет за орбитой Плутона, но до сих пор они не подтверждались. Анализ кометных орбит показывает, что до расстояния 75 а.е. планет крупнее Земли за Плутоном нет. Однако вполне возможно существование в этой области большого количества малых планет, обнаружить которые не просто. Существование этого скопления занептуновых тел подозревалось уже давно и даже получило название – пояс Койпера, по имени известного американского исследователя планет. Тем не менее, обнаружить первые объекты в нем удалось лишь недавно. В 1992–1994 было открыто 17 малых планет за орбитой Нептуна. Из них 8 движутся на расстояниях 40–45 а.е. от Солнца, т.е. даже за орбитой Плутона. Ввиду большой удаленности блеск этих объектов чрезвычайно слаб; для их поиска годятся лишь крупнейшие телескопы мира. Поэтому до сих пор систематически просмотрено всего около 3 квадратных градусов небесной сферы, т.е. 0,01% ее площади. Поэтому ожидается, что за орбитой Нептуна могут существовать десятки тысяч объектов, подобных обнаруженным, и миллионы более мелких, диаметром 5–10 км. Судя по оценкам, это скопление малых тел в сотни раз массивнее пояса астероидов, расположенного между Юпитером и Марсом, но уступает по массе гигантскому кометному облаку Оорта. Объекты за Нептуном пока трудно отнести к какому-либо классу малых тел Солнечной системы – к астероидам или к ядрам комет. Новооткрытые тела имеют размер 100–200 км и довольно красную поверхность, что указывает на ее древний состав и возможное присутствие органических соединений. Тела «пояса Койпера» в последнее время обнаруживают весьма часто (к концу 1999 их открыто ок. 200). Некоторые планетологи считают, что Плутон было бы правильнее называть не «самой маленькой планетой», а «крупнейшим телом пояса Койпера». Литература 1. В.А. Браштейн “Планеты и их наблюдение” Москва “Наука” 1979 год. 2. С. Доул “Планеты для людей” Москва “Наука” 1974 год. 3. К.И. Чурюмов “Кометы и их наблюдение” Москва “Наука” 1980 год. 4. Е.Л. Кринов “Железный дождь” Москва “Наука” 1981 год. 5. К.А. Куликов, Н.С. Сидоренков “Планета Земля” Москва “Наука” 6. Б.А. Воронцов - Вельяминов “Очерки о Вселенной” Москва “Наука” 7. Н.П. Ерпылеев “Энциклопедический словарь юного астронома” Москва “Педагогика” 1986 год. 8. Е.П.Левитан “Астрономия” Москва “Просвещение” 1994 год

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.