Предельные углеводороды (алканы). Предельные углеводороды реферат


Доклад - Предельные углеводороды алканы

«Уфимский Государственный Нефтяной Технический Университет»

Кафедра: «Физическая и органическая химия»

Реферат

П редельные углеводороды (алканы)

Ст.гр.БТП-09-01 Антипин А.

Доцент Калашников С.М.

Уфа 2010

Алка́ны (также насыщенные углеводороды, парафины, алифатические соединения ) — ациклическиеуглеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой Cn h3n+2 .

Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3 -гибридизации — все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. За счёт одинарных связей между атомами С возможно свободное вращение вокруг углеродной связи. Тип углеродной связи — σ-связи, связи малополярны и плохо поляризуемы. Длина углеродной связи — 0,154 нм.

Названия алканов.

Слово «алкан» того же происхождения, что и «алкоголь». Устаревший термин «парафин» произошел от латинских parum – мало, незначительно и affinis – родственный; парафины обладают малой реакционной способностью по отношению к большинству химических реагентов. Многие парафины являются гомологами; в гомологическом ряду алканов каждый последующий член отличается от предыдущего на одну метиленовую группу СН2. Термин происходит от греческого homologos – соответственный, подобный.

Номенклатурные (от лат. nomenclatura – роспись имен) названия алканов строятся по определенным правилам, которые не всегда однозначны. Так, если в молекуле алкана ecть различные заместители, то в названии алкана они перечисляются в алфавитном порядке. Однако в разных языках этот порядок может различаться. Например, углеводород СН3 –СН(СН3 )–СН(С2 Н5 )–СН2 –СН2 –СН3 в соответствии с этим правилом по-русски будет называться 2-метил-3-этилгексан, а по-английски 3-ethyl-2-methylhexane…

В соответствии с названием углеводорода называются и алкильные радикалы: метил (СН3 -), этил (С2 Н5 -), изопропил (СН3 )2 СН-, втор -бутил С2 Н5 –СН(СН3 )-, трет -бутил (СН3 )3 С- и т.д. Алкильные радикалы входят как целое в состав многих органических соединений; в свободном состоянии эти частицы с неспаренным электроном исключительно активны.

Некоторые изомеры алканов имеют и тривиальные названия, например, изобутан (2-метилпропан), изооктан (2,2,4-триметилпентан), неопентан (2,3-диметилпропан), сквалан (2,6,10,15,19,23-гексаметилтетракозан), название которого происходит от лат squalus – акула (непредельное производное сквалана – сквален, важное для обмена веществ соединение, было впервые обнаружено в печени акулы). Часто используется и тривиальное название радикала пентила (С5 Н11 ) – амил. Оно происходит от греч. amylon – крахмал: когда-то изоамиловый спирт С5 Н11 ОН (3-метилбутанол-1) называли «амильным алкоголем брожения», так как он составляет основу сивушного масла, а оно образуется в результате брожения сахаристых веществ – продуктов гидролиза крахмала.

Систематическая номенклатура ИЮПАК

По номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающий радикал, затем название радикала и название главной цепи. Если радикалы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых радикалов указывают приставками ди-, три-, тетра-. Если радикалы неодинаковые, то их названия перечисляются в алфавитном порядке.

Рациональная номенклатура

Выбирается один из атомов углеродной цепи, он считается замещённым метаном и относительно него строится название «алкил1алкил2алкил3а

Физические свойства предельных углеводородов (алканов) Алканы — бесцветные вещества, нерастворимые в воде. В обычных условиях они химически инертны, так как все связи в их молекулах образованы с участием sp3-гибридных орбиталей атома углерода и являются очень прочными. В реакции присоединения алканы не вступают: все связи атомов углерода полностью насыщены.

· Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи

· При нормальных условиях неразветвлённые алканы с Ch5 до C4 h20 — газы; с C5 h22 до C13 h38 — жидкости; после C14 h40 — твёрдые тела.

· Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан — жидкость, а неопентан — газ.

· газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.

Химические свойства предельных углеводородов (алканов)

Углеводороды ряда метана при обыкновенной температуре химически весьма инертны, почему они и получили название парафинов (от латинских слов parum affinis — обладающий малым сродством). С большинством химических реагентов эти углеводороды в указанных условиях или вовсе не реагируют, или реагируют чрезвычайно медленно. При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомовводорода на различные атомы и группы (реакции металеп-cuu). Эти реакции ведут к получению производных соответствующих углеводородов.

Алканы имеют низкую химическую активность. Это объясняется тем, что единичные C-H и C-C связи относительно прочны и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С — Н малополярны, оба вида связей малополяризуемы и относятся к σ-виду, их разрыв наиболее вероятен по гомолитическому механизму то есть с образованием радикалов.

Реакции радикального замещения

Галогенирование

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-светом или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от метилхлорида до тетрахлоруглерода. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного и в два раза меньше чем вторичного. Таким образом хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атому галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно — за один этап замещается не более одного атома водорода:

1. Ch5 + Cl2 → Ch4 Cl + HCl (хлорметан)

2. Ch4 Cl + Cl2 → Ch3 Cl2 + HCl (дихлорметан)

3. Ch3 Cl2 + Cl2 → CHCl3 + HCl (трихлорметан)

4. CHCl3 + Cl2 → CCl4 + HCl (тетрахлорметан).

Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, замещая у них атом водорода, в результате этого образуются метильные радикалы СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах.

Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя.

С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или растворителем.

Нитрование (реакция Коновалова)

Алканы реагируют с 10 % раствором азотной кислоты или оксидом азота N2 O4 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных. Реакция также подчиняется правилу Марковникова.

RH + HNO3 = RNO2 + h3 O

Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.

Реакции окисления

Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

Ch5 + 2O2 → CO2 + 2h3 O + Q

В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).

В общем виде реакцию горения алканов можно записать следующим образом:

Сn Н2n +2 +(1,5n +0,5)O2 = n CO2 + (n +1)h3 O

Каталитическое окисление

Могут образовываться спирты, альдегиды, карбоновые кислоты.

При мягком окислении СН4 (катализатор, кислород, 200 °C) могут образоваться:

· метиловый спирт: СН4 + О2 = СН3 ОН

· формальдегид: СН4 + О2 = СН2 О + Н2 O

· муравьиная кислота: СН4 + О2 = НСООН

Термические превращения алканов

Разложение

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.

Примеры:

Ch5 → C + 2h3(t > 1000 °C)

C2 H6 → 2C + 3h3

Крекинг

При нагревании выше 500 °C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов.

В 1930—1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10-15 атомов углерода в углеродном скелете) и фракции солярового масла (12-20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания.

В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах — 400—450 °C и низком давлении — 10-15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой.

Для метана:

Ch5 → С + 2h3 — при 1000 °C

Частичный крекинг:

2Ch5 → C2 h3 + 3h3 — при 1500 °C

Дегидрирование

Образование:

1)В углеродном скелете 2 (этан) или 3 (пропан) атома углерода — получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода:

Условия протекания: 400—600 °C, катализаторы — Pt, Ni, Al2 O3, Cr2 O3

а)Ch4 -Ch4 → Ch3 =Ch3 + h3 (этан → этен)

б)Ch4 -Ch3 -Ch4 → Ch3 =CH-Ch4 + h3 (пропан → пропен)

2)В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода — получение алкадиенов; выделение водорода:

в)Ch4 -Ch3 -Ch3 -Ch4 → Ch3 =CH-CH=Ch3 + h3 (бутан → бутадиен-1,3)

в')Ch4 -Ch3 -Ch3 -Ch4 → Ch3 =C=CH-Ch4 + h3 (бутан → бутадиен-1,2)

3) В углеродном скелете 6 (гексан) и более атомов углерода — получение бензола и его производных:

г) Ch4 -Ch3 -Ch3 -Ch3 Ch3 -Ch3 -Ch3 -Ch4 (октан) → П.-ксилол, параллельно М.-ксилол, параллельно этилбензол + 3h3

Изомеризация

Под действием катализатора (например, AlCl3 ) происходит изомеризация алкана: например, бутан (C4 h20 ), взаимодействуя с хлоридом алюминия (AlCl3 ), превращается из н-бутана в 2-метилпропан.

Конверсия метана

В присутствии никелевого катализатора протекает реакция:

Ch5 + h3 O → CO + h3

Продукт этой реакции (смесь CO и h3 ) называется «синтез-газом».

Получение

Главным источником алканов (а также других углеводородов) являются нефть и природный газ, которые обычно встречаются совместно.

Восстановление галогенпроизводных алканов

При каталитическом гидрировании в присутствии палладия галогеналканы превращаются в алканы:

R—Ch3 Cl + h3 → R—Ch4 + HCl

Восстановление йодалканов происходит при нагревании последних с йодоводородной кислотой:

R—Ch3 I + HI → R—Ch4 + I2

Для восстановления галогеналканов пригодны также амальгама натрия, гидриды металлов, натрий в спирте, цинк в соляной кислоте или цинк в спирте

Восстановление спиртов

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С. Так, например, проходит реакция восстановления бутанола (C4 H9 OH), проходящую в присутствии LiAlh5. При этом выделяется вода.

h4 C—Ch3 —Ch3 —Ch3 OH → h4 C—Ch3 —Ch3 —Ch4 + h3 O

Восстановление карбонильных соединений

Реакция Кижнера—Вольфа :

Реакцию проводят в избытке гидразина в высококипящем растворителе в присутствии KOH.

Реакция Клемменсена :

Гидрирование непредельных углеводородов

· Из алкенов

Cn h3n + h3 → Cn h3n+2

· Из алкинов

Cn h3n-2 + 2h3 → Cn h3n+2

Катализатором реакции являются соединения никеля, платины или палладия.

Синтез Кольбе

При электролизе солей карбоновых кислот, анион кислоты — RCOO− перемещается к аноду, и там, отдавая электрон превращается в неустойчивый радикал RCOO•, который сразу декарбоксилируется. Радикал R• стабилизируется путем сдваивания с подобным радикалом, и образуется R—R. Например:

2Ch4 COO− − 2e → 2[Ch4 COO•] → 2Ch4 • → C2 H6

2C3 H7 COOK → {электролиз} → C6 h24

Газификация твердого топлива

Проходит при повышенной температуре и давлении. Катализатор — Ni:

C+2h3 → Ch5

Реакция Вюрца

2R—Br + 2Na = R—R + 2NaBr

Реакция идёт в ТГФ при температуре −80 °C. При взаимодействии R и R` возможно образование смеси продуктов (R—R, R`—R`, R—R`)

Синтез Фишера — Тропша

nCO + (2n+1)h3 → Cn h3n+2 + nh3 O

Список использованной литературы

· Активация и каталитические реакции алканов / Пер. с англ.; под ред. К. Хилла. — М.: Мир, 1992.

· Петров Ал. А. Химия алканов

· Пэрэушану В. Производство и использование углеводородов. — М.: Химия, 1987.

· Рудаков Е. С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. — Киев: Наукова думка, 1985.

· Хейнс А. Методы окисления органических соединений. Алканы, алкены, алкины и арены. — М.: Мир, 1988.

www.ronl.ru

Реферат: "Предельные углеводороды (алканы)"

Выдержка из работы

«Уфимский Государственный Нефтяной Технический Университет»

Кафедра: «Физическая и органическая химия»

Реферат

Предельные углеводороды (алканы)

Ст. гр. БТП-09−01 Антипин А.

Доцент Калашников С. М.

Уфа 2010

Алкамны (также насыщенные углеводороды, парафины, алифатические соединения) -- ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой Cnh3n+2.

Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации -- все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. За счёт одинарных связей между атомами С возможно свободное вращение вокруг углеродной связи. Тип углеродной связи -- у-связи, связи малополярны и плохо поляризуемы. Длина углеродной связи -- 0,154 нм.

Названия алканов.

Слово «алкан» того же происхождения, что и «алкоголь». Устаревший термин «парафин» произошел от латинских parum — мало, незначительно и affinis — родственный; парафины обладают малой реакционной способностью по отношению к большинству химических реагентов. Многие парафины являются гомологами; в гомологическом ряду алканов каждый последующий член отличается от предыдущего на одну метиленовую группу СН2. Термин происходит от греческого homologos — соответственный, подобный.

Номенклатурные (от лат. nomenclatura — роспись имен) названия алканов строятся по определенным правилам, которые не всегда однозначны. Так, если в молекуле алкана ecть различные заместители, то в названии алкана они перечисляются в алфавитном порядке. Однако в разных языках этот порядок может различаться. Например, углеводород СН3-СН (СН3)-СН (С2Н5)-СН2-СН2-СН3 в соответствии с этим правилом по-русски будет называться 2-метил-3-этилгексан, а по-английски 3-ethyl-2-methylhexane…

В соответствии с названием углеводорода называются и алкильные радикалы: метил (СН3-), этил (С2Н5-), изопропил (СН3)2СН-, втор-бутил С2Н5-СН (СН3)-, трет-бутил (СН3)3С- и т. д. Алкильные радикалы входят как целое в состав многих органических соединений; в свободном состоянии эти частицы с неспаренным электроном исключительно активны.

Некоторые изомеры алканов имеют и тривиальные названия, например, изобутан (2-метилпропан), изооктан (2,2,4-триметилпентан), неопентан (2,3-диметилпропан), сквалан (2,6,10,15,19,23-гексаметилтетракозан), название которого происходит от лат squalus — акула (непредельное производное сквалана — сквален, важное для обмена веществ соединение, было впервые обнаружено в печени акулы). Часто используется и тривиальное название радикала пентила (С5Н11) — амил. Оно происходит от греч. amylon — крахмал: когда-то изоамиловый спирт С5Н11ОН (3-метилбутанол-1) называли «амильным алкоголем брожения», так как он составляет основу сивушного масла, а оно образуется в результате брожения сахаристых веществ — продуктов гидролиза крахмала.

Систематическая номенклатура ИЮПАК

По номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающий радикал, затем название радикала и название главной цепи. Если радикалы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых радикалов указывают приставками ди-, три-, тетра-. Если радикалы неодинаковые, то их названия перечисляются в алфавитном порядке.

Рациональная номенклатура

Выбирается один из атомов углеродной цепи, он считается замещённым метаном и относительно него строится название «алкил1алкил2алкил3а

Физические свойства предельных углеводородов (алканов) Алканы — бесцветные вещества, нерастворимые в воде. В обычных условиях они химически инертны, так как все связи в их молекулах образованы с участием sp3-гибридных орбиталей атома углерода и являются очень прочными. В реакции присоединения алканы не вступают: все связи атомов углерода полностью насыщены.

· Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи

· При нормальных условиях неразветвлённые алканы с Ch5 до C4h20 -- газы; с C5h22 до C13h38 -- жидкости; после C14h40 -- твёрдые тела.

· Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан -- жидкость, а неопентан -- газ.

· газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.

Химические свойства предельных углеводородов (алканов)

Углеводороды ряда метана при обыкновенной температуре химически весьма инертны, почему они и получили название парафинов (от латинских слов parum affinis -- обладающий малым сродством). С большинством химических реагентов эти углеводороды в указанных условиях или вовсе не реагируют, или реагируют чрезвычайно медленно. При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомов водорода на различные атомы и группы (реакции металеп-cuu). Эти реакции ведут к получению производных соответствующих углеводородов.

Алканы имеют низкую химическую активность. Это объясняется тем, что единичные C-H и C-C связи относительно прочны и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С -- Н малополярны, оба вида связей малополяризуемы и относятся к у-виду, их разрыв наиболее вероятен по гомолитическому механизму то есть с образованием радикалов.

Реакции радикального замещения

Галогенирование

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-светом или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от метилхлорида до тетрахлоруглерода. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного и в два раза меньше чем вторичного. Таким образом хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Галогенирование -- это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атому галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно -- за один этап замещается не более одного атома водорода:

1. Ch5 + Cl2 > Ch4Cl + HCl (хлорметан)

2. Ch4Cl + Cl2 > Ch3Cl2 + HCl (дихлорметан)

3. Ch3Cl2 + Cl2 > CHCl3 + HCl (трихлорметан)

4. CHCl3 + Cl2 > CCl4 + HCl (тетрахлорметан).

Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, замещая у них атом водорода, в результате этого образуются метильные радикалы СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах.

Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя.

С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или растворителем.

Нитрование (реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N2O4 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных. Реакция также подчиняется правилу Марковникова.

RH + HNO3 = RNO2 + h3O

Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.

Реакции окисления

Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

Ch5 + 2O2 > CO2 + 2h3O + Q

В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).

В общем виде реакцию горения алканов можно записать следующим образом:

СnН2n+2 +(1,5n+0,5)O2= nCO2 + (n+1)h3O

Каталитическое окисление

Могут образовываться спирты, альдегиды, карбоновые кислоты.

При мягком окислении СН4 (катализатор, кислород, 200 °C) могут образоваться:

· метиловый спирт: СН4 + О2 = СН3ОН

· формальдегид: СН4 + О2 = СН2О + Н2O

· муравьиная кислота: СН4 + О2 = НСООН

Термические превращения алканов

Разложение

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.

Примеры:

Ch5 > C + 2h3(t > 1000 °C)

C2H6 > 2C + 3h3

Крекинг

При нагревании выше 500 °C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов.

В 1930--1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10−15 атомов углерода в углеродном скелете) и фракции солярового масла (12−20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания.

В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах -- 400--450 °C и низком давлении -- 10−15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой.

Для метана:

Ch5 > С + 2h3 -- при 1000 °C

Частичный крекинг:

2Ch5 > C2h3 + 3h3 -- при 1500 °C

Дегидрирование

Образование:

1)В углеродном скелете 2 (этан) или 3 (пропан) атома углерода -- получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода:

Условия протекания: 400--600 °C, катализаторы -- Pt, Ni, Al2O3, Cr2O3

а)Ch4-Ch4 > Ch3=Ch3 + h3 (этан > этен)

б)Ch4-Ch3-Ch4 > Ch3=CH-Ch4 + h3 (пропан > пропен)

2)В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода -- получение алкадиенов; выделение водорода:

в)Ch4-Ch3-Ch3-Ch4 > Ch3=CH-CH=Ch3 + h3 (бутан > бутадиен-1,3)

в')Ch4-Ch3-Ch3-Ch4 > Ch3=C=CH-Ch4 + h3 (бутан > бутадиен-1,2)

3) В углеродном скелете 6 (гексан) и более атомов углерода -- получение бензола и его производных:

г) Ch4-Ch3-Ch3-Ch3Ch3-Ch3-Ch3-Ch4 (октан) > П. -ксилол, параллельно М. -ксилол, параллельно этилбензол + 3h3

Изомеризация

Под действием катализатора (например, AlCl3) происходит изомеризация алкана: например, бутан (C4h20), взаимодействуя с хлоридом алюминия (AlCl3), превращается из н-бутана в 2-метилпропан.

Конверсия метана

В присутствии никелевого катализатора протекает реакция:

Ch5 + h3O > CO + h3

Продукт этой реакции (смесь CO и h3) называется «синтез-газом».

Получение

Главным источником алканов (а также других углеводородов) являются нефть и природный газ, которые обычно встречаются совместно.

Восстановление галогенпроизводных алканов

При каталитическом гидрировании в присутствии палладия галогеналканы превращаются в алканы:

R--Ch3Cl + h3 > R--Ch4 + HCl

Восстановление йодалканов происходит при нагревании последних с йодоводородной кислотой:

R--Ch3I + HI > R--Ch4 + I2

Для восстановления галогеналканов пригодны также амальгама натрия, гидриды металлов, натрий в спирте, цинк в соляной кислоте или цинк в спирте

Восстановление спиртов

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С. Так, например, проходит реакция восстановления бутанола (C4H9OH), проходящую в присутствии LiAlh5. При этом выделяется вода.

h4C--Ch3--Ch3--Ch3OH > h4C--Ch3--Ch3--Ch4 + h3O

Восстановление карбонильных соединений

Реакция Кижнера--Вольфа:

Реакцию проводят в избытке гидразина в высококипящем растворителе в присутствии KOH.

Реакция Клемменсена:

Гидрирование непредельных углеводородов

· Из алкенов

Cnh3n + h3 > Cnh3n+2

· Из алкинов

Cnh3n-2 + 2h3 > Cnh3n+2

Катализатором реакции являются соединения никеля, платины или палладия.

Синтез Кольбе

При электролизе солей карбоновых кислот, анион кислоты -- RCOO? перемещается к аноду, и там, отдавая электрон превращается в неустойчивый радикал RCOO*, который сразу декарбоксилируется. Радикал R* стабилизируется путем сдваивания с подобным радикалом, и образуется R--R. Например:

2Ch4COO?? 2e > 2[Ch4COO*] > 2Ch4* > C2H6

2C3H7COOK > {электролиз} > C6h24

Газификация твердого топлива

Проходит при повышенной температуре и давлении. Катализатор -- Ni:

C+2h3 > Ch5

Реакция Вюрца

2R--Br + 2Na = R--R + 2NaBr

Реакция идёт в ТГФ при температуре ?80 °C. При взаимодействии R и R` возможно образование смеси продуктов (R--R, R`--R`, R--R`)

Синтез Фишера -- Тропша

nCO + (2n+1)h3 > Cnh3n+2 + nh3O

Список использованной литературы

· Активация и каталитические реакции алканов / Пер. с англ.; под ред. К. Хилла. -- М.: Мир, 1992.

· Петров Ал. А. Химия алканов

· Пэрэушану В. Производство и использование углеводородов. -- М.: Химия, 1987.

· Рудаков Е. С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. -- Киев: Наукова думка, 1985.

· Хейнс А. Методы окисления органических соединений. Алканы, алкены, алкины и арены. -- М.: Мир, 1988.

Показать Свернуть

westud.ru

Реферат: Предельные углеводороды алканы

«Уфимский Государственный Нефтяной Технический Университет»

Кафедра: «Физическая и органическая химия»

 

 

Предельные углеводороды (алканы)

 

Ст.гр.БТП-09-01 Антипин А.

Доцент Калашников С.М.

Уфа 2010

 

Алка́ны (также насыщенные углеводороды, парафины, алифатические соединения) — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой Cnh3n+2.

Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации — все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. За счёт одинарных связей между атомами С возможно свободное вращение вокруг углеродной связи. Тип углеродной связи — σ-связи, связи малополярны и плохо поляризуемы. Длина углеродной связи — 0,154 нм.

Названия алканов.

Слово «алкан» того же происхождения, что и «алкоголь» . Устаревший термин «парафин» произошел от латинских parum – мало, незначительно и affinis – родственный; парафины обладают малой реакционной способностью по отношению к большинству химических реагентов. Многие парафины являются гомологами; в гомологическом ряду алканов каждый последующий член отличается от предыдущего на одну метиленовую группу СН2. Термин происходит от греческого homologos – соответственный, подобный.

Номенклатурные (от лат. nomenclatura – роспись имен) названия алканов строятся по определенным правилам, которые не всегда однозначны. Так, если в молекуле алкана ecть различные заместители, то в названии алкана они перечисляются в алфавитном порядке. Однако в разных языках этот порядок может различаться. Например, углеводород СН3–СН(СН3)–СН(С2Н5)–СН2–СН2–СН3 в соответствии с этим правилом по-русски будет называться 2-метил-3-этилгексан, а по-английски 3-ethyl-2-methylhexane…

В соответствии с названием углеводорода называются и алкильные радикалы: метил (СН3-), этил (С2Н5-), изопропил (СН3)2СН-, втор-бутил С2Н5–СН(СН3)-, трет-бутил (СН3)3С- и т.д. Алкильные радикалы входят как целое в состав многих органических соединений; в свободном состоянии эти частицы с неспаренным электроном исключительно активны.

Некоторые изомеры алканов имеют и тривиальные названия, например, изобутан (2-метилпропан), изооктан (2,2,4-триметилпентан), неопентан (2,3-диметилпропан), сквалан (2,6,10,15,19,23-гексаметилтетракозан), название которого происходит от лат squalus – акула (непредельное производное сквалана – сквален, важное для обмена веществ соединение, было впервые обнаружено в печени акулы). Часто используется и тривиальное название радикала пентила (С5Н11) – амил. Оно происходит от греч. amylon – крахмал: когда-то изоамиловый спирт С5Н11ОН (3-метилбутанол-1) называли «амильным алкоголем брожения», так как он составляет основу сивушного масла, а оно образуется в результате брожения сахаристых веществ – продуктов гидролиза крахмала.

Систематическая номенклатура ИЮПАК

По номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающий радикал, затем название радикала и название главной цепи. Если радикалы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых радикалов указывают приставками ди-, три-, тетра-. Если радикалы неодинаковые, то их названия перечисляются в алфавитном порядке.

Рациональная номенклатура

Выбирается один из атомов углеродной цепи, он считается замещённым метаном и относительно него строится название «алкил1алкил2алкил3а

·       Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи

·       При нормальных условиях неразветвлённые алканы с Ch5 до C4h20 — газы; с C5h22 до C13h38 — жидкости; после C14h40 — твёрдые тела.

·       Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан — жидкость, а неопентан — газ.

·       газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.

Углеводороды ряда метана при обыкновенной температуре химически весьма инертны, почему они и получили название парафинов (от латинских слов parum affinis — обладающий малым сродством). С большинством химических реагентов эти углеводороды в указанных условиях или вовсе не реагируют, или реагируют чрезвычайно медленно. При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомов водорода на различные атомы и группы (реакции металеп-cuu). Эти реакции ведут к получению производных соответствующих углеводородов.

Алканы имеют низкую химическую активность. Это объясняется тем, что единичные C-H и C-C связи относительно прочны и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С — Н малополярны, оба вида связей малополяризуемы и относятся к σ-виду, их разрыв наиболее вероятен по гомолитическому механизму то есть с образованием радикалов.

Реакции радикального замещения

Галогенирование

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-светом или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от метилхлорида до тетрахлоруглерода. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного и в два раза меньше чем вторичного. Таким образом хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атому галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно — за один этап замещается не более одного атома водорода:

 

1.                Ch5 + Cl2 → Ch4Cl + HCl (хлорметан)

2.                Ch4Cl + Cl2 → Ch3Cl2 + HCl (дихлорметан)

3.                Ch3Cl2 + Cl2 → CHCl3 + HCl (трихлорметан)

4.                CHCl3 + Cl2 → CCl4 + HCl (тетрахлорметан).

 

Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, замещая у них атом водорода, в результате этого образуются метильные радикалы СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах.

Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя.

С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или растворителем.

Нитрование (реакция Коновалова)

Алканы реагируют с 10 % раствором азотной кислоты или оксидом азота N2O4 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных. Реакция также подчиняется правилу Марковникова.

 

RH + HNO3 = RNO2 + h3O

 

Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.

Реакции окисления

Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

 

Ch5 + 2O2 → CO2 + 2h3O + Q

 

В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).

В общем виде реакцию горения алканов можно записать следующим образом:

 

СnН2n+2 +(1,5n+0,5)O2= nCO2 + (n+1)h3O

 
Каталитическое окисление

Могут образовываться спирты, альдегиды, карбоновые кислоты.

При мягком окислении СН4 (катализатор, кислород, 200 °C) могут образоваться:

 

·                     метиловый спирт: СН4 + О2 = СН3ОН

·                     формальдегид: СН4 + О2 = СН2О + Н2O

·                     муравьиная кислота: СН4 + О2 = НСООН

 

Термические превращения алканов

Разложение

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.

Примеры:

 

Ch5 → C + 2h3(t > 1000 °C)

C2H6 → 2C + 3h3

 
Крекинг

При нагревании выше 500 °C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов.

В 1930—1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10-15 атомов углерода в углеродном скелете) и фракции солярового масла (12-20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания.

В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах — 400—450 °C и низком давлении — 10-15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой.

Для метана:

 

Ch5 → С + 2h3 — при 1000 °C

 

Частичный крекинг:

 

2Ch5 → C2h3 + 3h3 — при 1500 °C

 
Дегидрирование

Образование:

1)В углеродном скелете 2 (этан) или 3 (пропан) атома углерода — получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода:

Условия протекания: 400—600 °C, катализаторы — Pt, Ni, Al2O3, Cr2O3

 

а)Ch4-Ch4 → Ch3=Ch3 + h3 (этан → этен)

б)Ch4-Ch3-Ch4 → Ch3=CH-Ch4 + h3 (пропан → пропен)

 

2)В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода — получение алкадиенов; выделение водорода:

 

в)Ch4-Ch3-Ch3-Ch4 → Ch3=CH-CH=Ch3 + h3 (бутан → бутадиен-1,3)

в')Ch4-Ch3-Ch3-Ch4 → Ch3=C=CH-Ch4 + h3 (бутан → бутадиен-1,2)

 

3) В углеродном скелете 6 (гексан) и более атомов углерода — получение бензола и его производных:

г) Ch4-Ch3-Ch3-Ch3Ch3-Ch3-Ch3-Ch4 (октан) → П.-ксилол, параллельно М.-ксилол, параллельно этилбензол + 3h3

Изомеризация

Под действием катализатора (например, AlCl3) происходит изомеризация алкана: например, бутан (C4h20), взаимодействуя с хлоридом алюминия (AlCl3), превращается из н-бутана в 2-метилпропан.

Конверсия метана

В присутствии никелевого катализатора протекает реакция:

 

Ch5 + h3O → CO + h3

 

Продукт этой реакции (смесь CO и h3) называется «синтез-газом».

Получение

Главным источником алканов (а также других углеводородов) являются нефть и природный газ, которые обычно встречаются совместно.

Восстановление галогенпроизводных алканов

При каталитическом гидрировании в присутствии палладия галогеналканы превращаются в алканы:

 

R—Ch3Cl + h3 → R—Ch4 + HCl

 

Восстановление йодалканов происходит при нагревании последних с йодоводородной кислотой:

 

R—Ch3I + HI → R—Ch4 + I2

 

Для восстановления галогеналканов пригодны также амальгама натрия, гидриды металлов, натрий в спирте, цинк в соляной кислоте или цинк в спирте

Восстановление спиртов

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С. Так, например, проходит реакция восстановления бутанола (C4H9OH), проходящую в присутствии LiAlh5. При этом выделяется вода.

 

h4C—Ch3—Ch3—Ch3OH → h4C—Ch3—Ch3—Ch4 + h3O

 

Восстановление карбонильных соединений

Реакция Кижнера—Вольфа:

 

Alkane production.png

 

Реакцию проводят в избытке гидразина в высококипящем растворителе в присутствии KOH.

Реакция Клемменсена:

 

Clemmensen Reduction Scheme.png

 

Гидрирование непредельных углеводородов

·                     Из алкенов

 

Cnh3n + h3 → Cnh3n+2

 

·                     Из алкинов

 

Cnh3n-2 + 2h3 → Cnh3n+2

 

Катализатором реакции являются соединения никеля, платины или палладия.

Синтез Кольбе

При электролизе солей карбоновых кислот, анион кислоты — RCOO− перемещается к аноду, и там, отдавая электрон превращается в неустойчивый радикал RCOO•, который сразу декарбоксилируется. Радикал R• стабилизируется путем сдваивания с подобным радикалом, и образуется R—R. Например:

 

2Ch4COO− − 2e → 2[Ch4COO•] → 2Ch4• → C2H6

2C3H7COOK → {электролиз} → C6h24

 

Газификация твердого топлива

Проходит при повышенной температуре и давлении. Катализатор — Ni:

 

C+2h3 → Ch5

 

Реакция Вюрца

 

2R—Br + 2Na = R—R + 2NaBr

 

Реакция идёт в ТГФ при температуре −80 °C. При взаимодействии R и R` возможно образование смеси продуктов (R—R, R`—R`, R—R`)

Синтез Фишера — Тропша

 

nCO + (2n+1)h3 → Cnh3n+2 + nh3O

 

 

Список использованной литературы

 

·       Активация и каталитические реакции алканов / Пер. с англ.; под ред. К. Хилла. — М.: Мир, 1992.

·       Петров Ал. А. Химия алканов

·       Пэрэушану В. Производство и использование углеводородов. — М.: Химия, 1987.

·       Рудаков Е. С. Реакции алканов с окислителями, металлокомплексами и радикалами в растворах. — Киев: Наукова думка, 1985.

·       Хейнс А. Методы окисления органических соединений. Алканы, алкены, алкины и арены. — М.: Мир, 1988.

 

www.referatmix.ru


Смотрите также