Черенков, Павел Алексеевич. Павел алексеевич черенков реферат


Реферат Черенков Павел Алексеевич

скачать

Реферат на тему:

Cherenkov Pavel Alekseevich.jpg

План:

Введение

Па́вел Алексе́евич Черенко́в (15 (28) июля 1904, село Новая Чигла Бобровского уезда Воронежской губернии — 6 января 1990, Москва) — советский физик, двукратный лауреат Сталинской премии, лауреат Нобелевской премии по физике (совместно с И. Е. Таммом и И. М. Франком) (1958).

1. Биография

Родители Павла Алексеевича — Алексей Егорович и Мария Черенковы были крестьянами.

В 1928 году Черенков окончил физико-математический факультет Воронежского университета (ВГУ). По окончании университета Черенков был направлен преподавать в школу в город Козлов, теперешний Мичуринск. Через два года в тот же город получила распределение Мария Алексеевна Путинцева, дочь Алексея Михайловича Путинцева — воронежского литературоведа-краеведа, профессора ВГУ, основателя дома-музея И. С. Никитина, тоже окончившая ВГУ, отделение русского языка и литературы педфака. В 1930 году Черенков женился на Марии Путинцевой. В 1932 году у них родился сын Алексей, в ­ 1936 году — дочь Елена. В ноябре 1930 года в Воронеже арестовали по делу краеведов Алексея Михайловича Путинцева. В самом конце того же года был «раскулачен» в Новой Чигле отец Павла Алексеевича — Алексей Егорович Черенков. В 1931 году Алексея Егоровича судили и отправили в ссылку. Его обвинили в принадлежности к партии эсеров и в участии в «кулацкой» сходке 1930 года. В 1937 году отца учёного вновь арестовали, в 1938 году осудили и расстреляли за контрреволюционную агитацию.

В 1930 году Черенков поступил в аспирантуру Института физики и математики в Ленинграде. В 1935 году защитил кандидатскую диссертацию, а в 1940 году — докторскую. С 1932 года работал под руководством С. И. Вавилова. С 1935 года — сотрудник Физического института им. П. Н. Лебедева в Москве (ФИАН), с 1948 года — профессор Московского энергетического института, с 1951 года — профессор Московского инженерно-физического института.

Член КПСС с 1946 года. Член-корреспондент АН СССР (1964). Действительный член АН СССР (1970).

Черенков последние 28 лет жизни провёл в столичной квартире в районе Ленинского проспек­та, где расположены различные институты Академии наук, в том числе и ФИАН.

Павел Алексеевич Черенков умер 6 января 1990 года от механической желтухи. Он покоится на Новодевичьем кладбище Москвы.

2. Премии и награды

3. Память

Черенков П. А. на марке России

4. Научная деятельность

Основные работы Черенкова посвящены физической оптике, ядерной физике, физике частиц высоких энергий. В 1934 году обнаружил специфическое голубое свечение прозрачных жидкостей при облучении быстрыми заряженными частицами. Показал отличие данного вида излучения от флуоресценции. В 1936 году установил основное его свойство — направленность излучения, образование светового конуса, ось которого совпадает с траекторией движения частицы. Теорию излучения Черенкова разработали в 1937 году И. Е. Тамм и И. М. Франк.

Эффект Вавилова — Черенкова лежит в основе работы детекторов быстрых заряженных частиц (черенковских счётчиков). Черенков участвовал в создании синхротронов, в частности синхротрона на 250 МэВ (Сталинская премия, 1952). В 1958 году вместе с Таммом и Франком был награждён Нобелевской премией по физике «за открытие и истолкование эффекта Черенкова». Манне Сигбан из Шведской королевской академии наук в своей речи отметил, что «открытие явления, ныне известного как эффект Черенкова, представляет собой интересный пример того, как относительно простое физическое наблюдение при правильном подходе может привести к важным открытиям и проложить новые пути для дальнейших исследований». Выполнил цикл работ по фотораспаду гелия и других легких ядер высокоэнергетическими γ-квантами (Государственная премия СССР, 1977).

Литература

wreferat.baza-referat.ru

Реферат Черенков Павел Алексеевич

скачать

Реферат на тему:

Cherenkov Pavel Alekseevich.jpg

План:

Введение

Па́вел Алексе́евич Черенко́в (15 (28) июля 1904, село Новая Чигла Бобровского уезда Воронежской губернии — 6 января 1990, Москва) — советский физик, двукратный лауреат Сталинской премии, лауреат Нобелевской премии по физике (совместно с И. Е. Таммом и И. М. Франком) (1958).

1. Биография

Родители Павла Алексеевича — Алексей Егорович и Мария Черенковы были крестьянами.

В 1928 году Черенков окончил физико-математический факультет Воронежского университета (ВГУ). По окончании университета Черенков был направлен преподавать в школу в город Козлов, теперешний Мичуринск. Через два года в тот же город получила распределение Мария Алексеевна Путинцева, дочь Алексея Михайловича Путинцева — воронежского литературоведа-краеведа, профессора ВГУ, основателя дома-музея И. С. Никитина, тоже окончившая ВГУ, отделение русского языка и литературы педфака. В 1930 году Черенков женился на Марии Путинцевой. В 1932 году у них родился сын Алексей, в ­ 1936 году — дочь Елена. В ноябре 1930 года в Воронеже арестовали по делу краеведов Алексея Михайловича Путинцева. В самом конце того же года был «раскулачен» в Новой Чигле отец Павла Алексеевича — Алексей Егорович Черенков. В 1931 году Алексея Егоровича судили и отправили в ссылку. Его обвинили в принадлежности к партии эсеров и в участии в «кулацкой» сходке 1930 года. В 1937 году отца учёного вновь арестовали, в 1938 году осудили и расстреляли за контрреволюционную агитацию.

В 1930 году Черенков поступил в аспирантуру Института физики и математики в Ленинграде. В 1935 году защитил кандидатскую диссертацию, а в 1940 году — докторскую. С 1932 года работал под руководством С. И. Вавилова. С 1935 года — сотрудник Физического института им. П. Н. Лебедева в Москве (ФИАН), с 1948 года — профессор Московского энергетического института, с 1951 года — профессор Московского инженерно-физического института.

Член КПСС с 1946 года. Член-корреспондент АН СССР (1964). Действительный член АН СССР (1970).

Черенков последние 28 лет жизни провёл в столичной квартире в районе Ленинского проспек­та, где расположены различные институты Академии наук, в том числе и ФИАН.

Павел Алексеевич Черенков умер 6 января 1990 года от механической желтухи. Он покоится на Новодевичьем кладбище Москвы.

2. Премии и награды

3. Память

Черенков П. А. на марке России

4. Научная деятельность

Основные работы Черенкова посвящены физической оптике, ядерной физике, физике частиц высоких энергий. В 1934 году обнаружил специфическое голубое свечение прозрачных жидкостей при облучении быстрыми заряженными частицами. Показал отличие данного вида излучения от флуоресценции. В 1936 году установил основное его свойство — направленность излучения, образование светового конуса, ось которого совпадает с траекторией движения частицы. Теорию излучения Черенкова разработали в 1937 году И. Е. Тамм и И. М. Франк.

Эффект Вавилова — Черенкова лежит в основе работы детекторов быстрых заряженных частиц (черенковских счётчиков). Черенков участвовал в создании синхротронов, в частности синхротрона на 250 МэВ (Сталинская премия, 1952). В 1958 году вместе с Таммом и Франком был награждён Нобелевской премией по физике «за открытие и истолкование эффекта Черенкова». Манне Сигбан из Шведской королевской академии наук в своей речи отметил, что «открытие явления, ныне известного как эффект Черенкова, представляет собой интересный пример того, как относительно простое физическое наблюдение при правильном подходе может привести к важным открытиям и проложить новые пути для дальнейших исследований». Выполнил цикл работ по фотораспаду гелия и других легких ядер высокоэнергетическими γ-квантами (Государственная премия СССР, 1977).

Литература

www.wreferat.baza-referat.ru

Павел алексеевич черенков

(1904–1990)

Павел Алексеевич Черенков родился 28 июля 1904 года в селе Новая Чигла Воронежской области в семье крестьянина. По окончании средней школы Павел поступает в Воронежский государственный университет, который окончил в 1928 году. После этого Черенков поступил вначале на подготовительное, а затем в 1932 году на основное отделение Физического (тогда Физико‑математического) института Академии наук СССР.

В 1930 году Черенков женился на Марии Путинцевой, дочери профессора русской литературы. У них было двое детей.

Начало научной деятельности Черенкова относится к 1932 году, когда он под руководством С.И. Вавилова приступил к изучению люминесценции растворов ураниловых солей под действием гамма‑лучей.

Поначалу в полном соответствии с законом Вавилова–Стокса у Черенкова огромные гамма‑кванты источника излучения преобразовались в малые кванты видимого света, то есть люминесцировали.

«Интересно, – рассуждал ученый, – как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водою? Важна, конечно, не общая картина, а точно выраженный физический закон».

До поры до времени никаких сюрпризов: меньше растворено солей – меньше люминесценция.

Далее рассказывает В.Р. Келер:

«Наконец в растворе остаются лишь следы уранила. Теперь уж, разумеется, никакого свечения быть не может.

Но что это?! Черенков не верит своим глазам. Уранила осталась гомеопатическая доза, а свечение продолжается. Правда, очень слабое, но продолжается. В чем дело?

Черенков выливает жидкость, тщательно промывает сосуд и наливает в него дистиллированную воду. А это что такое? Чистая вода светится так же, как и слабый раствор. Но ведь до сих пор все были уверены, что дистиллированная вода неспособна к люминесценции.

Вавилов советует аспиранту попробовать поставить вместо стеклянного сосуд из другого материала. Черенков берет платиновый тигель и наливает в него чистейшую воду. Под дном сосуда помещается ампула со ста четырьмя миллиграммами радия. Гамма‑лучи вырываются из крошечного отверстия ампулы и, пробивая платиновое дно и слой жидкости, попадают в объектив прибора, нацеленного сверху на содержимое тигля.

Снова приспособление к темноте, снова наблюдение, и… опять непонятное свечение.

– Это не люминесценция, – твердо говорит Сергей Иванович. – Это что‑то другое. Какое‑то новое, неизвестное пока науке оптическое явление.

Вскоре всем становится ясно, что в опытах Черенкова имеют место два свечения. Одно из них – люминесценция. Оно, однако, наблюдается лишь в концентрированных растворах. В дистиллированной воде под влиянием гамма‑облучения мерцание вызывается иной причиной…

А как поведут себя другие жидкости? Может быть, дело не в воде?

Аспирант наполняет тигель по очереди различными спиртами, толуолом, другими веществами. Всего он испытывает шестнадцать чистейших жидкостей. И слабое свечение наблюдается всегда. Поразительное дело! Оно оказывается очень близким по интенсивности для всех материалов. Четыреххлористый углерод светится всех сильнее, изобутановый спирт – всех слабее, но разница их свечений не превышает 25 процентов.

Черенков пытается погасить свечение особыми веществами, считающимися сильнейшими гасителями обычной люминесценции. Он добавляет к жидкости азотнокислое серебро, йодистый калий, анилин… Эффекта (гасительного) никакого: свечение продолжается. Что делать?

По совету руководителя он нагревает жидкость. На люминесценцию это всегда влияет сильно: она ослабевает и даже прекращается совсем. Но в данном случае яркость свечения не меняется ничуть. Выходит, здесь действительно какое‑то особое, доныне неизвестное явление? Какое же?»

В 1934 году в «Докладах Академии наук СССР» появляются первые два сообщения о новом виде излучения: Черенкова, излагающего подробно результаты экспериментов, и Вавилова, пытающегося их объяснить.

Таинственное свечение можно было видеть только в пределах узкого конуса, ось которого совпадала с направлением гамма‑излучения. Учтя это обстоятельство, молодой ученый поместил свой прибор в сильное магнитное поле. И тут же убедился, что поле отклоняет узкий конус свечения в сторону. Но это возможно лишь для электрически заряженных частиц, например электронов. Чтобы окончательно убедиться в этом, Черенков использовал другой вид излучения – бета‑лучи, представляющих собою поток быстрых электронов. Он облучил ими те же жидкости, что и раньше, и получил такой же световой эффект, как при гамма‑облучении.

Так было выяснено, что загадочное оптическое явление возникает только там, где налицо движение быстрых электронов.

Объяснение механизма преобразования движения электронов в движение фотонов необычного свечения дали в 1937 году советские физики Франк и Тамм. Электроны летят быстрее, чем распространяется свет в данной среде, и в результате возникает необычное явление: порожденные электронами электромагнитные волны отстают от своих родителей и вызывают свечение.

Вскоре появилась крылатая фраза: «Греки слышали голоса звезд, а в черенковском свечении слышны голоса электронов. Это поющие электроны».

В 1935 году Черенков окончил аспирантуру и защитил кандидатскую диссертацию, после чего получил должность старшего научного сотрудника Физического института им. Лебедева АН СССР (ФИАН).

Он продолжал исследовать открытое им свечение. В 1936 году он установил характерное свойство нового вида излучения – своеобразную пространственную асимметрию («черенковский конус»).

После появления количественной теории явления, разработанной Таммом и Франком, Черенков в серии тонких экспериментов подтверждает ее во всех деталях. Фундаментальные работы Черенкова по исследованию открытого им излучения заряженных частиц, движущихся со сверхсветовой скоростью, явились значительным вкладом в мировую науку и признаны классическими.

«Помимо принципиального научного значения, излучения Черенкова имеют и большую практическую ценность, – пишет И.М. Дунская. – Исключительно важна его роль в физике высоких энергий. При движении быстрой частицы в среде возникает направленная световая вспышка, которую регистрируют с помощью фотоумножителя. Такие счетчики используются как для обнаружения быстрых заряженных частиц, так и для определения их свойств: направления движения, величины заряда, скорости и т д. Счетчики Черенкова, благодаря характерным особенностям излучения, существенно расширяют возможности эксперимента и позволяют выполнить эксперименты, невозможные при использовании обычных люминесцентных счетчиков. В частности, черенковское излучение было использовано в опытах по обнаружению антипротона. Оно позволяет также наблюдать наиболее быстрые частицы космических лучей».

За работы по открытию и изучению этого явления Черенкову совместно с Вавиловым, Таммом и Франком сначала в 1946 году присудили Государственную премию, а в 1958 году (уже после смерти Вавилова) Черенков, Тамм и Франк были удостоены звания Лауреатов Нобелевской премии по физике.

В послевоенные годы Черенков некоторое время занимался исследованиями космических лучей, а также принимал руководящее участие в разработке и сооружении ускорителей легких частиц. Так, в январе 1948 года под его руководством осуществлен запуск первого в СССР бетатрона. Одновременно Черенков принимает участие в работах по проектированию и сооружению синхротрона ФИАН на 250 МэВ, за что в 1951 году получил Государственную премию. Вскоре после запуска синхротрона ученый принял руководство над всеми работами по его усовершенствованию, что позволило развернуть работы по изучению электромагнитных взаимодействий в области фотонов больших энергий. В возглавляемой Черенковым лаборатории фотомезонных процессов удалось получить целый ряд интереснейших результатов по изучению процессов фоторасщепления гелия, фотообразования пи‑мезонов, фоторасщепления некоторых легких ядер методом наведенной активности.

В середине пятидесятых годов Черенков, совместно с И.В. Чувило, экспериментально исследовал фотоделение ядер тяжелых элементов. Затем под руководством Павла Алексеевича был успешно разработан новый метод накопления и получения встречных электрон‑позитронных пучков. В 1963–1965 годах проводились детальные исследования этого метода, а в начале 1966 года принципиальная возможность его была проверена экспериментально на 280 МэВ синхротроне ФИАН. Таким образом, впервые в практике физического эксперимента были получены встречные пучки электронов и позитронов.

«Работы по накоплению и получению встречных пучков в ускорителях имеют первостепенное значение для физики высоких энергий, – отмечает И.М. Дунская. – Использование этого метода позволяет перевести действующие ускорители в режим накопления и тем самым на основе уже имеющейся экспериментальной базы перейти к исследованиям взаимодействий в области высоких и сверхвысоких энергий. Этот метод был впоследствии использован для получения встречных пучков на крупнейшем электронном ускорителе в Кембридже (США)».

В 1964 году Павла Алексеевича избрали членом‑корреспондентом Академии наук СССР, а в 1970 году – действительным членом Академии наук СССР.

В 1977 году за цикл работ по исследованию расщепления легких ядер гамма‑квантами высоких энергий методом камер Вильсона, действующих в мощных пучках электронных ускорителей, Черенков удостоен Государственной премии СССР.

Кроме научной деятельности Черенков вел большую педагогическую работу, сначала с 1948 года в должности профессора Московского энергетического института, а с 1951 года и Московского инженерно‑физического института. Он дал путевку в жизнь большому числу исследователей.

studfiles.net

Павел Алексеевич Черенков. Самые знаменитые ученые России

Павел Алексеевич Черенков

Физик.

Родился 15 июля 1904 года в селе Новая Чигла (под Воронежем).

В 1928 году окончил Воронежский университет.

С 1930 года начал работать в Москве – в Физическом институте Академии наук СССР. С 1948 года – профессор Московского энергетического, а с 1951 года – Московского инженерно-физического института. Основные работы Черенкова посвящены физической оптике, ядерной физике, физике космических лучей, ускорительной технике.

С 1932 года Черенков работал под руководством академика С. И. Вавилова. Именно он предложил Черенкову тему исследования – люминесценцию растворов урановых солей под действием гамма-лучей. Он же предложил и метод, который сам до того использовал неоднократно. Как ни странно, «метод гашения» Вавилов вычитал в старинном мемуаре физика Ф. Мари «Новые открытия, касающиеся света».

«…Метод требовал тщательной тренировки, длительного пребывания в полной темноте, – писал физик В. Карцев в своей превосходной книге о физиках. – Каждый рабочий день Черенкова начинался с того, что он прятался в темной комнате и сидел там в кромешной тьме, привыкая к этой обстановке. Лишь после длительной адаптации, продолжавшейся иной раз несколько часов, Черенков подходил к приборам и начинал измерения. Начав облучать гамма-источником соли урана, он довольно быстро обнаружил странное явление: таинственный свет. Нужно сказать, что он вовсе не был первым, кто заметил это свечение. Его уже наблюдали в лаборатории Жолио-Кюри и отнесли за счет люминесценции примесей, имеющихся в каждом, даже весьма чистом растворе.

Черенков призвал руководителя.

Привыкнув к темноте, Вавилов увидел, как ему показалось, конус слабого синего света. Но это свечение совсем не было похоже на то, которое можно было наблюдать в растворах под действием, например, ультрафиолетовых лучей. Это не было и тем свечением, которое обычно бывает за счет, как выражался Сергей Иванович, «дохлых бактерий», то есть следов люминесцирующих веществ. П. А. Черенков вспоминал: «Не останавливаясь на деталях этого открытия, я хотел бы сказать, что оно могло осуществиться только в такой научной школе, как школа С. И. Вавилова, где были изучены и определены основные признаки люминесценции и где были разработаны строгие критерии различения люминесценции от других видов излучения. Не случайно поэтому, что даже в такой крупнейшей школе физиков, как парижская, прошли мимо этого явления, приняв его за обычную люминесценцию. Я специально подчеркиваю это обстоятельство потому, что оно полнее и, как мне кажется, правильнее определяет ту выдающуюся роль, которую сыграл С. И. Вавилов в открытии нового эффекта».

Вавилов отверг люминесцентную природу свечения.

Во-первых, выяснилось, что оно направлено конусом вдоль оси гамма-излучения. Во-вторых, оно никак не укладывалось в те определения люминесценции, которые к тому времени были сформулированы Вавиловым. Ампулы с радием вызывали в растворе урановой соли свечение нового, неизвестного, типа. Интересней всего было то, что оно продолжалось и тогда, когда концентрация соли уменьшалась до совершенно гомеопатических доз. Более того, светилась чистая дистиллированная вода. При этом на интенсивность необычного свечения не оказывали влияния те вещества, которые обычно сильно гасили нормальную люминесценцию, такие, как йодистый калий и анилин. Спектральный состав свечения никак не зависел от состава жидкости.

Слухи о вновь обнаруженном свечении поползли по Москве и Ленинграду. И. М. Франк писал, что он очень хорошо помнит язвительные замечания по поводу того, что в ФИАНе занимаются изучением никому не нужного свечения неизвестно чего неизвестно где. «Не пробовали ли вы изучать в шляпе?» – ехидно спрашивали Черенкова незнакомые и знакомые физики.

Сообщение о новом открытии напечатали в «Докладах Академии наук СССР» в 1934 году.

Сообщений было, собственно, два.

Первое – об обнаружении явления – подписано П. А. Черенковым; Вавилов отказался от подписи, чтобы не осложнять Черенкову защиту его кандтидатской диссертации. Второе подписано Вавиловым – там дается описание эффекта и определенно указывается, что он никак не связан с люминесценцией, а вызывается свободными быстрыми электронами, образующимися при воздействии гамма-лучей на среду. Интересно, что Вавилов пишет о «синем» свечении. Это доказательство его богатой физической интуиции; цвет излучения в тех условиях обнаружить было невозможно.

Полностью эффект был объяснен лишь в 1937 году, когда два советских физика И. М. Франк и И. Е. Тамм разработали его теорию. Объяснение было совершенно необычным: действительно, как и утверждал Вавилов, это свечение вызывается электронами. Но не простыми, а такими, что движутся со скоростью, превышающей скорость света. Разумеется, речь идет о скорости распространения света в данной среде. Двигаясь быстрее этой скорости, электроны излучают электромагнитные волны. Возникает свечение Вавилова – Черенкова. Впоследствии, уже после войны (в 1958 году), и открыватели, и объяснители этого явления были удостоены Нобелевской премии. Нобелевскую премию получили П. А. Черенков, И. Е. Тамм и И. М. Франк. Вавилов к тому времени скончался, а Нобелевская премия, как известно, вручается только живым.

Докторскую диссертацию Черенков защитил все по тому же явлению. Одним из его оппонентов был академик Л. И. Мандельштам. Профессор С. М. Райский позже вспоминал: «Я сидел в столовой Мандельштамов, когда Леонид Исаакович закончил писать свой отзыв и вышел из кабинета. Он дал мне прочесть свой отзыв. Прочитав, я задал вопрос, почему в отзыве о диссертации П. А. Черенкова такое большое место занимает С. И. Вавилов? Леонид Исаакович ответил: „Роль Сергея Ивановича в открытии эффекта такова, что ее следует указывать всегда, когда идет речь об этом открытии“.

В 1947 году В. Л. Гинзбург теоретически показал, что с помощью явления Вавилова – Черенкова можно генерировать ультракороткие, миллиметровые и даже субмиллиметровые волны. Необычайно широкое применение приобрели счетчики Черенкова, принцип действия которых основан на регистрации атомных частиц за счет возникающего свечения. Этот тонкий метод исследования привел к блестящим открытиям нашего времени, в частности к открытию антипротона и антинейтрона – первых частиц антивещества, созданных на Земле.

В 1970 году Черенков был избран действительным членом Академии наук СССР.

«Первичное экспериментальное открытие обычно случайно. Именно поэтому его нельзя предвидеть и оно оказывается результатом случая. Такого рода счастливые случаи очень редки в жизни даже самого активного ученого. Поэтому их нельзя пропускать. Никогда не следует проходить мимо неожиданных и непонятных явлений, с которыми невзначай встречаешься в эксперименте».

Эти слова академика Семенова, несомненно, были хорошо понятны Черенкову.

Черенков внес значительный вклад в создание электронных ускорителей – синхротронов. В частности, он принимал деятельное участие в проектировании и сооружении синхротрона на 250 МэВ. За эту работу в 1952 году он получил Государственную премию. Изучал взаимодействие тормозного излучения с нуклонами и ядрами, фотоядерные и фотомезонные реакции. Еще одну государственную премию он получил в 1977 году за цикл работ по исследованию расщепления легких ядер гамма-квантами высоких энергий. В 1984 году удостоен звания Героя Социалистического труда.

Умер в 1990 году.

Поделитесь на страничке

Следующая глава >

info.wikireading.ru

Павел алексеевич черенков

(1904–1990)

Павел Алексеевич Черенков родился 28 июля 1904 года в селе Новая Чигла Воронежской области в семье крестьянина. По окончании средней школы Павел поступает в Воронежский государственный университет, который окончил в 1928 году. После этого Черенков поступил вначале на подготовительное, а затем в 1932 году на основное отделение Физического (тогда Физико‑математического) института Академии наук СССР.

В 1930 году Черенков женился на Марии Путинцевой, дочери профессора русской литературы. У них было двое детей.

Начало научной деятельности Черенкова относится к 1932 году, когда он под руководством С.И. Вавилова приступил к изучению люминесценции растворов ураниловых солей под действием гамма‑лучей.

Поначалу в полном соответствии с законом Вавилова–Стокса у Черенкова огромные гамма‑кванты источника излучения преобразовались в малые кванты видимого света, то есть люминесцировали.

«Интересно, – рассуждал ученый, – как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водою? Важна, конечно, не общая картина, а точно выраженный физический закон».

До поры до времени никаких сюрпризов: меньше растворено солей – меньше люминесценция.

Далее рассказывает В.Р. Келер:

«Наконец в растворе остаются лишь следы уранила. Теперь уж, разумеется, никакого свечения быть не может.

Но что это?! Черенков не верит своим глазам. Уранила осталась гомеопатическая доза, а свечение продолжается. Правда, очень слабое, но продолжается. В чем дело?

Черенков выливает жидкость, тщательно промывает сосуд и наливает в него дистиллированную воду. А это что такое? Чистая вода светится так же, как и слабый раствор. Но ведь до сих пор все были уверены, что дистиллированная вода неспособна к люминесценции.

Вавилов советует аспиранту попробовать поставить вместо стеклянного сосуд из другого материала. Черенков берет платиновый тигель и наливает в него чистейшую воду. Под дном сосуда помещается ампула со ста четырьмя миллиграммами радия. Гамма‑лучи вырываются из крошечного отверстия ампулы и, пробивая платиновое дно и слой жидкости, попадают в объектив прибора, нацеленного сверху на содержимое тигля.

Снова приспособление к темноте, снова наблюдение, и… опять непонятное свечение.

– Это не люминесценция, – твердо говорит Сергей Иванович. – Это что‑то другое. Какое‑то новое, неизвестное пока науке оптическое явление.

Вскоре всем становится ясно, что в опытах Черенкова имеют место два свечения. Одно из них – люминесценция. Оно, однако, наблюдается лишь в концентрированных растворах. В дистиллированной воде под влиянием гамма‑облучения мерцание вызывается иной причиной…

А как поведут себя другие жидкости? Может быть, дело не в воде?

Аспирант наполняет тигель по очереди различными спиртами, толуолом, другими веществами. Всего он испытывает шестнадцать чистейших жидкостей. И слабое свечение наблюдается всегда. Поразительное дело! Оно оказывается очень близким по интенсивности для всех материалов. Четыреххлористый углерод светится всех сильнее, изобутановый спирт – всех слабее, но разница их свечений не превышает 25 процентов.

Черенков пытается погасить свечение особыми веществами, считающимися сильнейшими гасителями обычной люминесценции. Он добавляет к жидкости азотнокислое серебро, йодистый калий, анилин… Эффекта (гасительного) никакого: свечение продолжается. Что делать?

По совету руководителя он нагревает жидкость. На люминесценцию это всегда влияет сильно: она ослабевает и даже прекращается совсем. Но в данном случае яркость свечения не меняется ничуть. Выходит, здесь действительно какое‑то особое, доныне неизвестное явление? Какое же?»

В 1934 году в «Докладах Академии наук СССР» появляются первые два сообщения о новом виде излучения: Черенкова, излагающего подробно результаты экспериментов, и Вавилова, пытающегося их объяснить.

Таинственное свечение можно было видеть только в пределах узкого конуса, ось которого совпадала с направлением гамма‑излучения. Учтя это обстоятельство, молодой ученый поместил свой прибор в сильное магнитное поле. И тут же убедился, что поле отклоняет узкий конус свечения в сторону. Но это возможно лишь для электрически заряженных частиц, например электронов. Чтобы окончательно убедиться в этом, Черенков использовал другой вид излучения – бета‑лучи, представляющих собою поток быстрых электронов. Он облучил ими те же жидкости, что и раньше, и получил такой же световой эффект, как при гамма‑облучении.

Так было выяснено, что загадочное оптическое явление возникает только там, где налицо движение быстрых электронов.

Объяснение механизма преобразования движения электронов в движение фотонов необычного свечения дали в 1937 году советские физики Франк и Тамм. Электроны летят быстрее, чем распространяется свет в данной среде, и в результате возникает необычное явление: порожденные электронами электромагнитные волны отстают от своих родителей и вызывают свечение.

Вскоре появилась крылатая фраза: «Греки слышали голоса звезд, а в черенковском свечении слышны голоса электронов. Это поющие электроны».

В 1935 году Черенков окончил аспирантуру и защитил кандидатскую диссертацию, после чего получил должность старшего научного сотрудника Физического института им. Лебедева АН СССР (ФИАН).

Он продолжал исследовать открытое им свечение. В 1936 году он установил характерное свойство нового вида излучения – своеобразную пространственную асимметрию («черенковский конус»).

После появления количественной теории явления, разработанной Таммом и Франком, Черенков в серии тонких экспериментов подтверждает ее во всех деталях. Фундаментальные работы Черенкова по исследованию открытого им излучения заряженных частиц, движущихся со сверхсветовой скоростью, явились значительным вкладом в мировую науку и признаны классическими.

«Помимо принципиального научного значения, излучения Черенкова имеют и большую практическую ценность, – пишет И.М. Дунская. – Исключительно важна его роль в физике высоких энергий. При движении быстрой частицы в среде возникает направленная световая вспышка, которую регистрируют с помощью фотоумножителя. Такие счетчики используются как для обнаружения быстрых заряженных частиц, так и для определения их свойств: направления движения, величины заряда, скорости и т д. Счетчики Черенкова, благодаря характерным особенностям излучения, существенно расширяют возможности эксперимента и позволяют выполнить эксперименты, невозможные при использовании обычных люминесцентных счетчиков. В частности, черенковское излучение было использовано в опытах по обнаружению антипротона. Оно позволяет также наблюдать наиболее быстрые частицы космических лучей».

За работы по открытию и изучению этого явления Черенкову совместно с Вавиловым, Таммом и Франком сначала в 1946 году присудили Государственную премию, а в 1958 году (уже после смерти Вавилова) Черенков, Тамм и Франк были удостоены звания Лауреатов Нобелевской премии по физике.

В послевоенные годы Черенков некоторое время занимался исследованиями космических лучей, а также принимал руководящее участие в разработке и сооружении ускорителей легких частиц. Так, в январе 1948 года под его руководством осуществлен запуск первого в СССР бетатрона. Одновременно Черенков принимает участие в работах по проектированию и сооружению синхротрона ФИАН на 250 МэВ, за что в 1951 году получил Государственную премию. Вскоре после запуска синхротрона ученый принял руководство над всеми работами по его усовершенствованию, что позволило развернуть работы по изучению электромагнитных взаимодействий в области фотонов больших энергий. В возглавляемой Черенковым лаборатории фотомезонных процессов удалось получить целый ряд интереснейших результатов по изучению процессов фоторасщепления гелия, фотообразования пи‑мезонов, фоторасщепления некоторых легких ядер методом наведенной активности.

В середине пятидесятых годов Черенков, совместно с И.В. Чувило, экспериментально исследовал фотоделение ядер тяжелых элементов. Затем под руководством Павла Алексеевича был успешно разработан новый метод накопления и получения встречных электрон‑позитронных пучков. В 1963–1965 годах проводились детальные исследования этого метода, а в начале 1966 года принципиальная возможность его была проверена экспериментально на 280 МэВ синхротроне ФИАН. Таким образом, впервые в практике физического эксперимента были получены встречные пучки электронов и позитронов.

«Работы по накоплению и получению встречных пучков в ускорителях имеют первостепенное значение для физики высоких энергий, – отмечает И.М. Дунская. – Использование этого метода позволяет перевести действующие ускорители в режим накопления и тем самым на основе уже имеющейся экспериментальной базы перейти к исследованиям взаимодействий в области высоких и сверхвысоких энергий. Этот метод был впоследствии использован для получения встречных пучков на крупнейшем электронном ускорителе в Кембридже (США)».

В 1964 году Павла Алексеевича избрали членом‑корреспондентом Академии наук СССР, а в 1970 году – действительным членом Академии наук СССР.

В 1977 году за цикл работ по исследованию расщепления легких ядер гамма‑квантами высоких энергий методом камер Вильсона, действующих в мощных пучках электронных ускорителей, Черенков удостоен Государственной премии СССР.

Кроме научной деятельности Черенков вел большую педагогическую работу, сначала с 1948 года в должности профессора Московского энергетического института, а с 1951 года и Московского инженерно‑физического института. Он дал путевку в жизнь большому числу исследователей.

studfiles.net

ПАВЕЛ АЛЕКСЕЕВИЧ ЧЕРЕНКОВ - Нобелевские лауреаты

  1. Нобелевские лауреаты
  2. Фото: Фредерик Жолио и Ирен Жолио-КюриСупругам Жолио-Кюри принадлежит большая заслуга в исследовании строения атома, особенно атомного ядра. Они сделали одно из величайших открытий двадцатого столетия - искусственной радиоактивности.Ирен Кюри, дочь великих ученых Марии и Пьера Кюри, родилась 12 сентября 1897 года в Париже. Вначале девочка училась…
  3. Фото: Солженицын Александр ИсаевичАкадемик Д.С. Лихачев писал: "Александр Исаевич - настоящий русский писатель, мученик и герой. Это было типично для русских писателей всегда - не только для Аввакума, но и для всех последующих русских писателей, в той иди иной степени. Его героизм и одновременно…
  1. Нобелевские лауреаты
  2. Фото: Фредерик Жолио и Ирен Жолио-КюриСупругам Жолио-Кюри принадлежит большая заслуга в исследовании строения атома, особенно атомного ядра. Они сделали одно из величайших открытий двадцатого столетия - искусственной радиоактивности.Ирен Кюри, дочь великих ученых Марии и Пьера Кюри, родилась 12 сентября 1897 года в Париже. Вначале девочка училась…
  3. Фото: Солженицын Александр ИсаевичАкадемик Д.С. Лихачев писал: "Александр Исаевич - настоящий русский писатель, мученик и герой. Это было типично для русских писателей всегда - не только для Аввакума, но и для всех последующих русских писателей, в той иди иной степени. Его героизм и одновременно…
  4. Фото: МИХАИЛ СЕРГЕЕВИЧ ГОРБАЧЕВН.И. Рыжков, председатель Совета Министров СССР конца восьмидесятых годов, человек из перестроечной команды Горбачева, пишет: "Горбачев - великая Личность в нашей великой Истории. В Истории власти в нашей державе. В крохотном отрезочке демократии в огромной Истории абсолютизма. Говорю это, не боясь…
  5. Фото: ЖАН-ПОЛЬ САРТРВ своей философской работе "Бытие и ничто" Сартр пишет: "Человек несет всю тяжесть мира на своих плечах: он ответствен за мир и за самого себя как за определенный способ бытия... Поэтому в жизни нет случайности. Ни одно общественное событие, возникшее внезапно…
  6. Фото: РЕДЬЯРД КИПЛИНГ"Киплинг обнаружил романтику подвига и подвижничества в самой гуще современности, - пишут Н. Дьяконова и А. Долинин. - Провозгласив в пору крушения идеалов и недоверия к героическим возможностям человека старый, но прочно забытый героический идеал, Киплинг стал одним из основателей недолговечной,…
  7. Фото: МАКС БОРНБорн был один из тех, кто стоял у истоков квантовой механики. Вот слова основателя кибернетики Н. Винера: "Главную роль в создании и первоначальном развитии квантовой механики в Геттингене сыграли Макс Борн и Гейзенберг. Макс Борн был гораздо старше Гейзенберга, но, хотя…
  8. Генрик Адам Александр Пий Сенкевич родился 5 мая 1846 года в имении Воля Окшейска на Подлясье, недалеко от Лукова. Семья Сенкевичей принадлежала к древнему, но обедневшему патриархальному литовскому шляхетскому роду, связанному кровными узами с польскими магнатами. Среди членов древнего дворянского рода…
  9. Фото: Джозеф Джон ТомсонДжозеф Джон Томсон физик обнаруживший электрон.
  10. Фото: ЭРНЕСТ РЕЗЕРФОРДКак пишет В.И. Григорьев: "Труды Эрнеста Резерфорда, которого нередко справедливо называют одним из титанов физики нашего века, работы нескольких поколений его учеников оказали огромное влияние не только на науку и технику нашего века, но и на жизнь миллионов людей. Он был…
  11. Фото: АНАТОЛЬ ФРАНСДжозеф Конрад назвал Франса "принцем прозы". А Душан Брески писал: "Несмотря на все превратности критической моды, Франс всегда будет стоять рядом с (Дж. Бернардом) Шоу как великий сатирик нашей эпохи и с такими писателями, как Рабле, Мольер и Вольтер, как один…
  12. Фото: ЭМИЛЬ ФИШЕРИзвестный химик Рихард Вильшеттер считал Фишера "не имеющим равных классиком, мастером органической химии, как в области анализа, так и в области синтеза, а в личностном отношении прекраснейшим человеком". В его честь Германское химическое общество учредило медаль Эмиля Фишера. Немецкий ученый создал…

ПАВЕЛ АЛЕКСЕЕВИЧ ЧЕРЕНКОВ

Фото - ПАВЕЛ АЛЕКСЕЕВИЧ ЧЕРЕНКОВ«ПАВЕЛ АЛЕКСЕЕВИЧ ЧЕРЕНКОВ»

Павел Алексеевич Черенков родился 28 июля 1904 года в селе Новая Чигла Воронежской области в семье крестьянина. По окончании средней школы Павел поступает в Воронежский государственный университет, который окончил в 1928 году. После этого Черенков поступил вначале на подготовительное, а затем в 1932 году на основное отделение Физического (тогда Физико-математического) института Академии наук СССР.

В 1930 году Черенков женился на Марии Путинцевой, дочери профессора русской литературы. У них было двое детей.

Начало научной деятельности Черенкова относится к 1932 году, когда он под руководством С.И. Вавилова приступил к изучению люминесценции растворов ураниловых солей под действием гамма-лучей.

Поначалу в полном соответствии с законом Вавилова-Стокса у Черенкова огромные гамма-кванты источника излучения преобразовались в малые кванты видимого света, то есть люминесцировали.

"Интересно, - рассуждал ученый, - как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водою? Важна, конечно, не общая картина, а точно выраженный физический закон".

До поры до времени никаких сюрпризов: меньше растворено солей - меньше люминесценция.

Далее рассказывает В.Р. Келер:

"Наконец в растворе остаются лишь следы уранила. Теперь уж, разумеется, никакого свечения быть не может.

Но что это?! Черенков не верит своим глазам. Уранила осталась гомеопатическая доза, а свечение продолжается. Правда, очень слабое, но продолжается. В чем дело?

Черенков выливает жидкость, тщательно промывает сосуд и наливает в него дистиллированную воду. А это что такое? Чистая вода светится так же, как и слабый раствор. Но ведь до сих пор все были уверены, что дистиллированная вода неспособна к люминесценции.

Вавилов советует аспиранту попробовать поставить вместо стеклянного сосуд из другого материала. Черенков берет платиновый тигель и наливает в него чистейшую воду. Под дном сосуда помещается ампула со ста четырьмя миллиграммами радия. Гамма-лучи вырываются из крошечного отверстия ампулы и, пробивая платиновое дно и слой жидкости, попадают в объектив прибора, нацеленного сверху на содержимое тигля.

Снова приспособление к темноте, снова наблюдение, и... опять непонятное свечение.

- Это не люминесценция, - твердо говорит Сергей Иванович. - Это что-то другое. Какое-то новое, неизвестное пока науке оптическое явление.

Вскоре всем становится ясно, что в опытах Черенкова имеют место два свечения. Одно из них - люминесценция. Оно, однако, наблюдается лишь в концентрированных растворах. В дистиллированной воде под влиянием гамма-облучения мерцание вызывается иной причиной...

А как поведут себя другие жидкости? Может быть, дело не в воде?

Аспирант наполняет тигель по очереди различными спиртами, толуолом, другими веществами. Всего он испытывает шестнадцать чистейших жидкостей. И слабое свечение наблюдается всегда. Поразительное дело! Оно оказывается очень близким по интенсивности для всех материалов. Четыреххлористый углерод светится всех сильнее, изобутановый спирт - всех слабее, но разница их свечений не превышает 25 процентов.

Черенков пытается погасить свечение особыми веществами, считающимися сильнейшими гасителями обычной люминесценции.

Фото - ПАВЕЛ АЛЕКСЕЕВИЧ ЧЕРЕНКОВ«ПАВЕЛ АЛЕКСЕЕВИЧ ЧЕРЕНКОВ»

Он добавляет к жидкости азотнокислое серебро, йодистый калий, анилин... Эффекта (гасительного) никакого: свечение продолжается. Что делать?

По совету руководителя он нагревает жидкость. На люминесценцию это всегда влияет сильно: она ослабевает и даже прекращается совсем. Но в данном случае яркость свечения не меняется ничуть. Выходит, здесь действительно какое-то особое, доныне неизвестное явление? Какое же?"

В 1934 году в "Докладах Академии наук СССР" появляются первые два сообщения о новом виде излучения: Черенкова, излагающего подробно результаты экспериментов, и Вавилова, пытающегося их объяснить.

Таинственное свечение можно было видеть только в пределах узкого конуса, ось которого совпадала с направлением гамма-излучения. Учтя это обстоятельство, молодой ученый поместил свой прибор в сильное магнитное поле. И тут же убедился, что поле отклоняет узкий конус свечения в сторону. Но это возможно лишь для электрически заряженных частиц, например электронов. Чтобы окончательно убедиться в этом, Черенков использовал другой вид излучения - бета-лучи, представляющих собою поток быстрых электронов. Он облучил ими те же жидкости, что и раньше, и получил такой же световой эффект, как при гамма-облучении.

Так было выяснено, что загадочное оптическое явление возникает только там, где налицо движение быстрых электронов.

Объяснение механизма преобразования движения электронов в движение фотонов необычного свечения дали в 1937 году советские физики Франк и Тамм. Электроны летят быстрее, чем распространяется свет в данной среде, и в результате возникает необычное явление: порожденные электронами электромагнитные волны отстают от своих родителей и вызывают свечение.

Вскоре появилась крылатая фраза: "Греки слышали голоса звезд, а в черенковском свечении слышны голоса электронов. Это поющие электроны".

В 1935 году Черенков окончил аспирантуру и защитил кандидатскую диссертацию, после чего получил должность старшего научного сотрудника Физического института им. Лебедева АН СССР (ФИАН).

Он продолжал исследовать открытое им свечение. В 1936 году он установил характерное свойство нового вида излучения - своеобразную пространственную асимметрию ("черенковский конус").

После появления количественной теории явления, разработанной Таммом и Франком, Черенков в серии тонких экспериментов подтверждает ее во всех деталях. Фундаментальные работы Черенкова по исследованию открытого им излучения заряженных частиц, движущихся со сверхсветовой скоростью, явились значительным вкладом в мировую науку и признаны классическими.

"Помимо принципиального научного значения, излучения Черенкова имеют и большую практическую ценность, - пишет И.М. Дунская. - Исключительно важна его роль в физике высоких энергий. При движении быстрой частицы в среде возникает направленная световая вспышка, которую регистрируют с помощью фотоумножителя. Такие счетчики используются как для обнаружения быстрых заряженных частиц, так и для определения их свойств: направления движения, величины заряда, скорости и т д. Счетчики Черенкова, благодаря характерным особенностям излучения, существенно расширяют возможности эксперимента и позволяют выполнить эксперименты, невозможные при использовании обычных люминесцентных счетчиков.

В частности, черенковское излучение было использовано в опытах по обнаружению антипротона. Оно позволяет также наблюдать наиболее быстрые частицы космических лучей".

За работы по открытию и изучению этого явления Черенкову совместно с Вавиловым, Таммом и Франком сначала в 1946 году присудили Государственную премию, а в 1958 году (уже после смерти Вавилова) Черенков, Тамм и Франк были удостоены звания Лауреатов Нобелевской премии по физике.

В послевоенные годы Черенков некоторое время занимался исследованиями космических лучей, а также принимал руководящее участие в разработке и сооружении ускорителей легких частиц. Так, в январе 1948 года под его руководством осуществлен запуск первого в СССР бетатрона. Одновременно Черенков принимает участие в работах по проектированию и сооружению синхротрона ФИАН на 250 МэВ, за что в 1951 году получил Государственную премию. Вскоре после запуска синхротрона ученый принял руководство над всеми работами по его усовершенствованию, что позволило развернуть работы по изучению электромагнитных взаимодействий в области фотонов больших энергий. В возглавляемой Черенковым лаборатории фотомезонных процессов удалось получить целый ряд интереснейших результатов по изучению процессов фоторасщепления гелия, фотообразования пи-мезонов, фоторасщепления некоторых легких ядер методом наведенной активности.

В середине пятидесятых годов Черенков, совместно с И.В. Чувило, экспериментально исследовал фотоделение ядер тяжелых элементов. Затем под руководством Павла Алексеевича был успешно разработан новый метод накопления и получения встречных электрон-позитронных пучков. В 1963-1965 годах проводились детальные исследования этого метода, а в начале 1966 года принципиальная возможность его была проверена экспериментально на 280 МэВ синхротроне ФИАН. Таким образом, впервые в практике физического эксперимента были получены встречные пучки электронов и позитронов.

"Работы по накоплению и получению встречных пучков в ускорителях имеют первостепенное значение для физики высоких энергий, - отмечает И.М. Дунская. - Использование этого метода позволяет перевести действующие ускорители в режим накопления и тем самым на основе уже имеющейся экспериментальной базы перейти к исследованиям взаимодействий в области высоких и сверхвысоких энергий. Этот метод был впоследствии использован для получения встречных пучков на крупнейшем электронном ускорителе в Кембридже (США)".

В 1964 году Павла Алексеевича избрали членом-корреспондентом Академии наук СССР, а в 1970 году - действительным членом Академии наук СССР.

В 1977 году за цикл работ по исследованию расщепления легких ядер гамма-квантами высоких энергий методом камер Вильсона, действующих в мощных пучках электронных ускорителей, Черенков удостоен Государственной премии СССР.

Кроме научной деятельности Черенков вел большую педагогическую работу, сначала с 1948 года в должности профессора Московского энергетического института, а с 1951 года и Московского инженерно-физического института. Он дал путевку в жизнь большому числу исследователей.

 

  1. Люди и биографий — Нобелевские лауреаты
  2. Фото: Фредерик Жолио и Ирен Жолио-КюриСупругам Жолио-Кюри принадлежит большая заслуга в исследовании строения атома, особенно атомного ядра. Они сделали одно из величайших открытий двадцатого столетия - искусственной радиоактивности.Ирен Кюри, дочь великих ученых Марии и Пьера Кюри, родилась 12 сентября 1897 года в Париже. Вначале девочка училась…
  3. Фото: Солженицын Александр ИсаевичАкадемик Д.С. Лихачев писал: "Александр Исаевич - настоящий русский писатель, мученик и герой. Это было типично для русских писателей всегда - не только для Аввакума, но и для всех последующих русских писателей, в той иди иной степени. Его героизм и одновременно…

  Рейтинг — 4841, Статистика просмотров сегодня — 1

the100.ru

Мемория. Павел Черенков - ПОЛИТ.РУ

28 июля 1904 года родился Павел Черенков, физик, лауреат Нобелевской премии за 1958 год.

 

Личное дело

Павел Алексеевич Черенков (1904—1990) родился в селе Новая Чигла Воронежской губернии, в семье крестьян. После окончания церковно-приходской школы, в разгар Гражданской войны, трудился чернорабочим, конторщиком. Затем доучивался в школе-гимназии, переведенной в село из уездного Боброва.

В 1924 году поступил на физико-математическое отделение Воронежского университета. Стипендия была небольшой, будущий ученый подрабатывал частными уроками, разгрузкой вагонов, а в каникулы, когда приезжал домой, работал счетоводом на мельнице.

После окончания университета в 1928 году был направлен учителем в школу Козлова (ныне Мичуринск). В 1930 году познакомился со своей будущей женой Марией Путинцевой. Их дочь, ученый-физик Елена Черенкова писала об этом периоде: «Здесь [в Козлове] они познакомились, здесь начался их совместный дальнейший путь. Красивые, умные, начитанные, трудолюбивые, веселые, верящие в широкие горизонты, раскрывающиеся перед страной и молодежью. Летом по путевке они объехали Крым. Прочитав объявление в газете, Павел написал заявление о приеме в аспирантуру в ленинградский Физико-математический институт Академии наук, прошел собеседование и был принят».

После зачисления в аспирантуру с осени 1930 года ученый стал жить в Ленинграде, Мария смогла приехать к нему после окончания процесса над отцом, профессором-филологом Воронежского университета, который в ноябре 1930 года был арестован по «делу краеведов» и осужден на пять лет лагерей. В апреле 1931 года Черенковы зарегистрировали брак.

В 1932 году в семье родился первенец Алексей, через четыре года, уже в Москве, появилась дочь Елена.

В аспирантуре научным руководителем Черенкова был директор ленинградского Физико-математического института Сергей Вавилов. Молодому ученому досталась внешне простая и малопривлекательная тема по исследованию люминесценции ураниловых солей.

Наблюдению этого явления мешало добавочное фоновое свечение, избавиться от которого не удавалось. Первая публикация Черенкова о новом виде излучения вышла в 1934 году. В 1937 году Илья Франк и Игорь Тамм по совету Вавилова, давшего излучению первичное обоснование, смогли описать его излучение на основе классической электродинамики.

В том же году Черенков опубликовал статью, в которой предлагал использовать это излучение для измерения скоростей быстрых электронов. Впоследствии это привело к созданию разнообразных детекторов, названных его именем.

Сначала статью Черенкова не приняли в журнале Nature, Ее опубликовал журнал The Physical Review. В 1938 году ученые Д. В. Коллинз и В. Д. Рейлинг сумели повторить эксперимент Черенкова, они же впервые использовали термин Cherenkov radiation.

Осенью 1958 году Черенкову совместно с Франком и Таммом была присуждена Нобелевская премия по физике. Дочь ученого вспоминала, что супруга советского посла в Швеции «подробно рассказала маме о требованиях к одежде. Мужчинам — фраки, женщинам — платья определенной длины, обязательно с декольте, украшения только натуральные, никаких мехов, даже самых дорогих. Платья не должны повторяться ни на одном приеме. Рассказала о манере держаться в зависимости от титула особы визави».

Жена Черенкова была единственной из близких, кого отпустили с советскими учеными на церемонию награждения. Она же и рассказала детям об увиденном: «Нобелевские торжества приходятся на предрождественские дни. Витрины магазинов выглядели особенно празднично. Теперь многим трудно представить себе, насколько однообразны и убоги были наши витрины 58-го года. Мама оценила ту жизнь, что увидела в Швеции, так: "Все, как у нас до революции"».

С 1935 года Черенков был сотрудником Физического института им. П. Н. Лебедева (ФИАН), с 1948 года — профессором Московского энергетического института, с 1951 года — профессором Московского инженерно-физического института (МИФИ). Создал и много лет бессменно возглавлял Отдел физики высоких энергий в филиале ФИАН в подмосковном Троицке.

Член-корреспондент АН СССР с 1964 года, действительный член АН СССР с 1970 года.

Павел Черенков скончался 6 января 1990 года. Похоронен на Новодевичьем кладбище в Москве.

 

Чем знаменит

Открыл «эффект Вавилова — Черенкова» — свечение, вызываемое в прозрачной среде заряженными частицами, которые движутся со скоростью, превышающей скорость света в этой среде. Это излучение широко используется для регистрации релятивистских частиц и определения их скоростей.

Черенков — Герой Социалистического Труда (1984), лауреат двух Сталинских премий (1946, 1952) и Государственной премии СССР (1977). Один из немногих отечественных ученых, получивших Нобелевскую премию по физике.

 

О чем надо знать

 

Павел Черенков

Семью Черенкова — и его родителей, и родителей жены — коснулись сталинские репрессии. В 1932 году выпустили из лагеря его тестя, профессора Алексея Путинцева. В последующие годы тот вместе с супругой вынужден был скитаться по стране в поисках работы и жилья. В 1937 году он скончался. В том же году был арестован его брат, священник Михаил Путинцев.

В 1930-е годы вернулся из ссылки отец Черенкова, Алексей Егорович. Некоторое время он работал на стройке московского метро. В конце 1937 года он вновь был арестован и, вероятно, расстрелян.

 

Прямая речь:

О «свечении Черенкова» (Б. Б. Говорков, доктор физико-математических наук): «Мне посчастливилось всю жизнь проработать в лаборатории Черенкова. Поэтому многие детали исследований, приведших к открытию эффекта Черенкова, мне стали известными из уст самого Павла Алексеевича. Так, на мой вопрос, как ему удалось впервые увидеть предельно слабое новое излучение, он ответил, что впервые наблюдал новое свечение при проведении фоновых экспериментов. Вавилов поставил перед ним, тогда аспирантом, задачу изучить люминесценцию растворов ураниловых солей при облучении их гамма-квантами от радиоактивного радиевого источника. Проводя измерения люминесценции упомянутых растворов, Черенков решил посмотреть, не влияют ли на люминесценцию стенки стеклянного стаканчика и сам чистый растворитель — серная кислота. Павел Алексеевич рассказывал, что, заметив свечение стаканчика с чистым растворителем, он очень удивился. Тогда он направился на склад Физического института им. П. Н. Лебедева (ФИАН) и собрал там все прозрачные жидкости. Вернувшись в лабораторию, он повторил опыты по наблюдению свечения с другими чистыми веществами. Все жидкости светились! Причем все примерно с равной интенсивностью (±15%).

Попытки потушить свечение по методам, разработанным Вавиловым с учениками (использование гасящих добавок, нагрев жидкостей и др.), оказались безуспешными — все жидкости светились и всё тут! При очередной встрече со своим руководителем Павел Алексеевич подробно рассказал о неожиданном результате измерений фона. В итоге обсуждения появились новые планы и идеи в постановке опытов, доказывающих нелюминесцентный характер излучения, в частности выясняющих роль электронов в получении нового излучения».

О скромности ученого (тот же автор): «Во время одного из заседаний упомянутой выше конференции (Международная конференция по аппаратуре в физике высоких энергий, проходившая в 1970 году в Дубне), где в каждом докладе звучало его имя: черенковские счетчики, черенковские спектрометры, излучение Вавилова-Черенкова и т. д., Павел Алексеевич наклонился ко мне и тихо сказал на ухо:

"Борис Борисович, вы знаете, мне все время кажется, что все это относится не ко мне. Что где-то, когда-то жил другой Черенков, вот о нем все и говорят"».

Дочь ученого Елена Черенкова о занятиях отца после вручения Нобелевской премии: «В последующие годы после 1958-го его проблемами были научные и научно-организационные. От работ по созданию ускорителей элементарных частиц его отвлекали многочисленные поездки: на научные конференции, совещания научно-организационного характера, по делам Комитета защиты мира, юбилейного характера. Особенно интересными для папы оказались юбилейные торжества, посвященные 350-летию публикации трудов Галилея "Диалоги о двух главнейших системах мира — птоломеевой и коперниковой" и 150-летию со дня рождения Нобеля».

 

5 фактов о Павле Черенкове:

 

Материалы о Павле Черенкове:

Биографическая справка на сайте «Наука и техника»

Биография, написанная дочерью физика

Статья о Павле Черенкове в Википедии

polit.ru


Смотрите также