Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

7. Математическое моделирование. Основные этапы математического моделирования реферат


7. Математическое моделирование.

Теория математического моделированияобеспечивает выявление закономерностей протекания различных явлений окружающего мира или работы систем и устройств путем их математического описания и моделирования без проведения натурных испытаний. При этом используются положения и законы математики, описывающие моделируемые явления, системы или устройства на некотором уровне их идеализации.

Целью математического моделированияявляется анализ реальных процессов (в природе или технике) математическими методами. В свою очередь, это требует формализации ММ процесса, подлежащего исследованию. Модель может представлять собой математическое выражение, содержащее переменные, поведение которых аналогично поведению реальной системы. Модель может включать элементы случайности, учитывающие вероятности возможных действий двух или большего числа «игроков», как, например, в теории игр; либо она может представлять реальные переменные параметры взаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик систем можно разделить на аналитическое, имитационное и комбинированное. В свою очередь, ММ делятся на имитационные и аналитические.

Основные этапы математического моделирования

1) Построение модели. Выбор типа математической модели.На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели.Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели.На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

Вопрос 8. Метрологическое обеспечение экспериментальных исследований

Под метрологическим обеспечением (МО) понимается установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений. Важнейшие значения в метрологии отводятся эталонам и образцовым средствам измерений (СИ), которые являются неотъемлимой частью экспериментальных исследований [5]. К СИ относят меры, измерительные приборы, установки и системы. СИ должны соответствовать цели и задачам НИР, обеспечивать требуемое качество экспериментальных работ; иметь высокую экономическую эффективность; обеспечивать эргономические требования и требования техники безопасности.

Метрологическое обеспечение и особенно обеспечение единства измерений, однообразия средств измерения является важнейшим фактором успешного проведения научных исследований [7].

При разработке МО необходимо использовать системный подход, суть которого состоит в рассмотрении указанного обеспечения как совокупности взаимосвязанных процессов, объединенных одной целью – достижением требуемого качества измерений [5].

Таким образом, требования к метрологическому обеспечению научных исследований и экспериментов должны предусматривать:

  • установление метрологических требований, правил и норм в методиках проведения экспериментальных исследований;

  • обеспечение экспериментальных исследований необходимыми методами и средствами измерений, контроля, испытаний, средствами и методами поверки (калибровки) СИ [4].

  1. Общая характеристика математических методов в научных исследованиях

Решение практических задач математическими методами осуществляется путем реализации этапов следующего алгоритма: разработка математической модели; выбор метода проведения исследования математической модели; анализ полученного математического результата.

Математическая модель − система формул, функций, уравнений, средствами которых описывается то или иное явление, процесс, объект в целом. При разработке модели нужно учитывать все реально существующие связи факторов и параметров, хотя при этом нельзя забывать о возможности последующего решения математической модели. Следует прибегать к каким-либо упрощениям, допущениям, аппроксимациям.

Установление общих характеристик объекта позволяют выбрать математический аппарат, на базе которого и строится математическая модель. Для описания объектов с большим количеством параметров возможно разделение объекта на подсистемы.

Не стоит забывать, что особенное место на этапе выбора вида математической модели занимает описание входных сигналов в выходные характеристики объекта.

Если характер изменения исследуемого показателя не известен, то ставится поисковый эксперимент и предпочтение отдается той математической формуле, которая дает наилучшее совпадение с данными поискового эксперимента. Результаты поискового эксперимента и априорный информационный массив позволяют установить схему взаимодействия объекта с внешней средой по соотношению входных и выходных величин.

Процесс выбора математической модели объекта заканчивается ее предварительным контролем. При этом осуществляются следующие виды контроля: размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели.

10.Оптимизация в исследовании (О) -  (от лат. optimus-наилучший) - понимают целенаправленную деятельность, заключающуюся в получении наилучших результатов при соответствующих условиях. Постановка задачи О. предполагает наличие ее объекта, набора независимых параметров (переменных), описывающих данную задачу, а также условий (часто наз. ограничениями), характеризующие приемлемые значения независимых переменных, которые и образуют модель рассматриваемой системы.Еще одной обязательным условием описания оптимизационной задачи служит мера "качества", носящая название критерия оптимизации и зависящая от переменных О. Решение оптимизационной задачи - поиск определенного набора значений переменных, которому отвечает оптимизационное значение критерия О.

Описанные и построенные модели реального объекта – важнейший этап оптимизационного исследования, так как он определяет практическую ценность получаемого решения и возможность его реализации.

Процесс оптимизации с использованием модели можно рассматривать как метод отыскания оптимального решения для реального объекта без непосредственного экспериментирования с самим объектом. «Прямой» путь, ведущий к оптимальному решению, заменяется «обходным», включающим построение и оптимизацию модели, а также преобразование полученных результатов в практически реализуемую форму. При формировании такой модели следует учитывать характеристики объекта, которые должны быть отражены в модели, а менее существенные особенности в модель можно не включать. Необходимо сформулировать логически обоснованные допущения, выбрать форму представления модели, уровень ее детализации и метод реализации на ЭВМ. Все это относятся к этапу построения модели. Модели можно упорядочить по степени адекватности описания поведения реального объекта. Таким образом, качество модели нельзя оценивать ни по структуре, ни по форме. Единственным критерием такой оценки может служить лишь достоверность полученных на модели примеров поведения реального объекта.

studfiles.net

Математическое моделирование

Одним из видов формализованного знакового моделирования является математического моделирование, осуществляемое средствами языка математики и логики. Для изучения какого-либо класса явлений внешнего мира строится его математическая модель, т.е. приближенное описание этого класса явлений, выраженное с помощью математической символики.

Сам процесс математического моделирования можно подразделить на четыре основных этапа:

I этап: Формулирование законов, связывающих основные объекты модели, т.е. запись в виде математических терминов сформулированных качественных представлений о связях между объектами модели.

II этап:Исследование математических задач, к которым приводят математические модели. Основной вопрос - решение прямой задачи, т.е. получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений.

III этап:Корректировка принятой гипотетической модели согласно критерию практики, т.е. выяснение вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Если модель была вполне определена - все параметры ее были даны, - то определение уклонений теоретических следствий от наблюдений дает решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели некоторые ее характеристики остаются не определенными. Применение критерия практики к оценке математической модели позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели.

IV этап:Последующий анализ модели в связи с накоплением данных об изученных явлениях и модернизация модели. С появлением ЭВМ метод математического моделирования занял ведущее место среди других методов исследования. Особенно важную роль этот метод играет в современной экономической науке. Изучение и прогнозирование какого-либо экономического явления методом математического моделирования позволяет проектировать новые технические средства, прогнозировать воздействие на данное явление тех или иных факторов, планировать эти явления даже при существовании нестабильной экономической ситуации.

Классификация математических методов экономического анализа

Предположим, существует экономический объект исследования – некая экономическая система.

Приведём некую довольно примерную классификацию математических методов экономического анализа:

Рисунок 1

Этапы экономико-математического моделирования

Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования.

1.Постановка экономической проблемы и ее качественный анализ.

Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез, объясняющих поведение и развитие объекта.

2. Построение математической модели.

Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше "работает" и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

Одна из важных особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться "изобретать" модель; вначале необходимо попытаться применить для решения этой задачи уже известные модели.

В процессе построения модели осуществляется взаимосопоставление двух систем научных знаний - экономических и математических. Естественно стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация экономической проблемы приводит к неизвестной ранее математической структуре. Потребности экономической науки и практики в середине ХХ в. способствовали развитию математического программирования, теории игр, функционального анализа, вычислительной математики. Вполне вероятно, что в будущем развитие экономической науки станет важным стимулом для создания новых разделов математики.

3. Математический анализ модели.

Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели (теорема существования). Если удастся доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает; следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неизвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

Знание общих свойств модели имеет столь важное значение, часто ради доказательства подобных свойств исследователи сознательно идут на идеализацию первоначальной модели. И все же модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда аналитическими методами не удается выяснить общих свойств модели, а упрощения модели приводят к недопустимым результатам, переходят к численным методам исследования.

4. Подготовка исходной информации.

Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов. Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение.

Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных компьютеров удается проводить многочисленные "модельные" эксперименты, изучая "поведение" модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6. Анализ численных результатов и их применение.

На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.

studfiles.net

Реферат - История становления и развития математического моделирова-ния

История становления и развития математического моделирования

Реферат по курсу математического моделирования ст. Ильиных А.А.

Новосибирский Государственный Технический Университет

Кафедра ТЭС

Новосибирск 2002 г.

Введение.

В век интернета и космических технологий трудно представить инженера-разработчика без компьютера. Современные исследования настолько наукоёмки, что просто физически невозможно обойтись без помощи вычислительной машины. Колоссальные объёмы информации требуется анализировать в процессе исследования процессов в различных областях науки и техники. В теплоэнергетике исследуются всевозможные процессы горения топлива в различных моделях топок, процессы течения парожидкостных смесей в проточных частях турбогенераторов (расчёт нагрева металла и его расширение при различных граничных условиях, основывается на решении уравнений теплопроводности) и расплавленных металлов, являющихся теплоносителем первого контура, в парогенераторах атомных электрических станций, исследуется влияние струй пара на поверхность лопаток турбины, что необходимо для предотвращения их коррозионного износа, так же исследуются процессы протекания ядерных реакций в тепловыделяющих элементах ( ТВЭЛах ) и т.д. и т.п. На самом деле большинство процессов в теплоэнергетике уже давно изучено. Исследования проходят по оптимизации этих процессов и изучению глубинной сути явлений для достижения максимального эффекта при разработке энергетического оборудования. Здесь и нужна математическая модель. Вообще математическое моделирование возникло с возникновением вычислительной техники. Это обусловлено потребностью человека в различных областях. Человечество требует комфорта. Именно для нужд растущего населения Земли необходимо развитие науки и техники (исследования космоса, исследование протекающих в земной коре процессов, прогнозирование землетрясений, прогнозирование погоды, исследования глобальных изменений климата, электроника, наземный, водный, подводный экологически чистый транспорт, аэродинамика, внедрения новых экозащитных технологий, разработка новых материалов и т.д.). Становление математического моделирования проходило с развитием промышленности, научного знания и что греха таить является детищем гонки вооружений между странами. Именно военные изобрели интернет и именно они широко используют моделирование (начиная от бактериологического оружия и заканчивая моделированием ядерных, атомных, термоядерных взрывов на суперкомпьютерах). Исследования по механике жидкости и газа на основе уравнений Навье Стокса имеют в нашей стране давние традиции. Начало им положено ещё в первой половине 60-х годов в трудах участников семинара НИИ ВЦ МГУ по численным методам аэромеханики, работавшего под руководством Г.И. Петрова, Л.А. Чудова, Г.Ф. Теленина, Г.С. Рослякова. Эти работы успешно развивались благодаря успешным достижениям советских учёных в вычислительной математике. Среди многих рассматривавшихся в то время классов задач гидро- и аэродинамики, решение которых не могло быть получено в рамках теории пограничного слоя или невязкого газа (отрывные течения, взаимодействие ударной волны и пограничного слоя, структура ударной волны и т.д.), в работах В.И. Полежаева было значительно продвинуто изучение естественно-конвективных процессов. Эффективные численные методы и программы, разработанные для этого класса задач, позволили уже на ЭВМ второго поколения решить многие практически важные задачи (изучение эффективности тепловой изоляции, теплообмен и температурное расслоение при хранении жидкости в сосудах, конвекция в глубокой атмосфере для интерпретации данных зондирования атмосферы Венеры, исследование гидромеханики невесомости и анализ результатов технологических экспериментов в космосе), а также исследовать структуру нелинейных конвективных течений.

К настоящему времени становится всё более ясным, что все проблемы, возникающие в аэро- и гидродинамике при численном решении уравнений Навье Стокса, вряд ли будут решены даже на ЭВМ с сотнями миллиардов операций в секунду. Задачи конвекции в замкнутых плоских областях и сосудах, которые были исторически первыми для математического моделирования на основе уравнений Навье Стокса, стали уже давно классическими. Для этого класса задач (или для так называемых моделей общего назначения) авторами установлены фундаментальные закономерности, к числу которых относится эффект максимума температурного (концентрационного) расслоения.

Благодаря достигнутому в работе высокому уровню открываются перспективы широкого применения методологии и конкретных физических результатов в рассматриваемых направлениях, а также пути более эффективного применения методов математического моделирования с использованием современной вычислительной техники в различных предметных областях.

Основная часть.

Основные характерные черты моделирования.

Проникновение математических методов в самые разнообразные, подчас неожиданные сферы человеческой деятельности означает возможность пользоваться новыми, как правило, весьма плодотворными средствами исследования. Рост математической культуры специалистов в соответствующих областях приводит к тому, что изучение общих теоретических положений и методов вычислений уже не встречает серьёзных трудностей. Вместе с тем на практике оказывается, что одних лишь математических познаний далеко не достаточно для решения той или иной прикладной задачи – необходимо ещё получить навыки в переводе исходной формулировки задачи на математический язык. В этом и состоит проблема овладения искусством математического моделирования.

Холл (1963) сказал, что целью прикладной математики является математическое осмысление действительности. С другой стороны, инжинеру-практику, пожалуй, более важно знать, выдержит ли его мост предполагаемую нагрузку, хватит ли закупленного угля до конца отопительного сезона и не лопнет ли лопатка в турбине, — иными словами, получить конкретные ответы на конкретные вопросы. В практике математического моделирования исходным пунктом часто является некоторая эмпирическая ситуация, выдвигающая перед исследователем задачу, на которую требуется найти ответ. Прежде всего, необходимо установить, в чём именно заключается задача. Часто (но не всегда) параллельно с этой стадией постановки задачи идёт процесс выявления основных или существенных особенностей явления (рис. 1). В частности для физических явлений этот процесс схематизации или идеализации играет решающую роль поскольку в реальном явлении участвует множество процессов и оно чрезвычайно сложно. Некоторые черты явления представляются важными многие другие – несущественными. Возьмём к примеру движение маятника, образованного тяжёлым грузом, подмешанным на конце нити. В этом случае существенным является регулярный характер колебаний маятника, а несущественным – то, что нить белая, а груз чёрный. После того как существенные факторы выявлены, следующий шаг состоит в переводе этих факторов на язык математических понятий и величин и постулировании соотношений между этими величинами. После построения модели её следует подвергнуть проверке. Адекватность модели до некоторой степени проверяется обычно в ходе постановки задачи. Уравнения или другие математические соотношения, сформулированные в модели, постоянно сопоставляются с исходной ситуацией. Существует несколько аспектов проверки адекватности. Во-первых, сама математическая основа модели (которая и составляет её существо) должна быть непротиворечивой и подчиняться всем обычным законам математической логики. Во-вторых, справедливость модели зависит от её способности адекватно описывать исходную ситуацию. Модель можно заставить отражать действительность, однако она не есть сама действительность.

Рисунок 1.

Ситуации моделируют для разных целей. Главная из них – необходимость предсказывать новые результаты или новые свойства явления. Эти предсказания могут быть связаны с распространением существующих результатов или иметь более принципиальный характер. Часто они относятся к условиям, которые, по всей вероятности, будут иметь место в некоторый момент в будущем. С другой стороны, предсказания могут относится к событиям, непосредственное экспериментальное исследование которых неосуществимо. Наиболее важный пример такого рода дают многочисленные прогнозы, которые делались на основе математических моделей в программе космических исследований. Однако для этой цели моделируются не все ситуации: в некоторых случаях достаточно уметь описывать математическими средствами работу системы для того, чтобы добиться более глубокого понимания явления (именно эту роль и играют многие выдающиеся физические теории, хотя на их основе делаются также и прогнозы). Обычно при таком математическом описании не учитывается элемент контроля, однако в моделях, построенных, например, для исследования работы сетей, таких как схемы движения поездов или самолётов, контроль часто является важным фактором.

Математическая модель представляет собой упрощение реальной ситуации. Ощутимое упрощение наступает тогда, когда несущественные особенности ситуации отбрасываются и сложная исходная задача сводится к идеализированной задаче, поддающейся математическому анализу. Именно при таком подходе в классической прикладной механике возникли блоки без трения, невесомые нерастяжимые нити, невязкие жидкости, абсолютно твёрдые или чёрные тела и прочие подобные идеализированные модели. Эти понятия не существуют в реальной действительности, они являются абстракциями, составной частью идеализации, предпринятой автором модели. И тем не менее их часто можно с успехом считать хорошим приближением к реальным ситуациям. Описанный образ действий при построении математических моделей не является единственным, и этому совсем не стоит удивляться. В другом возможном подходе первым шагом является построение простой модели нескольких наиболее характерных особенностей явления. Это часто делается для того, чтобы почувствовать данную задачу, причём делается это ещё до того, как сама задача окончательно сформулирована. Затем эта модель обобщается, чтобы охватить другие факты, пока не будет найдено приемлемое или адекватное решение. Есть ещё подход, когда с самого начала вводится в рассмотрение одновременно большое число факторов. Он часто применяется в исследовании операций, и такие модели обычно изучают имитационными методами с использованием ЭВМ.

Важнейшее решение, которое часто принимается в самом начале процесса моделирования, касается природы рассматриваемых математических переменных. По существу они делятся на два класса. В один из них входят известные характеристики, т.е. величины, поддающиеся (по крайней мере теоретически) точному измерению и управлению. Такие переменные называются детерминированными переменными. В другой класс входят неизвестные характеристики, т.е. величины, которые никогда не могут быть точно измерены и имеют случайный характер – они называются стохастическими переменными. Модель, содержащая стохастические переменные, должна по определению описываться математическим аппаратом теории вероятностей и статистики. Детерминированные переменные часто, но не всегда требуют привлечения обычного математического анализа. Природа некоторых ситуаций бывает ясна не сразу, другие ситуации характеризуются переменными обоих типов. Для построения модели чрезвычайно важно, чтобы природа переменных была правильно представлена.

2. Эволюционный процесс в моделировании.

Говоря о математическом моделировании, нельзя не обратить внимания на эволюционный процесс «смены» парадигм моделирования, который, как кажется, характерен для многих дисциплинарных областей, где применяются методы теории управления. До сих пор ни в одной из работ по теории моделирования этот процесс не рассматривался как «смена поколений» математических моделей. Тем не менее, сейчас можно было бы говорить уже о трех таких поколениях. На первых этапах речь чаще всего идет о математической записи отдельных феноменологических наблюдений над реальными объектами. Для них характерна простота описаний, типична линейность уравнений и малая размерность (часто воспроизводится всего одна или две переменных). Методы анализа связаны в основном с получением аналитических решений и графическим рассмотрением на фазовой плоскости. Затем появляются модели, описывающие объект «во всей его полноте» — в них объект представлен в виде «системы» — модель отражает его структуру и законы, по которым он функционирует. Модели становятся существенно нелинейными, чисто математический аппарат дополняется логико-семантическим. Возрастает размерность, достигая нескольких десятков. Такие модели называются «сложными», «большими», а рабочим инструментом на этом этапе становится вычислительный эксперимент. Трудно не заметить, что в настоящее время начинается переход к третьему поколению математических моделей — моделям виртуального мира. Виртуальное моделирование можно определить как воспроизведение трехмерного мира компьютерными средствами. Резко возрастает объем обрабатываемой и воспроизводимой информации (например, количество визуализируемых «деталей» достигает нескольких тысяч). Любопытно, что модели третьего поколения по своей математической сущности могут быть как «феноменологическими», так и «системными» — на содержании этих понятий мы остановимся чуть ниже.

Процесс смены поколений моделей можно проиллюстрировать на многих дисциплинарных примерах — в небесной механике это переход от феноменологической модели Птолемея к системной модели Коперника-Кеплера и затем к современным моделям (таким, как совокупные модели движения объектов в космическом пространстве в системах слежения, используемых в космонавтике и в военном деле, или как виртуальные модели небесных явлений в мультимедийных системах Redshift).

В биомедицине первое поколение моделей появилось в самом конце XIX в. — модель сердца как «эластичного резервуара» О.Франка представляла собой типичную феноменологическую модель (модель данных). Многочисленные модели физиологических процессов охарактеризовали приход второго поколения моделей — системных моделей процессов жизнедеятельности, использовавшихся для исследования процессов управления искусственными органами. Развитие тренажерных моделей (в том числе мультимедийных) характеризует начало третьего этапа.

Наконец, такая же картина наблюдается в управлении технологическими процессами. Феноменологические модели передаточных функций, восстановленные по входо-выходным характеристикам объектов, сменились системными методами пространства состояний. Третий этап математического моделирования также связан здесь с виртуальным моделированием — динамическим моделированием в реальном масштабе времени.

Говоря о России, можно вспомнить, что наука математического моделирования развивается с 1960-х гг. и имеет большие традиции. Но для нас сейчас важно другое — часть накопленного тогда потенциала, получившая развитие в теории управления и ее применениях, до сих пор остается «невостребованной» современной наукой о моделировании в ее «чистом» виде, оставшись и за рамками книги.

Отметим, что многие фундаментальные проблемы прикладного моделирования впервые были выявлены И.А.Полетаевым. Он первым обратил внимание на утилитарность математических моделей, дав оригинальную классификацию моделей по целям их использования: «поисковая» модель — для проверки гипотез, «портретная», она же — демонстрационная, — для замены объекта в эксперименте (например, для тренажеров — что в то время рассматривалось едва ли не как научная фантастика) и, наконец, «исследовательская модель», что в современном понимании означает ориентацию на сложный вычислительный эксперимент.

В другой работе И.А.Полетаев поднял еще один столь же важный круг вопросов — о принципиальной «субъективности» математического моделирования. По меньшей мере два его высказывания и сегодня заслуживают внимания:

В задаче математического моделирования <<кроме объекта моделирования и модели, обязательно присутствует субъект моделирования, лицо, усилиями и в интересах которого осуществляется модель>>. Роль субъекта моделирования оказывается решающей, ибо именно его цели, интересы и предпочтения формируют модель.

Создание модели нужно не само по себе, а для решения практических задач, что только и может оправдать затрату сил на создание модели. Модель создается для того, чтобы работать: <<Только полная реализация модели с ее «прогоном» через расчеты полностью окупает затраты на моделирование>>.

Например, проведение экспериментальных исследований на крупных высокотемпературных агрегатах связано с большими организационными и техническими трудностями. Поэтому возникает необходимость в разработке математических моделей, значительно сокращающих объём трудоёмких и дорогостоящих промышленных экспериментов, на долю которых остаётся лишь сбор исходной информации для расчёта, проверка адекватности математических моделей и внедрение результатов моделирования. Для формулировки граничных условий необходим детальный расчёт внешнего теплообмена. Одним из наиболее распространённых методов расчёта внешнего теплообмена является зональный метод, рассматривающий перенос тепла излучением, конвекцией и турбулентной теплопроводностью, т.е. учитывающий неравномерность распределения температур, скоростей и концентраций в рабочем пространстве топки.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.