Естественная и искусственная радиоактивность. Искусственная и естественная радиоактивность реферат


Естественная и искусственная радиоактивность — реферат

 

МИНОБРНАУКИ           ФГБОУ ВПО ВСГУТУ         Технологический колледж

 

 

Реферат по на тему:

«Естественная и искусственная радиоактивность»

 

 

 

 

Выполнил: Дамшаев Доржо Витальевич  группа 113/3

 

 

 

 

 

Проверил:

Пластинина Валентина Михайловна

 

 

 

2014 год, Улан-Удэ.

 

 

Содержание.

Введение. 

1.История открытия радиоактивности.          2.Радиоактивность.          3.Виды радиации.          4.Влияние на организм.

Список используемой литературы.                                                                                                                                                                          

 

Введение.

В начале ХХ века ученые уже знали, что атом содержит отрицательно заряженные электроны. Однако преобладало представление, что атом представляет собой что-то похожее на положительно заряженную тонкую сетку, заполненную отрицательно заряженными электронами-изюминами, — модель так и называлась «модель сетки с изюмом» (Модель Томпсона).

В 1898 году английский ученый Э.Резерфорд (ученик Томпсона) приступил к изучению явления радиоактивности. В 1903 году Э.Резерфорд доказывает ошибочность предположения своего учителя Томпсона о его теории строении атома и в 1908-1911 г.г. проводит опыты по рассеянью частиц (ядер гелия) металлической фольгой. Используя естественный источник радиоактивного излучения, Резерфорд построил “пушку”, дававшую направленный и сфокусированный поток частиц. Пушка представляла собой свинцовый ящик с узкой прорезью, внутрь которого был помещен радиоактивный материал. Благодаря этому частицы (в данном случае альфа-частицы, состоящие из двух протонов и двух нейтронов), испускаемые радиоактивным веществом во всех направлениях, кроме одного, поглощались свинцовым экраном, и лишь через прорезь вылетал направленный пучок альфа-частиц. Далее на пути пучка стояло еще несколько свинцовых экранов с узкими прорезями, отсекавших частицы, отклоняющиеся от строго заданного направления. В результате к мишени подлетал идеально сфокусированный пучок альфа-частиц, а сама мишень представляла собой тончайший лист золотой фольги. В нее-то и ударял альфа-луч. После столкновения с атомами фольги альфа-частицы продолжали свой путь и попадали на люминесцентный экран, установленный позади мишени, на котором при попадании на него альфа-частиц регистрировались вспышки. По ним экспериментатор мог судить, в каком количестве и насколько альфа-частицы отклоняются от направления прямолинейного движения в результате столкновений с атомами фольги.

Резерфорд заметил, что никто из его предшественников даже не пробовал проверить, не отклоняются ли некоторые альфа-частицы под очень большими углами. Модель сетки с изюмом просто не допускала существования в атоме столь плотных и тяжелых элементов структуры, что они могли бы отклонять быстрые альфа-частицы на значительные углы, поэтому никто и не озадачивался тем, чтобы проверить такую возможность. Резерфорд попросил одного из своих студентов переоборудовать установку таким образом, чтобы можно было наблюдать рассеяние альфа-частиц под большими углами отклонения, чтобы окончательно исключить такую возможность.

В качестве детектора использовался экран с покрытием из сульфида натрия — материала, дающего флуоресцентную вспышку при попадании в него альфа-частицы. Каково же было удивление не только студента, непосредственно проводившего эксперимент, но и самого Резерфорда, когда выяснилось, что некоторые частицы отклоняются на углы вплоть до 180°!

В рамках устоявшейся модели атома полученный результат не мог быть истолкован: в сетке с изюмом попросту нет ничего такого, что могло бы отразить мощную, быструю и тяжелую альфа-частицу. Резерфорд вынужден был заключить, что в атоме большая часть массы сосредоточена в невероятно плотном веществе, расположенном в центре атома. А вся остальная часть атома оказывалась на много порядков менее плотной, нежели это представлялось раньше. Из поведения рассеянных альфа-частиц вытекало также, что в этих сверхплотных центрах атома, которые Резерфорд назвал ядрами, сосредоточен также и весь положительный электрический заряд атома, поскольку только силами электрического отталкивания может быть обусловлено рассеяние частиц под углами больше 90°.

Картина атома, нарисованная Резерфордом по результатам опыта, нам сегодня хорошо знакома. Атом состоит из сверхплотного, компактного ядра, несущего на себе положительный заряд, и отрицательно заряженных легких электронов вокруг него. Позже ученые подвели под эту картину надежную теоретическую базу, но началось всё с простого эксперимента с маленьким образцом радиоактивного материала и куском золотой фольги.

Опыты по рассеянью частиц убедительно показали, что почти вся масса атома сосредоточена в очень малом объеме – атомном ядре, диаметр которого примерно в 100000 раз меньше диаметра атома.

Большинство частиц пролетает мимо массивного ядра, не задевая его, но изредка происходит столкновение частицы с ядром и тогда она может отскочить назад.

Таким образом, первым его фундаментальным открытием в этой области было обнаружение неоднородности излучения, испускаемого ураном. Так в науку о радиоактивности впервые вошло понятие о лучах. Он также предложил и названия: распад и частица. Немного позже была обнаружена еще одна составляющая часть излучения, обозначенная третьей буквой греческого алфавита: гамма-лучи. Это произошло вскоре после открытия радиоактивности. На долгие годы эти частицы стали для Э.Резерфорда незаменимым инструментом исследований атомных ядер. В 1903 году он открывает новый радиоактивный элемент – самопроизвольный распад тория. В 1901-1903 годах он совместно с английским ученым Ф.Содди проводит исследования, которые привели к открытию естественного превращения элементов ( например радия в радон) и разработке теории радиоактивного распада атомов.В 1903 году немецкий физик К.Фаянс и Ф.Содди независимо друг от друга сформулировали правило смещения, в котором описывается поведение ядра при альфа-распаде. Весной 1934 года в «Докладах Парижской академии наук» появилась статья под названием «Новый тип радиоактивности». Ее авторы Ирен Жолио-Кюри и ее муж Фредерик Жолио-Кюри обнаружили, что бор, магний, и алюминий, облученные альфа–частицами, становятся сами радиоактивными и при своем распаде испускают позитроны. Так была открыта искусственная радиоактивность. В результате ядерных реакций (например, при облучении различных элементов альфа–частицами или нейтронами) образуется радиоактивные изотопы элементов, в природе не существующие. Во многих случаях продукты радиоактивного распада сами оказываются радиоактивными и, тогда образованию стабильного изотопа предшествует цепочка из нескольких актов радиоактивного распада. Так из общего числа известных ныне около 2000 радиоактивных изотопов около 300 – природные, а остальные получены искусственно, в результате ядерных реакций. Между искусственной и естественной радиацией нет принципиального различия.

В 1934 г. И. и Ф.Жолио-Кюри в результате изучения искусственной радиации были открыты новые варианты α-распада – испускание позитронов, которые были первоначально предсказаны японскими учеными Х. Юккавой и С. Сакатой. И. и Ф. Жолио-Кюри осуществили ядерную реакцию, продуктом которой был радиоактивный изотоп фосфора с массовым числом 30. Выяснилось, что он испускал позитрон. Этот тип радиоактивных превращений называют бета-распадом (подразумевая под бета-распадом испускание электрона).

В последствии целым рядом ученых разных стран (Дж.Данинг, В.А.Карнаухов, Г.Н.Флеров, И.В.Курчатов и др.) были обнаружены сложные, включающие бета-распад, превращения, в том числе испускание запаздывающих нейтронов.

Одним из первых ученых в бывшем СССР, который приступил к изучению физики атомных ядер вообще и радиоактивности в частности был академик И.В.Курчатов. В 1934 году он открыл явление разветвления ядерных реакций, вызываемых нейтронной бомбардировкой и исследовал искусственную радиоактивность ряда химических элементов. В 1935 году при облучении брома потоками нейтронов Курчатов и его сотрудники заметили, что возникающие при этом радиоактивные атомы брома распадаются с двумя различными скоростями. Такие атомы назвали изомерами, а открытое учеными явление изомерией.

Наукой было установлено, что быстрые нейтроны способны разрушать ядра урана. При этом выделяется много энергии и образуются новые нейтроны, способные продолжать процесс деления ядер урана. Позднее обнаружилось, что атомные ядра урана могут делиться и без помощи нейтронов. Так было установлено самопроизвольное (спонтанное) деление урана. В честь выдающегося ученого в области ядерной физики и радиоактивности 104-й элемент периодической системы Менделеева назван курчатовием.

С 1943 Курчатов возглавлял научные работы, связанные с атомной проблемой. Под его руководством был сооружен первый в Москве циклотрон (1944) и первый в Европе атомный реактор (1946), созданы первая советская атомная бомба (1949) и первая в мире термоядерная бомба (1953), сооружены первая в мире промышленная атомная электростанция (1954) и крупнейшая установка для проведения исследований по осуществлению регулируемых термоядерных реакций (1958).

Открытие радиоактивности оказало огромное влияние на развитие науки и техники, Оно ознаменовало начало эпохи интенсивного изучения свойств и структуры веществ. Новые перспективы, возникшие в энергетике, промышленности, военной области медицине и других областях человеческой деятельности благодаря овладению ядерной энергией, были вызваны к жизни обнаружением способности химических элементов к самопроизвольным превращениям. Однако наряду с положительными факторами использования свойств радиоактивности в интересах человечества можно привести примеры и негативного их вмешательства в нашу жизнь. К числу таких можно относится ядерное оружие во всех его формах, затонувшие корабли и подводные лодки с атомными двигателями и атомным оружием, захоронение радиоактивных отходах в море и на земле, аварии на атомных электростанциях и др. а непосредственно для Украины использование радиоактивности в атомной энергетике привело к Чернобыльской трагедии.

  РАДИОАКТИВНОСТЬ.

Самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения. Историческая справка. Беккерель. Весной 1896 французский физик А.Беккерель сделал ряд сообщений об обнаружении им нового вида излучения (впоследствии названном радиоактивным), которое испускается солями урана. Подобно открытым за несколько месяцев до этого рентгеновским лучам, оно обладало проникающей способностью, засвечивало экранированную черной бумагой фотопластинку и ионизировало окружающий воздух. Гипотеза, которая привела к открытию радиоактивности, возникла у Беккереля под влиянием исследований Рентгена. Поскольку при генерации Х-лучей наблюдалась фосфоресценция стеклянных стенок рентгеновской трубки, Беккерель предположил, что любое фосфоресцентное свечение сопровождается испусканием рентгеновского излучения. Для проверки этого предположения он поместил различные фосфоресцирующие вещества на завернутые в черную бумагу фотопластинки и получил неожиданный результат: засвеченной оказалась единственная пластинка, с которой соприкасался кристалл соли урана. Многочисленные контрольные опыты показали, что причиной засветки явилась не фосфоресценция, а именно уран, в каком бы химическом соединении он ни находился. Свойство радиоактивного излучения вызывать ионизацию воздуха позволило наряду с фотографическим методом регистрации применять более удобный электрический метод, что значительно ускорило процесс исследований.

Кюри. Пользуясь электрическим методом, Г. Шмидт и М. Кюри в 1898 обнаружили радиоактивность элемента тория. В следующем году Дебьерн открыл радиоактивный элемент актиний. Начатый супругами П. и М.Кюри систематический поиск новых радиоактивных веществ и изучение свойств их излучения подтвердили догадку Беккереля о том, что радиоактивность урановых соединений пропорциональна числу содержащихся в них атомов урана. Среди обследованных минералов эту закономерность нарушала лишь урановая смоляная руда (уранинит), которая оказалась в четыре раза активнее, чем соответствующее количество чистого урана. Кюри сделали вывод о том, что в уранините должен содержаться неизвестный высокоактивный элемент. Проведя тщательное химическое разделение уранинита на составляющие компоненты, они открыли радий, по химическим свойствам сходный с барием, и полоний, который выделялся вместе с висмутом.

Резерфорд. В дальнейших исследованиях радиоактивности ведущая роль принадлежала Э. Резерфорду. Сосредоточив внимание на изучении этого явления, он установил природу радиоактивных превращений и сопутствующего им излучения.

Излучение радиоактивных веществ. Естественные радиоактивные элементы испускают три вида излучений: альфа, бета и гамма. В 1899 Резерфорд идентифицировал альфа- и бета-излучение; спустя год П.Вийар открыл гамма-излучение.

Альфа-излучение. В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5 см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение - это поток положительно заряженных частиц, для которых отношение заряда к массе (e/m) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия.

Бета-излучение. Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.

Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке.

СХЕМА ЭКСПЕРИМЕНТА, иллюстрирующего отклонение разных видов радиоактивного излучения в магнитном поле.

радиоактивного излучения в магнитном поле. 

3. Какая бывает радиация?

 

Различают несколько видов радиации.

 

Альфа-частицы: относительно тяжелые, положительно заряженные частицы,

представляющие собой ядра гелия.

 

Бета-частицы - это просто электроны.

 

Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет,

однако обладает гораздо большей проникающей способностью. 4. Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник.   

3.Те источники радиации, которыми являются радиоактивные вещества,

могут проникать в организм с пищей и водой (через кишечник),    

yaneuch.ru

Естественная и искусственная радиоактивность — реферат

                                                    239 93Np → 239 94Pu + 0 -1e 

      Атомный реактор. 

      Ядра  урана, особенно ядра изотопа 235 92U, наиболее эффективно захватывают медленные нейтроны. Вероятность захвата медленных нейтронов с последующим делением ядер в сотни раз больше, чем быстрых. Поэтому в ядерных реакторах, работающих на естественном уране, используются замедлители нейтронов для повышения "коэффициента размножения нейтронов

      

      Рис.7     Атомный реактор.

      Основные  элементы ядерного реактора: ядерное горючее (235 92U, 239 92Pu, 23892U и др.), замедлитель нейтронов (тяжелая или обычная вода, графит и др.), теплоноситель для вывода энергии, образующейся при работе реактора (вода, жидкий натрий и др.) и устройство для регулирования скорости реакции (вводимые в рабочее пространство реактора стержни, содержащие кадмий или бор — вещества, которые хорошо поглощают нейтроны).

      Снаружи реактор окружают защитной оболочкой, задерживающей 

γ-излучение и нейтроны. Оболочку выполняют из бетона с железным заполнителем.

      Лучшим  замедлителем является тяжелая вода. Обычная вода сама захватывает нейтроны и превращается в тяжелую воду. Хорошим замедлителем считается также графит, ядра которого не поглощают нейтронов.

      Коэффициент размножения k может стать равным единице лишь при условии, что размеры реактора и соответственно масса урана превышают некоторые критические значения. Критической массой называют наименьшую массу делящегося вещества, при которой может протекать цепная ядерная реакция.

      При малых размерах слишком велика утечка нейтронов через поверхность  активной зоны реактора (объем, в котором располагаются стержни с ураном).

      С увеличением размеров системы число  ядер, участвующих в делении, растет пропорционально объему, а число  нейтронов, теряемых вследствие утечки, увеличивается пропорционально  площади поверхности.

      Поэтому, увеличивая размеры системы, можно достичь значения коэффициента размножения k приблизительно равного 1. Система будет иметь критические размеры, если число нейтронов, потерянных вследствие захвата и утечки, равно числу нейтронов, полученных в процессе деления. Критические размеры и соответственно критическая масса определяются типом ядерного горючего, замедлителем и конструктивными особенностями реактора.

      Для чистого (без замедлителя) урана  23592U, имеющего форму шара, критическая масса приблизительно равна 50 кг. При этом радиус шара равен примерно 9 см (уран очень тяжелое вещество). Применяя замедлители нейтронов и отражающую нейтроны оболочку из бериллия, удалось снизить критическую массу до 250 г.

      Управление  реактором осуществляется при помощи стержней, содержащих кадмий или бор. При выдвинутых из активной зоны реактора стержнях k>1, а при полностью вдвинутых стержнях k<1. Вдвигая стержни внутрь активной зоны, можно в любой момент времени приостановить развитие цепной реакции. Управление ядерными реакторами осуществляется дистанционно с помощью ЭВМ. 

      Аварии. 

      В настоящее время на дне Атлантического океана покоятся пять погибших атомных  подводных лодок (две американских и три отечественных), которые  являются потенциальными источниками  техногенных радионуклидов. Однако, как показали многолетние наблюдения за затонувшей в Норвежском море АПЛ «Комсомолец», поступление радионуклидов за пределы корпуса лодки происходит крайне медленно, кроме того, многие радионуклиды прочно сорбируются донными осадками, так что серьезной опасности для окружающей среды затонувшие АПЛ, по-видимому, не представляют.

      В 1968 г. в 11 км к западу от авиабазы Туле, вблизи побережья Гренландии, произошла  катастрофа американского самолета В-52, несущего четыре ядерные боеголовки. В результате взрыва самолета плутоний, содержавшийся в боеприпасах, был перемешан со льдом, а также частично поступил под лед с фрагментами боеголовок. В итоге в донные осадки попало около 1 ТБк плутония. В 1966 г. произошло столкновение в воздухе двух самолетов американских ВВС над побережьем Испании. В результате произошло падение четырех термоядерных бомб: три упали на берег, одна — в Средиземное море. Однако эти инциденты не привели к серьезным последствиям для окружающей среды, поскольку большая часть плутония была удалена в результате своевременных дезактивационных работ.

      В 1964 г. потерпел аварию американский навигационный  спутник: он не вышел на орбиту и  упал в Индийский океан. Энергоснабжение  спутника обеспечивалось изотопным  источником энергии. Авария спутника привела к распылению в атмосфере 629 ТБк 238Pu. Около 95% этого плутония выпало на поверхность Земли к концу 1970 г. Падение спутника привело к существенному изменению соотношения изотопов плутония в глобальных выпадениях.

      Авария  советского спутника «Космос-954» в 1978 г. привела к поступлению в окружающую среду продуктов деления из бортового атомного реактора. Примерно три четверти от общего количества радионуклидов рассеялись в верхних слоях атмосферы. Падение обломков произошло на территории Северной Америки.

      Известен  ряд аварий на предприятиях ядерного топливного цикла. Например, в Селлафилде в 1957 г. произошла авария на исследовательском  реакторе с расплавлением активной зоны.

      27 сентября 1957 г. произошла авария  в Кыштыме (Челябинская область)  на предприятии по переработке радиоактивных отходов, где находились около 60 охлаждаемых водой емкостей из нержавеющей стали объемом по 250 м3 с высокорадиоактивными отходами. В результате перебоя в подаче охлаждающей воды произошел взрыв мощностью 5—10 кт. Было эвакуировано 23 населенных пункта с населением 10180 человек. Радиоактивное облако поднялось на высоту 1 км и стало перемещаться на северо-восток.

        

      Рис.8          Схема атомной электростанции.

      Однако  наиболее серьезная авария произошла  на Чернобыльской АЭС в ночь на 26 апреля 1986 года. На Чернобыльской АЭС были установлены реакторы типа РБМК (реактор большой мощности кипящий), основной компонент выбросов которых в окружающую среду — РГ (радиоактивные газы), не создающие опасности внутреннего облучения. Штатная загрузка РБМК — 192 т ядерного топлива (UO2) с обогащением 2% и 1760 т графита. Для предотвращения окисления графита в кожух реактора подается газовая смесь, состоящая из 80% гелия и 20% водорода. Полная кампания топлива длится 1080 суток. За это время в топливе накапливается свыше 500 радионуклидов от трития до кюрия с общей активностью 6,8 • 1020 Бк. Среди этих радионуклидов достаточно много короткоживущих, активность которых быстро уменьшается со временем.

      Авария  на ЧАЭС произошла в результате грубейших нарушений техники безопасности при остановке 4-ого блока для проведения замены тепловыделяющих элементов. Произошел взрыв. Рассеяние крупных осколков топлива наблюдалось на расстоянии до сотен метров. Затем загорелся графит. Из общего количества накопившихся в реакторе РБМК радионуклидов при аварии 4-го блока ЧАЭС значительная часть была выброшена в окружающую среду. По мере того как графитовый компонент сердцевины реактора выгорал, он позволял оставшемуся топливу разъедать нижнюю биологическую защиту (НБЗ) и протекать в нижние части здания реактора. Через девять дней сердцевина реактора быстро затвердела и авария остановилась без прямого вмешательства человека (сбрасывание различных материалов с вертолета было неэффективным). Тепло распада быстро снизилось в связи с захватом окружающих материалов (нержавеющей стали и серпентина НБЗ) в соединении с быстрым распространением расплавленного топлива на расстояние до 40 м от эпицентра расплавленной сердцевины.

      В течение первых 9 дней после аварии наблюдались четыре фазы процесса:

      •  первая фаза (26 апреля) — механическая дисперсия топлива;

      •  вторая фаза (27 апреля-1 мая) — спад уровня выброса; уменьшение горения графита;

      •  третья фаза (2—5 мая) — сердцевина разогревается до температуры выше 2000°С; протекает реакция между кислородом и графитом; аэрозольные формы продуктов деления комбинируются с частицами графита;

      •  четвертая фаза (5—6 мая) — быстрое  снижение эмиссии продуктов деления, связанное с остановкой процесса деления. [2]

      Выброс  радиоактивных продуктов в атмосферу  продолжался до конца августа  со скоростью нескольких кюри в день.

      В саркофаге, сооруженном вокруг аварийного блока, находится от 1270 до 1350 т содержащих топливо материалов (около 10,5% частично им горевшего ядерного топлива), 64000 м3 других материалов (цемент, строительные материалы и др.), приблизительно 10000 т строительных металлоконструкций и от 800 до 1000 т загрязненной воды. В затвердевших остатках топлива остается значительное количество цезия-137 (35% от его исходного количества).

      Главные пятна загрязнения на территории бывшего СССР — площади с уровнем радиоактивности на грунте более 560 кБк/м2. Большие площади на Украине и в Белоруссии имели уровень радиоактивности выше 40 кБк/м2. Наиболее загрязнена была 30-километровая зона, окружающая реактор, где уровень загрязнения цезием-137 обычно превосходил 1500 кБк/м2. В наиболее загрязненном Брянско-Белорусском пятне, находящемся в 200 км к северо-северо-востоку от 4-ого блока, уровень загрязнения цезием-137 достигал 5 МБк/м2.

      Предельно высокие уровни выпадений, в том  числе и в местах, находящихся  в тысячах километров от места  аварии, в основном были связаны  с дождями. Сухие выпадения играли существенно меньшую роль в распространении  Чернобыльских радионуклидов, чем в случае выпадений после испытаний ядерного оружия.

      Все эти аварии - наглядный пример того, как опасна может быть радиация.                         

Часть 3.

Воздействие малых доз радиации на живой организм. 

      Эта тема не является основной для моего реферата, так что про неё я скажу совсем немного.

      Механизм  излучения, поражающего биологические объекты, еще недостаточно изучен. Но ясно, что оно сводится к ионизации атомов и молекул и это приводит к изменению их химической активности. Наиболее чувствительны к излучениям ядра клеток, особенно клеток, которые быстро делятся. Поэтому в первую очередь излучения поражают костный мозг, из-за чего нарушается процесс образования крови. Далее наступает поражение клеток пищеварительного тракта и других органов.

      Сильное влияние оказывает облучение  на наследственность, поражая гены в хромосомах. В большинстве случаев  это влияние является неблагоприятным.

      Облучение живых организмов может оказывать  и определенную пользу. Быстроразмножающиеся клетки в злокачественных (раковых) опухолях более чувствительны к облучению, чем нормальные. На этом основано подавление раковой опухоли γ-лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи.

      Воздействие излучений на живые организмы характеризуется дозой излучения. Поглощенной дозой излучения называется отношение поглощенной энергии Е ионизирующего излучения к массе m облучаемого вещества: 

      D=E/m     (17) 

      В СИ поглощенную дозу излучения выражают в грэях (сокращенно: Гр). 1 Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

      Естественный  фон радиации (космические лучи, радиоактивность окружающей среды  и человеческого тела) составляет за год дозу излучения около 2-10-3 Гр на человека. Международная комиссия по радиационной защите установила для лиц, работающих с излучением, предельно допустимую за год дозу 0,05 Гр. Доза излучения в 3—10 Гр, полученная за короткое время, смертельна.

      Существенный вклад в облучение человека вносит радон и продукты его распада. Именно он, вызывает особую тревогу у ученых. По мнению правительственных экспертов за счет радона и продуктов его распада люди получают 3/4 дозы от общего количества радиации, поступающей в процессе облучения естественными источниками радиации. Таким образом, отрицательное действие радона на здоровье людей значительно превосходит воздействие от радиации, выброшенной в окружающую среду атомными станциями.

         Основным источником этого радиоактивного инертного газа является земная кора, в которой он образуется в результате естественного радиоактивного распада. Проникая через трещины и щели в фундаменте, полу и стенах, радон поступает в первые этажи зданий и подвальные помещения и в них задерживается и накапливается (радон в 7,5 раз тяжелее воздуха). Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.

myunivercity.ru

Реферат по физике на тему: «Естественная и искусственная радиоактивность»

ГОУ Гимназия № 1505.

Реферат по физике на тему:

«Естественная и искусственная радиоактивность»

(адаптированный текст)

Ученицы 10 «Б» класса

Кравцовой Галины.

Руководитель:

Дмитриев Геннадий Владимирович.

2009 год, Москва.

Содержание.

Введение.

Часть 1.История открытия радиоактивности.

Часть 2. Физика ядра.

Глава 1.

- Строение атомного ядра.

- Ядерные силы.

- Энергия связи ядра.

- Изотопы.

Глава 2.

- Закон радиоактивного распада.

- Виды радиоактивных излучений и распадов.

Глава 3.

- Естественная радиоактивность.

- Искусственная радиоактивность.

- Ядерное оружие.

- Ядерный реактор.

- Аварии.

Часть 3. Воздействие малых доз радиации на живой организм.

Часть 4. Методы регистрации частиц.

- Газоразрядный счетчик.

- Счетчик Гейгера - Мюллера.

- Пузырьковая камера.

- Камера Вильсона.

- Дозиметр и радиометр.

Заключение.

Список используемой литературы.

Введение.

Тема моей работы - измерение радиоактивного фонового излучения на территории гимназии. Я, конечно, сомневаюсь, что мы занимаемся в помещениях, в которых радиоактивный фон сильно превышает санитарные нормы. Но механизмы воздействия малых доз радиации на человеческий организм мало изучены. Это как с солнцем: свети оно чуть меньше - мы все замерзнем насмерть, а не будь хоть части озонового слоя - мы умрём от повышенного количества излучения. Слишком много, как и слишком мало - не к добру. Но где начинается много и заканчивается мало? Я не ставлю себе задачу проверить это. В мои цели входит более подробно познать материал, связанный с радиацией (которая делится на естественную и искусственную), с помощью радиометра измерить уровень радиации в разных диапазонах частот, составить таблицы и сравнить их результаты с санитарными нормами. Насколько я знаю, СНИПы – часто изменяемые нормы и сравнивать с ними результаты будет довольно сложно, но я хочу это сделать и постараюсь получить наиболее точные результаты сравнения. Я планирую составить несколько таблиц. Их количество зависит от того, насколько чувствительный радиометр я смогу достать и от того, хватит ли мне времени исследовать помещения гимназии с включенной и выключенной аппаратурой. Сам же реферат я представляю как текст, не сильно выходящий за рамки школьного курса и наиболее понятно, на мой взгляд, объясняющий основные вопросы темы.

Часть 1.

История открытия радиоактивности.Французский физик А. Беккрель 1 марта 1896 года обнаружил по почернению фотопластинки испускание солью урана невидимых лучей сильной проникающей способности. Вскоре он выяснил, что свойством лучеиспускания обладает и сам уран. Затем такое свойство им было обнаружено и у тория.

Радиоактивность (от латинского radio – излучаю, radus – луч и activus – действенный), такое название получило открытое явление, которое оказалось привилегией самых тяжелых элементов периодической системы Д.И.Менделеева.

В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий Так были открыты два неизвестных ранее радиоактивных элемента - полоний и радий, а Мария, кроме того обнаруживает (независимо от немецкого физика Г.Шмидта) явление радиоактивности у тория. Кстати, она первой и предложила термин радиоактивность. Ученые пришли к выводу, что радиоактивность представляет собой самопроизвольный процесс, происходящий в атомах радиоактивных элементов. За 10 лет совместной работы они сделали очень многое для изучения этого явления. Это был беззаветный труд во имя науки – в плохо оборудованной лаборатории и при отсутствии необходимых средств. Пьер установил самопроизвольное выделение тепла солями радия. Этот препарат радия исследователи получили в 1902 году в количестве 0,1 гр. Для этого им потребовалось 45 месяцев напряженного туда и более 10000 химических операций обогащения и очистки. В 1903 году за открытие в области радиоактивности супругам Кюри и А.Беккерелю была присуждена Нобелевская премия по физике. Всего за работы, связанные с исследованием и применением радиоактивности, было присуждено более 10 Нобелевских премий по физике и химии (А.Беккерелю, П. и М. Кюри, Э.Ферми, Э.Резерфорду, Ф. и И. Жолио-Кюри, Д.Хэвиши, О.Гану, Э.Макмиланн и Г.Сиборгу, У.Либби и др.). В честь супругов Кюри получил свое название искусственно полученный трансурановый элемент с порядковым номером 96 – кюрий.

В начале ХХ века ученые уже знали, что атом содержит отрицательно заряженные электроны. Однако преобладало представление, что атом представляет собой что-то похожее на положительно заряженную тонкую сетку, заполненную отрицательно заряженными электронами-изюминами, — модель так и называлась «модель сетки с изюмом» (Модель Томпсона).

В 1898 году английский ученый Э.Резерфорд (ученик Томпсона) приступил к изучению явления радиоактивности. В 1903 году Э.Резерфорд доказывает ошибочность предположения своего учителя Томпсона о его теории строении атома и в 1908-1911 г.г. проводит опыты по рассеянью частиц (ядер гелия) металлической фольгой. Используя естественный источник радиоактивного излучения, Резерфорд построил “пушку”, дававшую направленный и сфокусированный поток частиц. Пушка представляла собой свинцовый ящик с узкой прорезью, внутрь которого был помещен радиоактивный материал. Благодаря этому частицы (в данном случае альфа-частицы, состоящие из двух протонов и двух нейтронов), испускаемые радиоактивным веществом во всех направлениях, кроме одного, поглощались свинцовым экраном, и лишь через прорезь вылетал направленный пучок альфа-частиц. Далее на пути пучка стояло еще несколько свинцовых экранов с узкими прорезями, отсекавших частицы, отклоняющиеся от строго заданного направления. В результате к мишени подлетал идеально сфокусированный пучок альфа-частиц, а сама мишень представляла собой тончайший лист золотой фольги. В нее-то и ударял альфа-луч. После столкновения с атомами фольги альфа-частицы продолжали свой путь и попадали на люминесцентный экран, установленный позади мишени, на котором при попадании на него альфа-частиц регистрировались вспышки. По ним экспериментатор мог судить, в каком количестве и насколько альфа-частицы отклоняются от направления прямолинейного движения в результате столкновений с атомами фольги.

Резерфорд заметил, что никто из его предшественников даже не пробовал проверить, не отклоняются ли некоторые альфа-частицы под очень большими углами. Модель сетки с изюмом просто не допускала существования в атоме столь плотных и тяжелых элементов структуры, что они могли бы отклонять быстрые альфа-частицы на значительные углы, поэтому никто и не озадачивался тем, чтобы проверить такую возможность. Резерфорд попросил одного из своих студентов переоборудовать установку таким образом, чтобы можно было наблюдать рассеяние альфа-частиц под большими углами отклонения, чтобы окончательно исключить такую возможность.

В качестве детектора использовался экран с покрытием из сульфида натрия — материала, дающего флуоресцентную вспышку при попадании в него альфа-частицы. Каково же было удивление не только студента, непосредственно проводившего эксперимент, но и самого Резерфорда, когда выяснилось, что некоторые частицы отклоняются на углы вплоть до 180°!

В рамках устоявшейся модели атома полученный результат не мог быть истолкован: в сетке с изюмом попросту нет ничего такого, что могло бы отразить мощную, быструю и тяжелую альфа-частицу. Резерфорд вынужден был заключить, что в атоме большая часть массы сосредоточена в невероятно плотном веществе, расположенном в центре атома. А вся остальная часть атома оказывалась на много порядков менее плотной, нежели это представлялось раньше. Из поведения рассеянных альфа-частиц вытекало также, что в этих сверхплотных центрах атома, которые Резерфорд назвал ядрами, сосредоточен также и весь положительный электрический заряд атома, поскольку только силами электрического отталкивания может быть обусловлено рассеяние частиц под углами больше 90°.

Картина атома, нарисованная Резерфордом по результатам опыта, нам сегодня хорошо знакома. Атом состоит из сверхплотного, компактного ядра, несущего на себе положительный заряд, и отрицательно заряженных легких электронов вокруг него. Позже ученые подвели под эту картину надежную теоретическую базу, но началось всё с простого эксперимента с маленьким образцом радиоактивного материала и куском золотой фольги.

Опыты по рассеянью частиц убедительно показали, что почти вся масса атома сосредоточена в очень малом объеме – атомном ядре, диаметр которого примерно в 100000 раз меньше диаметра атома.

Большинство частиц пролетает мимо массивного ядра, не задевая его, но изредка происходит столкновение частицы с ядром и тогда она может отскочить назад.

Таким образом, первым его фундаментальным открытием в этой области было обнаружение неоднородности излучения, испускаемого ураном. Так в науку о радиоактивности впервые вошло понятие о лучах. Он также предложил и названия: распад и частица. Немного позже была обнаружена еще одна составляющая часть излучения, обозначенная третьей буквой греческого алфавита: гамма-лучи. Это произошло вскоре после открытия радиоактивности. На долгие годы эти частицы стали для Э.Резерфорда незаменимым инструментом исследований атомных ядер. В 1903 году он открывает новый радиоактивный элемент – самопроизвольный распад тория. В 1901-1903 годах он совместно с английским ученым Ф.Содди проводит исследования, которые привели к открытию естественного превращения элементов ( например радия в радон) и разработке теории радиоактивного распада атомов.В 1903 году немецкий физик К.Фаянс и Ф.Содди независимо друг от друга сформулировали правило смещения, в котором описывается поведение ядра при альфа-распаде. Весной 1934 года в «Докладах Парижской академии наук» появилась статья под названием «Новый тип радиоактивности». Ее авторы Ирен Жолио-Кюри и ее муж Фредерик Жолио-Кюри обнаружили, что бор, магний, и алюминий, облученные альфа–частицами, становятся сами радиоактивными и при своем распаде испускают позитроны. Так была открыта искусственная радиоактивность. В результате ядерных реакций (например, при облучении различных элементов альфа–частицами или нейтронами) образуется радиоактивные изотопы элементов, в природе не существующие. Во многих случаях продукты радиоактивного распада сами оказываются радиоактивными и, тогда образованию стабильного изотопа предшествует цепочка из нескольких актов радиоактивного распада. Так из общего числа известных ныне около 2000 радиоактивных изотопов около 300 – природные, а остальные получены искусственно, в результате ядерных реакций. Между искусственной и естественной радиацией нет принципиального различия.

В 1934 г. И. и Ф.Жолио-Кюри в результате изучения искусственной радиации были открыты новые варианты α-распада – испускание позитронов, которые были первоначально предсказаны японскими учеными Х.Юккавой и С.Сакатой. И. и Ф. Жолио-Кюри осуществили ядерную реакцию, продуктом которой был радиоактивный изотоп фосфора с массовым числом 30. Выяснилось, что он испускал позитрон. Этот тип радиоактивных превращений называют бета-распадом (подразумевая под бета-распадом испускание электрона).

В последствии целым рядом ученых разных стран (Дж.Данинг, В.А.Карнаухов, Г.Н.Флеров, И.В.Курчатов и др.) были обнаружены сложные, включающие бета-распад, превращения, в том числе испускание запаздывающих нейтронов.

Одним из первых ученых в бывшем СССР, который приступил к изучению физики атомных ядер вообще и радиоактивности в частности был академик И.В.Курчатов. В 1934 году он открыл явление разветвления ядерных реакций, вызываемых нейтронной бомбардировкой и исследовал искусственную радиоактивность ряда химических элементов. В 1935 году при облучении брома потоками нейтронов Курчатов и его сотрудники заметили, что возникающие при этом радиоактивные атомы брома распадаются с двумя различными скоростями. Такие атомы назвали изомерами, а открытое учеными явление изомерией.

Наукой было установлено, что быстрые нейтроны способны разрушать ядра урана. При этом выделяется много энергии и образуются новые нейтроны, способные продолжать процесс деления ядер урана. Позднее обнаружилось, что атомные ядра урана могут делиться и без помощи нейтронов. Так было установлено самопроизвольное (спонтанное) деление урана. В честь выдающегося ученого в области ядерной физики и радиоактивности 104-й элемент периодической системы Менделеева назван курчатовием.

С 1943 Курчатов возглавлял научные работы, связанные с атомной проблемой. Под его руководством был сооружен первый в Москве циклотрон (1944) и первый в Европе атомный реактор (1946), созданы первая советская атомная бомба (1949) и первая в мире термоядерная бомба (1953), сооружены первая в мире промышленная атомная электростанция (1954) и крупнейшая установка для проведения исследований по осуществлению регулируемых термоядерных реакций (1958).

Открытие радиоактивности оказало огромное влияние на развитие науки и техники, Оно ознаменовало начало эпохи интенсивного изучения свойств и структуры веществ. Новые перспективы, возникшие в энергетике, промышленности, военной области медицине и других областях человеческой деятельности благодаря овладению ядерной энергией, были вызваны к жизни обнаружением способности химических элементов к самопроизвольным превращениям. Однако наряду с положительными факторами использования свойств радиоактивности в интересах человечества можно привести примеры и негативного их вмешательства в нашу жизнь. К числу таких можно относится ядерное оружие во всех его формах, затонувшие корабли и подводные лодки с атомными двигателями и атомным оружием, захоронение радиоактивных отходах в море и на земле, аварии на атомных электростанциях и др. а непосредственно для Украины использование радиоактивности в атомной энергетике привело к Чернобыльской трагедии.

Часть 2. Физика ядра.

100-bal.ru

Естественная и искусственная радиоактивность — Мегаобучалка

Естественная радиоактивность

Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час.

Откуда же берется естественная радиоактивность? Существует три основных источника:

1. Космическое излучение и солнечная радиация — это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник — атмосфера.

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания.

3. Радон — это радиоактивный инертный газ без цвета, вкуса и запаха. Он в 7,5 раз тяжелее воздуха, и, как правило, именно он становится причиной радиоактивности строительных материалов. Радон имеет свойство скапливаться под землей в больших количествах, на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Искусственная радиоактивность

В отличие от естественных источников радиации, искусственная радиоактивность возникла и распространяется исключительно силами людей. К основным техногенным радиоактивным источникам относят ядерное оружие, промышленные отходы, АЭС, медицинское оборудование, предметы старины, вывезенные из «запретных» зон после аварии Чернобыльской АЭС, некоторые драгоценные камни.

Радиоакти́вность— свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд Z, массовое число A) путём испускания элементарных частиц или ядерных фрагментов. Соответствующее явление называется радиоактивным распадом. Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.

Альфа-,бета- и гамма распад.

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2 и, соответственно, атомной массой А-4: (Z^A)X→(Z-2^(A-4))Y +(2^4)He. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Альфа-распад – это внутриядерный процесс. В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне: (Z^A)X→(Z+1^A)Y+(-1^0)e+(0^0)v. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Бета-распад – это внутринуклонный процесс. Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Ядерные реакции.

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов.

В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях.

При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.

Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы).

Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина

Q = (MA + MB – MC – MD)c2 = ΔMc2.

где MA и MB – массы исходных продуктов, MC и MD – массы конечных продуктов реакции. Величина ΔM называется дефектом масс. Ядерные реакции могут протекать с выделением (Q > 0) или с поглощением энергии (Q < 0). Во втором случае первоначальная кинетическая энергия исходных продуктов должна превышать величину |Q|, которая называется порогом реакции.

Для того чтобы ядерная реакция имела положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна быть меньше удельной энергии связи нуклонов в ядрах конечных продуктов. Это означает, что величина ΔM должна быть положительной.

Цепные реакции.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией.

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции.

Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около 50 кг.

megaobuchalka.ru

Естественная и искусственная радиоактивность — реферат

Часть 2. Физика ядра.

    Глава 1.

      Строение  атомного ядра. 

      После опытов Резерфорда по рассеянью  частиц (ядер гелия) стало понятно, что модель атома «булка с изюмом» несправедлива. Так же, на основе своих опытов, учёный выдвинул теорию о планетарном строении атома. Она заключается в том, что есть ядро малых размеров (заряженное положительно), вокруг которого вращаются электроны*. Так как суммарные заряды протонов и электронов равны, а заряд нейтрона равен нулю, то атом не имеет заряда, т.е. он нейтрален. Это и есть привычная для нас модель атома. Радиус атома приблизительно равен 10-10 м, а масса – 10-22 г. Почти вся масса атома сосредоточенна в плотном(приблизительно 18 . 1017 г/см3) ядре.    

      Итак, атомное ядро. Вскоре после открытия нейтрона, была выдвинута гипотеза о протонно-нейтронном строении ядра. Согласно этой идее все ядра состоят из протонов** и нейтронов***. Вместе они называются нуклеотидами.    

      

      *Электрон - отрицательно заряженная частица, находящаяся в оболочках атомного ядра. Химические свойства атома определяются находящимися вокруг ядра электронами, особенно принадлежащим внешним оболочкам.

      **Протон - положительно заряженная частица, находящаяся в ядре атома. Имеет массу, равную массе нейтрона, и в 1840 раз тяжелее электрона. Его заряд равен по модулю заряду электрона.

      ***Нейтрон – нейтрально заряженная частица, входящая в состав атомного ядра. Нейтрон состоит из  2-х частиц: протона и электрона, но в ядре их разделить нельзя. Но если ”изъять” один нейтрон из ядра, то он распадётся на составляющие через 10 мин. Т.к. масса электрона очень мала, то масса нейтрона приблизительно равна массе протона. [1] 

      Число протонов в атомном ядре равно  зарядовому числу Z. Число нейтронов равно N. Их сумму называют массовым числом и обозначают буквой A:

      A=Z+N     (1) 

      Масса ядра измеряется в атомных единицах массы. 1а.е.м. приблизительно равна массе протона (массе ядра атома гелия)  => A=1а.е.м. . количество нуклеотидов. Т.е. A- это приблизительная масса ядра в а.е.м..

      Одна  из основных характеристик атомного ядра – его электрический заряд. Электрический заряд атома равен произведению элементарного электрического заряда e на порядковый номер Z химического элемента в таблице Д. И. Менделеева:

      q=Ze     (2)  

      Не  менее важным параметром является масса атомного ядра. Массы атомов и атомных ядер измеряются с помощью масс-спектрографа. Положительные ионы исследуемого вещества разгоняются электрическим полем.Специальное устройство пропускает - на щель только ионы с некоторой определенной скоростью V. Через щель пучок ионов попадает в вакуумную камеру. Эта камера находится между полюсами магнита; вектор магнитной индукции перпендикулярен вектору скорости ионов. Как известно, на электрически заряженную частицу, движущуюся со

      

     Рис.1 Масс-спектрограф        скоростью V в поперечном магнитном поле с индукцией В, действует сила Лоренца, направленная под прямым углом к векторам скорости заряда и индукции магнитного поля; модуль этой силы равен F=qUВ. Под действием силы Лоренца ион движется по окружности, радиус которой R определяется соотношением mU²/R = qUB.

      Описав  полуокружность, все ионы одинаковой массы попадают в одно место фотографической  пластинки. По известным значениям  индукции магнитного поля, скорости, заряда иона и радиуса окружности определяется масса иона:

      mU2/R=qUB => m=qUBR/U2 =>

      m=qBR / U.    (3) 

Ядерные силы. 

      Так как атомные ядра достаточно устойчивы, то протоны и нейтроны должны удерживаться внутри ядра какими-то силами, причем очень  большими. Что же это за силы? К началу двадцатого века ученым было известно только два вида сил: гравитационные и электромагнитные. Совершенно точно можно сказать, что это не гравитационные силы. Они для этого слишком слабы. Расчеты показывают, что сила гравитационного притяжения, действующая между двумя протонами в ядре, примерно в 1036 раз меньше силы кулоновского отталкивания между ними. Устойчивость ядра также не может быть объяснена электромагнитными силами из-за того, что между одноименно заряженными протонами действует электрическое отталкивание. А нейтроны вообще лишены электрического заряда. Следовательно, между нуклонами действуют какие-то другие силы. Эти силы назвали ядерными.

      Свойства  ядерных сил изучены достаточно хорошо. Два главных свойства этих сил - их короткодействующий характер и сила. Современные эксперименты позволили установить, что на расстоянии 10-15 м от центра протона ядерные силы примерно в 35 раз больше кулоновских и в 1038 раз больше гравитационных. Однако с увеличением расстояния ядерные силы очень быстро убывают и на расстояниях, больших 1,4*10-15 м, их действием можно пренебречь. 

      Энергия связи ядра. 

      Важную  роль в ядерной физике играет понятие  энергии связи ядра. Энергия связи  позволяет объяснить устойчивость ядер, узнать, какие процессы ведут  к выделению ядерной энергии. Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить большую работу, т. е. сообщить ядру огромное количество энергии.

      Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основании закона сохранения энергии* можно также утверждать, что энергии связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика.

      Точные  измерения масс атомных ядер показали, что масса любого ядра, содержащего  Z протонов и N нейтронов, меньше суммы масс такого же числа свободных протонов и нейтронов:

      mя<Zmp+Nmn     (4) 

Существует так называемый дефект масс. Он равен (с обратным знаком) энергии связи нуклонов в ядре. Его смысл заключается в том, что разность масс

Δm= Zmp + Nmn — mя     (5) 

положительна. К примеру, для гелия масса  ядра на 0,75% меньше суммы масс двух протонов и двух нейтронов. Соответственно для  одного моля гелия Δm =    0,03 г.

Чем больше дефект масс, тем выше Eсв, следовательно, тем устойчивее ядро. Дефект масс измеряется в а.е.м..

      Уменьшение  массы ядра при образовании его  из нуклонов означает то, что при  этом уменьшается и энергия этой системы нуклонов на величину энергии связи Есв:

Eсв=Δmc²= (Zmp+Nmn-mя)c²     (6) 

      

      *Закон  сохранения энергии утверждает, что энергия не может создаваться или исчезать, но может только превращаться из одной формы в другую.  

      Но  куда  же при  этом  деваются  энергия  Eсв и масса Δm?

      При образовании ядра из частиц, эти  частицы за счет действия ядерных  сил устремляются с огромным ускорением друг к другу. Излучаемые при этом γ-кванты как раз обладают энергией Eсв и массой

Δm = Eсв / c²     (7) 

      О том, как велика энергия связи, можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, что и сгорание 1,5—2 вагонов каменного угля. 

      Изотопы. 

      В результате наблюдения большого числа  радиоактивных превращений выяснилось, что существуют вещества, совершенно одинаковые по своим химическим свойствам, но распадающиеся совершенно по-разному. Их никак не удавалось разделить. На этом основании физик Содди в 1911 г. высказал теорию о существовании элементов с одинаковыми химическими свойствами, но различных по своей радиоактивности. Эти элементы нужно помещать в одну и ту же клетку периодической системы Менделеева. Содди назвал их изотопами (т. е. занимающими одинаковые места).

      Предположение Содди подтвердилось год спустя, когда Томсон произвёл точные измерения массы ионов неона методом отклонения их в электрических и магнитных полях. Томсон обнаружил, что атомы неона бывают двух видов. Большая часть атомов имеет относительную массу, равную 20. Но есть незначительное количество атомов с относительной атомной массой 22. В результате относительная атомная масса смеси равна 20,2. Так выяснилось, что атомы, обладающие одинаковыми химическими свойствами, имеют разную массу.

      Изотопы могут быть как радиоактивными, так и стабильными. Чаще всего они радиоактивные. Но встречаются и стабильные ядра. Например дейтерий - нерадиоактивный изотоп водорода, имеющий атомную массу равную двум. Но у водорода есть и другой изотоп – тритий, радиоактивный и имеющий период полураспада 12 лет ( он имеет атомную массу равную трём).

      Существование изотопов доказывает, что заряд атомного ядра определяет не все свойства атома, а лишь его химические свойства и  те физические свойства, которые зависят  от периферии электронной оболочки, например размеры. Масса же атома  и его радиоактивные свойства не определяются порядковым номером в таблице Менделеева.

      Итак, изотопы являются атомами одного и того же элемента (так как у них одинаково число протонов и электронов) с различным числом нейтронов и, следственно, с различным массовым числом. Почти все элементы, найденные в природе, являются смесью различных изотопов. Изотопы определенного элемента имеют одинаковые химические свойства и разные физические свойства (плотность, скорость диффузии и т.д.). 

      Глава 2.

      Закон радиоактивного распада. 

      Резерфорд, исследуя превращения радиоактивных веществ, установил опытным путем, что их активность убывает с течением времени. Для каждого радиоактивного вещества существует определенный интервал времени, в течение которого активность убывает в два раза. Этот интервал носит название периода полураспада. Период полураспада Т — это то время, в течение которого распадается половина наличного числа радиоактивных атомов, т.к. уменьшения активности препарата в два раза можно достичь простым делением его на две равные части.  

          Рис.2    Найдем теперь математическую форму закона радиоактивного распада. Пусть число радиоактивных атомов в начальный момент времени (t=0) равно N0. Тогда по истечении периода полураспада это число будет равно N0/2. Спустя еще один такой же интервал   времени  это число  станет равным 

½ * N0/2 =  N0 /4= N0/22     (8) 

По истечении  времени t = nT, т.е. спустя n периодов полураспада T, радиоактивных атомов останется: 

      N = N0 . 1/2n     (9) 

Поскольку

      N = t/T     (10) 

то

      N = N0 . 2-t / T     (11) 

      Это и есть основной закон радиоактивного распада. По последней формуле находят число нераспавшихся атомов в любой момент времени.

      Период  полураспада основная величина, определяющая скорость радиоактивного распада. Чем меньше период полураспада, тем меньше времени живут атомы, тем быстрее происходит распад. Для разных веществ период полураспада имеет сильно различающиеся значения. Период полураспада радия равен 1600 лет. Есть радиоактивные элементы с периодом полураспада в миллионные доли секунды.

      Чтобы, пользуясь формулой, определить период полураспада, надо знать число атомов N0 в начальный момент времени и подсчитать число не распавшихся атомов N спустя определенный интервал времени.

      Сам закон радиоактивного распада довольно прост. Но физический смысл этого закона понять нелегко. Действительно, согласно этому закону за любой интервал времени распадается одна и та же доля имеющихся атомов (за период полураспада половина атомов). Значит, с течением времени скорость распада нисколько не меняется. Радиоактивные атомы не «стареют». Так, атомы радона, возникающие при распаде радия, имеют одинаковые шансы претерпеть радиоактивный распад как сразу же после своего образования, так и спустя 10 мин после этого. Вероятность распада одного ядра за 1с называется постоянной распада и обозначается λ. Для любого ядра  данного изотопа постоянная распада одинакова,   ядра   различных   изотопов имеют разные постоянные распада.

myunivercity.ru

Естественная и искусственная радиоактивность — реферат

          Важным усовершенствованием, удостоенным  в 1948 г. Нобелевской премии (П. Блэкетт), явилось создание управляемой камеры Вильсона. Специальные счётчики отбирают события, которые должны быть зарегистрированы камерой Вильсона, и “запускают” камеру лишь для наблюдения таких событий. Эффективность камеры Вильсона, работающей в таком режиме, многократно возрастает. “Управляемость” камеры Вильсона объясняется тем, что можно обеспечить очень высокую скорость расширения газовой среды и камера успевает отреагировать на запускающий сигнал внешних счётчиков. 

      Дозиметр  и радиометр.

      Дози́метр — устройство для измерения дозы или мощности дозы ионизирующего излучения, полученной прибором (и тем, кто им пользуется) за некоторый промежуток времени, например, за период нахождения на некоторой территории или за рабочую смену.

      Измерение вышеописанных величин называется дозиметрией.

      Иногда  «дозиметром» не совсем точно называют радиометр — прибор для измерения активности радионуклида в источнике или образце (в объеме жидкости, газа, аэрозоля, на загрязненных поверхностях) или плотности потока ионизиру-

         

       Рис. 13      Дозиметр.

щей излучений  для проверки на радиоактивность подозрительных предметов и оценки радиационной обстановки в данном месте в данный момент.

      Измерение вышеописанных величин называется радиометрией.

      Рентгенметр — разновидность радиометра для измерения мощности гамма-излучения. 

      Бытовые приборы, как правило, комбинированные, имеют оба режима работы с переключением  «дозиметр» — «радиометр», световую и (или) звуковую сигнализацию и дисплей  для отсчёта измерений. Масса  бытовых приборов от 400 до нескольких десятков граммов, размер позволяет положить их в карман. Некоторые современные модели можно надевать на запястье, как часы. Время непрерывной работы от одной батареи от нескольких суток до нескольких месяцев. 

                 Рис14. Схема дозиметра.   Диапазон измерения бытовых радиометров, как правило, от 10 микрорентген в час до 9,999 миллирентген в час (0,1 — 99,99 микрозиверт в час), погрешность измерения ±30 %. 

      Детектором (чувствительным элементом дозиметра  или радиометра, служащим для преобразования явлений, вызываемых ионизирующими излучениями в электрический или другой сигнал, легко доступный для измерения) может являться ионизационная камера (военный прямопоказывающий дозиметр «ДП-50», похож на авторучку с окошком в торце), сцинтиллятор (геологический поисковый радиометр «СРП-88»), счётчик Гейгера (военный радиометр «ДП-12», бытовые комбинированные «Белла», «Сосна», «Эксперт» (позволяет измерять мягкое бета

      

      Рис.15     Радиометр.  

излучение), «РКСБ-104» (радиометр с возможностью работы в дежурном режиме, подаёт сигнал при превышении установленного пользователем уровня), «Мастер» (маленький экономичный рентгенметр и так далее) или же специальный полупроводниковый диод.              

      Заключение.

      Итак, моя работа над рефератом выполнена ровно на половину. Как я и предполагала вначале, времени на измерение уровня радиоактивности и составление таблиц ,к сожалению, не хватило. 

      Выше  изложенный материал – это то, в  чем в течение года разбиралась  я, и, надеюсь, после прочтения, разобрались и Вы.

      Я планирую в следующем году завершить  практическую часть своей работы и составить таблицы с радиационным паспортом гимназии.                      

  1. А.А. Пинской. Учебник по физике за 11 класс.
  2. Г.Я. Мякишев. Учебник по физике за 11 класс.
  3. Ю.Б. Кудряшов. Радиационная биофизика.
  4. Физический энциклопедический словарь.

myunivercity.ru


Смотрите также