Доклад: Концепция уровней биологических структур и организация живых систем. Молекулярный уровень реферат


Особенности молекулярного уровня жизни | Биохимия. Реферат, доклад, сообщение, кратко, презентация, лекция, шпаргалка, конспект, ГДЗ, тест

В пределах биосферы, помимо биогеоценотического, популяционно-видового, организменного и кле­точного уровней жизни, существует самый элементарный, «первый», глубинный уровень организации живой материи — молекулярный. Этот уровень органи­зации жизни находится на границе между живой и неживой (косной) матери­ей. Он является первоосновой жизни на нашей планете.

Молекулярный уровень можно рассматривать как первичную основу жизни.

Действительно, какую бы сторону биологической организации мы ни рассматривали, неизбежно приходим к макромолекулам органических соеди­нений, их реакциям и физико-химическим процессам. Только через выясне­ние молекулярных механизмов процессов жизнедеятельности клетки можно подойти к пониманию сущностных основ жизни и организмов, и клеток, и других биосистем.

Однако следует подчеркнуть, что знание макромолекул, умение изучать их в пробирке, выполнение учёными синтеза белков в лаборатории ещё не да­ют понимания свойств жизни, поскольку жизнь начинается только тогда, когда эти реакции и многочисленные молекулы как структурные единицы цело­стной системы находятся в клетке и взаимодействуют между собой как единая система. Вне клетки процессов жизни нет. Выделенные из клетки макромо­лекулы теряют свою биологическую сущность и характеризуются лишь физи­ческими и химическими свойствами, но не являются живыми.

Молекулярный уровень живой материи представлен многочисленным рядом биологических молекул — ДНК и РНК, белков, углеводов, липидов и дру­гих сложных соединений.

Все эти соединения — крупные молекулы органических веществ — поли­меры, синтезированные из мономеров, соединённых в определённом порядке. Сами мономеры различны, но в одной и той же макромолекуле находят­ся их группировки, соединённые друг с другом с помощью химических свя­зей. Все макромолекулы имеют один план строения в клетках у всех организ­мов независимо от их видовой принадлежности. Это объясняется тем, что во всех макромолекулах органических соединений одним из основных элемен­тов выступает углерод. Только благодаря уникальным физико-химическим свойствам углерода образуются крупные, сложные и разнообразные молеку­лы разных органических соединений. Атом углерода, имея четыре валентные связи, способен в определённом порядке объединять большое число атомов в длинные цепи и замкнутые кольцевые структуры. Углеродные цепи и коль­ца являются «скелетами» сложных органических молекул. В этих физико-хи­мических свойствах макромолекул проявляется их универсальность. Материал с сайта http://doklad-referat.ru

Уникальность макромолекул — в специфике их биологических функ­ций. Например, молекулы нуклеиновых кислот заключают в себе генетиче­ский код синтеза белков и участвуют в передаче генетической информации от клетки к клетке и от организма к организму. Молекулы липидов являются основными элементами, участвующими в строительстве биологических мем­бран и всех других внутриклеточных образований. Молекулы белков служат катализаторами и регуляторами всевозможных химических реакций в клет­ке. Молекулы углеводов, будучи первоосновой построения биологических молекул всех органических соединений, участвуют в накоплении солнечной энергии в виде энергии химических связей. Функциональное своеобразие биологических молекул в клетке тесно связано с их физико-химическими свойствами.

Единство физико-химических свойств и биологических функций мак­ромолекул — особенность молекулярного уровня организации живой материи.

Специфику молекулярного уровня организации живой материи отража­ют его структура, процессы, организация, значение в природе.

На этой странице материал по темам: Вопросы по этому материалу:

doklad-referat.ru

Реферат - Молекулярно-генетический уровень живых структур

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

КЕМЕРОВСКИЙ ИНСТИТУТ (ФИЛИАЛ)

ФАКУЛЬТЕТ ЗАОЧНОГО ОБУЧЕНИЯ

Кафедра философии и социологии

Контрольная работа по дисциплине

«Концепции современного естествознания»

по теме: «Молекулярно-генетический уровень живых структур»

Выполнил:

студент группы ПИс-061

(сокращенная форма обучения)

Жилкова Ольга Анатольевна

г. Кемерово 2007 г.

Содержание

Введение

1. Молекулярно-генетический уровень живых структур

1.1 Белки

1.2 Химические основы наследственности

1.3 Нуклеиновые кислоты

1.4 Распределение генов

1.5 Репликация нуклеиновых кислот

1.6 Генетический код

Заключение

Литература

Введение

Много лет назад А. И. Опарин высказал предположение, что в первичном океане образовались капли, содержавшие макромолекулы; эти капли были названы им коацерватами. Такие микроскопические капли описал Бундерберг де Ионг. Обычно они возникают при смешивании растворенных веществ, несущих разные электрические заряды. Сохранялись только те капли, которые были приспособлены к существовавшим тогда условиям. Возможно, они погружались на дно, и это защищало их от губительного действия ультрафиолетового излучения.

Коацерваты Бунгерберга представляют собой статические системы, но в первичном океане постепенно смогли развиться «динамические» капли, стабильность которых увеличилась за счет сбалансированного поступления и выделения компонентов. Внутри капель концентрации растворенных веществ, например, аминокислот, могли быть гораздо выше чем в окружающей их водной среде, поэтому реакции протекали в них довольно быстро. Эти реакции, возможно, были более специфичными, чем в разбавленных растворах; в некоторых каплях, по-видимому, имелись катализаторы, предшественники ферментов. Позднее некоторые капли приобрели способность реагировать на изменения, происходящие во внешней среде, соответствующими компенсаторными изменениями. Для поддержания динамического состояния и для регуляции требовался источник свободной энергии.

Многочисленные работы, в которых исследовалось поведение искусственных коацерватов в различных условиях были выполнены А. И. Опариным и его сотрудниками. Поразительные данные были получены в одном из экспериментов: капли, содержавшие фосфорилазу, синтезировали крахмал из имевшегося в среде глюкозо-l-фосфата по мере его диффузии из среды внутрь капель. Если в состав капель вводили, кроме того, амиазу, то крахмал гидролизировался до мальтозы, которая путем диффузии выделалась наружу.

Коацерваты, изучавшиеся Опариным, образованы биогенными макромолекулами. Вот почему Бернал предположил, что коацерваты могли возникнуть только на более позднем этапе эволюции. Однако Эррера смог получить микроскопические капельки из небиогенных макромолекул, инкубируя растворы тиоцианата аммония и формальдегида; по мнению Эрреры, подобные капельки могли существовать в первичном океане.

Фокс получил из своих искусственных протеиноидов «микросферы», обрабатывая их водой или растворами соли. Правильно приготовленные микросферы устойчивы, однообразны и обладают определенной ультраструктурой. В некоторых случаях они имеют двуслойную оболочку и избирательно поглощают растворенные вещества путем диффузии. В гипер- или гипотонических растворах они соответственно сморщиваются или набухают. Микросферы могут расти путем аккреции и размножаться посредством почкования или сходных процессов, несколько напоминая этим микроорганизмы. На какой-то стадии их можно рассматривать как «протоклетки».

В исходных представлениях о коацерватах и микросферах не упоминалось о нуклеиновых кислотах. Авторы предполагали, что на этой ступени эволюции единственными информационными макромолекулами были белки. В таком случае позже белки утратили эту исключительную функцию. Но, конечно, можно предположить, что нуклеиновые кислоты содержались в коацерватах и микросферах, особенно в микросферах, состоящих из основных протеиноидов. Согласно представлениям Фокса, механизмы с участием нуклеиновых кислот возникли как «эволюционное усовершенствование» и теперь на какой-то стадии мог начаться поток информации в обоих направлениях между двумя типами макромолекул.

В противоположность Фоксу Оргель считает, что белки никогда не могли воспроизводить себя, а этим свойством обладали только нуклеиновые кислоты (полинуклеотиды). Образование полинуклеотидов неферментативным путем, т. е. без участия белков, показано в опытах; например, полинуклеотиды могут синтезироваться путем конденсации подходящих производных оснований на матрице, образованной искусственным полинуклеотидом. Процессы такого типа, по-видимому, существовали уже на самых ранних этапах эволюции, и позднее протеканию этих процессов могло способствовать взаимодействие с не существующими информацию полипептидами или белками. Катализаторами, возможно, служили различные поверхности. Полупроницаемые мембраны вокруг первичных образований могли возникнуть только после того, как начался биосинтез, катализируемый ферментами, и когда потребовалось удерживать и защищать продукты этого биосинтеза. В химии атомы углерода имеют исключительную судьбу. Они могут взаимодействовать друг с другом, а также с водородом, кислородом, азотом и некоторыми другими атомами с образованием длинных цепей углеводородов или пятичленных и шестичленных колец. В природных условиях подобные углеродные соединения найдены только в живых или ископаемых организмах, и поэтому они были названы органическими веществами. Уже в конце столетия из живых организмов было выделено несколько «непосредственных начал», таких, как мочевина, щавелевая и яблочная кислоты. Поэтому в течение долгого времени полагали, что молекулы этого типа могут быть образованы только жизненными силами самих организмов. Однако к началу XIX в. из биологического материала были экстрагированы многие новые органические вещества и довольно много органических соединений. Их исследованием занимается наука биохимия. Молекулы жизни могут быть разделены на четыре основных класса: белки, нуклеиновые кислоты, углеводы и липиды. В настоящее время полагают, что в эволюционном процессе два последних класса молекул образовались позже и что жизнь возникла из неживой материи после появления белков и нуклеиновых кислот.

1. Молекулярно-генетический уровень живых структур

1.1 Белки

Белки образуются из большого числа аминокислот, которые связаны между собой пепдиной связью. Каждый белок имеет уникальную аминокислотную последовательность, называемую первичной структурой, которая определяется наследственными факторами. Типичный белок может содержать вплоть до 200 аминокислот. Длинная полимерная цепь свертывается в пространстве в трехмерную структуру, которая определяется как конформация белка. Каталитическая активность молекулы белка существенно зависит от ее конформации. Растянутая молекула белка теряет свою каталитическую активность.

Две аминокислоты одинакового состава могут отличаться друг от друга так же, как левая и правая руки, и в этом смысле их структуры не совмещаются. По причинам, которые пока еще не ясны, в качестве «строительных блоков» для живых организмов природа выбрала лишь одну «руку» — левовращающие аминокислоты.

1.2 Химические основы наследственности

Химические основы наследственности. Доказательства хранения и передачи генетической информации нуклеиновыми кислотами. Первые экспериментальные данные о хранении и передаче генетической информации нуклеиновыми кислотами были получены в 1944 г. Эвери и сотрудниками при работе с бактериями. Опыты проводили с двумя генетически различными штаммами пневмоккоков. В одном штамме бактерии были заключены в полисахаридные капсулы, во втором лишены их. В каждом штамме соответствующий признак стойко наследовался при размножении бактерий. Из бактерий капсульного штамма (штамма-донора) выделяли ДНК и ее раствором обрабатывали бактерий бескапсульного штамма (штамма-реципиента), после чего среди потомков подвергшихся этому воздействию бескапсульных бактерий, некоторые приобретали полисахаридную капсулу и передавали этот признак своему потомству, среди которого он затем стойко наследовался в течение любого числа поколений. Тщательная очистка экстракта ДНК от белковых примесей и обработка его протеазами (ферментами, разрушающими белки) и другими разрушающими белки воздействиями не лишала его способности превращать бескапсульных бактерий в бактерий, имеющих капсулу, но если на такой же экстракт действовали дезоксирибонуклеазой (ферментом, специфически разрушающим ДНК), то способность эта полностью утрачивалась. Таким образом, было установлено, что ДНК, выделенная из бактерий, несущих ген, определяющий образование полисахаридной капсулы, может переносить этот ген в бактерии, его содержащие. Явление это, получившее название генетической трансформации, было затем изучено многими исследователями и было показано, что оно воспроизводимо не только у пневмококков, но и у других бактерий, причем посредством ДНК можно передавать из одного бактериального штамма в другие (а в ряде случаев даже другим видам бактерий) самые разнообразные гены, например определяющие их устойчивость к различным антибиотикам или сульфаниламидам, особенности роста культуры, способность сбраживать разные сахара, синтез тех или иных аминокислот, серологические свойства и т. д. Если исследуются штаммы, различающиеся по нескольким генам, то с помощью ДНК можно переносить из одного штамма в другой не только каждый ген в отдельности, но в некоторых случаях трансформация идет по двум генам сразу, т. е. оба гена переносятся вместе, что указывает на относительно большую величину включившегося в реципиент фрагмента молекулы ДНК, содержащего минимум два гена донора. Такая совместная передача при трансформации двух генов бывает только тогда, когда эти гены лежат близко друг к другу в бактериальной хромосоме

1.3 Нуклеиновые кислоты

Организмы содержат еще один тип гигантских макромолекул, называемых рибонуклеиновой и дезоксирибонуклеиновой кислотами, сокращенно РНК и ДНК. Структуры и функции этих молекул коренным образом отличаются от таковых для белков. Молекулы ДНК заключают в себе всю информацию и «правила», необходимые для синтеза совершенно любого биологического материала, включая свое собственное образование, увековечивая тем самым биологические виды.

Фрагменты ДНК, содержащие один остаток сахара, один основания и один или более фосфата, называются нуклеотидами. Они играют очень важную роль в жизни клетки как предшественники ДНК или кофакторы ферментов. Один из этих нуклеотидов, аденозинтрифосфат (АТФ), играет значительную роль в клеточном метаболизме. Эта молекула является «энергетической валютой» всех живых организмов.

Очень важная особенность нуклеиновых кислот состоит в апериодичности строения их гигантских молекул. Множество нуклеотидов четырех типов, представляющих звенья этих молекул, следует в линейной молекуле друг за другом в самых различных сочетаниях, но сочетания эти строго постоянны для каждого рода ДНК или РНК данного организма. Такое чередование нуклеотидов в молекулах нуклеиновых кислот можно сравнить с порядком чередования букв в письменном тексте, где буквы расположены в разной последовательности, но последовательность эта вполне определенна и специфична для слов и предложений, составляющих данный конкретный текст. Именно такая специфичность строения полимерных молекул нуклеиновых кислот определяет возможность хранения в них обширной и сложной генетической информации.

«Алфавит» жизни включает всего четыре молекулы, которые относятся к двум различным классам химических веществ: пуринам и пиримидинам. Два пурина аденин и гуанин и два пиримидина цитозин и тимин — основания, а также существует еще одно основание — урацил, которое входит только в структуру РНК. Принято обозначать основания соответствующими начальными буквами: аденин — А, гуанин — Г, цитозин — Ц, тимин — Т и урацил — У. Подобно этому, матрицы живых организмов состоят из длинной последовательности фосфатных и углеводных молекул, образующих остов, к которому прикреплены четыре основания. ДНК содержит сахар дезоксирибозу, а РНК – некоторый отличный сахар рибозу. РНК имеет тоже четыре типа оснований, из которых три (аденин, гуанин и цитозин) такие же, как в ДНК, а тимин заменен здесь другим пиримидином – урацилом.

На языке ДНК все слова, или кодоны, написаны тремя буквами и они указывают «старт», «остановку» или кодирование одной из 24 аминокислот. полное «предложение», или ген, кодирует специфический белок. Понятия «язык ДНК», или генетический код, очень часто являются синонимами. Например, оба триплета оснований ЦАУ и ЦАЦ кодируют аминокислоту гистидин. Молекула ДНК данного организма является законченной «книгой сказаний» этого организма. Вся древняя история и будущее развитие организма отпечатаны на матрице ДНК.

Если матрица не используется, она должна быть заключена в оболочку для защиты от времени, эрозии и вредного окружения. Организмы совершают это путем обертывания двух идентичных молекул — полинуклеотидных спиралей — вокруг друг друга, так что образуется двойная спираль молекулы ДНК. Все основания, несущие информацию, в целях их лучшей сохранности обращены внутрь двойной спирали. Однако две цепи имеют противоположное направление, так что пиримидины образуют водородные связи с пуринами комплементарного тяжа.

Пространственная конфигурация (конформация) молекул ДНК была установлена в 1953 г. Уотсоном и Криком на основании рентгенографического исследования и биохимических данных. Согласно предложенной ими модели, подтвержденной позже множеством других работ, молекула ДНК состоит из двух нитей, образующих правовидную спираль. Азотистые основания обеих нитей ориентированы в направлении к середине спирали, причем аденин одной нити всегда находится напротив тимина другой нити, а гуанин одной нити – напротив цитозина другой нити. В каждом из этих пар основания соединены друг с другом водородными связями; две такие связи имеются в паре аденин-тимин и три — в паре гуанин-цитозин. Вследствие такой комплементарности азотистых оснований порядок чередования нуклеотидов в обеих нитях ДНК оказывается взаимообусловленным, а обе нити спирали расположены антипараллельно и представляют как бы реплики друг друга.

Комплементарность двух нитей молекулы ДНК приводит к тому, что число пуринов в ней равно числу пиримидинов. Молекулы ДНК бывают либо линейными, либо замкнутыми в кольцо, обычно еще перекрученныое; такие кольцевые молекулы ДНК характерны для хромосом и плазмид бактерий, для ряда ДНК – содержащих вирусов, для митохондрий, пластид, кинетопластов. В редких случаях молекулы ДНК не двунитевые, а однонитевые; подобную структуру имеют ДНК некоторых мелких фагов.

Молекулы разных ДНК сильно различаются своими размерами, но все они очень крупные (макромолекулы) и состоят из огромного числа (тысяч, миллионов или миллиардов) мономеров – нуклеотидов и соответственно этому характеризуются очень большими молекулярными весами. По-видимому, все ДНК являются геномными, т. е. всегда служат хранителями генетической информации и везде, кроме РНК-содержащих вирусов, вся генетическая информация сосредоточена в ДНК и при размножении передается ею следующим поколениям.

Наиболее замечательный факт, обнаруженный в «живых» системах, заключается в том, что генетический код идентичен для трех с половиной миллионов видов известных растений и одного миллиона видов животных.

В отличие от ДНК молекулы РНК, как правило, однонитевые. Построены они аналогично нитям ДНК. Однонитевое строение молекул большинства РНК обусловливает относительную лабильность их конформаций и в растворе они нередко образуют клубообразные структуры. Однако во многих РНК в пределах одной нити встречаются участки с одинаковой, но противоположно ориентированной («палиндромной») последовательностью комплементарных оснований, что приводит к возникновению «шпилек», хорошо видимых в электронном микроскопе, в которых два комплементарных друг другу участка одной нити сближены и соединены водородными мостиками между парами оснований. Если нить РНК имеет несколько таких комплементарных друг другу участков, то образуется несколько «шпилек» и конфорация молекулы приобретает значительную жесткость, что особенно характерно для так называемых транспортных РНК.

В зависимости от функций, присутствующих молекулам РНК, все РНК могут быть разделены на несколько классов. Из них только РНК, находящиеся в РНК-содержащих вирусах, являются геномными, т.е. хранят и передают следующему поколению соответствующую генетическую информацию. Остальные РНК (рибосомные РНК, матричные РНК, транспортные РНК и др.) выполняют иные функции, главным образом связанные с реализацией генетической информации. Размеры молекул РНК очень различны, но в общем они меньше молекул ДНК. Геномные РНК вирусов относятся к самым крупным.

Кроме перечисленных главных азотистых оснований, в состав некоторых нуклеиновых кислот в небольшом количестве входят еще друге азотистые основания, получившие название минорных. Так, у высших животных и высших растений в ДНК небольшая часть цитозинов заменена 5-метилцитозином, а ДНК ряда фагов весь цитозин заменен 5-оксиметилцитозином. В некоторых типах РНК в незначительном количестве встречаются псевдоуридин, метилгуанин и другие минорные основания.

Различные виды РНК служат посредниками для переноса генетичекой информации с ДНК на белки. Только они находятся в контакте с аминокислотами и белками. Поэтому естественно предположить, что РНК — первая информационная биомолекула, возникшая в предбиологической среде.

1.4 Распределение генов

То, что гены расположены в хромосомах, казалось бы, не соответствует тому факту, что у людей только 23 пары хромосом и вместе с тем тысячи различных признаков, которым должны соответствовать тысячи различных генов. Одних только признаков, сцепленных с Х-хромосомой, несколько сотен, а на самой короткой аутосоме расположены также сотни генов. Как это согласуется с менделеевским законом независимого распределения признаков? Это значит, что закон независимого распределения признаков применим только для генов, расположенных на разных хромосомах; сначала ученым необходимо было определить основные законы и выяснить природу наследственности на примере простейших признаков. На самом деле многие гены расположены на одной и той же хромосоме, поэтому они, как правило, наследуются вместе. Такие гены называются сцепленными. Одно из достижений современной генетики и заключается в том, что созданы карты сцепления для многих признаков. На этих картах показано также относительное положение генов на хромосомах, эти карты имеют не только теоретическое, но и практическое значение.

Место, которое ген занимает на хромосоме, называется локусом. За исключением тех редких случаев, когда происходит перестройка хромосомы, у всех представителей отдельного биологического вида каждый ген имеет строго определенный локус. О существовании генов узнали по мутациям, которые обычно изменяют гены, делая их дефектными или необычными. Большинство наследственных признаков известны по таким наследственным заболеваниям, как гемофилия, дальтонизм и фенилкетонурия. Нормальные аллели гена называются дикими, хотя, как правило, этот термин применим только для некоторых организмов, с которыми проводят опыты. Гены, определяющие такие признаки человека, как цвет глаз или группу крови, обычно дикими не называются. В естественной популяции имеется много аллелей одного гена. Мутантный аллель можно использовать как маркер, помогающий определить местоположение гена. Например, дефектный ген гемоглобина, который вызывает серповидноклеточную анемию, можно использовать как маркер для определения локуса генов гемоглобина вообще. Без такого варианта гена у нас бы было мало возможностей исследовать эти гены.

Генетическая карта хромосомы представляет собой линию, на которой отмечены локусы генов и относительные в единицах карты. Хотя некоторые методы с использованием микроскопа позволяют ученым непосредственно определить локус гена на хромосоме, обычно устанавливают локус гена относительно других генов. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Распределение аллелей в этих организмах называется родительской комбинацией.

В профазе мейоза гомологичные пары выстаиваются напротив друг друга и удерживаются вместе в хиазмах, то есть в точках, где их хроматиды переплетаются друг с другом. Иногда в точке хиазмы хроматиды разрываются и обмениваются друг с другом сегментами. Такой процесс называется кроссинговером. Если кроссинговер происходит между локусами двух генов, то аллели этих генов перераспределяются между хромосомами.

Определить расстояние между генами человека – достаточно сложно. У большинства организмов, скрещивать которые можно по выбору, весь процесс состоит из двух стадий. Сначала скрещиваются между собой гомозиготы с нужными аллелями и получается и получается гетерозиготное потомство, у которого могут происходить рекомбинации; затем скрещиваются особи второго поколения, и изучается их потомство. У людей первая и вторая стадии соответствуют браку, над которым мы не властны, и поэтому остается только изучать потомков от таких браков. Установив расстояние между двумя генами, можно по одному добавлять и другие гены.

Легче всего определять положение генов, сцепленных с полом, потому что расположение аллелей как минимум одной из Х-хромосом женщины можно определить по Х-хромосоме ее отца, а генотип Х-хромосомы ее сыновей также определяется непосредственно. Построить карту аутосомных хромосом труднее. В наше время созданы превосходные карты для некоторых лабораторных и культурных растений и животных.

1.5 Репликация нуклеиновых кислот

При размножении любых форм жизни (кроме вирусов РНК-типа) происходит увеличение числа молекул ДНК. У многоклеточных организмов из двух слившихся гамет получается тысячи, миллионы или миллиарды клеток тела; у бактерий и простейших из одной родительской клетки возникают две, из них четыре и затем, в геометрической прогрессии, множество новых; у ДНК-содержащих вирусов вместо одного вириона образуется десятки и сотни вирионов следующего поколения. Во всех случаях каждая исходная молекула ДНК каким-то образом дает начало огромному числу новых, причем сохраняются в неизменном виде все особенности, присущие ДНК данного живого существа и различные у разных из них. Лишь очень редко, когда возникает мутация, происходят небольшие искажения этой хранящейся в ДНК генетической информации, но они крайне ничтожны по сравнению с колоссальным ее объемом, записанным в чередовании азотистых оснований молекулы.

Процесс получения двух копий (или реплик) изначальной молекулы ДНК называется репликацией, и модель Уотсона-Крика объясняет, как это возможно. В каждой молекуле ДНК одному нуклеотиду соответствует комплементарный ему нуклеотид, и одна цепь ДНК целиком комплементарна другой. Репликацию выполняет сложный фермент ДНК-полимераза, которая начинает разрывать двойную спираль, словно застежку-молнию, оставляя по одному основанию на каждой цепи. Суть процесса сводится к тому что молекулы ДНК-полимеразы движутся вдоль каждой цепи и синтезируют комплементарные цепи, образуя таким образом двойную спираль вместо одинарной. Каждое свободное основание связывается исключительно с компленментарным нуклеотидом. Например, открытый цитозин привлекает к себе новый гуанин, а открытый аденин – тимин. В клетке содержится достаточно свободных нуклеотидов, потому что в процессе метаболизма они образуются постоянно, и полимераза связывает парные основания вместе. Так, каждая цепь определяет формирование комплементарной ей цепи с последовательностью, идентичной последовательности прежней парной цепи. В конечном счете получаются две спирали, идентичные начальной молекуле.

Нуклеотидная последовательность ДНК должна хранить генетическую информацию, и последнее предположение, вытекающее из модели Уотсона – Крика, состоит в том, что мутации происходят в тех случаях, когда одно основание заменяется на другое или когда цепь рвется и перестраивается. Такое случается редко, но если происходит, то в клетке имеются механизмы исправления некоторых ошибок. Тем не менее в каждом организме содержится огромное количество ДНК, и если вероятность вставки ошибочного основания равна только одной миллионной, то на каждые 10 миллионов оснований будет приходится 10 ошибок, и мутация становится силой, с которой следует считаться.

1.6 Генетический код

Исследования, приведшие к расшифровке генетического кода, из которых особенно большое значение имени генетические работы Крика с сотрудниками в Англии и биохимические работы Ниренберга, Очоа и Корнберга в США, вскрыли следующие основные свойства кода:

1) Код неперекрывающийся.

2) Каждая аминокислота кодируется группой из трех нуклеотидов (триплетом нуклеотидов).

3) Последовательность нуклеотидов в молекуле нуклеиновой кислоты считывается с закрепленной точки. Это определяет, как считывать в виде триплетов всю длинную цепь нуклеотидов. Не имеется никаких запятых, разделяющих триплеты и указывающих, как выбирать нужные.

4) Код вырожденный, т. е. одна аминокислота может кодироваться не одним, а несколькими определенными триплетами нуклеотидов.

Представимы два принципиально различные кода – неперекрывающийся и перекрывающийся. Объяснить разницу между ними можно следующим примером. Допустим, что каждая аминокислота определяется сочетанием трех нуклеотидов и что считываемый отрезок мРНК имеет следующую структуру (структура выбрана произвольно, указаны начальные буква названий азотистых оснований нуклеотидов: А – аденин, Г – гуанин, Ц – цитозин, У – урацил): ААЦУГГЦУАГЦЦУУГ

Если код неперекрывающийся, то считывание группами по три нуклеотида может происходить только одним способом, а именно: А-А-Ц-Г-Г-Ц-У-А-Г-Ц-Ц-У-У-Г

Если же код перекрывающийся, то считывание группами по три нуклеотида должно происходить тремя способами:

1-й способ: А-А-Ц -У-Г-Г -Ц-У-А -Г-Ц-Ц -У-У-Г

2-й способ: А-А-Ц-У -Г-Г-Ц -У-А-Г -Ц-Ц-У -У-Г

3-й способ: А-А-Ц-У-Г -Г-Ц-У -А-Г-Ц -Ц-У-У -Г

Доказательством того, что код неперекрывающийся, служат данные, полученные при изучении первичной структуры белков разных мутантов. Частицы вируса табачной мозаики (ВТМ) состоят из сердцевины, образованной молекулой РНК, и окружающего ее белкового капсида. Молекулы капсидного белка построены из 158 аминокислот, расположение которых в молекуле известно. Вирус обрабатывали азотистой кислотой – веществом, вызывающим мутации дезаминированием азотистых оснований отдельных нуклеотидов. Этим способом были получены многочисленные мутации вируса табачной мозаики и у мутантов была исследована первичная структура их капсидного белка. Почти всегда оказывалось, что мутантный вирусный белок отличается от исходного только по одной из 158 аминокислот, а в остальных немногих случаях, когда такие различия касались двух аминокислот, это были аминокислоты, находящиеся в молекуле белка далеко друг от друга. Отсюда следует, что почти при всех вызванных азотистой кислотой мутациях изменение азотистого основания нуклеотида происходило только в одном каком-нибудь триплете и лишь изредка в двух триплетах, но расположенных в разных местах РНК. Это вполне согласуется с предположением о неперекрывающимся коде, но противоречит допущению о том, что код перекрывающийся, так как при перекрывающимся коде изменение основания одного нуклеотида должно было бы приводить к изменению двух или трех обязательно соседних аминокислот в молекуле мутантного белка. Аналогичные результаты получены при исследовании мутаций, затрагивающих первичную структуру других белков, например бактериальной триптофансинтетазы и гемоглобина человека.

Четвертое свойство генетического кода, напрашивающееся из рассмотренной работы Крика и сотрудников по профлавиновым мутациям фага Т4, но не доказанное ими, состоял в том, что некоторые аминокислоты кодируются не одним, а несколькими определенными триплетами нуклеотидов, т. е. что код является вырожденным. Это вытекало из того, что сочетания четырех разных нуклеотидов группами по три дает 64 триплета, аминокислот же только 20. Высказанное впервые Криком и сотрудниками предположение о вырожденности генетического кода было затем доказано другими исследованиями, посвященными выяснению, какими конкретными триплетами кодируются разные аминокислоты.

Такие исследования проводились в основном двумя методами. Первый заключается в том, что в пробирку, содержащую взвесь рибосом, вносят в качестве матрицы не природную мРНК, а искусственно созданные триплеты рибонуклеотидов (кодоны) заданного состава. Такие нуклеотиды, подобно мРНК, прикрепляются к рибосомам. Кроме того, в пробирку вносят какой-нибудь один из видов тРНК с соответствующей присоединенной к нему аминокислотой, меченной радиоактивным углеродом или тритием.

В том случае, если антикодон данной тРНК комплементарен матричному тринуклеодиту, происходит связывание аминокислоты с рибосомами, что можно обнаружить по включению радиоактивной метки в осажденные рибосомы. Если же внесенный в пробирку матричный триплет кодирует не эту, а какую-нибудь другую аминокислоту, то специфического связывания аминокислоты с рибосомами не произойдет. Используя в таких опытах сочетания разных матричных триплетов с тРНК, несущих разные меченные аминокислоты, можно определить, какой конкретный триплет нуклеотидов кодирует ту или иную аминокислоту. Кроме того, этот метод дает подтверждение триплетности кодонов – было показано, что связывание тРНК с рибосомой происходит тогда, когда к рибосоме присоединена тринуклеотидная матрица, но для этого недостаточно динуклеотидной. В то же время тринуклеотидные матрицы оказались достаточными для связывания с рибосомами тРНК со всеми аминокислотами.

Второй метод состоит в том, что в пробирку, содержащую взвесь рибосом и полный набор всех тРНК с присоединенными к ним аминокислотами, вносят в качестве матрицы искусственно синтезированный полирибонуклеотид заданного состава и затем определяют последовательность аминокислот в образующемся полипептиде. Полирибонуклеодит, представляющий цепочку из одинаковых триплетов, обуславливает синтез полипептида, состоящего из повторения одной аминокислоты; например, полирибонуклеотид ААА – ААА – ААА и т. д. кодирует синтез полилизина (лизин – лизин – лизин – и т. д.). Если же в матричном полирибонуклеотиде чередуются два разных триплета, то синтезируется полипептид, в котором чередуются две аминикислоты: например, полирибонуклеотид АЦА – ЦАЦ – АЦА – ЦАЦ кодирует синтез полипептида, состоящего из чередования треонина и гистидина (треонин – гистидин – треонин – гистидин и т. д.). С помощью этих методов и некоторых их модификаций, полностью удалось расшифровать генетический код, показанный в таблице 1.1.

Таблица 1.1

Первый нуклеотид Второй нуклеотид Третий нуклеотид
У Ц А Г
У Фен Сер Тир Цис У
Фен Сер Тир Цис Ц
Лей Сер Стоп(охра) Стоп(опал) А
Лей Сер Стоп(амбер) Трип Г
Ц Лей Про Гис Арг У
Лей Про Гис Арг Ц
Лей Про Глн Арг А
Лей Про Глн Арг Г
А Илей Тре Асн Сер У
Илей Тре Асн Сер Ц
Илей Тре Лиз Арг А
Мет Тре Лиз Арг Г
Г Вал Ала Асп Гли У
Вал Ала Асп Гли Ц
Вал Ала Глу Гли А
Вал Ала Глу Гли Г

Примечание к таблице 1.1. Фен – фенилаланин, Лей – лейцин, Илей – изолейцин, Мет – метионин, Вал – Валин, Сер – серин, Про – пролин, Тре – треонин, Ала – аланин, Тир – тирозин, Гис – гистидин, Глн – глутамин, асн – аспарагин, Асп – аспарагиновая кислота, Лиз – лизин, Глу – глутаминовая кислота, Цис – цистеин, Трип – триптофан, Арг – аргинин, Гли – глицин, А – аденин, Г – гуанин, Ц – цитозин, У – урацил. Охра, амбар и опал – условные названия бессмысленных триплетов.

Из таблицы 1.1 видно, что генетический код, как и предполагалось, сильно вырожден. Только две аминокислоты (метионин и типтофан) имеют по одному кодирующему триплету, девять аминокислот (например, тирозин, фенилаланин) кодируются каждая двумя триплетами. Одна аминокислота (изолейцин) кодируется тремя триплетами, пять аминокислот (например, пролин, глицин) кодируются четырьмя, а три аминокислоты (аргинин, лейцин и серин) даже шестью разными триплетами каждая.

Это полностью согласуется с данными, полученными позже, когда была определена точная структура ряда тРНК. Оказалось, что для одной аминокислоты может существовать две или даже несколько различных тРНК, к которым она может быть прицеплена амино-ацил-тРНК-синтеразами; число таких изоакцепторных тРНК обычно зависит от числа разных триплетов, кодирующих данную аминокислоту.

Из 64 возможных триплетов, образуемых сочетаниями четырех оснований, 61 триплет кодирует аминокислоты, а три триплета, а именно – УАА, УАГ и УГА, получившие в молекулярной генетике условные названия «охра», «амбер» и «опал», служат своего рода стоп-сигналами, обозначающими конец трансляции.

Когда считывание мРНК в рибосоме доходит до одного из этих триплетов, он опознается особыми белками («освобождающими факторами»), обрывающими дальнейший рост полипептидной цепи и отделяющими ее от рибосомы, после чего рибосома может приступить к синтезу следующего полипептида.

Очень важным свойством генетического кода является его почти полная универсальность. Код един для всех организмов, как прокариотов, так и эукариотов, а также для вирусов, каждая из аминокислот определяется тем же самым кодоном или теми же кодонами. Это особенно четко демонстрируют опыты, в которых трансляцию осуществляют компоненты разного происхождения. Так, например, когда в бесклеточном белок-синтезирующую систему, содержащую аминокислоты и тРНК, из кишечной палочки, вносили мРНК, выделенную из ретикулоцитов кролика, то там образовывался белок, тождественный кроличьему гемоглобину, нормально синтезируемому ретикулоцитами. О почти полной универсальности генетического кода говорят и результаты использования искусственно синтезированных полирибонуклеотидов известного состава в белок – синтезирующих системах из бактериальных компонентов и из компонентов клеток млекопитающих – в обеих системах такие матрицы обусловливают синтез одинаковых полипептидов, структура которых строго соответствует кодовому значению триплетов матрицы. Есть много и других данных, свидетельствующих о том, что код везде одинаков. В частности, об этом говорят опыты, показывающие, что при искусственной пересадке генов в клетки неродственного организма, например, генов бактерии в клетки млекопитающего, эти гены продолжают обусловливать там синтез специфичных для них белков.

Из универсальности генетического кода известно только одно частичное исключение. В митохондриях, имеющих свой собственный белок-синтезирующий аппарат, кодовые значения нескольких триплетов иные, чем указано в таблице 1; например, триплет УГА, обычно не кодирующий аминокислот, а служащий стоп-сигналом («опал»), в митохондриях кодирует триптофан; триплет ЦУГ, обычно кодирующий лейцин, тут кодирует треонин и так далее. Кроме того, число разных тРНК, образуемых в митохондриях, меньше, чем их синтезируется в клеточном ядре. Высказывается предположение, что в митохондриях, которые по современным представлениям некогда произошли из каких-то древних микроорганизмов, код несколько изменился в результате длительного существования в виде облигатных внутриклеточных симбионов. Кодовые значения триплетов в генах пластид не изменены, они такие же, как в ядерных генах организмов.

Заключение

Открытие ДНК и установление ее двуспиральной структуры Уотсоном и Криком в 1956 г. — это выдающееся достижение XX в.

Универсальность генетического кода указывает на его очень раннее возникновение в истории жизни на Земле. Очевидно, код сложился в теперешнем виде уже у древнейших живых существ, послуживших корнем, из которого развился весь органический мир, разнообразнейшие представители которого, от самых примитивных до наиболее высоко организованных, объединены общностью кода, унаследованного ими от этих далеких предков.

Объем генетической информации, хранящейся в генах и передаваемой ими. У высших организмов, характеризуемых огромным числом и разнообразием синтезируемых белков, объем заключенный в генах информации должен быть большим. Следующие расчеты, относящиеся к генам человека, взятым в качестве примера, позволяют наглядно представить себе, сколь велика эта информация и какое поразительное богатство ее уменьшается в миниатюрном пространстве.

Четыре миллиарда (4*109 ) спермиев человека (это минимальное количество, которое примет участие в образовании следующего поколения людей на земном шаре) могут поместиться в одной аптечной облатке, какую мы глотаем, когда приходиться принять хинин или другой неприятный на вкус порошок. Такой же объем занимает хроматин четырех миллиардов ядер яйцеклеток, с которыми сольются эти спермии при оплодотворении. В этих двух «облатках» содержится информация, обеспечивающая отличие каждого будущего человека от бактерий, водорослей, салата, улиток, лягушек, воробьев, мышей, словом, от всех других видов живых существ. Кроме того, эти «облатки» несут в себе информацию о том, какова будет у каждого из четырех миллиардов людей следующего поколения окраска кожи, цвет и структура волос, цвет и разрез глаз, форма носа, группы крови и бесчисленное множество других врожденных морфологических, физиологических, физиологических и биохимических особенностей, отличающих одних людей от других и делающих неповторимым всякого из них. Попробуем выразить в цифрах количество такой информации.

По современным оценкам, гаплоидный набор хромосом человека содержит не менее 50 тыс. и не более 100 тыс. генов, определяющих синтезируемые в его клетках белки, а также рибосомальные и транспортные РНК. Возьмем меньшую цифру, 50 тыс. (5*104 ). Следовательно, в одной «облатке» помещается (4*109 )*(5*104 )=20*1013, т. е. 200 триллионов генов. Ген состоит в среднем из 1000 (103 ) пар нуклеотидов. Значит, в «облатке» находится 20*1013 *103 =20*1016 пар нуклеотидов, входящих в состав генов человека.

Литература

1. Баблояц А., Молекулы, динамика и жизнь. Введение в самоорганизацию материй: Пер. с англ. – М.: «Мир», 1990. – 375 с., ил.

2. Брода Э., Эволюция биоэнергетических процессов: Пер. с анл. / — М.: Мир, 1978. – 304 с.

3. Гершензон С. М., Основы современной генетики, изд. 2-е исправл. и дополн., — Киев.: НАУКОВА ДУМКА, 1983. – 558 с.: ил.

4. Гутман Б., Гриффтс Э., Сузуки Д., Кулис Т., Генетика / — Пер. с англ. О. Перфильева. — М.: ФАИР-ПРЕСС, 2004. – 448 c.: ил. – (Наука&Жизнь).

5. Инге-Вечтомов С. Г., Генетика с основами селекции: Учеб. для биол. спец. уни-тов – М.: Высш. шк., 1989. – 591 с.: ил.

6. Эткинс П., Порядок и беспорядок в природе: пер. с англ. / Предисл. ю. Г. Гудого – М.: Мир, 1987. – 224 с., ил.

www.ronl.ru

Доклад - Молекулярно-генетический уровень живых структур

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

КЕМЕРОВСКИЙ ИНСТИТУТ (ФИЛИАЛ)

ФАКУЛЬТЕТ ЗАОЧНОГО ОБУЧЕНИЯ

Кафедра философии и социологии

Контрольная работа по дисциплине

«Концепции современного естествознания»

по теме: «Молекулярно-генетический уровень живых структур»

Выполнил:

студент группы ПИс-061

(сокращенная форма обучения)

Жилкова Ольга Анатольевна

г. Кемерово 2007 г.

Содержание

Введение

1. Молекулярно-генетический уровень живых структур

1.1 Белки

1.2 Химические основы наследственности

1.3 Нуклеиновые кислоты

1.4 Распределение генов

1.5 Репликация нуклеиновых кислот

1.6 Генетический код

Заключение

Литература

Введение

Много лет назад А. И. Опарин высказал предположение, что в первичном океане образовались капли, содержавшие макромолекулы; эти капли были названы им коацерватами. Такие микроскопические капли описал Бундерберг де Ионг. Обычно они возникают при смешивании растворенных веществ, несущих разные электрические заряды. Сохранялись только те капли, которые были приспособлены к существовавшим тогда условиям. Возможно, они погружались на дно, и это защищало их от губительного действия ультрафиолетового излучения.

Коацерваты Бунгерберга представляют собой статические системы, но в первичном океане постепенно смогли развиться «динамические» капли, стабильность которых увеличилась за счет сбалансированного поступления и выделения компонентов. Внутри капель концентрации растворенных веществ, например, аминокислот, могли быть гораздо выше чем в окружающей их водной среде, поэтому реакции протекали в них довольно быстро. Эти реакции, возможно, были более специфичными, чем в разбавленных растворах; в некоторых каплях, по-видимому, имелись катализаторы, предшественники ферментов. Позднее некоторые капли приобрели способность реагировать на изменения, происходящие во внешней среде, соответствующими компенсаторными изменениями. Для поддержания динамического состояния и для регуляции требовался источник свободной энергии.

Многочисленные работы, в которых исследовалось поведение искусственных коацерватов в различных условиях были выполнены А. И. Опариным и его сотрудниками. Поразительные данные были получены в одном из экспериментов: капли, содержавшие фосфорилазу, синтезировали крахмал из имевшегося в среде глюкозо-l-фосфата по мере его диффузии из среды внутрь капель. Если в состав капель вводили, кроме того, амиазу, то крахмал гидролизировался до мальтозы, которая путем диффузии выделалась наружу.

Коацерваты, изучавшиеся Опариным, образованы биогенными макромолекулами. Вот почему Бернал предположил, что коацерваты могли возникнуть только на более позднем этапе эволюции. Однако Эррера смог получить микроскопические капельки из небиогенных макромолекул, инкубируя растворы тиоцианата аммония и формальдегида; по мнению Эрреры, подобные капельки могли существовать в первичном океане.

Фокс получил из своих искусственных протеиноидов «микросферы», обрабатывая их водой или растворами соли. Правильно приготовленные микросферы устойчивы, однообразны и обладают определенной ультраструктурой. В некоторых случаях они имеют двуслойную оболочку и избирательно поглощают растворенные вещества путем диффузии. В гипер- или гипотонических растворах они соответственно сморщиваются или набухают. Микросферы могут расти путем аккреции и размножаться посредством почкования или сходных процессов, несколько напоминая этим микроорганизмы. На какой-то стадии их можно рассматривать как «протоклетки».

В исходных представлениях о коацерватах и микросферах не упоминалось о нуклеиновых кислотах. Авторы предполагали, что на этой ступени эволюции единственными информационными макромолекулами были белки. В таком случае позже белки утратили эту исключительную функцию. Но, конечно, можно предположить, что нуклеиновые кислоты содержались в коацерватах и микросферах, особенно в микросферах, состоящих из основных протеиноидов. Согласно представлениям Фокса, механизмы с участием нуклеиновых кислот возникли как «эволюционное усовершенствование» и теперь на какой-то стадии мог начаться поток информации в обоих направлениях между двумя типами макромолекул.

В противоположность Фоксу Оргель считает, что белки никогда не могли воспроизводить себя, а этим свойством обладали только нуклеиновые кислоты (полинуклеотиды). Образование полинуклеотидов неферментативным путем, т. е. без участия белков, показано в опытах; например, полинуклеотиды могут синтезироваться путем конденсации подходящих производных оснований на матрице, образованной искусственным полинуклеотидом. Процессы такого типа, по-видимому, существовали уже на самых ранних этапах эволюции, и позднее протеканию этих процессов могло способствовать взаимодействие с не существующими информацию полипептидами или белками. Катализаторами, возможно, служили различные поверхности. Полупроницаемые мембраны вокруг первичных образований могли возникнуть только после того, как начался биосинтез, катализируемый ферментами, и когда потребовалось удерживать и защищать продукты этого биосинтеза. В химии атомы углерода имеют исключительную судьбу. Они могут взаимодействовать друг с другом, а также с водородом, кислородом, азотом и некоторыми другими атомами с образованием длинных цепей углеводородов или пятичленных и шестичленных колец. В природных условиях подобные углеродные соединения найдены только в живых или ископаемых организмах, и поэтому они были названы органическими веществами. Уже в конце столетия из живых организмов было выделено несколько «непосредственных начал», таких, как мочевина, щавелевая и яблочная кислоты. Поэтому в течение долгого времени полагали, что молекулы этого типа могут быть образованы только жизненными силами самих организмов. Однако к началу XIX в. из биологического материала были экстрагированы многие новые органические вещества и довольно много органических соединений. Их исследованием занимается наука биохимия. Молекулы жизни могут быть разделены на четыре основных класса: белки, нуклеиновые кислоты, углеводы и липиды. В настоящее время полагают, что в эволюционном процессе два последних класса молекул образовались позже и что жизнь возникла из неживой материи после появления белков и нуклеиновых кислот.

1. Молекулярно-генетический уровень живых структур

1.1 Белки

Белки образуются из большого числа аминокислот, которые связаны между собой пепдиной связью. Каждый белок имеет уникальную аминокислотную последовательность, называемую первичной структурой, которая определяется наследственными факторами. Типичный белок может содержать вплоть до 200 аминокислот. Длинная полимерная цепь свертывается в пространстве в трехмерную структуру, которая определяется как конформация белка. Каталитическая активность молекулы белка существенно зависит от ее конформации. Растянутая молекула белка теряет свою каталитическую активность.

Две аминокислоты одинакового состава могут отличаться друг от друга так же, как левая и правая руки, и в этом смысле их структуры не совмещаются. По причинам, которые пока еще не ясны, в качестве «строительных блоков» для живых организмов природа выбрала лишь одну «руку» — левовращающие аминокислоты.

1.2 Химические основы наследственности

Химические основы наследственности. Доказательства хранения и передачи генетической информации нуклеиновыми кислотами. Первые экспериментальные данные о хранении и передаче генетической информации нуклеиновыми кислотами были получены в 1944 г. Эвери и сотрудниками при работе с бактериями. Опыты проводили с двумя генетически различными штаммами пневмоккоков. В одном штамме бактерии были заключены в полисахаридные капсулы, во втором лишены их. В каждом штамме соответствующий признак стойко наследовался при размножении бактерий. Из бактерий капсульного штамма (штамма-донора) выделяли ДНК и ее раствором обрабатывали бактерий бескапсульного штамма (штамма-реципиента), после чего среди потомков подвергшихся этому воздействию бескапсульных бактерий, некоторые приобретали полисахаридную капсулу и передавали этот признак своему потомству, среди которого он затем стойко наследовался в течение любого числа поколений. Тщательная очистка экстракта ДНК от белковых примесей и обработка его протеазами (ферментами, разрушающими белки) и другими разрушающими белки воздействиями не лишала его способности превращать бескапсульных бактерий в бактерий, имеющих капсулу, но если на такой же экстракт действовали дезоксирибонуклеазой (ферментом, специфически разрушающим ДНК), то способность эта полностью утрачивалась. Таким образом, было установлено, что ДНК, выделенная из бактерий, несущих ген, определяющий образование полисахаридной капсулы, может переносить этот ген в бактерии, его содержащие. Явление это, получившее название генетической трансформации, было затем изучено многими исследователями и было показано, что оно воспроизводимо не только у пневмококков, но и у других бактерий, причем посредством ДНК можно передавать из одного бактериального штамма в другие (а в ряде случаев даже другим видам бактерий) самые разнообразные гены, например определяющие их устойчивость к различным антибиотикам или сульфаниламидам, особенности роста культуры, способность сбраживать разные сахара, синтез тех или иных аминокислот, серологические свойства и т. д. Если исследуются штаммы, различающиеся по нескольким генам, то с помощью ДНК можно переносить из одного штамма в другой не только каждый ген в отдельности, но в некоторых случаях трансформация идет по двум генам сразу, т. е. оба гена переносятся вместе, что указывает на относительно большую величину включившегося в реципиент фрагмента молекулы ДНК, содержащего минимум два гена донора. Такая совместная передача при трансформации двух генов бывает только тогда, когда эти гены лежат близко друг к другу в бактериальной хромосоме

1.3 Нуклеиновые кислоты

Организмы содержат еще один тип гигантских макромолекул, называемых рибонуклеиновой и дезоксирибонуклеиновой кислотами, сокращенно РНК и ДНК. Структуры и функции этих молекул коренным образом отличаются от таковых для белков. Молекулы ДНК заключают в себе всю информацию и «правила», необходимые для синтеза совершенно любого биологического материала, включая свое собственное образование, увековечивая тем самым биологические виды.

Фрагменты ДНК, содержащие один остаток сахара, один основания и один или более фосфата, называются нуклеотидами. Они играют очень важную роль в жизни клетки как предшественники ДНК или кофакторы ферментов. Один из этих нуклеотидов, аденозинтрифосфат (АТФ), играет значительную роль в клеточном метаболизме. Эта молекула является «энергетической валютой» всех живых организмов.

Очень важная особенность нуклеиновых кислот состоит в апериодичности строения их гигантских молекул. Множество нуклеотидов четырех типов, представляющих звенья этих молекул, следует в линейной молекуле друг за другом в самых различных сочетаниях, но сочетания эти строго постоянны для каждого рода ДНК или РНК данного организма. Такое чередование нуклеотидов в молекулах нуклеиновых кислот можно сравнить с порядком чередования букв в письменном тексте, где буквы расположены в разной последовательности, но последовательность эта вполне определенна и специфична для слов и предложений, составляющих данный конкретный текст. Именно такая специфичность строения полимерных молекул нуклеиновых кислот определяет возможность хранения в них обширной и сложной генетической информации.

«Алфавит» жизни включает всего четыре молекулы, которые относятся к двум различным классам химических веществ: пуринам и пиримидинам. Два пурина аденин и гуанин и два пиримидина цитозин и тимин — основания, а также существует еще одно основание — урацил, которое входит только в структуру РНК. Принято обозначать основания соответствующими начальными буквами: аденин — А, гуанин — Г, цитозин — Ц, тимин — Т и урацил — У. Подобно этому, матрицы живых организмов состоят из длинной последовательности фосфатных и углеводных молекул, образующих остов, к которому прикреплены четыре основания. ДНК содержит сахар дезоксирибозу, а РНК – некоторый отличный сахар рибозу. РНК имеет тоже четыре типа оснований, из которых три (аденин, гуанин и цитозин) такие же, как в ДНК, а тимин заменен здесь другим пиримидином – урацилом.

На языке ДНК все слова, или кодоны, написаны тремя буквами и они указывают «старт», «остановку» или кодирование одной из 24 аминокислот. полное «предложение», или ген, кодирует специфический белок. Понятия «язык ДНК», или генетический код, очень часто являются синонимами. Например, оба триплета оснований ЦАУ и ЦАЦ кодируют аминокислоту гистидин. Молекула ДНК данного организма является законченной «книгой сказаний» этого организма. Вся древняя история и будущее развитие организма отпечатаны на матрице ДНК.

Если матрица не используется, она должна быть заключена в оболочку для защиты от времени, эрозии и вредного окружения. Организмы совершают это путем обертывания двух идентичных молекул — полинуклеотидных спиралей — вокруг друг друга, так что образуется двойная спираль молекулы ДНК. Все основания, несущие информацию, в целях их лучшей сохранности обращены внутрь двойной спирали. Однако две цепи имеют противоположное направление, так что пиримидины образуют водородные связи с пуринами комплементарного тяжа.

Пространственная конфигурация (конформация) молекул ДНК была установлена в 1953 г. Уотсоном и Криком на основании рентгенографического исследования и биохимических данных. Согласно предложенной ими модели, подтвержденной позже множеством других работ, молекула ДНК состоит из двух нитей, образующих правовидную спираль. Азотистые основания обеих нитей ориентированы в направлении к середине спирали, причем аденин одной нити всегда находится напротив тимина другой нити, а гуанин одной нити – напротив цитозина другой нити. В каждом из этих пар основания соединены друг с другом водородными связями; две такие связи имеются в паре аденин-тимин и три — в паре гуанин-цитозин. Вследствие такой комплементарности азотистых оснований порядок чередования нуклеотидов в обеих нитях ДНК оказывается взаимообусловленным, а обе нити спирали расположены антипараллельно и представляют как бы реплики друг друга.

Комплементарность двух нитей молекулы ДНК приводит к тому, что число пуринов в ней равно числу пиримидинов. Молекулы ДНК бывают либо линейными, либо замкнутыми в кольцо, обычно еще перекрученныое; такие кольцевые молекулы ДНК характерны для хромосом и плазмид бактерий, для ряда ДНК – содержащих вирусов, для митохондрий, пластид, кинетопластов. В редких случаях молекулы ДНК не двунитевые, а однонитевые; подобную структуру имеют ДНК некоторых мелких фагов.

Молекулы разных ДНК сильно различаются своими размерами, но все они очень крупные (макромолекулы) и состоят из огромного числа (тысяч, миллионов или миллиардов) мономеров – нуклеотидов и соответственно этому характеризуются очень большими молекулярными весами. По-видимому, все ДНК являются геномными, т. е. всегда служат хранителями генетической информации и везде, кроме РНК-содержащих вирусов, вся генетическая информация сосредоточена в ДНК и при размножении передается ею следующим поколениям.

Наиболее замечательный факт, обнаруженный в «живых» системах, заключается в том, что генетический код идентичен для трех с половиной миллионов видов известных растений и одного миллиона видов животных.

В отличие от ДНК молекулы РНК, как правило, однонитевые. Построены они аналогично нитям ДНК. Однонитевое строение молекул большинства РНК обусловливает относительную лабильность их конформаций и в растворе они нередко образуют клубообразные структуры. Однако во многих РНК в пределах одной нити встречаются участки с одинаковой, но противоположно ориентированной («палиндромной») последовательностью комплементарных оснований, что приводит к возникновению «шпилек», хорошо видимых в электронном микроскопе, в которых два комплементарных друг другу участка одной нити сближены и соединены водородными мостиками между парами оснований. Если нить РНК имеет несколько таких комплементарных друг другу участков, то образуется несколько «шпилек» и конфорация молекулы приобретает значительную жесткость, что особенно характерно для так называемых транспортных РНК.

В зависимости от функций, присутствующих молекулам РНК, все РНК могут быть разделены на несколько классов. Из них только РНК, находящиеся в РНК-содержащих вирусах, являются геномными, т.е. хранят и передают следующему поколению соответствующую генетическую информацию. Остальные РНК (рибосомные РНК, матричные РНК, транспортные РНК и др.) выполняют иные функции, главным образом связанные с реализацией генетической информации. Размеры молекул РНК очень различны, но в общем они меньше молекул ДНК. Геномные РНК вирусов относятся к самым крупным.

Кроме перечисленных главных азотистых оснований, в состав некоторых нуклеиновых кислот в небольшом количестве входят еще друге азотистые основания, получившие название минорных. Так, у высших животных и высших растений в ДНК небольшая часть цитозинов заменена 5-метилцитозином, а ДНК ряда фагов весь цитозин заменен 5-оксиметилцитозином. В некоторых типах РНК в незначительном количестве встречаются псевдоуридин, метилгуанин и другие минорные основания.

Различные виды РНК служат посредниками для переноса генетичекой информации с ДНК на белки. Только они находятся в контакте с аминокислотами и белками. Поэтому естественно предположить, что РНК — первая информационная биомолекула, возникшая в предбиологической среде.

1.4 Распределение генов

То, что гены расположены в хромосомах, казалось бы, не соответствует тому факту, что у людей только 23 пары хромосом и вместе с тем тысячи различных признаков, которым должны соответствовать тысячи различных генов. Одних только признаков, сцепленных с Х-хромосомой, несколько сотен, а на самой короткой аутосоме расположены также сотни генов. Как это согласуется с менделеевским законом независимого распределения признаков? Это значит, что закон независимого распределения признаков применим только для генов, расположенных на разных хромосомах; сначала ученым необходимо было определить основные законы и выяснить природу наследственности на примере простейших признаков. На самом деле многие гены расположены на одной и той же хромосоме, поэтому они, как правило, наследуются вместе. Такие гены называются сцепленными. Одно из достижений современной генетики и заключается в том, что созданы карты сцепления для многих признаков. На этих картах показано также относительное положение генов на хромосомах, эти карты имеют не только теоретическое, но и практическое значение.

Место, которое ген занимает на хромосоме, называется локусом. За исключением тех редких случаев, когда происходит перестройка хромосомы, у всех представителей отдельного биологического вида каждый ген имеет строго определенный локус. О существовании генов узнали по мутациям, которые обычно изменяют гены, делая их дефектными или необычными. Большинство наследственных признаков известны по таким наследственным заболеваниям, как гемофилия, дальтонизм и фенилкетонурия. Нормальные аллели гена называются дикими, хотя, как правило, этот термин применим только для некоторых организмов, с которыми проводят опыты. Гены, определяющие такие признаки человека, как цвет глаз или группу крови, обычно дикими не называются. В естественной популяции имеется много аллелей одного гена. Мутантный аллель можно использовать как маркер, помогающий определить местоположение гена. Например, дефектный ген гемоглобина, который вызывает серповидноклеточную анемию, можно использовать как маркер для определения локуса генов гемоглобина вообще. Без такого варианта гена у нас бы было мало возможностей исследовать эти гены.

Генетическая карта хромосомы представляет собой линию, на которой отмечены локусы генов и относительные в единицах карты. Хотя некоторые методы с использованием микроскопа позволяют ученым непосредственно определить локус гена на хромосоме, обычно устанавливают локус гена относительно других генов. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Распределение аллелей в этих организмах называется родительской комбинацией.

В профазе мейоза гомологичные пары выстаиваются напротив друг друга и удерживаются вместе в хиазмах, то есть в точках, где их хроматиды переплетаются друг с другом. Иногда в точке хиазмы хроматиды разрываются и обмениваются друг с другом сегментами. Такой процесс называется кроссинговером. Если кроссинговер происходит между локусами двух генов, то аллели этих генов перераспределяются между хромосомами.

Определить расстояние между генами человека – достаточно сложно. У большинства организмов, скрещивать которые можно по выбору, весь процесс состоит из двух стадий. Сначала скрещиваются между собой гомозиготы с нужными аллелями и получается и получается гетерозиготное потомство, у которого могут происходить рекомбинации; затем скрещиваются особи второго поколения, и изучается их потомство. У людей первая и вторая стадии соответствуют браку, над которым мы не властны, и поэтому остается только изучать потомков от таких браков. Установив расстояние между двумя генами, можно по одному добавлять и другие гены.

Легче всего определять положение генов, сцепленных с полом, потому что расположение аллелей как минимум одной из Х-хромосом женщины можно определить по Х-хромосоме ее отца, а генотип Х-хромосомы ее сыновей также определяется непосредственно. Построить карту аутосомных хромосом труднее. В наше время созданы превосходные карты для некоторых лабораторных и культурных растений и животных.

1.5 Репликация нуклеиновых кислот

При размножении любых форм жизни (кроме вирусов РНК-типа) происходит увеличение числа молекул ДНК. У многоклеточных организмов из двух слившихся гамет получается тысячи, миллионы или миллиарды клеток тела; у бактерий и простейших из одной родительской клетки возникают две, из них четыре и затем, в геометрической прогрессии, множество новых; у ДНК-содержащих вирусов вместо одного вириона образуется десятки и сотни вирионов следующего поколения. Во всех случаях каждая исходная молекула ДНК каким-то образом дает начало огромному числу новых, причем сохраняются в неизменном виде все особенности, присущие ДНК данного живого существа и различные у разных из них. Лишь очень редко, когда возникает мутация, происходят небольшие искажения этой хранящейся в ДНК генетической информации, но они крайне ничтожны по сравнению с колоссальным ее объемом, записанным в чередовании азотистых оснований молекулы.

Процесс получения двух копий (или реплик) изначальной молекулы ДНК называется репликацией, и модель Уотсона-Крика объясняет, как это возможно. В каждой молекуле ДНК одному нуклеотиду соответствует комплементарный ему нуклеотид, и одна цепь ДНК целиком комплементарна другой. Репликацию выполняет сложный фермент ДНК-полимераза, которая начинает разрывать двойную спираль, словно застежку-молнию, оставляя по одному основанию на каждой цепи. Суть процесса сводится к тому что молекулы ДНК-полимеразы движутся вдоль каждой цепи и синтезируют комплементарные цепи, образуя таким образом двойную спираль вместо одинарной. Каждое свободное основание связывается исключительно с компленментарным нуклеотидом. Например, открытый цитозин привлекает к себе новый гуанин, а открытый аденин – тимин. В клетке содержится достаточно свободных нуклеотидов, потому что в процессе метаболизма они образуются постоянно, и полимераза связывает парные основания вместе. Так, каждая цепь определяет формирование комплементарной ей цепи с последовательностью, идентичной последовательности прежней парной цепи. В конечном счете получаются две спирали, идентичные начальной молекуле.

Нуклеотидная последовательность ДНК должна хранить генетическую информацию, и последнее предположение, вытекающее из модели Уотсона – Крика, состоит в том, что мутации происходят в тех случаях, когда одно основание заменяется на другое или когда цепь рвется и перестраивается. Такое случается редко, но если происходит, то в клетке имеются механизмы исправления некоторых ошибок. Тем не менее в каждом организме содержится огромное количество ДНК, и если вероятность вставки ошибочного основания равна только одной миллионной, то на каждые 10 миллионов оснований будет приходится 10 ошибок, и мутация становится силой, с которой следует считаться.

1.6 Генетический код

Исследования, приведшие к расшифровке генетического кода, из которых особенно большое значение имени генетические работы Крика с сотрудниками в Англии и биохимические работы Ниренберга, Очоа и Корнберга в США, вскрыли следующие основные свойства кода:

1) Код неперекрывающийся.

2) Каждая аминокислота кодируется группой из трех нуклеотидов (триплетом нуклеотидов).

3) Последовательность нуклеотидов в молекуле нуклеиновой кислоты считывается с закрепленной точки. Это определяет, как считывать в виде триплетов всю длинную цепь нуклеотидов. Не имеется никаких запятых, разделяющих триплеты и указывающих, как выбирать нужные.

4) Код вырожденный, т. е. одна аминокислота может кодироваться не одним, а несколькими определенными триплетами нуклеотидов.

Представимы два принципиально различные кода – неперекрывающийся и перекрывающийся. Объяснить разницу между ними можно следующим примером. Допустим, что каждая аминокислота определяется сочетанием трех нуклеотидов и что считываемый отрезок мРНК имеет следующую структуру (структура выбрана произвольно, указаны начальные буква названий азотистых оснований нуклеотидов: А – аденин, Г – гуанин, Ц – цитозин, У – урацил): ААЦУГГЦУАГЦЦУУГ

Если код неперекрывающийся, то считывание группами по три нуклеотида может происходить только одним способом, а именно: А-А-Ц-Г-Г-Ц-У-А-Г-Ц-Ц-У-У-Г

Если же код перекрывающийся, то считывание группами по три нуклеотида должно происходить тремя способами:

1-й способ: А-А-Ц -У-Г-Г -Ц-У-А -Г-Ц-Ц -У-У-Г

2-й способ: А-А-Ц-У -Г-Г-Ц -У-А-Г -Ц-Ц-У -У-Г

3-й способ: А-А-Ц-У-Г -Г-Ц-У -А-Г-Ц -Ц-У-У -Г

Доказательством того, что код неперекрывающийся, служат данные, полученные при изучении первичной структуры белков разных мутантов. Частицы вируса табачной мозаики (ВТМ) состоят из сердцевины, образованной молекулой РНК, и окружающего ее белкового капсида. Молекулы капсидного белка построены из 158 аминокислот, расположение которых в молекуле известно. Вирус обрабатывали азотистой кислотой – веществом, вызывающим мутации дезаминированием азотистых оснований отдельных нуклеотидов. Этим способом были получены многочисленные мутации вируса табачной мозаики и у мутантов была исследована первичная структура их капсидного белка. Почти всегда оказывалось, что мутантный вирусный белок отличается от исходного только по одной из 158 аминокислот, а в остальных немногих случаях, когда такие различия касались двух аминокислот, это были аминокислоты, находящиеся в молекуле белка далеко друг от друга. Отсюда следует, что почти при всех вызванных азотистой кислотой мутациях изменение азотистого основания нуклеотида происходило только в одном каком-нибудь триплете и лишь изредка в двух триплетах, но расположенных в разных местах РНК. Это вполне согласуется с предположением о неперекрывающимся коде, но противоречит допущению о том, что код перекрывающийся, так как при перекрывающимся коде изменение основания одного нуклеотида должно было бы приводить к изменению двух или трех обязательно соседних аминокислот в молекуле мутантного белка. Аналогичные результаты получены при исследовании мутаций, затрагивающих первичную структуру других белков, например бактериальной триптофансинтетазы и гемоглобина человека.

Четвертое свойство генетического кода, напрашивающееся из рассмотренной работы Крика и сотрудников по профлавиновым мутациям фага Т4, но не доказанное ими, состоял в том, что некоторые аминокислоты кодируются не одним, а несколькими определенными триплетами нуклеотидов, т. е. что код является вырожденным. Это вытекало из того, что сочетания четырех разных нуклеотидов группами по три дает 64 триплета, аминокислот же только 20. Высказанное впервые Криком и сотрудниками предположение о вырожденности генетического кода было затем доказано другими исследованиями, посвященными выяснению, какими конкретными триплетами кодируются разные аминокислоты.

Такие исследования проводились в основном двумя методами. Первый заключается в том, что в пробирку, содержащую взвесь рибосом, вносят в качестве матрицы не природную мРНК, а искусственно созданные триплеты рибонуклеотидов (кодоны) заданного состава. Такие нуклеотиды, подобно мРНК, прикрепляются к рибосомам. Кроме того, в пробирку вносят какой-нибудь один из видов тРНК с соответствующей присоединенной к нему аминокислотой, меченной радиоактивным углеродом или тритием.

В том случае, если антикодон данной тРНК комплементарен матричному тринуклеодиту, происходит связывание аминокислоты с рибосомами, что можно обнаружить по включению радиоактивной метки в осажденные рибосомы. Если же внесенный в пробирку матричный триплет кодирует не эту, а какую-нибудь другую аминокислоту, то специфического связывания аминокислоты с рибосомами не произойдет. Используя в таких опытах сочетания разных матричных триплетов с тРНК, несущих разные меченные аминокислоты, можно определить, какой конкретный триплет нуклеотидов кодирует ту или иную аминокислоту. Кроме того, этот метод дает подтверждение триплетности кодонов – было показано, что связывание тРНК с рибосомой происходит тогда, когда к рибосоме присоединена тринуклеотидная матрица, но для этого недостаточно динуклеотидной. В то же время тринуклеотидные матрицы оказались достаточными для связывания с рибосомами тРНК со всеми аминокислотами.

Второй метод состоит в том, что в пробирку, содержащую взвесь рибосом и полный набор всех тРНК с присоединенными к ним аминокислотами, вносят в качестве матрицы искусственно синтезированный полирибонуклеотид заданного состава и затем определяют последовательность аминокислот в образующемся полипептиде. Полирибонуклеодит, представляющий цепочку из одинаковых триплетов, обуславливает синтез полипептида, состоящего из повторения одной аминокислоты; например, полирибонуклеотид ААА – ААА – ААА и т. д. кодирует синтез полилизина (лизин – лизин – лизин – и т. д.). Если же в матричном полирибонуклеотиде чередуются два разных триплета, то синтезируется полипептид, в котором чередуются две аминикислоты: например, полирибонуклеотид АЦА – ЦАЦ – АЦА – ЦАЦ кодирует синтез полипептида, состоящего из чередования треонина и гистидина (треонин – гистидин – треонин – гистидин и т. д.). С помощью этих методов и некоторых их модификаций, полностью удалось расшифровать генетический код, показанный в таблице 1.1.

Таблица 1.1

Первый нуклеотид Второй нуклеотид Третий нуклеотид
У Ц А Г
У Фен Сер Тир Цис У
Фен Сер Тир Цис Ц
Лей Сер Стоп(охра) Стоп(опал) А
Лей Сер Стоп(амбер) Трип Г
Ц Лей Про Гис Арг У
Лей Про Гис Арг Ц
Лей Про Глн Арг А
Лей Про Глн Арг Г
А Илей Тре Асн Сер У
Илей Тре Асн Сер Ц
Илей Тре Лиз Арг А
Мет Тре Лиз Арг Г
Г Вал Ала Асп Гли У
Вал Ала Асп Гли Ц
Вал Ала Глу Гли А
Вал Ала Глу Гли Г

Примечание к таблице 1.1. Фен – фенилаланин, Лей – лейцин, Илей – изолейцин, Мет – метионин, Вал – Валин, Сер – серин, Про – пролин, Тре – треонин, Ала – аланин, Тир – тирозин, Гис – гистидин, Глн – глутамин, асн – аспарагин, Асп – аспарагиновая кислота, Лиз – лизин, Глу – глутаминовая кислота, Цис – цистеин, Трип – триптофан, Арг – аргинин, Гли – глицин, А – аденин, Г – гуанин, Ц – цитозин, У – урацил. Охра, амбар и опал – условные названия бессмысленных триплетов.

Из таблицы 1.1 видно, что генетический код, как и предполагалось, сильно вырожден. Только две аминокислоты (метионин и типтофан) имеют по одному кодирующему триплету, девять аминокислот (например, тирозин, фенилаланин) кодируются каждая двумя триплетами. Одна аминокислота (изолейцин) кодируется тремя триплетами, пять аминокислот (например, пролин, глицин) кодируются четырьмя, а три аминокислоты (аргинин, лейцин и серин) даже шестью разными триплетами каждая.

Это полностью согласуется с данными, полученными позже, когда была определена точная структура ряда тРНК. Оказалось, что для одной аминокислоты может существовать две или даже несколько различных тРНК, к которым она может быть прицеплена амино-ацил-тРНК-синтеразами; число таких изоакцепторных тРНК обычно зависит от числа разных триплетов, кодирующих данную аминокислоту.

Из 64 возможных триплетов, образуемых сочетаниями четырех оснований, 61 триплет кодирует аминокислоты, а три триплета, а именно – УАА, УАГ и УГА, получившие в молекулярной генетике условные названия «охра», «амбер» и «опал», служат своего рода стоп-сигналами, обозначающими конец трансляции.

Когда считывание мРНК в рибосоме доходит до одного из этих триплетов, он опознается особыми белками («освобождающими факторами»), обрывающими дальнейший рост полипептидной цепи и отделяющими ее от рибосомы, после чего рибосома может приступить к синтезу следующего полипептида.

Очень важным свойством генетического кода является его почти полная универсальность. Код един для всех организмов, как прокариотов, так и эукариотов, а также для вирусов, каждая из аминокислот определяется тем же самым кодоном или теми же кодонами. Это особенно четко демонстрируют опыты, в которых трансляцию осуществляют компоненты разного происхождения. Так, например, когда в бесклеточном белок-синтезирующую систему, содержащую аминокислоты и тРНК, из кишечной палочки, вносили мРНК, выделенную из ретикулоцитов кролика, то там образовывался белок, тождественный кроличьему гемоглобину, нормально синтезируемому ретикулоцитами. О почти полной универсальности генетического кода говорят и результаты использования искусственно синтезированных полирибонуклеотидов известного состава в белок – синтезирующих системах из бактериальных компонентов и из компонентов клеток млекопитающих – в обеих системах такие матрицы обусловливают синтез одинаковых полипептидов, структура которых строго соответствует кодовому значению триплетов матрицы. Есть много и других данных, свидетельствующих о том, что код везде одинаков. В частности, об этом говорят опыты, показывающие, что при искусственной пересадке генов в клетки неродственного организма, например, генов бактерии в клетки млекопитающего, эти гены продолжают обусловливать там синтез специфичных для них белков.

Из универсальности генетического кода известно только одно частичное исключение. В митохондриях, имеющих свой собственный белок-синтезирующий аппарат, кодовые значения нескольких триплетов иные, чем указано в таблице 1; например, триплет УГА, обычно не кодирующий аминокислот, а служащий стоп-сигналом («опал»), в митохондриях кодирует триптофан; триплет ЦУГ, обычно кодирующий лейцин, тут кодирует треонин и так далее. Кроме того, число разных тРНК, образуемых в митохондриях, меньше, чем их синтезируется в клеточном ядре. Высказывается предположение, что в митохондриях, которые по современным представлениям некогда произошли из каких-то древних микроорганизмов, код несколько изменился в результате длительного существования в виде облигатных внутриклеточных симбионов. Кодовые значения триплетов в генах пластид не изменены, они такие же, как в ядерных генах организмов.

Заключение

Открытие ДНК и установление ее двуспиральной структуры Уотсоном и Криком в 1956 г. — это выдающееся достижение XX в.

Универсальность генетического кода указывает на его очень раннее возникновение в истории жизни на Земле. Очевидно, код сложился в теперешнем виде уже у древнейших живых существ, послуживших корнем, из которого развился весь органический мир, разнообразнейшие представители которого, от самых примитивных до наиболее высоко организованных, объединены общностью кода, унаследованного ими от этих далеких предков.

Объем генетической информации, хранящейся в генах и передаваемой ими. У высших организмов, характеризуемых огромным числом и разнообразием синтезируемых белков, объем заключенный в генах информации должен быть большим. Следующие расчеты, относящиеся к генам человека, взятым в качестве примера, позволяют наглядно представить себе, сколь велика эта информация и какое поразительное богатство ее уменьшается в миниатюрном пространстве.

Четыре миллиарда (4*109 ) спермиев человека (это минимальное количество, которое примет участие в образовании следующего поколения людей на земном шаре) могут поместиться в одной аптечной облатке, какую мы глотаем, когда приходиться принять хинин или другой неприятный на вкус порошок. Такой же объем занимает хроматин четырех миллиардов ядер яйцеклеток, с которыми сольются эти спермии при оплодотворении. В этих двух «облатках» содержится информация, обеспечивающая отличие каждого будущего человека от бактерий, водорослей, салата, улиток, лягушек, воробьев, мышей, словом, от всех других видов живых существ. Кроме того, эти «облатки» несут в себе информацию о том, какова будет у каждого из четырех миллиардов людей следующего поколения окраска кожи, цвет и структура волос, цвет и разрез глаз, форма носа, группы крови и бесчисленное множество других врожденных морфологических, физиологических, физиологических и биохимических особенностей, отличающих одних людей от других и делающих неповторимым всякого из них. Попробуем выразить в цифрах количество такой информации.

По современным оценкам, гаплоидный набор хромосом человека содержит не менее 50 тыс. и не более 100 тыс. генов, определяющих синтезируемые в его клетках белки, а также рибосомальные и транспортные РНК. Возьмем меньшую цифру, 50 тыс. (5*104 ). Следовательно, в одной «облатке» помещается (4*109 )*(5*104 )=20*1013, т. е. 200 триллионов генов. Ген состоит в среднем из 1000 (103 ) пар нуклеотидов. Значит, в «облатке» находится 20*1013 *103 =20*1016 пар нуклеотидов, входящих в состав генов человека.

Литература

1. Баблояц А., Молекулы, динамика и жизнь. Введение в самоорганизацию материй: Пер. с англ. – М.: «Мир», 1990. – 375 с., ил.

2. Брода Э., Эволюция биоэнергетических процессов: Пер. с анл. / — М.: Мир, 1978. – 304 с.

3. Гершензон С. М., Основы современной генетики, изд. 2-е исправл. и дополн., — Киев.: НАУКОВА ДУМКА, 1983. – 558 с.: ил.

4. Гутман Б., Гриффтс Э., Сузуки Д., Кулис Т., Генетика / — Пер. с англ. О. Перфильева. — М.: ФАИР-ПРЕСС, 2004. – 448 c.: ил. – (Наука&Жизнь).

5. Инге-Вечтомов С. Г., Генетика с основами селекции: Учеб. для биол. спец. уни-тов – М.: Высш. шк., 1989. – 591 с.: ил.

6. Эткинс П., Порядок и беспорядок в природе: пер. с англ. / Предисл. ю. Г. Гудого – М.: Мир, 1987. – 224 с., ил.

www.ronl.ru

Курсовая работа - Молекулярно-генетический уровень живых структур

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

КЕМЕРОВСКИЙ ИНСТИТУТ (ФИЛИАЛ)

ФАКУЛЬТЕТ ЗАОЧНОГО ОБУЧЕНИЯ

Кафедра философии и социологии

Контрольная работа по дисциплине

«Концепции современного естествознания»

по теме: «Молекулярно-генетический уровень живых структур»

Выполнил:

студент группы ПИс-061

(сокращенная форма обучения)

Жилкова Ольга Анатольевна

г. Кемерово 2007 г.

Содержание

Введение

1. Молекулярно-генетический уровень живых структур

1.1 Белки

1.2 Химические основы наследственности

1.3 Нуклеиновые кислоты

1.4 Распределение генов

1.5 Репликация нуклеиновых кислот

1.6 Генетический код

Заключение

Литература

Введение

Много лет назад А. И. Опарин высказал предположение, что в первичном океане образовались капли, содержавшие макромолекулы; эти капли были названы им коацерватами. Такие микроскопические капли описал Бундерберг де Ионг. Обычно они возникают при смешивании растворенных веществ, несущих разные электрические заряды. Сохранялись только те капли, которые были приспособлены к существовавшим тогда условиям. Возможно, они погружались на дно, и это защищало их от губительного действия ультрафиолетового излучения.

Коацерваты Бунгерберга представляют собой статические системы, но в первичном океане постепенно смогли развиться «динамические» капли, стабильность которых увеличилась за счет сбалансированного поступления и выделения компонентов. Внутри капель концентрации растворенных веществ, например, аминокислот, могли быть гораздо выше чем в окружающей их водной среде, поэтому реакции протекали в них довольно быстро. Эти реакции, возможно, были более специфичными, чем в разбавленных растворах; в некоторых каплях, по-видимому, имелись катализаторы, предшественники ферментов. Позднее некоторые капли приобрели способность реагировать на изменения, происходящие во внешней среде, соответствующими компенсаторными изменениями. Для поддержания динамического состояния и для регуляции требовался источник свободной энергии.

Многочисленные работы, в которых исследовалось поведение искусственных коацерватов в различных условиях были выполнены А. И. Опариным и его сотрудниками. Поразительные данные были получены в одном из экспериментов: капли, содержавшие фосфорилазу, синтезировали крахмал из имевшегося в среде глюкозо-l-фосфата по мере его диффузии из среды внутрь капель. Если в состав капель вводили, кроме того, амиазу, то крахмал гидролизировался до мальтозы, которая путем диффузии выделалась наружу.

Коацерваты, изучавшиеся Опариным, образованы биогенными макромолекулами. Вот почему Бернал предположил, что коацерваты могли возникнуть только на более позднем этапе эволюции. Однако Эррера смог получить микроскопические капельки из небиогенных макромолекул, инкубируя растворы тиоцианата аммония и формальдегида; по мнению Эрреры, подобные капельки могли существовать в первичном океане.

Фокс получил из своих искусственных протеиноидов «микросферы», обрабатывая их водой или растворами соли. Правильно приготовленные микросферы устойчивы, однообразны и обладают определенной ультраструктурой. В некоторых случаях они имеют двуслойную оболочку и избирательно поглощают растворенные вещества путем диффузии. В гипер- или гипотонических растворах они соответственно сморщиваются или набухают. Микросферы могут расти путем аккреции и размножаться посредством почкования или сходных процессов, несколько напоминая этим микроорганизмы. На какой-то стадии их можно рассматривать как «протоклетки».

В исходных представлениях о коацерватах и микросферах не упоминалось о нуклеиновых кислотах. Авторы предполагали, что на этой ступени эволюции единственными информационными макромолекулами были белки. В таком случае позже белки утратили эту исключительную функцию. Но, конечно, можно предположить, что нуклеиновые кислоты содержались в коацерватах и микросферах, особенно в микросферах, состоящих из основных протеиноидов. Согласно представлениям Фокса, механизмы с участием нуклеиновых кислот возникли как «эволюционное усовершенствование» и теперь на какой-то стадии мог начаться поток информации в обоих направлениях между двумя типами макромолекул.

В противоположность Фоксу Оргель считает, что белки никогда не могли воспроизводить себя, а этим свойством обладали только нуклеиновые кислоты (полинуклеотиды). Образование полинуклеотидов неферментативным путем, т. е. без участия белков, показано в опытах; например, полинуклеотиды могут синтезироваться путем конденсации подходящих производных оснований на матрице, образованной искусственным полинуклеотидом. Процессы такого типа, по-видимому, существовали уже на самых ранних этапах эволюции, и позднее протеканию этих процессов могло способствовать взаимодействие с не существующими информацию полипептидами или белками. Катализаторами, возможно, служили различные поверхности. Полупроницаемые мембраны вокруг первичных образований могли возникнуть только после того, как начался биосинтез, катализируемый ферментами, и когда потребовалось удерживать и защищать продукты этого биосинтеза. В химии атомы углерода имеют исключительную судьбу. Они могут взаимодействовать друг с другом, а также с водородом, кислородом, азотом и некоторыми другими атомами с образованием длинных цепей углеводородов или пятичленных и шестичленных колец. В природных условиях подобные углеродные соединения найдены только в живых или ископаемых организмах, и поэтому они были названы органическими веществами. Уже в конце столетия из живых организмов было выделено несколько «непосредственных начал», таких, как мочевина, щавелевая и яблочная кислоты. Поэтому в течение долгого времени полагали, что молекулы этого типа могут быть образованы только жизненными силами самих организмов. Однако к началу XIX в. из биологического материала были экстрагированы многие новые органические вещества и довольно много органических соединений. Их исследованием занимается наука биохимия. Молекулы жизни могут быть разделены на четыре основных класса: белки, нуклеиновые кислоты, углеводы и липиды. В настоящее время полагают, что в эволюционном процессе два последних класса молекул образовались позже и что жизнь возникла из неживой материи после появления белков и нуклеиновых кислот.

1. Молекулярно-генетический уровень живых структур

1.1 Белки

Белки образуются из большого числа аминокислот, которые связаны между собой пепдиной связью. Каждый белок имеет уникальную аминокислотную последовательность, называемую первичной структурой, которая определяется наследственными факторами. Типичный белок может содержать вплоть до 200 аминокислот. Длинная полимерная цепь свертывается в пространстве в трехмерную структуру, которая определяется как конформация белка. Каталитическая активность молекулы белка существенно зависит от ее конформации. Растянутая молекула белка теряет свою каталитическую активность.

Две аминокислоты одинакового состава могут отличаться друг от друга так же, как левая и правая руки, и в этом смысле их структуры не совмещаются. По причинам, которые пока еще не ясны, в качестве «строительных блоков» для живых организмов природа выбрала лишь одну «руку» — левовращающие аминокислоты.

1.2 Химические основы наследственности

Химические основы наследственности. Доказательства хранения и передачи генетической информации нуклеиновыми кислотами. Первые экспериментальные данные о хранении и передаче генетической информации нуклеиновыми кислотами были получены в 1944 г. Эвери и сотрудниками при работе с бактериями. Опыты проводили с двумя генетически различными штаммами пневмоккоков. В одном штамме бактерии были заключены в полисахаридные капсулы, во втором лишены их. В каждом штамме соответствующий признак стойко наследовался при размножении бактерий. Из бактерий капсульного штамма (штамма-донора) выделяли ДНК и ее раствором обрабатывали бактерий бескапсульного штамма (штамма-реципиента), после чего среди потомков подвергшихся этому воздействию бескапсульных бактерий, некоторые приобретали полисахаридную капсулу и передавали этот признак своему потомству, среди которого он затем стойко наследовался в течение любого числа поколений. Тщательная очистка экстракта ДНК от белковых примесей и обработка его протеазами (ферментами, разрушающими белки) и другими разрушающими белки воздействиями не лишала его способности превращать бескапсульных бактерий в бактерий, имеющих капсулу, но если на такой же экстракт действовали дезоксирибонуклеазой (ферментом, специфически разрушающим ДНК), то способность эта полностью утрачивалась. Таким образом, было установлено, что ДНК, выделенная из бактерий, несущих ген, определяющий образование полисахаридной капсулы, может переносить этот ген в бактерии, его содержащие. Явление это, получившее название генетической трансформации, было затем изучено многими исследователями и было показано, что оно воспроизводимо не только у пневмококков, но и у других бактерий, причем посредством ДНК можно передавать из одного бактериального штамма в другие (а в ряде случаев даже другим видам бактерий) самые разнообразные гены, например определяющие их устойчивость к различным антибиотикам или сульфаниламидам, особенности роста культуры, способность сбраживать разные сахара, синтез тех или иных аминокислот, серологические свойства и т. д. Если исследуются штаммы, различающиеся по нескольким генам, то с помощью ДНК можно переносить из одного штамма в другой не только каждый ген в отдельности, но в некоторых случаях трансформация идет по двум генам сразу, т. е. оба гена переносятся вместе, что указывает на относительно большую величину включившегося в реципиент фрагмента молекулы ДНК, содержащего минимум два гена донора. Такая совместная передача при трансформации двух генов бывает только тогда, когда эти гены лежат близко друг к другу в бактериальной хромосоме

1.3 Нуклеиновые кислоты

Организмы содержат еще один тип гигантских макромолекул, называемых рибонуклеиновой и дезоксирибонуклеиновой кислотами, сокращенно РНК и ДНК. Структуры и функции этих молекул коренным образом отличаются от таковых для белков. Молекулы ДНК заключают в себе всю информацию и «правила», необходимые для синтеза совершенно любого биологического материала, включая свое собственное образование, увековечивая тем самым биологические виды.

Фрагменты ДНК, содержащие один остаток сахара, один основания и один или более фосфата, называются нуклеотидами. Они играют очень важную роль в жизни клетки как предшественники ДНК или кофакторы ферментов. Один из этих нуклеотидов, аденозинтрифосфат (АТФ), играет значительную роль в клеточном метаболизме. Эта молекула является «энергетической валютой» всех живых организмов.

Очень важная особенность нуклеиновых кислот состоит в апериодичности строения их гигантских молекул. Множество нуклеотидов четырех типов, представляющих звенья этих молекул, следует в линейной молекуле друг за другом в самых различных сочетаниях, но сочетания эти строго постоянны для каждого рода ДНК или РНК данного организма. Такое чередование нуклеотидов в молекулах нуклеиновых кислот можно сравнить с порядком чередования букв в письменном тексте, где буквы расположены в разной последовательности, но последовательность эта вполне определенна и специфична для слов и предложений, составляющих данный конкретный текст. Именно такая специфичность строения полимерных молекул нуклеиновых кислот определяет возможность хранения в них обширной и сложной генетической информации.

«Алфавит» жизни включает всего четыре молекулы, которые относятся к двум различным классам химических веществ: пуринам и пиримидинам. Два пурина аденин и гуанин и два пиримидина цитозин и тимин — основания, а также существует еще одно основание — урацил, которое входит только в структуру РНК. Принято обозначать основания соответствующими начальными буквами: аденин — А, гуанин — Г, цитозин — Ц, тимин — Т и урацил — У. Подобно этому, матрицы живых организмов состоят из длинной последовательности фосфатных и углеводных молекул, образующих остов, к которому прикреплены четыре основания. ДНК содержит сахар дезоксирибозу, а РНК – некоторый отличный сахар рибозу. РНК имеет тоже четыре типа оснований, из которых три (аденин, гуанин и цитозин) такие же, как в ДНК, а тимин заменен здесь другим пиримидином – урацилом.

На языке ДНК все слова, или кодоны, написаны тремя буквами и они указывают «старт», «остановку» или кодирование одной из 24 аминокислот. полное «предложение», или ген, кодирует специфический белок. Понятия «язык ДНК», или генетический код, очень часто являются синонимами. Например, оба триплета оснований ЦАУ и ЦАЦ кодируют аминокислоту гистидин. Молекула ДНК данного организма является законченной «книгой сказаний» этого организма. Вся древняя история и будущее развитие организма отпечатаны на матрице ДНК.

Если матрица не используется, она должна быть заключена в оболочку для защиты от времени, эрозии и вредного окружения. Организмы совершают это путем обертывания двух идентичных молекул — полинуклеотидных спиралей — вокруг друг друга, так что образуется двойная спираль молекулы ДНК. Все основания, несущие информацию, в целях их лучшей сохранности обращены внутрь двойной спирали. Однако две цепи имеют противоположное направление, так что пиримидины образуют водородные связи с пуринами комплементарного тяжа.

Пространственная конфигурация (конформация) молекул ДНК была установлена в 1953 г. Уотсоном и Криком на основании рентгенографического исследования и биохимических данных. Согласно предложенной ими модели, подтвержденной позже множеством других работ, молекула ДНК состоит из двух нитей, образующих правовидную спираль. Азотистые основания обеих нитей ориентированы в направлении к середине спирали, причем аденин одной нити всегда находится напротив тимина другой нити, а гуанин одной нити – напротив цитозина другой нити. В каждом из этих пар основания соединены друг с другом водородными связями; две такие связи имеются в паре аденин-тимин и три — в паре гуанин-цитозин. Вследствие такой комплементарности азотистых оснований порядок чередования нуклеотидов в обеих нитях ДНК оказывается взаимообусловленным, а обе нити спирали расположены антипараллельно и представляют как бы реплики друг друга.

Комплементарность двух нитей молекулы ДНК приводит к тому, что число пуринов в ней равно числу пиримидинов. Молекулы ДНК бывают либо линейными, либо замкнутыми в кольцо, обычно еще перекрученныое; такие кольцевые молекулы ДНК характерны для хромосом и плазмид бактерий, для ряда ДНК – содержащих вирусов, для митохондрий, пластид, кинетопластов. В редких случаях молекулы ДНК не двунитевые, а однонитевые; подобную структуру имеют ДНК некоторых мелких фагов.

Молекулы разных ДНК сильно различаются своими размерами, но все они очень крупные (макромолекулы) и состоят из огромного числа (тысяч, миллионов или миллиардов) мономеров – нуклеотидов и соответственно этому характеризуются очень большими молекулярными весами. По-видимому, все ДНК являются геномными, т. е. всегда служат хранителями генетической информации и везде, кроме РНК-содержащих вирусов, вся генетическая информация сосредоточена в ДНК и при размножении передается ею следующим поколениям.

Наиболее замечательный факт, обнаруженный в «живых» системах, заключается в том, что генетический код идентичен для трех с половиной миллионов видов известных растений и одного миллиона видов животных.

В отличие от ДНК молекулы РНК, как правило, однонитевые. Построены они аналогично нитям ДНК. Однонитевое строение молекул большинства РНК обусловливает относительную лабильность их конформаций и в растворе они нередко образуют клубообразные структуры. Однако во многих РНК в пределах одной нити встречаются участки с одинаковой, но противоположно ориентированной («палиндромной») последовательностью комплементарных оснований, что приводит к возникновению «шпилек», хорошо видимых в электронном микроскопе, в которых два комплементарных друг другу участка одной нити сближены и соединены водородными мостиками между парами оснований. Если нить РНК имеет несколько таких комплементарных друг другу участков, то образуется несколько «шпилек» и конфорация молекулы приобретает значительную жесткость, что особенно характерно для так называемых транспортных РНК.

В зависимости от функций, присутствующих молекулам РНК, все РНК могут быть разделены на несколько классов. Из них только РНК, находящиеся в РНК-содержащих вирусах, являются геномными, т.е. хранят и передают следующему поколению соответствующую генетическую информацию. Остальные РНК (рибосомные РНК, матричные РНК, транспортные РНК и др.) выполняют иные функции, главным образом связанные с реализацией генетической информации. Размеры молекул РНК очень различны, но в общем они меньше молекул ДНК. Геномные РНК вирусов относятся к самым крупным.

Кроме перечисленных главных азотистых оснований, в состав некоторых нуклеиновых кислот в небольшом количестве входят еще друге азотистые основания, получившие название минорных. Так, у высших животных и высших растений в ДНК небольшая часть цитозинов заменена 5-метилцитозином, а ДНК ряда фагов весь цитозин заменен 5-оксиметилцитозином. В некоторых типах РНК в незначительном количестве встречаются псевдоуридин, метилгуанин и другие минорные основания.

Различные виды РНК служат посредниками для переноса генетичекой информации с ДНК на белки. Только они находятся в контакте с аминокислотами и белками. Поэтому естественно предположить, что РНК — первая информационная биомолекула, возникшая в предбиологической среде.

1.4 Распределение генов

То, что гены расположены в хромосомах, казалось бы, не соответствует тому факту, что у людей только 23 пары хромосом и вместе с тем тысячи различных признаков, которым должны соответствовать тысячи различных генов. Одних только признаков, сцепленных с Х-хромосомой, несколько сотен, а на самой короткой аутосоме расположены также сотни генов. Как это согласуется с менделеевским законом независимого распределения признаков? Это значит, что закон независимого распределения признаков применим только для генов, расположенных на разных хромосомах; сначала ученым необходимо было определить основные законы и выяснить природу наследственности на примере простейших признаков. На самом деле многие гены расположены на одной и той же хромосоме, поэтому они, как правило, наследуются вместе. Такие гены называются сцепленными. Одно из достижений современной генетики и заключается в том, что созданы карты сцепления для многих признаков. На этих картах показано также относительное положение генов на хромосомах, эти карты имеют не только теоретическое, но и практическое значение.

Место, которое ген занимает на хромосоме, называется локусом. За исключением тех редких случаев, когда происходит перестройка хромосомы, у всех представителей отдельного биологического вида каждый ген имеет строго определенный локус. О существовании генов узнали по мутациям, которые обычно изменяют гены, делая их дефектными или необычными. Большинство наследственных признаков известны по таким наследственным заболеваниям, как гемофилия, дальтонизм и фенилкетонурия. Нормальные аллели гена называются дикими, хотя, как правило, этот термин применим только для некоторых организмов, с которыми проводят опыты. Гены, определяющие такие признаки человека, как цвет глаз или группу крови, обычно дикими не называются. В естественной популяции имеется много аллелей одного гена. Мутантный аллель можно использовать как маркер, помогающий определить местоположение гена. Например, дефектный ген гемоглобина, который вызывает серповидноклеточную анемию, можно использовать как маркер для определения локуса генов гемоглобина вообще. Без такого варианта гена у нас бы было мало возможностей исследовать эти гены.

Генетическая карта хромосомы представляет собой линию, на которой отмечены локусы генов и относительные в единицах карты. Хотя некоторые методы с использованием микроскопа позволяют ученым непосредственно определить локус гена на хромосоме, обычно устанавливают локус гена относительно других генов. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Для этого требуются организмы, гетерозиготные по двум генам, чтобы две маркированные хромосомы могли взаимодействовать друг с другом. Распределение аллелей в этих организмах называется родительской комбинацией.

В профазе мейоза гомологичные пары выстаиваются напротив друг друга и удерживаются вместе в хиазмах, то есть в точках, где их хроматиды переплетаются друг с другом. Иногда в точке хиазмы хроматиды разрываются и обмениваются друг с другом сегментами. Такой процесс называется кроссинговером. Если кроссинговер происходит между локусами двух генов, то аллели этих генов перераспределяются между хромосомами.

Определить расстояние между генами человека – достаточно сложно. У большинства организмов, скрещивать которые можно по выбору, весь процесс состоит из двух стадий. Сначала скрещиваются между собой гомозиготы с нужными аллелями и получается и получается гетерозиготное потомство, у которого могут происходить рекомбинации; затем скрещиваются особи второго поколения, и изучается их потомство. У людей первая и вторая стадии соответствуют браку, над которым мы не властны, и поэтому остается только изучать потомков от таких браков. Установив расстояние между двумя генами, можно по одному добавлять и другие гены.

Легче всего определять положение генов, сцепленных с полом, потому что расположение аллелей как минимум одной из Х-хромосом женщины можно определить по Х-хромосоме ее отца, а генотип Х-хромосомы ее сыновей также определяется непосредственно. Построить карту аутосомных хромосом труднее. В наше время созданы превосходные карты для некоторых лабораторных и культурных растений и животных.

1.5 Репликация нуклеиновых кислот

При размножении любых форм жизни (кроме вирусов РНК-типа) происходит увеличение числа молекул ДНК. У многоклеточных организмов из двух слившихся гамет получается тысячи, миллионы или миллиарды клеток тела; у бактерий и простейших из одной родительской клетки возникают две, из них четыре и затем, в геометрической прогрессии, множество новых; у ДНК-содержащих вирусов вместо одного вириона образуется десятки и сотни вирионов следующего поколения. Во всех случаях каждая исходная молекула ДНК каким-то образом дает начало огромному числу новых, причем сохраняются в неизменном виде все особенности, присущие ДНК данного живого существа и различные у разных из них. Лишь очень редко, когда возникает мутация, происходят небольшие искажения этой хранящейся в ДНК генетической информации, но они крайне ничтожны по сравнению с колоссальным ее объемом, записанным в чередовании азотистых оснований молекулы.

Процесс получения двух копий (или реплик) изначальной молекулы ДНК называется репликацией, и модель Уотсона-Крика объясняет, как это возможно. В каждой молекуле ДНК одному нуклеотиду соответствует комплементарный ему нуклеотид, и одна цепь ДНК целиком комплементарна другой. Репликацию выполняет сложный фермент ДНК-полимераза, которая начинает разрывать двойную спираль, словно застежку-молнию, оставляя по одному основанию на каждой цепи. Суть процесса сводится к тому что молекулы ДНК-полимеразы движутся вдоль каждой цепи и синтезируют комплементарные цепи, образуя таким образом двойную спираль вместо одинарной. Каждое свободное основание связывается исключительно с компленментарным нуклеотидом. Например, открытый цитозин привлекает к себе новый гуанин, а открытый аденин – тимин. В клетке содержится достаточно свободных нуклеотидов, потому что в процессе метаболизма они образуются постоянно, и полимераза связывает парные основания вместе. Так, каждая цепь определяет формирование комплементарной ей цепи с последовательностью, идентичной последовательности прежней парной цепи. В конечном счете получаются две спирали, идентичные начальной молекуле.

Нуклеотидная последовательность ДНК должна хранить генетическую информацию, и последнее предположение, вытекающее из модели Уотсона – Крика, состоит в том, что мутации происходят в тех случаях, когда одно основание заменяется на другое или когда цепь рвется и перестраивается. Такое случается редко, но если происходит, то в клетке имеются механизмы исправления некоторых ошибок. Тем не менее в каждом организме содержится огромное количество ДНК, и если вероятность вставки ошибочного основания равна только одной миллионной, то на каждые 10 миллионов оснований будет приходится 10 ошибок, и мутация становится силой, с которой следует считаться.

1.6 Генетический код

Исследования, приведшие к расшифровке генетического кода, из которых особенно большое значение имени генетические работы Крика с сотрудниками в Англии и биохимические работы Ниренберга, Очоа и Корнберга в США, вскрыли следующие основные свойства кода:

1) Код неперекрывающийся.

2) Каждая аминокислота кодируется группой из трех нуклеотидов (триплетом нуклеотидов).

3) Последовательность нуклеотидов в молекуле нуклеиновой кислоты считывается с закрепленной точки. Это определяет, как считывать в виде триплетов всю длинную цепь нуклеотидов. Не имеется никаких запятых, разделяющих триплеты и указывающих, как выбирать нужные.

4) Код вырожденный, т. е. одна аминокислота может кодироваться не одним, а несколькими определенными триплетами нуклеотидов.

Представимы два принципиально различные кода – неперекрывающийся и перекрывающийся. Объяснить разницу между ними можно следующим примером. Допустим, что каждая аминокислота определяется сочетанием трех нуклеотидов и что считываемый отрезок мРНК имеет следующую структуру (структура выбрана произвольно, указаны начальные буква названий азотистых оснований нуклеотидов: А – аденин, Г – гуанин, Ц – цитозин, У – урацил): ААЦУГГЦУАГЦЦУУГ

Если код неперекрывающийся, то считывание группами по три нуклеотида может происходить только одним способом, а именно: А-А-Ц-Г-Г-Ц-У-А-Г-Ц-Ц-У-У-Г

Если же код перекрывающийся, то считывание группами по три нуклеотида должно происходить тремя способами:

1-й способ: А-А-Ц -У-Г-Г -Ц-У-А -Г-Ц-Ц -У-У-Г

2-й способ: А-А-Ц-У -Г-Г-Ц -У-А-Г -Ц-Ц-У -У-Г

3-й способ: А-А-Ц-У-Г -Г-Ц-У -А-Г-Ц -Ц-У-У -Г

Доказательством того, что код неперекрывающийся, служат данные, полученные при изучении первичной структуры белков разных мутантов. Частицы вируса табачной мозаики (ВТМ) состоят из сердцевины, образованной молекулой РНК, и окружающего ее белкового капсида. Молекулы капсидного белка построены из 158 аминокислот, расположение которых в молекуле известно. Вирус обрабатывали азотистой кислотой – веществом, вызывающим мутации дезаминированием азотистых оснований отдельных нуклеотидов. Этим способом были получены многочисленные мутации вируса табачной мозаики и у мутантов была исследована первичная структура их капсидного белка. Почти всегда оказывалось, что мутантный вирусный белок отличается от исходного только по одной из 158 аминокислот, а в остальных немногих случаях, когда такие различия касались двух аминокислот, это были аминокислоты, находящиеся в молекуле белка далеко друг от друга. Отсюда следует, что почти при всех вызванных азотистой кислотой мутациях изменение азотистого основания нуклеотида происходило только в одном каком-нибудь триплете и лишь изредка в двух триплетах, но расположенных в разных местах РНК. Это вполне согласуется с предположением о неперекрывающимся коде, но противоречит допущению о том, что код перекрывающийся, так как при перекрывающимся коде изменение основания одного нуклеотида должно было бы приводить к изменению двух или трех обязательно соседних аминокислот в молекуле мутантного белка. Аналогичные результаты получены при исследовании мутаций, затрагивающих первичную структуру других белков, например бактериальной триптофансинтетазы и гемоглобина человека.

Четвертое свойство генетического кода, напрашивающееся из рассмотренной работы Крика и сотрудников по профлавиновым мутациям фага Т4, но не доказанное ими, состоял в том, что некоторые аминокислоты кодируются не одним, а несколькими определенными триплетами нуклеотидов, т. е. что код является вырожденным. Это вытекало из того, что сочетания четырех разных нуклеотидов группами по три дает 64 триплета, аминокислот же только 20. Высказанное впервые Криком и сотрудниками предположение о вырожденности генетического кода было затем доказано другими исследованиями, посвященными выяснению, какими конкретными триплетами кодируются разные аминокислоты.

Такие исследования проводились в основном двумя методами. Первый заключается в том, что в пробирку, содержащую взвесь рибосом, вносят в качестве матрицы не природную мРНК, а искусственно созданные триплеты рибонуклеотидов (кодоны) заданного состава. Такие нуклеотиды, подобно мРНК, прикрепляются к рибосомам. Кроме того, в пробирку вносят какой-нибудь один из видов тРНК с соответствующей присоединенной к нему аминокислотой, меченной радиоактивным углеродом или тритием.

В том случае, если антикодон данной тРНК комплементарен матричному тринуклеодиту, происходит связывание аминокислоты с рибосомами, что можно обнаружить по включению радиоактивной метки в осажденные рибосомы. Если же внесенный в пробирку матричный триплет кодирует не эту, а какую-нибудь другую аминокислоту, то специфического связывания аминокислоты с рибосомами не произойдет. Используя в таких опытах сочетания разных матричных триплетов с тРНК, несущих разные меченные аминокислоты, можно определить, какой конкретный триплет нуклеотидов кодирует ту или иную аминокислоту. Кроме того, этот метод дает подтверждение триплетности кодонов – было показано, что связывание тРНК с рибосомой происходит тогда, когда к рибосоме присоединена тринуклеотидная матрица, но для этого недостаточно динуклеотидной. В то же время тринуклеотидные матрицы оказались достаточными для связывания с рибосомами тРНК со всеми аминокислотами.

Второй метод состоит в том, что в пробирку, содержащую взвесь рибосом и полный набор всех тРНК с присоединенными к ним аминокислотами, вносят в качестве матрицы искусственно синтезированный полирибонуклеотид заданного состава и затем определяют последовательность аминокислот в образующемся полипептиде. Полирибонуклеодит, представляющий цепочку из одинаковых триплетов, обуславливает синтез полипептида, состоящего из повторения одной аминокислоты; например, полирибонуклеотид ААА – ААА – ААА и т. д. кодирует синтез полилизина (лизин – лизин – лизин – и т. д.). Если же в матричном полирибонуклеотиде чередуются два разных триплета, то синтезируется полипептид, в котором чередуются две аминикислоты: например, полирибонуклеотид АЦА – ЦАЦ – АЦА – ЦАЦ кодирует синтез полипептида, состоящего из чередования треонина и гистидина (треонин – гистидин – треонин – гистидин и т. д.). С помощью этих методов и некоторых их модификаций, полностью удалось расшифровать генетический код, показанный в таблице 1.1.

Таблица 1.1

Первый нуклеотид Второй нуклеотид Третий нуклеотид
У Ц А Г
У Фен Сер Тир Цис У
Фен Сер Тир Цис Ц
Лей Сер Стоп(охра) Стоп(опал) А
Лей Сер Стоп(амбер) Трип Г
Ц Лей Про Гис Арг У
Лей Про Гис Арг Ц
Лей Про Глн Арг А
Лей Про Глн Арг Г
А Илей Тре Асн Сер У
Илей Тре Асн Сер Ц
Илей Тре Лиз Арг А
Мет Тре Лиз Арг Г
Г Вал Ала Асп Гли У
Вал Ала Асп Гли Ц
Вал Ала Глу Гли А
Вал Ала Глу Гли Г

Примечание к таблице 1.1. Фен – фенилаланин, Лей – лейцин, Илей – изолейцин, Мет – метионин, Вал – Валин, Сер – серин, Про – пролин, Тре – треонин, Ала – аланин, Тир – тирозин, Гис – гистидин, Глн – глутамин, асн – аспарагин, Асп – аспарагиновая кислота, Лиз – лизин, Глу – глутаминовая кислота, Цис – цистеин, Трип – триптофан, Арг – аргинин, Гли – глицин, А – аденин, Г – гуанин, Ц – цитозин, У – урацил. Охра, амбар и опал – условные названия бессмысленных триплетов.

Из таблицы 1.1 видно, что генетический код, как и предполагалось, сильно вырожден. Только две аминокислоты (метионин и типтофан) имеют по одному кодирующему триплету, девять аминокислот (например, тирозин, фенилаланин) кодируются каждая двумя триплетами. Одна аминокислота (изолейцин) кодируется тремя триплетами, пять аминокислот (например, пролин, глицин) кодируются четырьмя, а три аминокислоты (аргинин, лейцин и серин) даже шестью разными триплетами каждая.

Это полностью согласуется с данными, полученными позже, когда была определена точная структура ряда тРНК. Оказалось, что для одной аминокислоты может существовать две или даже несколько различных тРНК, к которым она может быть прицеплена амино-ацил-тРНК-синтеразами; число таких изоакцепторных тРНК обычно зависит от числа разных триплетов, кодирующих данную аминокислоту.

Из 64 возможных триплетов, образуемых сочетаниями четырех оснований, 61 триплет кодирует аминокислоты, а три триплета, а именно – УАА, УАГ и УГА, получившие в молекулярной генетике условные названия «охра», «амбер» и «опал», служат своего рода стоп-сигналами, обозначающими конец трансляции.

Когда считывание мРНК в рибосоме доходит до одного из этих триплетов, он опознается особыми белками («освобождающими факторами»), обрывающими дальнейший рост полипептидной цепи и отделяющими ее от рибосомы, после чего рибосома может приступить к синтезу следующего полипептида.

Очень важным свойством генетического кода является его почти полная универсальность. Код един для всех организмов, как прокариотов, так и эукариотов, а также для вирусов, каждая из аминокислот определяется тем же самым кодоном или теми же кодонами. Это особенно четко демонстрируют опыты, в которых трансляцию осуществляют компоненты разного происхождения. Так, например, когда в бесклеточном белок-синтезирующую систему, содержащую аминокислоты и тРНК, из кишечной палочки, вносили мРНК, выделенную из ретикулоцитов кролика, то там образовывался белок, тождественный кроличьему гемоглобину, нормально синтезируемому ретикулоцитами. О почти полной универсальности генетического кода говорят и результаты использования искусственно синтезированных полирибонуклеотидов известного состава в белок – синтезирующих системах из бактериальных компонентов и из компонентов клеток млекопитающих – в обеих системах такие матрицы обусловливают синтез одинаковых полипептидов, структура которых строго соответствует кодовому значению триплетов матрицы. Есть много и других данных, свидетельствующих о том, что код везде одинаков. В частности, об этом говорят опыты, показывающие, что при искусственной пересадке генов в клетки неродственного организма, например, генов бактерии в клетки млекопитающего, эти гены продолжают обусловливать там синтез специфичных для них белков.

Из универсальности генетического кода известно только одно частичное исключение. В митохондриях, имеющих свой собственный белок-синтезирующий аппарат, кодовые значения нескольких триплетов иные, чем указано в таблице 1; например, триплет УГА, обычно не кодирующий аминокислот, а служащий стоп-сигналом («опал»), в митохондриях кодирует триптофан; триплет ЦУГ, обычно кодирующий лейцин, тут кодирует треонин и так далее. Кроме того, число разных тРНК, образуемых в митохондриях, меньше, чем их синтезируется в клеточном ядре. Высказывается предположение, что в митохондриях, которые по современным представлениям некогда произошли из каких-то древних микроорганизмов, код несколько изменился в результате длительного существования в виде облигатных внутриклеточных симбионов. Кодовые значения триплетов в генах пластид не изменены, они такие же, как в ядерных генах организмов.

Заключение

Открытие ДНК и установление ее двуспиральной структуры Уотсоном и Криком в 1956 г. — это выдающееся достижение XX в.

Универсальность генетического кода указывает на его очень раннее возникновение в истории жизни на Земле. Очевидно, код сложился в теперешнем виде уже у древнейших живых существ, послуживших корнем, из которого развился весь органический мир, разнообразнейшие представители которого, от самых примитивных до наиболее высоко организованных, объединены общностью кода, унаследованного ими от этих далеких предков.

Объем генетической информации, хранящейся в генах и передаваемой ими. У высших организмов, характеризуемых огромным числом и разнообразием синтезируемых белков, объем заключенный в генах информации должен быть большим. Следующие расчеты, относящиеся к генам человека, взятым в качестве примера, позволяют наглядно представить себе, сколь велика эта информация и какое поразительное богатство ее уменьшается в миниатюрном пространстве.

Четыре миллиарда (4*109 ) спермиев человека (это минимальное количество, которое примет участие в образовании следующего поколения людей на земном шаре) могут поместиться в одной аптечной облатке, какую мы глотаем, когда приходиться принять хинин или другой неприятный на вкус порошок. Такой же объем занимает хроматин четырех миллиардов ядер яйцеклеток, с которыми сольются эти спермии при оплодотворении. В этих двух «облатках» содержится информация, обеспечивающая отличие каждого будущего человека от бактерий, водорослей, салата, улиток, лягушек, воробьев, мышей, словом, от всех других видов живых существ. Кроме того, эти «облатки» несут в себе информацию о том, какова будет у каждого из четырех миллиардов людей следующего поколения окраска кожи, цвет и структура волос, цвет и разрез глаз, форма носа, группы крови и бесчисленное множество других врожденных морфологических, физиологических, физиологических и биохимических особенностей, отличающих одних людей от других и делающих неповторимым всякого из них. Попробуем выразить в цифрах количество такой информации.

По современным оценкам, гаплоидный набор хромосом человека содержит не менее 50 тыс. и не более 100 тыс. генов, определяющих синтезируемые в его клетках белки, а также рибосомальные и транспортные РНК. Возьмем меньшую цифру, 50 тыс. (5*104 ). Следовательно, в одной «облатке» помещается (4*109 )*(5*104 )=20*1013, т. е. 200 триллионов генов. Ген состоит в среднем из 1000 (103 ) пар нуклеотидов. Значит, в «облатке» находится 20*1013 *103 =20*1016 пар нуклеотидов, входящих в состав генов человека.

Литература

1. Баблояц А., Молекулы, динамика и жизнь. Введение в самоорганизацию материй: Пер. с англ. – М.: «Мир», 1990. – 375 с., ил.

2. Брода Э., Эволюция биоэнергетических процессов: Пер. с анл. / — М.: Мир, 1978. – 304 с.

3. Гершензон С. М., Основы современной генетики, изд. 2-е исправл. и дополн., — Киев.: НАУКОВА ДУМКА, 1983. – 558 с.: ил.

4. Гутман Б., Гриффтс Э., Сузуки Д., Кулис Т., Генетика / — Пер. с англ. О. Перфильева. — М.: ФАИР-ПРЕСС, 2004. – 448 c.: ил. – (Наука&Жизнь).

5. Инге-Вечтомов С. Г., Генетика с основами селекции: Учеб. для биол. спец. уни-тов – М.: Высш. шк., 1989. – 591 с.: ил.

6. Эткинс П., Порядок и беспорядок в природе: пер. с англ. / Предисл. ю. Г. Гудого – М.: Мир, 1987. – 224 с., ил.

www.ronl.ru

Реферат - «Молекулярно-генетический уровень организации живого»

Составители:

О.-Я.Л. Бекиш, заведующий кафедрой медицинской биологии и общей генетики Учреждения образования «Витебский государственный медицинский университет» доктор биологических наук, член-корреспондент Национальной Академии наук Республики Беларусь, профессор

В. Я. Бекиш, профессор кафедры медицинской биологии и общей генетики Учреждения образования «Витебский государственный медицинский университет», доктор медицинских наук, профессор

Рецензенты:

Кафедра паразитологии Учреждения образования «Витебская государственная академия ветеринарной медицины»

А.М.Дорофеев, заведующий кафедрой экологии и охраны природы Учреждения образования «Витебский государственный университет им. П.М.Машерова», кандидат биологических наук, профессор

Рекомендована к утверждению в качестве типовой:

Кафедрой медицинской биологии и общей генетики Учреждения образования «Витебский государственный медицинский университет» (протокол № 7 от 9 февраля 2008 г.)

Центральным учебно-методическим советом Учреждения образования «Витебский государственный медицинский университет» (протокол № 3 от 30 апреля 2008 г.)

Секцией по специальности 1-79 01 08 Фармация Учебно-методического объединения вузов Республики Беларусь по медицинскому образованию (протокол № 2 от 22 мая 2008 г.)

^ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Основной задачей программы является изучение человека как биосоциального существа с акцентом на его биологические особенности, представляющие интерес при формировании фундаментальных знаний у студентов для изучения медико-биологических и фармацевтических дисциплин, а также для практической фармации.

Программа изложена в соответствии с уровнями организации живого по разделам.

Раздел I «Молекулярно-генетический уровень организации живого» направлен на изучение нуклеиновых кислот, процессов их синтеза, кодирования наследственной информации и характеристики генетического материала у неклеточных форм жизни, прокариот и эукариот.

Раздел II «Клеточный уровень организации живого» посвящен изучению клетки как открытой системы с потоками энергии, информации и вещества. Рассматриваются морфо-функциональные особенности клетки, пролиферация клеток и возможности ее коррекции лекарственными препаратами.

Раздел III «Онтогенетический уровень организации живого» освещает особенности размножения организмов. Рассматриваются закономерности наследственности и изменчивости человека. Изучение биологии развития направлено на познание закономерностей эмбрионального и постэмбрионального развития человека. Освещаются проблемы клинической и биологической смерти, эвтаназии.

Раздел IV «Популяционно-видовой уровень организации живого» посвящен характеристике популяционной структуры человечества, влиянию элементарных эволюционных факторов на популяции человека.

Раздел V «Биосферно-биогеоценотический уровень организации живого» направлен на изучение антропоэкологии, экологических аспектов паразитизма, ядовитых грибов, растений и животных.

В результате изучения дисциплины студент должен

знать:

основные свойства и уровни организации живой материи;

влияние фармацевтических препаратов на геном человека;

о взаимодействии организма и среды, сообществе организмов, экосистемах;

о влиянии фармацевтической деятельности на биосферу;

новейшие открытия в естествознании, перспективах их использования для создания лекарственных средств;

уметь:

работать с микроскопом.

При изучении дисциплины предусмотрены лекции, лабораторные занятия, коллоквиумы, компьютерное тестирование, экзамен.

Специальность

Семестр

Всего часов

Аудиторные

Форма контроля

лекций

лабораторных занятий

Фармация

1

100

18

36

экзамен

^ Примерный тематический план

Наименование раздела (темы)

Количество аудиторных часов

лекций

лабораторных занятий

1. Введение. Молекулярно-генетический уровень организации живого

2

4

1.1. Биология как естественная наука о жизни, закономерностях и механизмах жизнедеятельности и развития организмов

2

2

1.2. Нуклеиновые кислоты – хранители наследственной информации

2

^ 2. Клеточный уровень организации живого

4

6

2.1. Клетка – элементарная генетическая и структурно-функциональная биологическая единица

2

4

2.2. Жизненный цикл клетки

2

2

^ 3. Онтогенетический уровень организации живого

8

16

3.1 Размножение – универсальное свойство живого, обеспечивающее материальную непрерывность в ряду поколений

2

2

3.2. Генетика, ее предмет, задачи и методы

2

6

3.3. Изменчивость, ее виды

2

4

3.4. Онтогенез, его типы и виды

2

4

^ 4. Популяционно-видовой уровень организации живого

2

2

5. Биосферно-биогеоценотический уровень организации живого

2

8

5.1. Экология как наука об отношениях организмов с окружающей средой

2

2

5.2. Биологические и социальные аспекты адаптации населения к условиям жизнедеятельности

2

5.3. Паразитизм как форма экологических связей в природе

2

5.4. Ядовитость – универсальное и распространенное явление в живой природе

2

Всего

18

36

^ СОДЕРЖАНИЕ ПРОГРАММЫ

1. Введение. Молекулярно-генетический уровень организации живого

1.1. Биология как естественная наука о жизни, закономерностях и механизмах жизнедеятельности и развития организмов

Сущность жизни. Свойство живого. Эволюционно-обусловленные уровни организации живого: молекулярно-генетический, клеточный, онтогенетический (организменный), популяционно-видовой, биосферно-биогеоценотический. Место и задачи биологии в подготовке фармацевта.

1.2. ^ Нуклеиновые кислоты – хранители наследственной информации

Особенности строения ДНК. Правила Чаргаффа, постулаты Уотсона и Крика. Видовая специфичность ДНК. Авторепродукция ДНК, ее виды. Строение РНК, ее виды. Синтез РНК, его этапы (первичный транскрипт, процессинг, сплайсинг). Организация генетического материала у неклеточных форм жизни, прокариот и эукариот. Молекулярная структура хромосом эукариот. Значение гистонов, негистоновых белков, ионов металлов. Уровни упаковки ДНК (фибрилла, хромонемма, хроматида). Эухроматин. Гетерохроматин (факультативный, конституционный). Ген – фрагмент геномной нуклеиновой кислоты. Кодирование генетической информации. Генетический код, его свойства.

^ 2. Клеточный уровень организации живого

2.1. Клетка – элементарная генетическая и структурно-функциональная биологическая единица

Клеточная теория, этапы ее развития (М. Шлейден, Т.Шванн, Р. Вирхов). Современная клеточная теория. Биология клетки. Наследственный аппарат клетки. Морфо-функциональная характеристика хромосом. Типы и правила хромосом. Кариотип человека, его характеристика.

Клетка как открытая система. Поток энергии в клетке в процессах фотосинтеза, хемосинтеза, брожения и дыхания. Поток внешней и внутренней информации в клетке. Поток вещества в клетке. Биосинтез белка. Кодовая система белка. Фотосинтез. Хемосинтез. Мембранный транспорт веществ. Аквапорины, их роль в транспорте воды через мембрану клетки. Эндоцитоз, экзоцитоз.

2.2. ^ Жизненный цикл клетки

Цитогенетическая характеристика ядра в периодах интерфазы. Деление клетки, его типы. Митоз, его виды (собственно митоз, мейоз, политения, эндомитоз). Амитоз, его виды и формы. Проблемы клеточной пролиферации в медицине. Регуляторы клеточного цикла (гены, ответственные за регуляцию синтеза белков-циклинов и циклинзависимых киназ) и их значение для фармации.

^ 3. Онтогенетический уровень организации живого

3.1. Размножение – универсальное свойство живого, обеспечивающее материальную непрерывность в ряду поколений

Эволюция способов размножения.

Бесполое размножение, его виды и биологическое значение. Полиэмбриония как вид бесполого размножения организмов, размножающихся половым путем.

Половое размножение, его виды. Гаметогенез. Мейоз как специфический процесс формирования половых клеток. Закономерности оогенеза и сперматогенеза у млекопитающих. Морфологические и функциональные особенности гамет млекопитающих. Осеменение. Ферментативные процессы при осеменении. Искусственное осеменение у млекопитающих. Оплодотворение, его фазы и биологическая сущность. Моноспермия и полиспермия. Формирование полового диморфизма и раздельнополости в процессе эволюции.

3.2. ^ Генетика, ее предмет, задачи и методы

Этапы развития генетики. Вклад белорусских ученых в развитие генетики. Основные генетические понятия: ген, аллельные гены, гомозигота, гетерозигота, гемизигота, доминантные и рецессивные гены, генотип, гаплотип, фенотип, генофонд. Наследственность – свойство организмов передавать при размножении свои признаки и особенности развития потомству.

Структурно-функциональные уровни организации наследственного материала у прокариот и эукариот: генный, хромосомный, геномный.

Генный уровень организации наследственного материала. Строение гена у прокариот. Мозаичное строение гена у эукариот, феномен сплайсинга. Гипотеза Дж. Бидла и Э. Татума «один ген – один фермент», ее современная трактовка. Классификация генов: гены структурные, синтеза РНК, регуляторные. Экспрессия генов в процессе биосинтеза белка у прокариот. Регуляция экспрессии генов у эукариот, роль стероидных гормонов. Мультимерная организация белков как структурная основа межаллельных и межгенных взаимодействий (гемоглобины человека). Репарация молекулы ДНК.

Генная инженерия, ее цели и задачи. Получение генетического материала. Введение генетического материала. Включение новых генов в генетический аппарат клетки. Биотехнология, ее значение для фармации.

Хромосомный уровень организации наследственного материала . Хромосомная теория пола. Гипотеза М. Лайон о женском мозаицизме по половым хромосомам. Наследование признаков, контролируемых генами X- и Y-хромосом. Хромосомы как группы сцепления генов. Полное и неполное сцепление. Правило Т. Моргана. Группы сцепления у человека. Цитологические и генетические карты хромосом. Положения хромосомной теории наследственности.

Геномный уровень организации наследственного материала у про- и эукариот. Программа «Геном человека», ее цели и задачи. Цитоплазматическая наследственность. Плазмогены и плазмон, их роль в наследственности человека. Генетическая система клетки.

Наследование как процесс передачи наследственной информации от одного поколения к другому в процессе размножения. Гибридологический анализ как метод познания сущности законов наследования. Типы и варианты наследования. Моногибридное скрещивание. Закон единообразия гибридов первого поколения. Закон расщепления гибридов второго поколения. Закон «чистоты гамет» У. Бэтсона. Анализирующее скрещивание (прямое и возвратное). Ди- и полигибридное скрещивание. Закон независимого комбинирования неаллельных генов. Статистический характер менделевских закономерностей. Менделирующие признаки. Полигенное наследование менделирующих признаков, условия его проявления.

Фенотип. Значение генетических факторов в формировании фенотипа. Взаимодействие аллельных (доминирование, рецессивность, неполное доминирование, сверхдоминирование, кодоминирование) и неаллельных (комплиментарность, эпистаз доминантный и рецессивный, гипостаз) генов.

Множественные аллели (наследование групп крови по системам АВО, MN и др.). Плейотропное действие гена. Доза гена. Генокопии. Влияние факторов среды на реализацию генотипа в фенотип. Пенетрантность и экспрессивность гена. Фенокопии.

3.3. ^ Изменчивость, ее виды

Фенотипическая изменчивость: модификационная и онтогенетическая. Норма реакции генетически детерминированных признаков. Статистические методы изучения модификационной изменчивости.

Генотипическая изменчивость: комбинативная и мутационная. Значение комбинативной изменчивости в обеспечении генотипического разнообразия людей. Система браков. Мутационная изменчивость. Теория Гуго де Фриза. Классификация и характеристика мутаций по мутировавшим клеткам (генеративные и соматические), по характеру изменения генетического материала (генные, хромосомные, межхромосомные, геномные, цитоплазматические), по причине, вызвавшей мутацию (спонтанные, индуцированные) и по адаптивному значению (полезные, нейтральные, вредные). Физические, химические и биологические мутагенные факторы. Генетическая опасность загрязнения окружающей среды мутагенами.

Генетические различия в активности репарирующих ферментов как одна из причин разной устойчивости человека к действию мутагенов.

Человек как специфический объект генетического анализа. Методы изучения генетики человека: генеалогический, цитогенетический, экспрессметоды определения X- и Y-полового хроматина, популяционно-статистический, близнецовый, дерматоглифический, биохимический, иммунологический, онтогенетический, гибридизации соматических клеток, генетического моделирования. Значение антропогенетики для фармации.

3.4. ^ Онтогенез, его типы и виды

Периодизация онтогенеза. Эмбриональное развитие, его характеристика: оплодотворение, дробление, гастуляция, гисто- и органогенез. Зародышевые оболочки. Взаимоотношения материнского организма и плода. Внутриутробное развитие человека. Критические периоды развития. Тератогенные факторы среды. Вклад белорусских ученых в развитие тератологии человека. Критические периоды в эмбриогенезе. Роль факторов среды в эмбриогенезе.

Постэмбриональное развитие, его периоды. Рост и развитие организма. Влияние факторов внешней и внутренней среды на рост организма. Конституция человека и ее медицинские аспекты.

Старение организма (физиологическое и преждевременное). Биологические аспекты старения. Теории старения. Геронтология, гериатрия.

Клиническая и биологическая смерть. Проблема эвтаназии.

^ 4. Популяционно-видовой уровень организации живого

Популяция, ее экологическая и генетическая характеристика. Закон Харди-Вайнберга, его применение для расчета частоты гетерозиготного носительства аллелей в популяции людей.

Популяционная структура человечества (демы, изоляты). Влияние мутационного процесса, миграции, изоляции, дрейфа генов на генофонд популяции людей. Специфическое действие естественного отбора в человеческих популяциях.

Генетический полиморфизм, его классификация. Полиморфизм человека. Генетический груз, его сущность.

^ 5. Биосферно-биогеоценотический уровень организации живого

5.1. Экология как наука об отношениях организмов с окружающей средой

Основные биологические системы биосферно-биогеоценотического уровня организации живого: сообщество, биогеоценоз (экосистема), биосфера.

Экология человека, ее задачи. Уровни экологических связей человека (индивидуальный, групповой и глобальный).

5.2. ^ Биологические и социальные аспекты адаптации населения к условиям жизнедеятельности

Опосредованный характер адаптации людей. Здоровье и системы жизнеобеспечения как категории антропоэкологии. Проблема «предболезнь – болезнь-компенсация» как возможные состояния организма человека. Валеология – наука о здоровье человека. Основные факторы здоровья: рациональный образ жизни, ликвидация вредных привычек, движение, физиологически сбалансированное питание.

5.3. ^ Паразитизм как форма экологических связей в природе

Медицинская паразитология как часть антропоэкологии человека, ее задачи. Паразиты, их классификация. Хозяин паразита, его виды. Пути проникновения паразитов в организм хозяина. Жизненные циклы паразитов. Понятие об интенсивности инвазии. Система «паразит-хозяин», морфо-физиологические адаптации, возникающие в процессе ее формирования. Общие представления о паразитарных болезнях (инфекционные, инвазионные, антропонозные, зоонозные, трансмиссивные, природно-очаговые). Учение Е.Н. Павловского о природной очаговости болезней.

5.4. ^ Ядовитость – универсальное и распространенное явление в живой природе

Ядовитые грибы: микро- и макромицеты. Микотоксины, их характеристика, механизмы действия. Отравления микотоксинами, меры их профилактики.

Ядовитые растения, их классификация. Ядовитые органы растений. Фитотоксины, их характеристика, механизмы действия. Отравления человека ядовитыми водорослями, плаунами, хвощами, папоротниками, голосеменными и цветковыми растениями. Профилактика отравления ядовитыми растениями. Ядовитые растения как источник лекарственного сырья и их охрана.

Ядовитые животные, их классификация. Характеристика зоотоксинов. Отравления человека ядовитыми одноклеточными, кишечнополостными, моллюсками, членистоногими, рыбами, земноводными и пресмыкающимися. Меры профилактики отравления ядовитыми животными. Зоотоксины как источник лекарственного сырья. Охрана ядовитых животных.

Информационная часть

Литература

Основная:

1. Бекиш О.-Я.Л. Биология. Витебск: изд-во ВГМУ, 2003. - 290 с.

2. Бекиш О.-Я.Л., Бекиш В.Я. Практикум по биологии. Витебск: изд-во ВГМУ, 2003. - 180 с.

3. Грин Н., Стаут У., Тейлор Д. Биология (в трех томах). М.: Мир, 1990. - 368 с., 327 с., 374 с.

Дополнительная:

4. Алтухов Ю.П. Генетические процессы в популяциях. М.: Наука, 1989. – 328 с.

5. Бекиш О.-Я.Л. Медицинская паразитология. Л., 1989. – 90 с.

6. Дубинин Н.П. Общая генетика. М.: Наука, 1986. – 559 с.

7. Льюин Б. Гены. М.: Мир, 1987. – 644 с.

8. Нобелевские премии по физиологии и медицине за 2001 год. Вопросы онкологии, 2002, 48, 3, с. 267 - 268.

9. Орлов Б.Н., Гелашвили Д.Б. Зоотоксинология. Ядовитые животные и их яды. М.: Высшая школа, 1990. – 415 с.

10. Орлов Б.Н., Гелашвили Д.Б., Ибрагимов А.К. Ядовитые животные и растения СССР. М.: Высшая школа, 1990. – 415 с.

11. Пигулевский С.В. Ядовитые животные (токсикология позвоночных). Л.: Медицина, 1966. – 386 с.

12. Пигулевский С.В. Ядовитые животные (токсикология беспозвоночных). Л.: Медицина, 1975. – 375 с.

13. Рыбчин В.Н. Основы генетической инженерии. Мн.: Вышэйшая школа, 1986. – 186 с.

14. Смирнов В.Г. Цитогенетика. Учебник для ВУЗов. М.: Высшая школа, 1991. – 247 с.

15. Титовец Э.П. Аквапорины. Здравоохранение, 2002, 1, с. 30 - 33.

16. Фогель Ф., Мотульски А. Генетика человека (в 3-х томах). М.: Мир, 1989.–312, 378, 366 с.

www.ronl.ru

Доклад - Концепция уровней биологических структур и организация живых систем

Калининградский государственный технический университет.

Кафедра бухгалтерского учета, анализа и аудита.

Семинарская работа

По дисциплине “Концепции современного естествознания”

На тему:

«Концепция уровней биологических структур и организация живых систем»

Выполнила:

Студентка группы 09-БУ-02

Луговская Е. С.

Проверила:

Тимофеева И.В.

Калининград

2009г.

План работы:

1. План работы…………………………………………………………..2

2. Введение……………………………………………………………….3

3. Молекулярно-генетический уровень………………………………4

4. Клеточный уровень …………………………………………………6

5. Онтогенетический уровень………………………………………….8

6. Уровни организации живых систем……………………………….11

7. Заключение …………………………………………………………..13

8. Список использованной литературы……………………………...14

Введение.

Изучение разнообразия форм и явлений живой природы с точки зрения уровня определяющих их биологических структур дает возможность теоретически представить, как могли возникнуть первые живые системы на Земле и как происходил процесс эволюции от простейших и менее организованных систем к системам более сложным и высокоорганизованным. Исторически биология развивалась как описательная наука о многообразных формах и видах растительного и животного царства. Поэтому важнейшее место в ней заняли методы описания, анализа, систематизации и классификации огромного эмпирического материала, накопленного натуралистами. Первые классификации, наиболее известной из которых была система растений К. Линнея (1707—1778), а также классификация животных Ж. Бюффона (1707—1788), носили в значительной мере искусственный характер, поскольку не учитывали происхождения и развития живых организмов. Тем не менее они способствовали объединению всего известного биологического знания, его анализу и исследованию причин и факторов происхождения и эволюции живых систем. Без такого исследования невозможно было бы, во-первых, перейти на новый уровень познания, когда объектами изучения биологов стали живые структуры сначала на клеточном, а затем и на молекулярном уровне. Во-вторых, обобщение и систематизация знаний об отдельных видах и родах растений и животных требовали перехода от искусственных классификаций к классификациям естественным, где их основой должен стать принцип генезиса, происхождения новых видов, а следовательно, разработка теории эволюции. Такие попытки создания естественной классификации, опирающиеся на весьма несовершенные еще принципы эволюции, предпринимались Ж.Б. Ламарком (1744—1829) и Э.Ж. Сент-Илером (1772—1844). Не подлежит сомнению, что они послужили важной вехой на пути создания Ч. Дарвином (1809—1882) первой научной теории эволюции растений и животных.

В-третьих, именно традиционная, описательная или эмпирическая биология послужила тем фундаментом, на основе которого сформировался целостный взгляд на многообразный, но в то же время единый мир живых существ. Дальнейший, теоретический шаг в понимании неизбежно связан с анализом непосредственно данной живой системы, ее расчленением на отдельные подсистемы и элементы, изучением структуры системы, выявлением различных структурных уровней организации живых систем.

Молекулярно-генетический уровень.

Наряду с изучением структуры белка весьма интенсивно, в особенности в последние полвека, изучались также механизмы наследственности и воспроизводства живых систем. Ведь наряду с процессами метаболизма, или обмена веществ, живые системы характеризуются также воспроизводимостью, т.е. способностью к размножению и оставлению потомства. Особенно остро этот вопрос встал перед биологами при определении границы между живым и неживым. Большие споры возникли в связи с этим вокруг природы вирусов, которые обладают способностью к самовоспроизводству, но не в состоянии осуществлять процессы, которые мы обычно приписываем живым системам: обмениваться веществом, реагировать на внешние раздражители и т.п. Если считать определяющим свойством живых существ обмен веществ, то вирусы, очевидно, нельзя назвать живыми организмами, но если таким свойством считать способность к воспроизводству, то их следует отнести к живым системам. Так естественно возникает вопрос, какие свойства или признаки характерны для живых систем?

Долгое время в связи с изучением синтеза органических веществ основное внимание ученых было сосредоточено на исследовании той части клеточной структуры, которая образована из белков. Многим тогда казалось, что именно белки составляют фундаментальную основу жизни, и поэтому пытались свести свойства живых систем к свойствам и структуре белков.

Дальнейшие исследования были направлены на изучение механизмов воспроизводства и наследственности в надежде обнаружить в них то специфическое, что отличает живое от неживого. Было установлено, что наследственное вещество в виде хромосом содержится в ядрах клеток. У человека насчитывается 23 пары хромосом, причем 22 пары являются одинаковыми у мужчин и у женщин, последняя же пара дает возможность определять пол. У женщин эта пара содержит одинаковые хромосомы, названные Х-хромосомами, а у мужчин — разные, т.е. X и Y. В хромосомах содержится наследственное вещество, о существовании дискретных единиц которого писал в 1865 г. Г. Мендель, а В. Иогансен назвал это вещество геном. Однако и природа, и структура гена оставались нераскрытыми. Наиболее важным открытием на этом пути было выделение из состава ядра клетки богатого фосфором вещества, обладающего свойствами кислоты и названного впоследствии нуклеиновой кислотой. В дальнейшем удалось выявить углеводный компонент этих кислот, в одном из которых оказалась D-дезоксирибоза, а в другом — D-рибоза. Соответственно этому первый тип кислот стали называть дезоксирибонуклеиновыми кислотами, или сокращенно ДНК, а второй —рибонуклеиновыми кислотами, или кратко РНК.

Роль ДНК в хранении и передаче наследственности была выяснена после того, как в 1944 г. американским микробиологам удалось доказать, что выделенная из пневмококков свободная ДНК обладает свойством передавать генетическую информацию. 24 апреля 1953 г., в день, который стал решающим для развития молекулярной генетики, американским биохимиком Дж. Уотсоном и английским биофизиком Ф. Криком была опубликована статья, раскрывающая структуру материального носителя наследственной информации — молекулы ДНК. Согласно предложенной ими модели, молекула ДНК представляет собой двойную спираль, состоящую из двух ветвей, азотистые основания в которых попарно связаны непрочной водородной связью, так что пуриновое основание — аденин соединяется с пиримидиновым основанием — тимином, а также аналогично гуанин соединяется с цитозином. Все химические реакции в клетке совершаются в соответствии с программой, закодированной в виде наследственной информации в молекулах ДНК и передаваемой от нее молекулам РНК. В живой клетке в процессе обмена веществ на молекулах ДНК синтезируется информационная РНК, которая переносится в рибосомы и служит матрицей для синтеза белков. Ген представляет собой определенный участок молекулы ДНК вместе со специфическим набором нуклеотидов, в линейной последовательности которых записана генетическая информация. Каждый ген ответствен за синтез определенного белка или фермента. Контролируя процесс их образования, гены управляют всеми химическими реакциями организма и тем самым определяют его признаки. Передача наследственных свойств организма от одного поколения другому достигается благодаря способности молекулы ДНК самокопироваться и самоудвоению хромосом при клеточном делении. Сам процесс воспроизводства складывается из трех стадий: репликации, транскрипции и трансляции. Совокупность генов организма образуют его генотип. Одна из основных функций генов состоит в кодировании синтеза белков. Согласно упомянутой выше модели Уотсона и Крика, наследственную информацию в молекуле ДНК несет последовательность четырех оснований: двух пуриновых и двух пиримидиновых. Для кодирования одной аминокислоты требуется сочетание из трех нуклеотидов ДНК.

Переход на молекулярный уровень исследования во многом изменил представления о механизме изменчивости. Согласно доминирующей точке зрения, основным источником изменений и последующего отбора являются мутации, возникающие на молекулярно-генетическом уровне. Однако кроме переноса свойств от одного организма другому существуют и другие механизмы изменчивости, важнейшим из которых являются «генетические рекомбинации». В одних случаях, называемых «классическими», они не приводят к увеличению генетической информации, что наблюдается главным образом у высших организмов. В других, «неклассических» случаях рекомбинация сопровождается увеличением информации генома клетки. Все это не могло не поставить вопроса о том, работает ли естественный отбор на молекулярно-генетическом уровне. Появление «теории нейтральных мутаций» еще больше обострило ситуацию, поскольку оно доказывает, что изменения в функциях аппарата, синтезирующего белок, являются результатом нейтральных, случайных мутаций, не оказывающих влияния на эволюцию. Хотя такой выход и не является общепризнанным, но хорошо известно, что действие естественного отбора проявляется на уровне фенотипа, т.е. живого, целостного организма, а это связано уже с более высоким уровнем исследования.

Клеточный уровень.

В середине XIX в. клетка рассматривалась как последняя единица живой материи, наподобие атома неживых тел. В зависимости от характера структуры и функционирования все клетки можно разделить на два класса: прокариоты — клетки, лишенные ядер; эукариоты — клетки, появившиеся позднее и содержащие ядра. Из каких клеток построены живые системы, их можно разделить на две обширные группы, или два живых царства. К первому принадлежат многочисленные виды таких одноклеточных организмов, как бактерии, сине-зеленые водоросли, грибы и другие простейшие организмы. Все остальные одноклеточные, а также многоклеточные организмы, начиная от низших и кончая высшими, построены из возникших позднее эукариотных клеток. Эту классификацию пришлось, однако, пересмотреть после открытия архебактерий, Особенность архебактерий состоит в том, что их клетки в чем-то сходны, с одной стороны, с прокариотами, а с другой — с эукариотами.

Предполагают, что первичная живая единая минимальная система, которую можно назвать протоклеткой, обладала всеми основными свойствами, которые являются характерными для живых организмов. К ним относят прежде всего способность обмениваться с окружающей средой — признак, присущий всем открытым системам. С этой способностью непосредственно связана способность протоклетки к метаболизму, т.е. осуществлению биохимических реакций, сопровождающихся усвоения ем необходимых для роста клетки веществ и удалением использованных продуктов реакций. Дальнейшее функционирование и развитие клетки предполагает также наличие у нее способности к делению и отпочкованию. К этим признакам многие исследователи добавляют дополнительные свойства, но все ученые признают, что протоклетка отнюдь не была какой-то бесструктурной массой, а представляла собой достаточно организованную целостность, которую можно охарактеризовать как живую первичную систему. Предполагают также, что протоклетка по важнейшим своим структурно-функциональным свойствам не была подобна современным одноклеточным прокариотам, а обладала некоторыми признаками, аналогичными свойствам эукариотных клеток. По вопросу о происхождении эукариотных клеток существуют две основные гипотезы. Сторонники аутогенной гипотезы считают, что такие клетки могли возникнуть путем дифференциации и усложнения слабоструктурированных клеточных образований, подобных прокариотам. Защитники другой, симбиотической гипотезы полагают, что эукариотные клетки образовались путем симбиоза нескольких прокариотных клеток, геномы которых внедрились в клетку-хозяина, при чем, по одной версии, они способствовали постепенному превращению последней в эукариотную клетку, а по другой — она уже обладала некоторыми свойствами эукариотов. Из клеток благодаря соответствующему принципу упорядоченности считались построенными все живые системы различного уровня сложности и организации. Такие идеи высказывал, например, один из создателей клеточной теории М. Шлейден (1804—1881). Другой выдающийся биолог, Э. Геккель (1834—1919), шел дальше и выдвинул гипотезу, согласно которой протоплазма клетки также обладает определенной структурой и состоит из субмикроскопических частей.

Эти идеи, опережавшие научные знания своей эпохи, встретили сопротивление, с одной стороны, последователей редукционизма, которые стремились свести процессы жизнедеятельности к совокупности определенных химических реакций, а с другой — защитников витализма, пытавшихся объяснить специфику живых организмов наличием у них особой «жизненной силы», которая отличает живое от неживого. Но такое определение оставалось чисто отрицательным, ибо не раскрывало ни подлинной причины, ни механизмов отличия живого от неживого. Если первые виталисты ограничивались простой констатацией различия между живым и неживым, то их последователи использовали недостатки и ограниченность физико-химических представлений о жизни для подкрепления своей позиции. Наиболее интересной в этом отношении представляется попытка немецкого биолога и философа X. Дриша (1867—1941), который возродил существовавшее еще у Аристотеля понятие энтелехии для объяснения целесообразности живых систем. Основываясь на своих опытах по регенерации морских ежей, которые восстанавливают удаленные у них части тел, Дриш утверждал, что все живые организмы обладают особой способностью к целесообразным действиям по сохранению и поддержанию своей организации и жизнедеятельности, которую он назвал энтелехией. По сути дела, энтелехия ничем не отличается от «жизненной силы» виталистов, хотя в духе своего времени (XX в.) Дриш вводит градации и различные ее степени для разных живых организмов. На упреки, что энтелехию невозможно установить никакими эмпирическими методами, он отвечал, что магнитную силу также нельзя увидеть непосредственно, но физики используют ее для объяснения. На этом примере можно убедиться, как иногда используются понятия о ненаблюдаемых объектах (электромагнитное, гравитационное и другие поля) для защиты ненаучных взглядов. Несмотря на эти философские дискуссии между редукционистами и виталистами, ученые-экспериментаторы пытались конкретно выяснить, от каких именно структур зависят специфические свойства живых организмов, и поэтому продолжали исследовать их не только на уровне клетки, но также и клеточных структур. В первую очередь ученые исследовали структуру белков и выяснили, что они построены из 20 аминокислот, которые соединены длинными полипептидными связями, или цепями. Хотя в состав белков человеческого организма входят все 20 аминокислот, совершенно обязательны для него только 9 из них. Остальные, по-видимому, вырабатываются самим организмом. Характерная особенность аминокислот, содержащихся не только в человеческом организме, но и в других живых системах (животных, растениях и даже вирусах), состоит в том, что все они являются левовращающими изомерами, т.е. способными вращать плоскость поляризации света влево, хотя в принципе существуют аминокислоты и правого вращения. Обе формы таких изомеров почти одинаковы между собой и различаются только пространственной конфигурацией. Поэтому каждая из молекул аминокислот является зеркальным отображением другой. Впервые это явление открыл выдающийся французский ученый Л. Пастер, исследуя строение веществ биологического происхождения. Он обнаружил, что такие вещества способны вращать поляризованный луч и поэтому являются оптически активными, вследствие чего были впоследствии названы оптическими изомерами. В отличие от этого у молекул неорганических веществ эта способность отсутствует, и построены они совершенно симметрично. На основе своих опытов Пастер высказал мысль, что важнейшим свойством всей живой материи является их молекулярная асимметричность, подобная асимметричности левой и правой рук. Опираясь на эту аналогию, в современной науке данное свойство называют молекулярной хиральностью. На вопрос, почему именно живая природа выбрала белковые молекулы, построенные из аминокислот левого вращения, до сих пор нет убедительного ответа. Сам Пастер считал, что поскольку живое возникает из неживого, то необходимым предварительным условием для этого процесса должно стать превращение симметричных неорганических молекул в молекулы асимметричные. По его предположению, такое превращение могло быть вызвано асимметричностью космоса или же различными космическими факторами, в частности геомагнитными колебаниями, вращением Земли, электрическими разрядами и т.п. Попытки экспериментально проверить эту гипотезу не увенчались успехом. Поэтому высказывались предположения и о чисто случайном характере возникновения первых живых молекулярных систем, образованных из аминокислот левого вращения. В дальнейшем эта особенность могла быть передана по наследству и закрепиться как неотъемлемое свойство всех живых систем.

Онтогенетический уровень.

Онтогенетическим называют индивидуальный уровень развития и считают, что этот уровень охватывает все отдельные одноклеточные и многоклеточные живые организмы, а раньше чаще всего его рассматривали как включающий только многоклеточные организмы. Сам термин «онтогенез» ввел в науку известный немецкий биолог Э. Геккель, автор знаменитого биогенетического закона, согласно которому онтогенез в краткой форме повторяет филогенез. Это означает, что отдельный организм в своем индивидуальном развитии в сокращенной форме повторяет историю рода, т.е. филогенеза (от греч. — род). В настоящее время различают три типа онтогенетического уровня организации живых систем, представляющих собой три линии развития живого мира: 1) прокариоты, или эубактерии; 2) эукариоты и 3) архебактерий. Структурный подход к анализу первичных живых систем на онтогенетическом уровне нуждается в освещении функциональных особенностей их жизнедеятельности и обмена веществ. Среди них особого внимания заслуживает исследование трофических, или пищевых, потребностей организмов. В ходе многочисленных длительных исследований были выделены прежде всего два главных типа питания. К первому, автотрофному типу относились организмы, которые не нуждались в органической пище и могли жить либо за счет ассимиляции углекислоты (бактерии), либо фотосинтеза (растения). Ко второму, гетеротрофному типу принадлежали все организмы, которые не могли жить без органической пищи. По вопросу о том, какой тип питания возник в начале становления живых систем, мнения расходятся. Одни ученые не без основания полагают, что сначала появился автотрофный тип, поскольку сложные органические вещества, необходимые для гетеротрофного питания, могли образоваться лишь после того, как автотрофные организмы создали для этого необходимые условия. Другие исследователи считают, что гетеротрофное питание появилось раньше автотрофного. Такого допущения, в частности, придерживается в своей гипотезе происхождения жизни А.И. Опарин, полагая, что уже первичный «бульон», в котором зародилась жизнь, содержал органические соединения как питательную среду для дальнейшего развития. Простая первоначальная классификация основных типов питания и соответственно организмов на автотрофы и гиперотрофы в дальнейшем подверглась изменениям и уточнениям, в которых выявлялись такие важные факторы, как способность организмов синтезировать необходимые вещества для роста (витамины, гормоны и специфические ферменты), обеспечивать себя энергией, источниками получения углерода, азота и водорода; зависимость от экологической среды и т.п. Таким образом, сложный и дифференцированный характер трофических потребностей организмов свидетельствует о необходимости целостного, системного подхода к изучению живых систем и на онтогенетическом уровне. Целостность, взаимосвязь и взаимодействие выступают в общей форме функциональной системности, которая находит выражение в согласованном функционировании различных компонентов одноклеточных и многоклеточных организмов. При этом отдельные компоненты содействуют и способствуют согласованному функционированию других, обеспечивая тем самым единство и целостность в осуществлении всех процессов жизнедеятельности всего организма. Подобная функциональная системность в специфических формах выступает и на других уровнях организации живых организмов. Она является конкретным воплощением системного характера организации живой природы на всех ее уровнях, которая может лишь возрастать и усиливаться в зависимости от места, занимаемого организмом на эволюционной лестнице развития природы.

Уровни организации живых систем.

Онтогенетический уровень организации относится к отдельным живым организмам — одноклеточным и многоклеточным. Его называют также организменным уровнем, поскольку при этом речь идет о структуре и функциях отдельного организма без учета его связей и взаимодействий с другими организмами. При переходе к популяциям все внимание сосредоточивается на изучении совокупности или, точнее, системы взаимодействующих отдельных организмов.

Популяционный уровень начинается с изучения взаимосвязи и взаимодействия между совокупностями особей одного вида, которые имеют единый генофонд и занимают единую территорию. Такие совокупности, или системы, живых организмов составляют определенную популяцию. Очевидно, что популяционный уровень выходит за рамки отдельного организма, и поэтому его называют надорганизменным уровнем организации. Приведенное общее определение популяции дает возможность отличать организменный уровень живого от уровня надорганизменного. Сам термин «популяция» (от фр. — население) был введен одним из основателей генетики — В. Иогансоном (1857—1927), который с его помощью обозначал генетически неоднородную совокупность opганизмов в отличие от однородной, называемой им «чистой линией». В дальнейшем этот термин и обозначаемое им понятие приобрели более глубокий смысл. Многие современные ученые характеризуют популяцию не столько как простую совокупность отдельных организмов, сколько как целостную их систему, в которой они непрерывно взаимодействуют друг с другом и с окружающей средой. Благодаря этому они оказываются способными к трансформациям, изменению своего ареала и, самое главное, к развитию. Популяции представляют собой первый надорганизменный уровень организации живых существ. Хотя он тесно связан с онтогенетическим и молекулярным уровнями, но качественно отличается от них по характеру взаимодействия составляющих компонентов, ибо в этом взаимодействии они выступают как целостные общности организмов. По современным представлениям, именно популяции служат элементарными единицами эволюции.Второй надорганизменный уровень организации живого составляют различные системы популяций, которые называют биоценозами.

Биоценоз- это исторически сложившееся, устойчивое сообщество популяций, связанных между собой и окружающей средой обменом веществ. Биоценозы являются более обширными объединениями живых существ и в значительно большей мере зависят от небиологических, или абиотических, факторов развития.Третий надорганизменный уровень организации содержит в качестве элементов разные биоценозы и в еще большей степени характеризуется зависимостью от многочисленных земных и абиотических условий своего существования (географических, климатических, гидрологических, атмосферных и т.п.). Для его обозначения академик В.Н. Сукачев (1880—1967) ввел термин биогеоценоз.

Биогеоценоз- совокупность биоценозов и их среды обитания, образующих биосферу Земли. Поскольку основу надорганизменных уровней организации живого составляют популяции, целесообразно остановиться на характеристике их несколько подробнее. Изучением популяций и биоценозов занимается интенсивно развивающаяся в последние годы отрасль биологической науки, называемая популяционной биологией. Одна из основных проблем, которую она призвана решить, заключается в установлении пространственной структуры и объемов популяций. Определить границу между популяциями чрезвычайно трудно, так как в силу подвижности элементов популяции, т.е. составляющих ее организмов, происходит непрерывное перемешивание популяций. Другая трудность заключается в наличии внутри популяций различных группировок и даже существовании популяций разных рангов. В рамках популяционной биологии исследуются также весьма важные проблемы метаболического взаимодействия между популяциями и биоценозами, которые относятся прежде всего к изучению их трофических, или пищевых, связей. Именно на этой основе происходит разграничение популяций и биоценозов. Оно состоит в том, что популяции: представляют собой незамкнутые, открытые метаболические системы, которые могут существовать и развиваться только при взаимодействии с другими популяциями. В отличие от них биоценозы — относительно замкнутые метаболические системы, в которых обмен и круговорот веществ может осуществляться в рамках входящих в биоценоз популяций. Однако эта замкнутость имеет ограниченный и относительный характер, хотя бы потому, что разные биоценозы также взаимодействуют Для характеристики трофического взаимодействия популяций и биоценозов существенное значение имеет общее правило, согласно которому чем длиннее и сложнее пищевые связи между организмами и популяциями, тем более жизнеспособной и устойчивой является живая система любого надорганизменного уровня. Отсюда становится ясным, что с биологической точки зрения на таком уровне решающее значение приобретает трофический характер взаимодействия составляющих живую систему элементов.

Заключение.

Таким образом, в функционировании и развитии живой природы особенно наглядно и убедительно выступает ее целостность и системность, которая проявляется в существовании различных иерархических уровней ее организации. При этом каждый новый уровень характеризуется особыми свойствами и закономерностями, несводимыми к закономерностям прежнего, низшего уровня.

Список использованной литературы.

    Рузавин Г.И. Концепции современного естествознания: учеб. пособие.- М, 2007.

www.ronl.ru

Основные формы, свойства и уровни организации живой материи. Молекулярный уровень

Содержание

Общая характеристика концепций живой природы. 2

Основные свойства живой материи. 4

Уровни организации живой природы на Земле. 6

Состав и структура белков. 8

Нуклеиновые кислоты. Строение, структуры. 10

Обмен веществ и энергии. 12

Осуществление связи между клетками. 15

Заключение. 17

Список литературы: 18

 

 

Общая характеристика концепций живой природы.

Грандиозное многообразие окружающего нас мира распадается на две большие области: неживую и живую природу. Основные естественные науки, посвященные изучению неживой природы — это астрономия, физика и химия. Исследованием живой природы занимается биология (от греч. bios — жизнь и logos — учение, наука). Интерес к познанию живой природы возник у человека очень давно, еще в первобытную эпоху, и был тесно связан с его важнейшими потребностями: в пище, лекарствах, одежде, жилье и т.п. Однако только в первых древних цивилизациях люди стали целенаправленно и систематически изучать живые организмы, составлять перечни животных и растений, населяющих разные регионы земли.

В настоящее  время биология представляет собой  целый комплекс наук о живой природе. Например, по объектам исследования биологические  науки подразделяются на вирусологию, бактериологию, ботанику, зоологию и антропологию. По уровню организации живых объектов выделяются следующие науки: анатомия, посвященная изучению макроскопического строения животных; гистология, исследующая строение тканей; цитология, изучающая клетки, из которых состоят все живые организмы. По свойствам, или проявлениям живого, биология включает в свой состав: морфологию — науку о структуре, или строении живых организмов; физиологию, которая изучает их функционирование; молекулярную биологию, исследующую микроструктуру живых тканей и клеток; экологию, рассматривающую образ жизни растений и животных и их взаимосвязи с окружающей средой; генетику, которая изучает законы наследственности и изменчивости живых организмов. Все эти классификации в известной степени условны и относительны и пересекаются друг с другом.

К настоящему времени учеными обнаружено и  описано более 1 миллиона видов животных, около полумиллиона видов растений, несколько сотен тысяч видов  грибов, более 3 тысяч видов бактерий. Причем мир живой природы исследован далеко не полностью. Число пока еще  не описанных видов живого оценивается, по меньшей мере, в 1 миллион. Кроме  того, огромное количество видов живых  организмов давно вымерло. По современным  научным данным за все время развития жизни на Земле существовало колоссальное количество различных видов живых  существ — приблизительно 500 миллионов. Понятно, что живая природа представляет собой качественно новый, более  высокий уровень организации  материи, или виток мировой эволюции, поднявшийся на необыкновенную высоту по сравнению со ступенью неживой  природы.

Биогеоценоз (экосистема) — это участок Земли со всеми живыми организмами, которые его населяют, и неживой среды их обитания; говоря иначе, со всеми компонентами составляющей его живой и неживой природы. Примерами биогеоценозов, или экосистем могут служить лес, озеро, поле и т.п. Завершающей ступенью в иерархии уровней организации живого мира является биосфера, которая представляет собой всю совокупность живых организмов Земли вместе с окружающей их природной средой.

 

Основные свойства живой материи.

Биологический уровень организации очень сложен, его нельзя свести к закономерностям  других естественных наук. В настоящее  время существуют несколько подходов к определению живого вещества:

1. Витализм – учение, основанное на признании наличия в организмах управляющей ими нематериальной составляющей сверхъестественной силы – души. Его основу составляют удивительная сложность строения и целесообразность поведения живых организмов.

2. Редукционный подход – его представители считают возможным использовать законы физики и химии для анализа процессов жизнедеятельности. Они отрицают целенаправленность строения и поведения. Основу жизни – гомеостаз – объясняют действием законов неживой природы. Так, терморегуляция теплокровных существ происходит по принципу обратной связи – выделение пота при повышении температуры.

3. Живая клетка – элементарная организованная часть живой материи и сложная высокоупорядоченная система. Было установлено, что в ней непрерывно совершается синтез крупных молекул из простых и мелких – анаболические реакции, на которые затрачивается энергия, и их распад – катаболические реакции. Совокупность таких реакций в клетке и есть процесс метаболизма. Для его поддержания необходим непрерывный приток энергии.

Свойства, отличающие живое от неживого, отражающие специфику биологической формы движения материи:

– самовоспроизведение – может производиться многократно, а генетическая информация о нем закодирована в молекулах ДНК;

– регуляция процессов – происходит в химических реакциях посредством механизма обратной связи; внутри клеток реакции синтеза и распада идут с участием ферментов, синтезируемых внутри самих клеток;

– рост организмов – осуществляется при помощи увеличения их массы за счет размеров и числа клеток;

– иерархичность организации – клетки как биоединицы специфически организованны в ткани, ткани – в органы, органы – в системы органов;

– обмен веществ и энергии – из внешней среды поступает энергия в форме солнечного света, затем эта энергия преобразуется в клетках для работы по обеспечению транспорта веществ через мембрану и механической работы по обеспечению двигательной функции организма и сокращению мышц;

– питание – источник энергии и веществ, необходимых для жизнедеятельности;

– дыхание – процесс освобождения энергии высокоэнергетических соединений;

– раздражимость – избирательная реакция живых существ на изменения внешней и внутренней среды, обеспечивающая стабильность жизнедеятельности;

– гомеостаз – живые организмы, обитающие в непрерывно меняющихся внешних условиях, поддерживают постоянство своего химического состава и интенсивность течения всех физиологических процессов с помощью авторегуляционных механизмов;

– способность к движению – свойственна живым существам; существуют различные механизмы движения живых существ.

 

Уровни организации  живой природы на Земле.

Проявления  жизни на нашей планете чрезвычайно  многообразны. В связи с этим выделяют различные уровни организации живой  материи, которые отражают соподчиненность, иерархичность структурной организации  жизни. В основе представлений об уровнях организации лежит принцип  дискретности. Известный генетик Н.В. Тимофеев-Ресовский (20 сентября 1900 г. — 28 марта 1981 г., Москва. Основные направления исследований: радиационная генетика, популяционная генетика, проблемы микроэволюции.) выделил четыре уровня организации живой материи:

1. Молекулярный уровень - предмет молекулярной биологии и генетики. На этом уровне изучаются механизмы передачи генной информации, проблемы генной инженерии и биотехнологий. Любая живая система проявляется на уровне взаимодействия молекул. Основная цель жизни на молекулярном уровне — способность создавать живое вещество и кодировать информацию, приобретенную в меняющихся условиях среды. Элементарные явления — процессы передачи информации внутриклеточным управляющим системам и связанные с генами мутации. Основные управляющие системы используют матричный принцип. Матрицей при синтезе белков в клетках служит заложенный в структуре нуклеиновых кислот определенный код. Было показано, что живое вещество обладает способностью к саморегуляции, поддерживающей жизнедеятельность.

2. Онтогенетический уровень — уровень организации жизни, на котором изучается организм как целостная сложная саморегулирующая система, способная самостоятельно существовать. Онтогенез — процесс реализации наследственной информации, закодированной в зародышевой клетке. Проверяется согласованность ее с работой управляющих систем особи в пространстве и времени жизни на Земле. Особь, индивид — элементарная неделимая единица жизни на Земле. Элементарной структурой является клетка — структурная и функциональная единица, а также единица размножения и развития всех организмов. Живая клетка — это сложная высокоупорядоченная система. Установлено, что в клетке непрерывно совершается синтез крупных молекул из мелких и простых и их распад. Их совокупность в клетке называется процессом метаболизма.

3. Популяционно-видовой — характеризуется объединением родственных особей в популяции (все составляющие особи принадлежат к одному виду), а популяций — в виды (генетически замкнутая система), что приводит к возникновению новых свойств системы. Основные свойства этого уровня: рождаемость, смертность, выживание, плотность, численность, функционирование в природе. Основная стратегия популяционно-видового уровня проявляется в более полном использовании возможностей среды обитания, в стремлении к возможно более длительному существованию, в сохранении свойств вида и самостоятельном развитии.

4. Биогеоценозный (экосистемный) уровень. На этом уровне организации основными структурными элементами являются популяции разных видов. Данный уровень характеризуется множеством свойств. К ним относятся: структура экосистемы, видовой и количественный состав ее населения, типы биотических связей, пищевые цепи и сети, трофические уровни, продуктивность, энергетика, устойчивость и др. Организующие свойства проявляются в круговороте веществ и потоке энергии, саморегулировании и устойчивости, автономности, открытости системы, сезонных изменениях. Основная стратегия этого уровня — активное использование всего многообразия окружающей среды и создание благоприятных условий развития и процветания жизни во всем ее многообразии. Самым высоким уровнем организации жизни является биосферный. Основными структурными единицами этого уровня являются биогеоценозы и окружающая их среда, т.е. географическая оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация и др.) и антропогенное воздействие. Для этого уровня орган и организации характерны: активное взаимодействие живого и неживого вещества планеты; биологический круговорот веществ и потоки энергии с входящими в него геохимическими циклами; хозяйственная и этнокультурная деятельность человека. Основная стратегия жизни на биосферном уровне — стремление обеспечить динамичную устойчивость биосферы как самой большой экосистемы нашей планеты.

 

Состав и структура белков.

Белки - высокомолекулярные азотистые органические вещества, построенные из аминокислот и играющие фундаментальную роль в структуре и жизнедеятельности организмов. Белки – основная и необходимая составная часть всех организмов. Именно Белки осуществляют обмен веществ и энергетические превращения. С участием белков проходят основные процессы, обеспечивающие жизнедеятельность организма: дыхание, пищеварение, мышечное сокращение, передача нервных импульсов. Костная ткань, кожный, волосяной покров, роговые образования живых существ состоят из белков. Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят из белков (40- 50%).

Состав белков. Все белки представляют собой полимеры, цепи которых собраны из фрагментов аминокислот. Аминокислоты — это органические соединения, содержащие в своем составе аминогруппу Nh3 и органическую кислотную, т. е. карбоксильную, группу СООН. Из всего многообразия существующих аминокислот в образовании белков участвуют только такие, у которых между аминогруппой и карбоксильной группой — всего один углеродный атом. В общем виде аминокислоты, участвующие в образовании белков, могут быть представлены формулой: h3N-CH(R)-COOH. Группа R, присоединенная к атому углерода, определяет различие между аминокислотами, образующими белки. В организмах живых существ содержится более 100 различных аминокислот, однако, в строительстве белков используются не все, а только 20.

Структура белка:

Первичная структура. Первичная структура несет информацию о его пространственной структуре. Аминокислотные остатки в пептидной цепи белков расположены в определенном порядке. Линейная последовательность аминокислотных остатков в полипептидной цепи называется первичной структурой белка. Первичная структура каждого индивидуального белка закодирована в молекуле ДНК (ген) и реализуется в ходе транскрипции (переписывания информации на мРНК) и трансляции (синтез пептидной цепи). Все молекулы индивидуального белка имеют одинаковое чередование аминокислотных остатков, отличающее альбумин от любого другого индивидуального белка. Последовательность аминокислотных остатков в пептидной цепи можно рассматривать как форму записи некоторой информации. Эта информация диктует пространственную укладку длинной линейной пептидной цепи.

Вторичная структура. Вторичная структура белков - это пространственная структура, образующаяся в результате взаимодействий между функциональными группами пептидного остова. Пептидная цепь может приобретать регулярные структуры двух типов: ос- спирали и р-структуры. В ос-спирали водородные связи образуются между атомом кислорода карбоксильной группы и водородом амидного азота пептидного остова через 4 аминокислоты; боковые цепи аминокислотных остатков располагаются по периферии спирали, не участвуя в образовании водородных связей, формирующих вторичную структуру. р-структура формируется между линейными областями одной полипептидной цепи, образуя при этом складки.

 

Третичная структура. Третичная структура белка — это трехмерная пространственная структура, образующаяся за счет взаимодействий между радикалами аминокислот, которые могут располагаться на значительном расстоянии друг от друга в пептидной цепи. В стабилизации третичной структуры принимают участие:

student.zoomru.ru


Смотрите также