|
||||||||||||||||||||||||||||||||||||||
|
Реферат: Методы очистки отходящих газов:. Мокрая очистка газов рефератМокрая очистка газов - Курсовой проектМинистерство образования и науки Российской Федерации Федеральное государственное образовательное бюджетное учреждение Уфимский государственный нефтяной технический университет Кафедра Автоматизация химико-технологических процессов
КУРСОВАЯ РАБОТА по курсу Системы управления химико-технологическими процессами
на тему Мокрая очистка газов
Выполнил ст. гр. ТП-08-01 А.Р. Ахметшин Проверил ассистент Н.М. Хабиров
Уфа 2012г.
Введение
Автоматизация - это внедрение технических средств, управляющих процессами без непосредственного участия человека. Разнообразие технических средств автоматизации, глубокое изучение процессов химической технологии, а также достаточно хорошо разработанная теория автоматического управления позволяют интенсивно проводить автоматизацию в химической промышленности. Одной из основных задач автоматизации технологических процессов является повышение экономической эффективности производства. В ряде случаев само производство не может быть реализовано без его автоматизации. Существует значительное число процессов, интенсификация которых возможна лишь при ведении их в предаварийных режимах, что вызывает необходимость в процессе автоматизации таких производств решать совместные задачи автоматического управления и автоматической защиты. Важнейшей предпосылкой автоматизации является отработанность технологии производства. Основными требованиями, которые предъявляет автоматизация к технологии, являются неразрывность технологической цепи в пределах автоматизируемого участка и целесообразное расположение оборудования, в соответствии с направлением движения материальных и энергетических протоков. Чем полнее соответствует процесс указанным требованиям, тем выше экономическая эффективность автоматизации. В химической промышленности вопросам автоматизации уделяется особое внимание. Это объясняется сложностью и большой скоростью протекания технологических процессов, высокой чувствительностью их к нарушениям режима, вредностью условий работы, взрыво- и пожароопасностью перерабатываемых веществ.
1. Общие сведения о процессе
Мокрую очистку применяют для очистки газов от пыли и тумана. В качестве промывной жидкости обычно используют воду, реже - водные растворы соды, серной кислоты и других веществ. Соприкосновение дисперсных систем с поверхностью жидкости происходит под действием силы, которая движет частицу. Такими силами может быть сила тяжести, сила инерции и турбулентные пульсации. В качестве объекта управления рассмотрим форсуночную трубу Вентури, в которой жидкость под небольшим давлением подается через распылитель, установленный параллельно газовому потоку, движущемуся с большой скоростью. Цель управления данного процесса аналогична цели управления процессом фильтрования газовым систем. Труба Вентури в системе газоочистки устанавливается по направлению потока вслед за скруббером Вентури. Принцип действия этих аппаратов основывается на интенсивном дроблении газовым потоком, движущимся с большой скоростью ( обычно около 60…150 м/с, но может доходить и до 430 м/с), орошаемой жидкости. Осаждению частичек пыли на капель.
2. Описание схемы процесса мокрой очистки газов
Исходные данные: Fг=1501.0 м3/час; Dy=100 мм; P= 10000 Па; Р=0.160.004 МПа; среда агрессивная; Fж=300.6 м3/с; Dy=50 мм; P= 6300 Па; Р=10.05 МПа; среда не агрессивная; Р1=0.20.005 МПа; Р2=0.10.001 МПа; T=50 C0 1
Рис. 2. Схема автоматизации мокрой очистки готов:- корпус трубы Вентури; 2 - форсунки; 3 - регулируемая горловина
Движение газового потока в трубе Вентури можно представить как движение газа через слой капель жидкости со скоростью, равной относительной скорости фаз. Из этого следует, что конечная концентрация пыли будет зависеть,во-первых, от числа и размера капель, определяющих качество фильтра, и, во-вторых, от количества газа, движущегося через фильтр, т.е. от расхода газа. Жидкость дробится на капли в трубе Вентури дважды: на крупные - при истечении жидкости из форсунки на более мелкие - под действием энергии газового потока. Конечный размер капель и их число определяются обоими процессами.
3. Анализ технологического процесса как объекта управления и выбор параметров регулирования, контроля, сигнализации и противоаварийной защиты
Основной регулируемой величиной пылеочистительной установки является давление, так как именно перепад давления на трубе является движущей силой процесса перемещения газа, поэтому его стабилизация обеспечивает не только качественную дисперсность распыла, но и постоянство расхода газа - второго режимного параметра процесса мокрой очистки, определяющий показатель эффективности. Регулирующее воздействие осуществляется путем изменения расхода . Расход требуется знать также для подсчета технико-экономических показателей процесса. В качестве контролируемых величин следует принимать расходы газа и жидкости, их конечные и начальные температуры, давления. Знание текущих значений этих параметров необходимо для нормального пуска, наладки и эксплуатации процесса. Сигнализации подлежат давление Р2 газа после выхода из трубы.
www.studsell.com Мокрая очистка газов - Курсовой проектКурсовой проект - ХимияДругие курсовые по предмету ХимияМинистерство образования и науки Российской Федерации Федеральное государственное образовательное бюджетное учреждение Уфимский государственный нефтяной технический университет Кафедра Автоматизация химико-технологических процессов
КУРСОВАЯ РАБОТА по курсу Системы управления химико-технологическими процессами
на тему Мокрая очистка газов
Выполнил ст. гр. ТП-08-01 А.Р. Ахметшин Проверил ассистент Н.М. Хабиров
Уфа 2012г.
Введение
Автоматизация - это внедрение технических средств, управляющих процессами без непосредственного участия человека. Разнообразие технических средств автоматизации, глубокое изучение процессов химической технологии, а также достаточно хорошо разработанная теория автоматического управления позволяют интенсивно проводить автоматизацию в химической промышленности. Одной из основных задач автоматизации технологических процессов является повышение экономической эффективности производства. В ряде случаев само производство не может быть реализовано без его автоматизации. Существует значительное число процессов, интенсификация которых возможна лишь при ведении их в предаварийных режимах, что вызывает необходимость в процессе автоматизации таких производств решать совместные задачи автоматического управления и автоматической защиты. Важнейшей предпосылкой автоматизации является отработанность технологии производства. Основными требованиями, которые предъявляет автоматизация к технологии, являются неразрывность технологической цепи в пределах автоматизируемого участка и целесообразное расположение оборудования, в соответствии с направлением движения материальных и энергетических протоков. Чем полнее соответствует процесс указанным требованиям, тем выше экономическая эффективность автоматизации. В химической промышленности вопросам автоматизации уделяется особое внимание. Это объясняется сложностью и большой скоростью протекания технологических процессов, высокой чувствительностью их к нарушениям режима, вредностью условий работы, взрыво- и пожароопасностью перерабатываемых веществ.
1. Общие сведения о процессе
Мокрую очистку применяют для очистки газов от пыли и тумана. В качестве промывной жидкости обычно используют воду, реже - водные растворы соды, серной кислоты и других веществ. Соприкосновение дисперсных систем с поверхностью жидкости происходит под действием силы, которая движет частицу. Такими силами может быть сила тяжести, сила инерции и турбулентные пульсации. В качестве объекта управления рассмотрим форсуночную трубу Вентури, в которой жидкость под небольшим давлением подается через распылитель, установленный параллельно газовому потоку, движущемуся с большой скоростью. Цель управления данного процесса аналогична цели управления процессом фильтрования газовым систем. Труба Вентури в системе газоочистки устанавливается по направлению потока вслед за скруббером Вентури. Принцип действия этих аппаратов основывается на интенсивном дроблении газовым потоком, движущимся с большой скоростью ( обычно около 60…150 м/с, но может доходить и до 430 м/с), орошаемой жидкости. Осаждению частичек пыли на капель.
2. Описание схемы процесса мокрой очистки газов
Исходные данные: Fг=1501.0 м3/час; Dy=100 мм; P= 10000 Па; Р=0.160.004 МПа; среда агрессивная; Fж=300.6 м3/с; Dy=50 мм; P= 6300 Па; Р=10.05 МПа; среда не агрессивная; Р1=0.20.005 МПа; Р2=0.10.001 МПа; T=50 C0 1
Рис. 2. Схема автоматизации мокрой очистки готов:- корпус трубы Вентури; 2 - форсунки; 3 - регулируемая горловина
Движение газового потока в трубе Вентури можно представить как движение газа через слой капель жидкости со скоростью, равной относительной скорости фаз. Из этого следует, что конечная концентрация пыли будет зависеть,во-первых, от числа и размера капель, определяющих качество фильтра, и, во-вторых, от количества газа, движущегося через фильтр, т.е. от расхода газа. Жидкость дробится на капли в трубе Вентури дважды: на крупные - при истечении жидкости из форсунки на более мелкие - под действием энергии газового потока. Конечный размер капель и их число определяются обоими процессами.
3. Анализ технологического процесса как объекта управления и выбор параметров регулирования, контроля, сигнализации и противоаварийной защиты
Основной регулируемой величиной пылеочистительной установки является давление, так как именно перепад давления на трубе является движущей силой процесса перемещения газа, поэтому его стабилизация обеспечивает не только качественную дисперсность распыла, но и постоянство расхода газа - второго режимного параметра процесса мокрой очистки, определяющий показатель эффективности. Регулирующее воздействие осуществляется путем изменения расхода . Расход требуется знать также для подсчета технико-экономических показателей процесса. В качестве контролируемых величин следует принимать расходы газа и жидкости, их конечные и начальные температуры, давления. Знание текущих значений этих параметров необходимо для нормального пуска, наладки и эксплуатации процесса. Сигнализации подлежат давление Р2 газа после выхода из трубы.
geum.ru Мокрая очистка промышленных газов: скрубберы — курсовая работаМинистерство образования и науки Российской Федерации Новокузнецкий институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Кемеровский государственный университет» Факультет информационных технологий Кафедра экологии и естествознания КУРСОВАЯ РАБОТА по дисциплине «Промышленная экология» Мокрая очистка промышленных газов: скрубберы. Выполнил: студент 4 курса Группы ГЭ-08 Новокузнецк 2012
СодержаниеВВЕДЕНИЕ 3
3.1 Скрубберы с насадкой 13 3.2 Скрубберы с подвижной насадкой 15 3.3 Центробежные циклоны и скрубберы 16 3.4 Динамические скрубберы 18 3.5 Пылеуловители ударно-инерционного действия. Скруббер Дойля 19 3.6 Скоростные пылеуловители (скрубберы Вентури) 22 4. ЭКСПЛУАТАЦИЯ СКРУББЕРОВ 27 5. ОБЛАСТЬ ПРИМИНЕНИЯ МОКРЫХ ПЫЛЕУЛОВИТЕЛЕЙ 28 ЗАКЛЮЧЕНИЕ 30 СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ И ИСТОЧНИКОВ 31
Скрубберы - устройство, используемое для очистки твёрдых или газообразных сред от примесей в различных химико-технологических процессах. Большое число современных химико-технологических процессов связано с дроблением, измельчением и транспортированием сыпучих материалов. При этом неизбежно часть материалов переходит в аэрозольное состояние, образуя пыль, которая с технологическими или вентиляционными газами выбрасывается в атмосферу. В настоящее время известно несколько сотен различных конструкций аппаратов для очистки газов от пыли. Несмотря на многообразие, все они являются вариантами аппаратурного оформления, где использованы немногие основные принципы осаждения или задержания взвешенной фазы. В зависимости от природы сил, используемых в пылеулавливающих аппаратах для отделения частиц пыли от газового потока, их подразделяют на четыре основные группы: пылеосадительные камеры и циклоны, аппараты мокрой очистки газов, пористые фильтры, электрические фильтры. Целью данной работы является изучение методов мокрой очистки промышленных газов. Для достижения данной цели необходимо решить следующие задачи: 1) изучить системы мокрой очистки промышленных газов; 2) рассмотреть классификации газоочистного и пылеулавливающего оборудования.
1. Свойства пыли, содержащейся в газахМеталлургические заводы являются промышленными предприятиями с технологическим комплексом, в котором применяются механические, термические и химические процессы, сопровождающиеся выделением в дымовые газы и окружающую среду твердых или жидких частиц. Для производства металлов используют руды, кокс, агломерат и другие сыпучие материалы, которые приходится разгружать, перемешивать, транспортировать и обрабатывать. Во время этих механических операций в окружающую среду выделяется пыль. Технологические процессы металлургического производства в большинстве случаев происходят при высокой температуре. В результате термических реакций твердое топливо и другие сыпучие материалы растрескиваются и разрушаются, а получающиеся при этом мельчайшие частицы в виде пыли уносятся дымовыми газами. При воздействии высокой температуры одновременно может происходить испарение металлов, флюсов и других материалов. Пары этих веществ попадают в дымовые газы и после их охлаждения образуют взвешенные в газе мельчайшие твердые или жидкие частицы. Пары черных металлов могут образовываться в процессе плавки стали в мартеновских, электросталеплавильных печах и конверторах. На предприятиях цветной металлургии цинк, олово, свинец, сурьма и другие металлы, имеющие низкую температуру испарения, легко переходят в парообразное состояние и поступают в дымовые газы. Для выбора аппаратов с целью эффективной очистки газа необходимо знать следующие основные свойства пыли, содержащейся в технологических и вентиляционных газах: химический состав, плотность, угол естественного откоса, смачиваемость, удельное электрическое сопротивление, структуру частиц, дисперсность, токсичность, воспламеняемость, смачиваемость и способность коагулировать. Химический состав пыли. Он всегда характерен для данного производства или технологического процесса. Например, пыль, образующаяся во время плавки металлов, состоит из окислов этих металлов и флюсов; пыль, выделяющаяся в процессе холодной обработки металлов, содержит мелкие частицы металлов и абразивного инструмента; в производстве строительных материалов пыль состоит из минеральных составляющих; текстильная пыль образуется из мельчайших частиц перерабатываемых волокон и т.п. По химическому составу пыли судят о ее токсичности. Зная химический состав пыли, можно обоснованно выбрать мокрый или сухой способ очистки газа. Если пыль содержит компоненты, способные образовывать с водой или другой жидкостью, подаваемой на орошение аппаратов, соединения, которые при оседании на стенках аппаратов и газоходов трудно удалить, применять мокрый способ очистки газов нельзя. При наличии в руде серы во время металлургических процессов в газ переходят ее оксиды, которые при мокром способе очистки образуют кислоты. В этом случае следует принимать меры по защите аппаратов и газоходов от коррозии и обеспечивать нейтрализацию шламовых вод. При наличии в составе пыли окислов кремния и аналогичных им соединений принимают меры по защите аппаратов и газоходов от механического истирания. Абразивность, т.е. истирающая способность пыли, зависит не только от ее химического состава, но и от формы частиц, их размера и плотности. Плотность пыли играет большую роль при очистке от нее газа. Чем больше плотность частиц пыли, тем более полно они осаждаются в аппаратах, предназначенных для очистки газа. Обычно ее определяют с помощью пикнометра (небольшого стеклянного сосуда) по объему жидкости, вытесненной пылью, масса которой известна. Вследствие вакуумирования пикнометра воздух, находящийся между частицами пыли, удаляется. Частное от деления массы пыли на объем жидкости, вытесненной пылью, представляет собой плотность пыли. Смачиваемость пыли характеризует ее способность смачиваться водой. Чем меньше размер частиц пыли, тем меньше их способность смачиваться. Смачиванию препятствует газовая оболочка, образующаяся вокруг мелких частиц пыли. Чем крупнее частицы пыли и чем округлее их форма, тем слабее силы, удерживающие газовую оболочку вокруг поверхности частиц, и, следовательно, тем больше их способность смачиваться. Смачиваемость пыли зависит и от ее химического состава. Смоченные частицы лучше отделяются от газа в аппаратах газоочистки. Смачиваемость определяется путем измерения доли смоченного и погрузившегося на дно сосуда порошка, насыпанного тонким слоем на поверхность воды. Пыли по смачиваемости разделяют на три группы: гидрофобные (плохо смачиваемые, менее 30%), умеренно-смачиваемые (30 – 80%), гидрофильные (хорошо смачиваемые, 80 – 100%). В зависимости от химического состава некоторые пыли при смачивании водой схватываются (цементируются, затвердевают). Такие пыли при оседании на стенки аппаратов и газоходов образуют трудно удаляемые отложения, которые уменьшают расстояние для прохода газа и ухудшают условия газоочистки. Форма и структура частиц пыли. Пыль в аэрозолях состоит из частиц самой разнообразной формы. Возгоны большей частью имеют шарообразную или сферическую форму. Частицы, образованные в результате механического воздействия, представляют собой мелкие осколки различной неправильной формы. Пыль, образованная в процессе сжигания или плавления материала, наряду с частицами неправильной формы содержит большое количество частиц с оплавленными краями. По структуре пыль может быть аморфной, зернистой и волокнистой. К аморфной пыли относят частицы округлой формы и возгоны, к волокнистой – частицы, образованные в процессе текстильного производства. Дисперсность пыли. Размер частиц пыли является одной из основных характеристик пыли, определяющих выбор типа аппарата или системы аппаратов для очистки газа. Крупная пыль лучше, чем мелкая, оседает из газового потока и может быть уловлена в аппарате простейшего типа. Для очистки газа от мелкой пыли зачастую требуется не один, а несколько аппаратов, установленных последовательно по ходу газа. Под дисперсностью пыли понимают совокупность размеров всех составляющих ее частиц. Доля частиц, размеры которых находятся в определенном интервале значений, принятых в качестве верхнего и нижнего пределов, называют фракцией. Одной из классификаций пыли по размерам служит ее разделение на крупную пыль (размером более 10 мкм) и мелкую пыль (размером менее 10 мкм). Пыль, образованная в результате механических операций (дробление, транспортировка и т.п.), обычно имеет размеры более 5 – 10 мкм. В любых технологических газах металлургического производства в зависимости от их физико-химических характеристик содержится пыль разнообразного дисперсного состава. Токсичность пыли. Чем мельче частицы пыли, тем больше их способность проникать вместе с воздухом в органы дыхания человека и вызывать различные заболевания. Токсичность пыли зависит от материала, из которого она образованна. Воспламеняемость и взрываемость пыли. Чем меньше размеры и пористее структура частиц пыли, тем больше их удельная поверхность, выше физическая и химическая активность пыли. Высокая химическая активность некоторых видов пыли является причиной ее взаимодействия с кислородом воздуха. Окисление частиц пыли сопровождается повышением температуры. Поэтому в местах скопления пыли возможны ее самовоспламенение и взрыв. Ввиду большой удельной поверхности возгонов и наличия в ряде случаев в их составе неокисленных металлов, углерода и серы возгоны более склонны к самовозгоранию. Взрывоопасность пыли увеличивается с уменьшением ее зольности и влажности. Коагуляция (укрупнение) пыли – это способность ее мелких частиц слипаться между собой и образовывать более крупные частицы. На скорость коагуляции влияют запыленность газа, размер и форма частиц, вязкость, температура и скорость газового потока, а также другие факторы, в частности колебание газа под воздействием звуковых волн, электрические заряды частиц. Чем больше скорость газа, тем выше его турбулентность и вероятность столкновения и укрупнения частиц пыли, находящихся во взвешенном состоянии в газе. Частицы пыли разного размера укрупняются лучше, чем частицы одинакового размера. Коагуляция частиц пыли размером более 0,1 мкм происходит вследствие их столкновения во время движения. Более мелкие частицы коагулируют в процессе броуновского движения под действием молекулярных сил. Частицы пыли размером более 5 – 10 мкм почти не коагулируют в газовом потоке.
2. Очистка газов в мокрых пылеуловителяхВ мокрых пылеуловителях удаление пыли из газо-воздушного потока осуществляется путем смачивания частиц пыли и уноса их водой. В процессе пылеулавливания газо-воздушный поток приводится в контакт с жидкостью, которая образует заслон на пути движения потока, а затем стекает в виде тонкой пленки по стенкам аппарата вместе с частицами пыли. Различают три принципиальные схемы работы мокрых пылеуловителей. yaneuch.ru Реферат: Методы очистки отходящих газовВведениеНаучно-техническая революция и бурный рост промышленного производства в ХХ веке способствовали не только росту благосостояния человека, но и отрицательно сказались на состоянии окружающей среды в ряде регионов нашей планеты, в том числе и на Урале. Ухудшение состояния окружающей природной среды обусловлено, в основном, образом жизни современного человека. Действие человека как экологического фактора в природе огромно и чрезвычайно многообразно. В настоящее время ни один из экологических факторов не оказывает столь существенного и всеобщего, то есть планетарного, влияния, как человек, хотя это наиболее молодой фактор из всех действующих на природе. Поэтому охрана природы, рациональное использование природных ресурсов - важнейшие проблемы современности, от решения которых зависит здоровье и благосостояние нынешних и будущих поколений. Постоянно усиливающееся загрязнение атмосферы связано с интенсивным развитием промышленности и энергетических производств, сопровождающимся все возрастающими объемами расходования невосполнимых природных ресурсов. Одной из важнейших проблем при охране окружающей среды является защита воздушного бассейна от чрезмерных загрязнений. Следовательно, развитие новых технологических процессов должно быть сбалансировано с разработкой технологии и аппаратуры, предотвращающих выбросы в атмосферу либо ограничивающих их до допустимых уровней.Целью моей работы является изучить методы очистки отходящих газов, а также познакомиться с аппаратами мокрой очистки отходящих газов.В соответствии с характером вредных примесей различают методы очистки газов от аэрозолей и от газообразных и парообразных примесей. Все способы очистки газов определяются в первую очередь физико-химическими свойствами примесей, их агрегатным состоянием, дисперсностью, химическим составом и др. Разнообразие вредных примесей в промышленных газовых выбросах приводит к большому разнообразию методов очистки, применяемых реакторов и химических реагентов. Очистка газов от аэрозолей. Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции. Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся: 1) гравитационное осаждение; 2) инерционное и центробежное пылеулавливание; 3) фильтрация. Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40–100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Степень очистки воздуха в пылеосадочных камерах не превышает 50–60 %. Метод пригоден лишь для предварительной, грубой очистки газов. Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения. Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода – быстрое истирание или забивание щелей. Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов, степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 30 мкм степень очистки снижается до 80%, а при d = 5 мкм она составляет менее 40%. Циклоны широко применяют при грубой и средней очистке газа от аэрозолей. Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью. Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. К аппаратам мокрой очистки относятся насадочные и центробежные скрубберы, скрубберы Вентури, форсуночные скрубберы, тарелочные и барботажно-пенные скрубберы. Рассмотрим некоторые из них. Скруббер Вентури Агрегат состоит из трубы Вентури 1и скруббера-каплеуловителя 2. Запыленный газ поступает сверху в трубу Вентури, в конфузорную (сужающуюся) часть которой вводится через распыливающую механическую форсунку орошающая жидкость (чаще всего – вода). В горловине трубы и в диффузорной (расширяющейся) части происходит дробление капель жидкости, на поверхности которых оседают частицы пыли. Площадь поверхности капель достаточно велика, чтобы уловить практически всю пыль. Капли жидкости с потоком газа поступают в каплеуловитель 2. Жидкость с частицами пыли выводится через нижний штуцер, а очищенный газ – через верхний улиточный газоотвод. В ряде случаев для мокрой очистки применяются форсуночные скрубберы (а). Запыленный газовый поток поступает в скруббер по патрубку 3 и направляется на зеркало воды, где осаждаются наиболее крупные частицы пыли. Газовый поток и мелкодисперсная пыль, распределяясь по всему сечению корпуса 1, поднимаются вверх навстречу потоку капель, поступающих в скруббер через форсуночные пояса. Форсуночный (а) и центробежный (б) скрубберы Ваппаратах центробежного типа (б) частицы пыли отбрасываются на пленку жидкости 2 центробежными силами, возникающими при вращении газового потока в аппарате за счет тангенциального расположения входного патрубка 5. Пленка жидкости толщиной не менее 0,3 мм создается подачей воды через сопла 1 и непрерывно стекает вниз, увлекая в бункер 4 частицы пыли. Барботажно-пенный скруббер с провальной (а) и переливной (б) решетками В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от части пыли за счет осаждения частиц на внутренней поверхности газовых пузырей. Орошаемая противопоточная насадочная башня 1 – насадка; 2 – рабрызгиватели Химически инертная насадка 1, заполняющая внутреннюю полость колонны, предназначена для увеличения поверхности жидкости, растекающейся по ней в виде пленки. В качестве насадки используют тела разной геометрической формы, имеющие собственную удельную поверхность и сопротивление движению газового потока. Для изготовления насадок используют керамику, фарфор, пластмассы, металлы, которые выбираются исходя из соображений антикоррозийной устойчивости. Электростатическая очистка газов служит универсальным средством,пригодным для любых аэрозолей, включая туманы кислот, и при любых размерахчастиц. Метод основан на ионизации и зарядке частиц аэрозоля припрохождении газа через электрическое поле высокого напряжения, создаваемоекоронирующими электродами. Осаждение частиц происходит на заземленныхосадительных электродах. Степень очистки от аэрозолей – выше 90, достигая 99,9%. Недостаток этого метода – большие затраты средств на сооружение и содержание очистных установок и значительный расход энергии на создание электрического поля. Звуковая и ультразвуковая коагуляция, а также предварительная электризация пока мало применяются в промышленности и находятся в основном в стадии разработки. Они основаны на укрупнении аэрозольных частиц, облегчающем их улавливание традиционными методами. Очистка газов от парообразных и газообразных примесей. Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на три основные группы: 1) абсорбция жидкостями; 2) адсорбция твердыми поглотителями ; 3) каталитическая очистка. В меньших масштабах применяются термические методы сжигания (или дожигания) горючих загрязнений, способ химического взаимодействия примесей с сухими поглотителями и окисление примесей озоном. Абсорбционные методы служат для технологической и санитарной очистки газов. Они основаны на избирательной растворимости газо- и парообразных примесей в жидкости (физическая абсорбция) или на избирательном извлечении примесей химическими реакциями с активным компонентом поглотителя (хемосорбция). Абсорбционная очистка – непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др. Очистная аппаратура аналогична уже рассмотренной аппаратуре мокрого улавливания аэрозолей. Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы. Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа. Адсорбционные методы основаны на избирательном извлечении из парогазовой смеси определенных компонентов при помощи адсорбентов — твердых высокопористых материалов, обладающих развитой удельной поверхность. Промышленные адсорбенты, чаще всего применяемые в газоочистке, — это активированный уголь, силикагель, алюмогель, природные и синтетические цеолиты (молекулярные сита). Чаще всего для санитарной очистки газов применяют активный уголь благодаря его высокой поглотительной способности и легкости регенерации. Общие достоинства адсорбционных методов очистки газов: 1) глубокая очистка газов от токсичных примесей; 2) сравнительная легкость регенерации этих примесей с превращением их в товарный продукт или возвратом в производство; таким образом осуществляется принцип безотходной технологии. Недостатки большинства адсорбционных установок — периодичность процесса и связанная с этим малая интенсивность реакторов, высокая стоимость периодической регенерации адсорбентов. Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т. е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствие которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны. Недостаток многих процессов каталитической очистки — образование новых веществ, которые подлежат удалению из газа другими методами, что усложняет установку и снижает общий экономический эффект. Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителей или оксида углерода. Простейший метод — факельное сжигание — возможен, когда концентрация горючих загрязнителей близка к нижнему пределу воспламенения. В этом случае примеси служат топливом, температура процесса 750—900 °С и теплоту горения примесей можно утилизировать. Когда концентрация горючих примесей меньше нижнего предела воспламенения, то необходимо подводить некоторое количество теплоты извне. Чаще всего теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточно высоком содержании горючих примесей, иначе возрастает расход добавляемого горючего газа. Для полноценной очистки газовых выбросов целесообразны комбинированные методы, в которых применяется оптимальное для каждого конкретного случая сочетание грубой, средней и тонкой очистки газов и паров. Заключение Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Такое производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. Конечно же, понятие «безотходное производство» имеет несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален. Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса. superbotanik.net Реферат - Методы очистки отходящих газовВ ведение Научно-техническая революция и бурный рост промышленного производства в ХХ веке способствовали не только росту благосостояния человека, но и отрицательно сказались на состоянии окружающей среды в ряде регионов нашей планеты, в том числе и на Урале. Ухудшение состояния окружающей природной среды обусловлено, в основном, образом жизни современного человека. Действие человека как экологического фактора в природе огромно и чрезвычайно многообразно. В настоящее время ни один из экологических факторов не оказывает столь существенного и всеобщего, то есть планетарного, влияния, как человек, хотя это наиболее молодой фактор из всех действующих на природе. Поэтому охрана природы, рациональное использование природных ресурсов — важнейшие проблемы современности, от решения которых зависит здоровье и благосостояние нынешних и будущих поколений. Постоянно усиливающееся загрязнение атмосферы связано с интенсивным развитием промышленности и энергетических производств, сопровождающимся все возрастающими объемами расходования невосполнимых природных ресурсов. Одной из важнейших проблем при охране окружающей среды является защита воздушного бассейна от чрезмерных загрязнений. Следовательно, развитие новых технологических процессов должно быть сбалансировано с разработкой технологии и аппаратуры, предотвращающих выбросы в атмосферу либо ограничивающих их до допустимых уровней.Целью моей работы является изучить методы очистки отходящих газов, а также познакомиться с аппаратами мокрой очистки отходящих газов.В соответствии с характером вредных примесей различают методы очистки газов от аэрозолей и от газообразных и парообразных примесей. Все способы очистки газов определяются в первую очередь физико-химическими свойствами примесей, их агрегатным состоянием, дисперсностью, химическим составом и др. Разнообразие вредных примесей в промышленных газовых выбросах приводит к большому разнообразию методов очистки, применяемых реакторов и химических реагентов. Очистка газов от аэрозолей. Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции. Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся: 1) гравитационное осаждение; 2) инерционное и центробежное пылеулавливание; 3) фильтрация. Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40–100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Степень очистки воздуха в пылеосадочных камерах не превышает 50–60 %. Метод пригоден лишь для предварительной, грубой очистки газов. Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения. Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода – быстрое истирание или забивание щелей. Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов, степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 30 мкм степень очистки снижается до 80%, а при d = 5 мкм она составляет менее 40%. Циклоны широко применяют при грубой и средней очистке газа от аэрозолей. Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью. Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. К аппаратам мокрой очистки относятся насадочные и центробежные скрубберы, скрубберы Вентури, форсуночные скрубберы, тарелочные и барботажно-пенные скрубберы. Рассмотрим некоторые из них. Скруббер Вентури Агрегат состоит из трубы Вентури 1и скруббера-каплеуловителя 2. Запыленный газ поступает сверху в трубу Вентури, в конфузорную (сужающуюся) часть которой вводится через распыливающую механическую форсунку орошающая жидкость (чаще всего – вода). В горловине трубы и в диффузорной (расширяющейся) части происходит дробление капель жидкости, на поверхности которых оседают частицы пыли. Площадь поверхности капель достаточно велика, чтобы уловить практически всю пыль. Капли жидкости с потоком газа поступают в каплеуловитель 2. Жидкость с частицами пыли выводится через нижний штуцер, а очищенный газ – через верхний улиточный газоотвод. В ряде случаев для мокрой очистки применяются форсуночные скрубберы (а). Запыленный газовый поток поступает в скруббер по патрубку 3 и направляется на зеркало воды, где осаждаются наиболее крупные частицы пыли. Газовый поток и мелкодисперсная пыль, распределяясь по всему сечению корпуса 1, поднимаются вверх навстречу потоку капель, поступающих в скруббер через форсуночные пояса. Форсуночный (а) и центробежный (б) скрубберы Ваппаратах центробежного типа (б) частицы пыли отбрасываются на пленку жидкости 2 центробежными силами, возникающими при вращении газового потока в аппарате за счет тангенциального расположения входного патрубка 5. Пленка жидкости толщиной не менее 0,3 мм создается подачей воды через сопла 1 и непрерывно стекает вниз, увлекая в бункер 4 частицы пыли. Барботажно-пенный скруббер с провальной ( а ) и переливной ( б ) решетками В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от части пыли за счет осаждения частиц на внутренней поверхности газовых пузырей. Орошаемая противопоточная насадочная башня 1 – насадка; 2 – рабрызгиватели Химически инертная насадка 1, заполняющая внутреннюю полость колонны, предназначена для увеличения поверхности жидкости, растекающейся по ней в виде пленки. В качестве насадки используют тела разной геометрической формы, имеющие собственную удельную поверхность и сопротивление движению газового потока. Для изготовления насадок используют керамику, фарфор, пластмассы, металлы, которые выбираются исходя из соображений антикоррозийной устойчивости. Электростатическая очистка газов служит универсальным средством, пригодным для любых аэрозолей, включая туманы кислот, и при любых размерахчастиц. Метод основан на ионизации и зарядке частиц аэрозоля припрохождении газа через электрическое поле высокого напряжения, создаваемоекоронирующими электродами. Осаждение частиц происходит на заземленныхосадительных электродах. Степень очистки от аэрозолей – выше 90, достигая 99,9%. Недостаток этого метода – большие затраты средств на сооружение и содержание очистных установок и значительный расход энергии на создание электрического поля. Звуковая и ультразвуковая коагуляция, а также предварительная электризация пока мало применяются в промышленности и находятся в основном в стадии разработки. Они основаны на укрупнении аэрозольных частиц, облегчающем их улавливание традиционными методами. Очистка газов от парообразных и газообразных примесей. Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на три основные группы: 1) абсорбция жидкостями; 2) адсорбция твердыми поглотителями ; 3) каталитическая очистка. В меньших масштабах применяются термические методы сжигания (или дожигания) горючих загрязнений, способ химического взаимодействия примесей с сухими поглотителями и окисление примесей озоном. Абсорбционные методы служат для технологической и санитарной очистки газов. Они основаны на избирательной растворимости газо- и парообразных примесей в жидкости (физическая абсорбция) или на избирательном извлечении примесей химическими реакциями с активным компонентом поглотителя (хемосорбция). Абсорбционная очистка – непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др. Очистная аппаратура аналогична уже рассмотренной аппаратуре мокрого улавливания аэрозолей. Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы. Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа. Адсорбционные методы основаны на избирательном извлечении из парогазовой смеси определенных компонентов при помощи адсорбентов — твердых высокопористых материалов, обладающих развитой удельной поверхность. Промышленные адсорбенты, чаще всего применяемые в газоочистке, — это активированный уголь, силикагель, алюмогель, природные и синтетические цеолиты (молекулярные сита). Чаще всего для санитарной очистки газов применяют активный уголь благодаря его высокой поглотительной способности и легкости регенерации. Общие достоинства адсорбционных методов очистки газов: 1) глубокая очистка газов от токсичных примесей; 2) сравнительная легкость регенерации этих примесей с превращением их в товарный продукт или возвратом в производство; таким образом осуществляется принцип безотходной технологии. Недостатки большинства адсорбционных установок — периодичность процесса и связанная с этим малая интенсивность реакторов, высокая стоимость периодической регенерации адсорбентов. Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т. е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствие которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны. Недостаток многих процессов каталитической очистки — образование новых веществ, которые подлежат удалению из газа другими методами, что усложняет установку и снижает общий экономический эффект. Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителей или оксида углерода. Простейший метод — факельное сжигание — возможен, когда концентрация горючих загрязнителей близка к нижнему пределу воспламенения. В этом случае примеси служат топливом, температура процесса 750—900 °С и теплоту горения примесей можно утилизировать. Когда концентрация горючих примесей меньше нижнего предела воспламенения, то необходимо подводить некоторое количество теплоты извне. Чаще всего теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточно высоком содержании горючих примесей, иначе возрастает расход добавляемого горючего газа. Для полноценной очистки газовых выбросов целесообразны комбинированные методы, в которых применяется оптимальное для каждого конкретного случая сочетание грубой, средней и тонкой очистки газов и паров. З аключение Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Такое производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. Конечно же, понятие «безотходное производство» имеет несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален. Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса. www.ronl.ru Реферат Методы очистки отходящих газовВведениеНаучно-техническая революция и бурный рост промышленного производства в ХХ веке способствовали не только росту благосостояния человека, но и отрицательно сказались на состоянии окружающей среды в ряде регионов нашей планеты, в том числе и на Урале. Ухудшение состояния окружающей природной среды обусловлено, в основном, образом жизни современного человека. Действие человека как экологического фактора в природе огромно и чрезвычайно многообразно. В настоящее время ни один из экологических факторов не оказывает столь существенного и всеобщего, то есть планетарного, влияния, как человек, хотя это наиболее молодой фактор из всех действующих на природе. Поэтому охрана природы, рациональное использование природных ресурсов - важнейшие проблемы современности, от решения которых зависит здоровье и благосостояние нынешних и будущих поколений.Постоянно усиливающееся загрязнение атмосферы связано с интенсивным развитием промышленности и энергетических производств, сопровождающимся все возрастающими объемами расходования невосполнимых природных ресурсов. Одной из важнейших проблем при охране окружающей среды является защита воздушного бассейна от чрезмерных загрязнений. Следовательно, развитие новых технологических процессов должно быть сбалансировано с разработкой технологии и аппаратуры, предотвращающих выбросы в атмосферу либо ограничивающих их до допустимых уровней. Целью моей работы является изучить методы очистки отходящих газов, а также познакомиться с аппаратами мокрой очистки отходящих газов. В соответствии с характером вредных примесей различают методы очистки газов от аэрозолей и от газообразных и парообразных примесей. Все способы очистки газов определяются в первую очередь физико-химическими свойствами примесей, их агрегатным состоянием, дисперсностью, химическим составом и др. Разнообразие вредных примесей в промышленных газовых выбросах приводит к большому разнообразию методов очистки, применяемых реакторов и химических реагентов. Очистка газов от аэрозолей. Методы очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции. Механическая очистка газов включает сухие и мокрые методы. К сухим методам относятся: 1) гравитационное осаждение; 2) инерционное и центробежное пылеулавливание; 3) фильтрация. Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах. Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40–100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Степень очистки воздуха в пылеосадочных камерах не превышает 50–60 %. Метод пригоден лишь для предварительной, грубой очистки газов. Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения. Частицы пыли с d Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов, степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 30 мкм степень очистки снижается до 80%, а при d = 5 мкм она составляет менее 40%. Циклоны широко применяют при грубой и средней очистке газа от аэрозолей. Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью. Мокрая очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. К аппаратам мокрой очистки относятся насадочные и центробежные скрубберы, скрубберы Вентури, форсуночные скрубберы, тарелочные и барботажно-пенные скрубберы. Рассмотрим некоторые из них. Скруббер Вентури Агрегат состоит из трубы Вентури 1и скруббера-каплеуловителя 2. Запыленный газ поступает сверху в трубу Вентури, в конфузорную (сужающуюся) часть которой вводится через распыливающую механическую форсунку орошающая жидкость (чаще всего – вода). В горловине трубы и в диффузорной (расширяющейся) части происходит дробление капель жидкости, на поверхности которых оседают частицы пыли. Площадь поверхности капель достаточно велика, чтобы уловить практически всю пыль. Капли жидкости с потоком газа поступают в каплеуловитель 2. Жидкость с частицами пыли выводится через нижний штуцер, а очищенный газ – через верхний улиточный газоотвод. В ряде случаев для мокрой очистки применяются форсуночные скрубберы (а). Запыленный газовый поток поступает в скруббер по патрубку 3 и направляется на зеркало воды, где осаждаются наиболее крупные частицы пыли. Газовый поток и мелкодисперсная пыль, распределяясь по всему сечению корпуса 1, поднимаются вверх навстречу потоку капель, поступающих в скруббер через форсуночные пояса. Форсуночный (а) и центробежный (б) скрубберыВ аппаратах центробежного типа (б) частицы пыли отбрасываются на пленку жидкости 2 центробежными силами, возникающими при вращении газового потока в аппарате за счет тангенциального расположения входного патрубка 5. Пленка жидкости толщиной не менее 0,3 мм создается подачей воды через сопла 1 и непрерывно стекает вниз, увлекая в бункер 4 частицы пыли. Барботажно-пенный скруббер с провальной (а) и переливной (б) решетками В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от части пыли за счет осаждения частиц на внутренней поверхности газовых пузырей.Орошаемая противопоточная насадочная башня 1 – насадка; 2 – рабрызгивателиХимически инертная насадка 1, заполняющая внутреннюю полость колонны, предназначена для увеличения поверхности жидкости, растекающейся по ней в виде пленки. В качестве насадки используют тела разной геометрической формы, имеющие собственную удельную поверхность и сопротивление движению газового потока. Для изготовления насадок используют керамику, фарфор, пластмассы, металлы, которые выбираются исходя из соображений антикоррозийной устойчивости. Электростатическая очистка газов служит универсальным средством, пригодным для любых аэрозолей, включая туманы кислот, и при любых размерах частиц. Метод основан на ионизации и зарядке частиц аэрозоля при прохождении газа через электрическое поле высокого напряжения, создаваемое коронирующими электродами. Осаждение частиц происходит на заземленных осадительных электродах. Степень очистки от аэрозолей – выше 90, достигая 99,9%. Недостаток этого метода – большие затраты средств на сооружение и содержание очистных установок и значительный расход энергии на создание электрического поля. Звуковая и ультразвуковая коагуляция, а также предварительная электризация пока мало применяются в промышленности и находятся в основном в стадии разработки. Они основаны на укрупнении аэрозольных частиц, облегчающем их улавливание традиционными методами. Очистка газов от парообразных и газообразных примесей. Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на три основные группы: 1) абсорбция жидкостями; 2) адсорбция твердыми поглотителями ; 3) каталитическая очистка. В меньших масштабах применяются термические методы сжигания (или дожигания) горючих загрязнений, способ химического взаимодействия примесей с сухими поглотителями и окисление примесей озоном. Абсорбционные методы служат для технологической и санитарной очистки газов. Они основаны на избирательной растворимости газо- и парообразных примесей в жидкости (физическая абсорбция) или на избирательном извлечении примесей химическими реакциями с активным компонентом поглотителя (хемосорбция). Абсорбционная очистка – непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др. Очистная аппаратура аналогична уже рассмотренной аппаратуре мокрого улавливания аэрозолей. Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы. Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа. Адсорбционные методы основаны на избирательном извлечении из парогазовой смеси определенных компонентов при помощи адсорбентов — твердых высокопористых материалов, обладающих развитой удельной поверхность. Промышленные адсорбенты, чаще всего применяемые в газоочистке, — это активированный уголь, силикагель, алюмогель, природные и синтетические цеолиты (молекулярные сита). Чаще всего для санитарной очистки газов применяют активный уголь благодаря его высокой поглотительной способности и легкости регенерации. Общие достоинства адсорбционных методов очистки газов: 1) глубокая очистка газов от токсичных примесей; 2) сравнительная легкость регенерации этих примесей с превращением их в товарный продукт или возвратом в производство; таким образом осуществляется принцип безотходной технологии. Недостатки большинства адсорбционных установок — периодичность процесса и связанная с этим малая интенсивность реакторов, высокая стоимость периодической регенерации адсорбентов. Каталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, т. е. в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствие которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, т.е. создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны. Недостаток многих процессов каталитической очистки — образование новых веществ, которые подлежат удалению из газа другими методами, что усложняет установку и снижает общий экономический эффект. Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителей или оксида углерода. Простейший метод — факельное сжигание — возможен, когда концентрация горючих загрязнителей близка к нижнему пределу воспламенения. В этом случае примеси служат топливом, температура процесса 750—900 °С и теплоту горения примесей можно утилизировать. Когда концентрация горючих примесей меньше нижнего предела воспламенения, то необходимо подводить некоторое количество теплоты извне. Чаще всего теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточно высоком содержании горючих примесей, иначе возрастает расход добавляемого горючего газа. Для полноценной очистки газовых выбросов целесообразны комбинированные методы, в которых применяется оптимальное для каждого конкретного случая сочетание грубой, средней и тонкой очистки газов и паров. Заключение Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к без отходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Такое производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. Конечно же, понятие «безотходное производство» имеет несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален. Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса. bukvasha.ru |
|
||||||||||||||||||||||||||||||||||||
|
|