Введение
Лазеры и лазерные установки в стоматологии: описание, классификация и характеристики
Действие лазеров на ткани
Взаимодействие лазера с твердой тканью зуба
Механизм и особенности лазерного препарирования твердых тканей зуба
Список литературы
В 60-е годы XX века были представлены первые лазеры для медицинских целей. С тех пор наука и техника совершили огромный скачок в развитии, позволяя использовать лазеры для огромного количества процедур и методик. В 90-е годы произошел прорыв лазеров в стоматологию, их стали использовать для работы с мягкими и твердыми тканями. В настоящее время в стоматологии лазеры используются для профилактики стоматологических заболеваний, в пародонтологии, терапевтической стоматологии, эндодонтии, хирургии и имплантологии. Применение лазеров — целесообразный метод для ежедневной помощи стоматологам во многих видах работ. Для некоторых процедур, например френулотомии, лазеры оказались настолько клинически эффективны, что стали «золотым» стандартом среди врачей. Они позволяют работать в сухом поле, что обеспечивает превосходную видимость и сокращает время операции. При использовании лазеров вероятность рубцевания очень мала, и практически не требуется применение швов. Они также обеспечивают абсолютную стерильность рабочего поля, что в большинстве случаев является абсолютной необходимостью, например при стерилизации корневого канала.
Лазерные устройства производят различной длины волны, которые взаимодействуют с определенными молекулярными компонентами в животных тканях. Каждая из этих волн воздействуют на определенные компоненты ткани - меланин, гемосидерин, гемоглобин, воду и другие молекулы. В медицине лазеры применяют для облучения тканей с простым лечебным эффектом, для стерилизации, для коагуляции и резекции (операционные лазеры), а также для высокоскоростного препарирования зубов. Лазерный свет поглощается определенным структурным элементом, входящим в состав биоткани. Поглощающее вещество носит название хромофор. Им могут являться различные пигменты (меланин), кровь, вода и др. Каждый тип лазера рассчитан на определенный хромофор, его энергия калибруется исходя из поглощающих свойств хромофора, а также с учетом области применения.
Лазерные взаимодействия с кальцийсодержащими тканями были изучены, используя различные по длине волны. В зависимости от таких лазерных параметров как продолжительность импульса, разряд длина волны, глубина проникновения, выделяют следующие типы лазеров: импульсный на красителе, He-Ne, рубиновый, александритовый, диодный, неодимовый (Nd: YAG), гольдмиевый (Nо: YAG), эрбиевый (Er: YAG), углекислотный (СО2).
В медицине лазеры применяют для облучения тканей с профилактическим или лечебным эффектом, стерилизации, для коагуляции и резки мягких тканей (операционные лазеры), а также для высокоскоростного препарирования твердых тканей зубов. Лазеры производят такие поверхностные изменения в эмали как кратерообразование, таяние и перекристализация.
В стоматологии наиболее часто применяют CO2 лазер для воздействия на мягкие ткани и эрбиевый лазер для препарирования твердых тканей. Существуют аппараты, совмещающие в себе несколько типов лазеров (например, для воздействия на мягкие и твердые ткани), а также изолированные приборы для выполнения конкретных узкоспециализированных задач (лазеры для отбеливания зубов).
Различают несколько режимов работы лазера: импульсный, непрерывный и комбинированный. В соответствии с режимом работы выбирается их мощность (энергетика).
Таблица 1. Типы лазеров, глубина проникновения и хромофоры
Лазер | Длина волны, нм | Глубина проникновения, мкм (мм)* | Поглощающий хромофор | Типы ткани | Лазеры, используемые в стоматологии |
Nd: YAG с удвоением частоты | 532 | 1330 (1,33) | Меланин, Кровь | Мягкие | + |
Импульсный на красителе | 585 | 2000 (2,00) | Меланин, Кровь | Мягкие | + |
He-Ne (гелий-неоновый) | 633 | 4000 (4,00) | Меланин, Кровь | Мягкие, терапия | ++++ |
Рубиновый | 694 | 3,990 (3,99) | Меланин, Кровь | - | |
Александритовый | 755 | 4320 (4,32) | Меланин, Кровь | - | |
Диодный | 830980 | 4000 (4,00) 1300 (1,3) | Меланин, Кровь | Мягкие, отбеливание | +++++++ |
Неодимовый (Nd:YAG) | 1064 | 5315 (5,31) | Меланин, Кровь | Мягкие | ++ |
Гольдмиевый (Ho:YAG) | 2100 | 665 (0,66) | Вода | Мягкие | + |
Эрбиевый (Er:YAG) | 27802940 | 70 (0,07) 3 (0,003) | Вода Вода | Твердые (мягкие) Твердые (мягкие) | ++++++ |
Углекислотный (СО2) | 960010600 | 50 (0,05) 65 (0,065) | Вода Вода | Твердые (мягкие) Мягкие | ++++++ |
* глубина проникновения света h в микрометрах (миллиметрах), на которой поглощается 90% мощности падающего на биоткань лазерного света.
В стоматологии наиболее часто применяют СО2- лазер для воздействия на мягкие ткани, и эрбиевый лазер для препарирования твердых тканей.
Режим работы лазеров и их энергетика.
Эрбиевый:
- импульсный, энергия/имп. ~300…1000 мДж/имп.
СО2-лазер:
- импульсный (до 50 мДж/мм2)
- непрерывный (1-10 Вт)
- комбинированный
Типичный лазерный аппарат состоит из базового блока, световода и лазерного наконечника, которым врач непосредственно работает в полости рта пациента. Для удобства работы выпускаются различные типы наконечников: прямые, угловые, для калибровки мощности и т. д. Все они оборудованы системой охлаждения вода-воздух для постоянного контроля температуры и удаления отпрепарированных твердых тканей.
При работе с лазерной техникой должны использоваться специальные средства защиты зрения. Врач и пациент во время препарирования должны находиться в специальных очках. Следует отметить, что опасность потери зрения от лазерного излучения на несколько порядков меньше, чем от стандартного стоматологического фотополимеризатора. Лазерный луч не рассеивается и имеет очень небольшую площадь освещения (0,5мм² против 0,8см² у стандартного световода).
Лазер работает в режиме, посылая каждую секунду в среднем около десяти лучей. Лазерный луч, попадая на твердые ткани, испаряет тончайший слой около 0,003 мм. Препарирование происходит достаточно быстро, однако врач может контролировать процесс, немедленно прервав его одним движением. После препарирования лазером получается идеальная полость: края стенок закругленные, тогда как при препарировании турбиной стенки перпендикулярны поверхности зуба, и приходиться после этого проводить дополнительное финирование.
Кроме того, полость после препарирования лазером остается стерильной, как после длительной антисептической обработки, так как лазерный свет убивает патогенную флору.
Препарирование лазером процедура бесконтактная, компоненты лазерной установки непосредственно не контактируют с тканями - препарирование происходит дистанционно. Кроме несомненных практических преимуществ, применения лазера помогает существенно снизить себестоимость лечения. Работая лазером, можно полностью исключить из повседневных расходов боры, антисептические растворы, кислоту для протравливания эмали. Время, затрачиваемое врачом на лечение, сокращается более чем на 40%.
studfiles.net
Содержание
Введение1. Лазеры и лазерные установки в стоматологии: описание, классификация и характеристики2. Действие лазеров на ткани3. Взаимодействие лазера с твердой тканью зуба4. Механизм и особенности лазерного препарирования твердых тканей зубаЗаключениеСписок использованных источников
Введение.
В 60-е годы XX века были представлены первые лазеры для медицинских целей. С тех пор наука и техника совершили огромный скачок в развитии, позволяя использовать лазеры для огромного количества процедур и методик. В 90-е годы произошел прорыв лазеров в стоматологию, их стали использовать для работы с мягкими и твердыми тканями. В настоящее время в стоматологии лазеры используются для профилактики стоматологических заболеваний, в пародонтологии, терапевтической стоматологии, эндодонтии, хирургии и имплантологии. Применение лазеров — целесообразный метод для ежедневной помощи стоматологам во многих видах работ. Для некоторых процедур, например френулотомии, лазеры оказались настолько клинически эффективны, что стали «золотым» стандартом среди врачей. Они позволяют работать в сухом поле, что обеспечивает превосходную видимость и сокращает время операции. При использовании лазеров вероятность рубцевания очень мала, и практически не требуется применение швов. Они также обеспечивают абсолютную стерильность рабочего поля, что в большинстве случаев является абсолютной необходимостью, например при стерилизации корневого канала.
1. Лазеры и лазерные установки в стоматологии: описание, классификация и характеристики
Лазерные устройства производят различной длины волны, которые взаимодействуют с определенными молекулярными компонентами в животных тканях. Каждая из этих волн воздействуют на определенные компоненты ткани – меланин, гемосидерин, гемоглобин, воду и другие молекулы. В медицине лазеры применяют для облучения тканей с простым лечебным эффектом, для стерилизации, для коагуляции и резекции (операционные лазеры), а также для высокоскоростного препарирования зубов. Лазерный свет поглощается определенным структурным элементом, входящим в состав биоткани. Поглощающее вещество носит название хромофор. Им могут являться различные пигменты (меланин), кровь, вода и др. Каждый тип лазера рассчитан на определенный хромофор, его энергия калибруется исходя из поглощающих свойств хромофора, а также с учетом области применения.
Лазерные взаимодействия с кальцийсодержащими тканями были изучены, используя различные по длине волны. В зависимости от таких лазерных параметров как продолжительность импульса, разряд длина волны, глубина проникновения, выделяют следующие типы лазеров: импульсный на красителе, He-Ne, рубиновый, александритовый, диодный, неодимовый (Nd: YAG), гольдмиевый (Nо: YAG), эрбиевый (Er: YAG), углекислотный (СО2).
В медицине лазеры применяют для облучения тканей с профилактическим или лечебным эффектом, стерилизации, для коагуляции и резки мягких тканей (операционные лазеры), а также для высокоскоростного препарирования твердых тканей зубов. Лазеры производят такие поверхностные изменения в эмали как кратерообразование, таяние и перекристализация.
В стоматологии наиболее часто применяют CO2 лазер для воздействия на мягкие ткани и эрбиевый лазер для препарирования твердых тканей. Существуют аппараты, совмещающие в себе несколько типов лазеров (например, для воздействия на мягкие и твердые ткани), а также изолированные приборы для выполнения конкретных узкоспециализированных задач (лазеры для отбеливания зубов).
Нужна помощь в написании?
Различают несколько режимов работы лазера: импульсный, непрерывный и комбинированный. В соответствии с режимом работы выбирается их мощность (энергетика).
Таблица 1. Типы лазеров, глубина проникновения и хромофоры
Лазер | Длина волны, нм | Глубина проникновения, мкм (мм)* | Поглощающий хромофор | Типы ткани | Лазеры, используемыев стоматологии |
Nd: YAG с удвоением частоты | 532 | 1330 (1,33) | Меланин, Кровь | Мягкие | + |
Импульсный на красителе | 585 | 2000 (2,00) | Меланин, Кровь | Мягкие | + |
He-Ne (гелий-неоновый) | 633 | 4000 (4,00) | Меланин, Кровь | Мягкие, терапия | ++++ |
Рубиновый | 694 | 3,990 (3,99) | Меланин, Кровь | – | |
Александритовый | 755 | 4320 (4,32) | Меланин, Кровь | – | |
Диодный | 830980 | 4000 (4,00) 1300 (1,3) | Меланин, Кровь | Мягкие,отбеливание | +++++++ |
Неодимовый (Nd:YAG) | 1064 | 5315 (5,31) | Меланин, Кровь | Мягкие | ++ |
Гольдмиевый (Ho:YAG) | 2100 | 665 (0,66) | Вода | Мягкие | + |
Эрбиевый (Er:YAG) | 27802940 | 70 (0,07) 3 (0,003) | Вода Вода | Твердые (мягкие)Твердые (мягкие) | ++++++ |
Углекислотный (СО2) | 960010600 | 50 (0,05) 65 (0,065) | Вода Вода | Твердые (мягкие)Мягкие | ++++++ |
* глубина проникновения света h в микрометрах (миллиметрах), на которой поглощается 90% мощности падающего на биоткань лазерного света.
В стоматологии наиболее часто применяют СО2- лазер для воздействия на мягкие ткани, и эрбиевый лазер для препарирования твердых тканей.
Режим работы лазеров и их энергетика.
Эрбиевый:
– импульсный, энергия/имп. ~300…1000 мДж/имп.
СО2-лазер:
– импульсный (до 50 мДж/мм2)
– непрерывный (1-10 Вт)
– комбинированный
Типичный лазерный аппарат состоит из базового блока, световода и лазерного наконечника, которым врач непосредственно работает в полости рта пациента. Для удобства работы выпускаются различные типы наконечников: прямые, угловые, для калибровки мощности и т. д. Все они оборудованы системой охлаждения вода-воздух для постоянного контроля температуры и удаления отпрепарированных твердых тканей.
При работе с лазерной техникой должны использоваться специальные средства защиты зрения. Врач и пациент во время препарирования должны находиться в специальных очках. Следует отметить, что опасность потери зрения от лазерного излучения на несколько порядков меньше, чем от стандартного стоматологического фотополимеризатора. Лазерный луч не рассеивается и имеет очень небольшую площадь освещения (0,5мм² против 0,8см² у стандартного световода).
Лазер работает в режиме, посылая каждую секунду в среднем около десяти лучей. Лазерный луч, попадая на твердые ткани, испаряет тончайший слой около 0,003 мм. Препарирование происходит достаточно быстро, однако врач может контролировать процесс, немедленно прервав его одним движением. После препарирования лазером получается идеальная полость: края стенок закругленные, тогда как при препарировании турбиной стенки перпендикулярны поверхности зуба, и приходиться после этого проводить дополнительное финирование.
Кроме того, полость после препарирования лазером остается стерильной, как после длительной антисептической обработки, так как лазерный свет убивает патогенную флору.
Препарирование лазером процедура бесконтактная, компоненты лазерной установки непосредственно не контактируют с тканями – препарирование происходит дистанционно. Кроме несомненных практических преимуществ, применения лазера помогает существенно снизить себестоимость лечения. Работая лазером, можно полностью исключить из повседневных расходов боры, антисептические растворы, кислоту для протравливания эмали. Время, затрачиваемое врачом на лечение, сокращается более чем на 40%.
2. Действие лазеров на ткани
Исследования in vitro показали, что CO2 лазерное облучение предотвращает прогрессию кариозных повреждений до 85 процентов, что является сопоставимым ежедневному применению фторосодержащей зубной пасты.
Последующие исследования показали, что подобные эффекты характерны и для эрбиевых лазеров до 40-60 процентов, соответственно.
Существует также устройство, которое создано на основе Er:YAG лазера – лазерная гидрокинетическая система, или ЛГКС.
Механизм воздействия на твердые ткани этой системы заключается в “микровзрывах” воды входящей в состав эмали и дентина, при ее нагревании лучом. Процесс поглощения и нагревания приводит к микроразрушению твердых тканей и вымыванию частичек эмали и дентина из полости водно-воздушным спреем. Действие лазера на твердые ткани зуба будет подробнее рассмотрено ниже.
В ряде исследований отпрепарированые поверхности зуба оценивают по способности их формировать прилипание с различными бондинговыми агентами.
He-Ne и Nd:YAG системы, создают более слабую бондинговую поверхность что может быть достигнуто при кислотном протравливании. CO2 лазеры приводят к изменениям в эмали, в зависимости от того, какая длина волны используется, но, вообще, бондинг к этим поверхностям превосходит таковой, который возникает при кислотном протравливании эмали. Просмотр электронной микроскопии показал, что ЛГКС делает поверхности чистыми и мажущий слой при этом не образуется.
Нужна помощь в написании?
Температурная оценка зубов показывает, что в in vitro приготовленых полостях на человеческих зубах и в in vivo приготовленых полостях на зубах предварительно обезболенных собак не возникает никаких неблагоприятных температурных воздействий на пульпу. Патогистологические исследования в коренных зубах у животных и людей показали, что ткани пульпы не подвергаются никаким патологическим изменениям. Также не было отмечено изменений в одонтобластах.
Механизм действия на мягкие ткани СО2-лазера основан на поглощении водой энергии лазерного света и нагреве тканей, что позволяет послойно удалять мягкие ткани и коагулировать их с минимальной (0,1мм) зоной термонекроза близлежащих тканей и их карбонизацией.
Изменения в мягких тканях в результате воздействия СО2-лазера в зависимости от температуры представлены в таблице 2:
Таблица 2. Изменения в мягких тканях в результате воздействия СО2-лазера в зависимости от температуры
Температура | Визуальные изменения | Биологические изменения |
50-60°С | Нет | Нагрев |
60-70°С | Обесцвечивание | Порог коагуляции (некроза) |
65-90°С | Белый/серый | Денатурация ткани |
90-100°С | Сморщивание (эффект “попкорна”) | Вакуолизация |
100°С(латентный нагрев) | “Перья дыма” | Вапоризация, карбонизация |
3. Взаимодействие лазера с твердой тканью зуба
Лазерный луч уникален тем, что сжимает энергию лазерного выхода в маленький, направленный и сфокусированный пучок высококогерентного монохромного света. Свойства лазерного луча позволяют сфокусировать его до очень маленького пятна, что позволяет достичь высочайшей плотности энергии при малой энергии импульса и даёт возможность проводить действительно уникальные процедуры. Er:YAG лазер с длиной волны 2.940 нм — лучший лазер выбора для процедур на твердых тканях зуба из-за самого высокого процента поглощения в воде и гидроксилапатите. Поглощение излучения Er:YAG лазера (2.940 нм) в эмали в 2 раза выше, чем Er:YSGG лазера (2790 нм). Экстремально высокое поглощение в воде позволяет эффективно удалять или разрезать твердые ткани при помощи микровспышек. (см. рис. 1) При направлении импульсов к маленькому пятну на тканях зуба вода в этом пятне очень быстро нагревается вплоть до испарения. Этот эффект и называется аблацией. Он приводит к удалению небольшого количества ткани-цели. Специально разработанная временная структура лазерных импульсов (технология VSP компании Fotona — Variable Square Pulsations, «прямоугольные импульсы изменяемой продолжительности») позволяет достичь очень эффективного удаления твердой ткани зуба без побочных тепловых эффектов. Обработанная поверхность остается прочной, гладкой, чистой и без трещин.
В виде звездочек обозначены микровспышки, в виде кубиков – вода, в виде точек – твердые частицы.
Исследование аблации твердой ткани зуба Er:YAG лазером показало, что имеется непосредственное и выраженное влияние длительности лазерного импульса на скорость препарирования эмали и дентина. Для эффективного препарирования эмали должны использоваться очень короткие лазерные импульсы (например, от 100 до 150 микросекунд), в то время как скорость препарирования дентина фактически одинакова при ширине импульса в диапазоне от 100 до 350 микросекунд. Скорость удаления той или иной ткани зависит от процентного содержания воды. Эмаль содержит в среднем 4% воды, в то время как дентин — 10%. Кариозный дентин содержит еще большее количество воды.
Исходя из описанного взаимодействия Er:YAG лазерного излучения с тканями зуба необходимо выделить следующие его преимущества перед классической механической обработкой:
Исследование было выполнено в AALZ (Германия). Средний объем, удаляемый за 10 секунд:
Эмаль:
Дентин:
Для охлаждения тканей используется водно-воздушный спрей. Эффект воздействия ограничен тончайшим (0,003мм) слоем выделения энергии лазера. Из-за минимального поглощения энергии лазера гидроксиапатитом – минеральным компонентом хромофора – нагрев окружающих тканей более чем на 2оС не происходит.
Теперь, после такого пространственного экскурса в глубины теоретической биофизики, перейдем к практическому применению лазерных технологий в стоматологии.
Показания для применения лазера практически полностью повторяют список заболеваний, с которыми приходиться сталкиваться в своей работе врачу-стоматологу. К наиболее распространенным и востребованным показаниям относятся:
4. Механизм и особенности лазерного препарирования твердых тканей зуба
Как уже отчасти было сказано выше, препарирование происходит следующим образом: лазер работает в импульсном режиме, посылая каждую секунду в среднем около 10-ти лучей. Каждый импульс несет в себе строго определенное количество энергии. Лазерный луч, попадая на твердые ткани, испаряет тончайший слой около 0,003мм. Микровзрыв, возникающий вследствие нагрева молекул воды, выбрасывает частички эмали и дентина, которые немедленно удаляются из полости водно-воздушным спреем. Процедура абсолютно безболезненна, поскольку нет сильного нагрева зуба и механических предметов (бора), раздражающих нервные окончания. Значит, при лечении кариеса отпадает необходимость в анестезии. Препарирование происходит достаточно быстро, однако врач способен точно контролировать процесс, немедленно прервав его одним движением. У лазера нет такого эффекта, как остаточное вращение турбины после прекращения подачи воздуха. Легкий и полный контроль при работе с лазером обеспечивает высочайшую точность и безопасность.
После препарирования лазером мы получаем идеальную полость, подготовленную к пломбированию. Края стенок полости закругленные, тогда как при работе турбиной стенки перпендикулярны поверхности зуба, и нам приходиться после препарирования проводить дополнительное финирование. После препарирования лазером в этом нет необходимости. Но самое главное – после лазерного препарирования отсутствует «смазанный слой», т.к. нет вращающихся частей, способных его создать. Поверхность абсолютно чистая, не нуждается в протравке и полностью готова к бондингу.
После лазера на эмали не остается трещин и сколов, которые обязательно образуются при работе борами.
Кроме того, полость после препарирования лазером остается стерильной и не требует длительной антисептической обработки, т.к. лазерный свет уничтожает любую патогенную флору.
При работе лазерной установки пациент не слышит так пугающего всех неприятного шума бормашины. Звуковое давление, создаваемое при работе лазером, в 20 раз меньше, чем у высококачественной импортной высокоскоростной турбины. Этот психологический фактор порой является решающим для пациента при выборе места лечения.
Кроме того, как уже отмечалось, препарирование лазером – процедура бесконтактная, т.е. ни один из компонентов лазерной установки непосредственно не контактирует с биологическими тканями – препарирование происходит дистанционно. После работы стерилизации подвергается только наконечник. Следует отметить, что отпрепарированные частицы твердых тканей вместе с инфекцией не выбрасываются с большой силой в воздух кабинета стоматолога, как это происходит при использовании турбины. При лазерном препарировании они не приобретают высокой кинетической энергии и сразу же осаждаются струей спрея. Все это позволяет организовать беспрецедентный по своей безопасности санитарно-эпидемиологический режим работы стоматологического кабинета, позволяющий свести до нуля всякий риск перекрестной инфекции, что сегодня особенно актуально. Подобный уровень инфекционного контроля, несомненно, должен быть по достоинству оценен как санитарно-эпидемиологическими службы, так и пациентами.
Кроме несомненных практических преимуществ, применение лазера может существенно снизить себестоимость лечения. Работая лазером, врач практически полностью исключают из повседневных расходов боры, кислоту для травления, средства антисептической обработки кариозной полости, резко снижается расход дезинфицирующих средств. Время, затрачиваемое врачом на лечение одного пациента, сокращается более чем на 40%!
Экономия времени достигается за счет следующих причин:
Приблизительно подсчитав время на проведение вышеперечисленных манипуляций, то каждый врач-стоматолог согласится, что оно составляет чуть менее половины от общего времени приема. Если к этому еще приплюсовать существенную экономию расходных материалов, наконечников, боров и др., то мы получим несомненное доказательство экономической обоснованности и рентабельности применения лазера в повседневной практике врача-стоматолога.
Подводя итог, можно выделить следующие несомненные преимущества препарирования твердых тканей зубов лазером:
Сейчас с твердой уверенностью можно сказать, что применение лазеров в стоматологии оправданно, экономически выгодно и является более совершенной альтернативой существующим методам лечения стоматологических заболеваний.
У этой технологии большое будущее, и повсеместное внедрение лазерных систем в стоматологическую практику – лишь вопрос времени.
Список использованных источников
1. Бабаева Э.О. Лазеры в стоматологии: от божественных истоков до новейших разработок. // Стоматология сегодня. – 2002 – №8 (21).2. Бграмов Р.И. Использование импульстного СО2-лазера при костных и костно-пластических операциях челюстно-лицевой области в эксперименте. // Стоматология. – 1989. – Т.68,№3. – с. 17-19.3. Бюргер Ф. Лазеры в зубоврачебном деле // Маэстро. – 2000 – №1 – с. 67-75.4. Лазерная стоматология: Инф. Бюл. “Дент-Информ”. – 2000 – №1 – с. 21-25.5. Прикладная лазерная медицина: Учебно-справочное пособие. / Под ред. Х.П.Берлиена – М.: Интерэксперт, 1997. – 346 с.6. Прохончуков А.А., Жижина Н.А. Лазеры в стоматологии. – М.: Медицина, 1986. – 174 с.
nauchniestati.ru
Реферат
На тему:
«Лазеры в стоматологии»
Ижевск 2010
Введение
Слово лазер (laser) является акронимом слов «Light Amplification by Stimulated Emission of Radiation» (усиление света путем вынужденного излучения). Основы теории лазеров были заложены Эйнштейном в 1917 г. Удивительно, но только через 50 лет эти принципы были достаточно поняты, и технология смогла быть реализована практически. Первый лазер, использующий видимый, свет был разработан в 1960 году — в качестве лазерной среды использовался рубин, генерирующий красный луч интенсивного света. За этим в 1961 г. последовал другой кристаллический лазер, использовавший неодимовый алюмоиттриевый гранат (Nd: YAG). В 1964 г. физики компании Bell Laboratories изготовили газовый лазер с углекислым газом (CO2) в качестве лазерной среды. В тот же год был изобретен другой газовый лазер — впоследствии оказавшийся ценным для стоматологии — аргоновый. Стоматологи, занимавшиеся исследованием влияния рубинового лазера на эмаль зубов, обнаружили, что он вызывал образование трещин в эмали. В результате был сделан вывод — лазеры не имеют перспектив применения в стоматологии. Однако, в медицине исследование и клиническое использование лазеров процветало. В 1968 г. CO2-лазер впервые использовался для проведения хирургии мягких тканей. Вместе с ростом числа длин волн лазеров, развивались и показания к применению в общей и челюстно-лицевой хирургии. Лишь в середине 1980-х годов отмечено возрождение интереса к использованию лазеров в стоматологии для обработки твердых тканей, таких как эмаль. Хотя только некоторые типы лазеров, например Nd: YAG, годятся для обработки твердых тканей, потенциальная опасность и отсутствие специфичности к зубным тканям ограничивают их применение.
1. Принцип лазерного луча
Основным физическим процессом, который определяет действие лазерных аппаратов, является вынужденное испускание излучения. Это испускание образуется при тесном взаимодействии фотона с возбужденным атомом в момент точного совпадения энергии фотона с энергией возбужденного атома (молекулы). В конечном итоге этого тесного взаимодействия, атом (молекула) переходит из возбужденного состояния в невозбужденное, а излишек энергии излучается в виде нового фотона с абсолютно такой же энергией, поляризацией и направлением распространения, как и у первичного фотона. Простейший принцип работы стоматологического лазера заключается в колебании луча света между оптическими зеркалами и линзами, набирающим силу с каждым циклом. Когда достигается достаточная мощность, луч испускается. Этот выброс энергии вызывает тщательно контролируемую реакцию.
2. Взаимодействие лазера с тканью
Воздействие лазерного излучения на биологические структуры зависит от длины волны излучаемой лазером энергии, плотности энергии луча и временных характеристик энергии луча. Процессы, которые могут при этом происходить — поглощение, передача, отражение и рассеивание.
Поглощение — атомы и молекулы, которые составляют ткань, преобразовывают лазерную световую энергию в высокую температуру, химическую, акустическую или не лазерную световую энергию. На поглощение влияют длина волны, содержание воды, пигментация и тип ткани.
Передача — лазерная энергия проходит через ткань неизмененной.
Отражение — отраженный лазерный свет не влияет на ткань.
Рассеивание — индивидуальные молекулы и атомы принимают лазерный луч и отклоняют силу луча в направлении, отличном от исходного. В конечном счете, лазерный свет поглощается в большом объеме с менее интенсивным тепловым эффектом. На рассеивание влияет длина волны.
3. Лазеры в стоматологии
Аргоновый лазер (длина волны 488 нм и 514 нм): излучение хорошо абсорбируется пигментом в тканях, таких как меланин и гемоглобин. Длина волны 488 нм является такой же, как и в полимеразиционных лампах. При этом скорость и степень полимеризации светоотверждаемых материалов лазером намного превосходит аналогичные показатели при использовании обычных ламп. При использовании же аргонового лазера в хирургии достигается превосходный гемостаз.
Диодный лазер (полупроводниковый, длина волны 792−1030 нм): излучение хорошо поглощается в пигментированной ткани, имеет хороший гемостатический эффект, обладает противовоспалительным и стимулирующим репарацию эффектами. Доставка излучения происходит по гибкому кварц-полимерному световоду, что упрощает работу хирурга в труднодоступных участках. Лазерный аппарат имеет компактные габариты и прост в обращении и обслуживании. На данный момент это наиболее доступный лазерный аппарат по соотношению цена / функциональность.
Nd: YAG лазер (неодимовый, длина волны 1064 нм): излучение хорошо поглощается в пигментированной ткани и хуже в воде. В прошлом был наиболее распространен в стоматологии. Может работать в импульсном и непрерывном режимах. Доставка излучения осуществляется по гибкому световоду.
He-Ne лазер (гелий-неоновый, длина волны 610−630 нм): его излучение хорошо проникает в ткани и имеет фотостимулирующий эффект, вследствие чего находит свое применение в физиотерапии. Эти лазеры — единственные, которые имеются в свободной продаже и могут быть использованы пациентами самостоятельно.
CO2 лазер (углекислотный, длина волны 10 600 нм) имеет хорошее поглощение в воде и среднее в гидроксиапатите. Его использование на твердых тканях потенциально опасно вследствие возможного перегрева эмали и кости. Такой лазер имеет хорошие хирургические свойства, но существует проблема доставки излучения к тканям. В настоящее время CO2-системы постепенно уступают свое место в хирургии другим лазерам.
Эрбиевый лазер (длина волны 2940 и 2780 нм): его излучение хорошо поглощается водой и гидроксиапатитом. Наиболее перспективный лазер в стоматологии, может использоваться для работы на твердых тканях зуба. Доставка излучения осуществляется по гибкому световоду. Показания для применения лазера практически полностью повторяют список заболеваний, с которыми приходиться сталкиваться в своей работе врачу-стоматологу. К наиболее распространенным и востребованным показаниям относятся:
· Препарирование полостей всех классов, лечение кариеса;
· Обработка (протравливание) эмали;
· Стерилизация корневого канала, воздействие на апикальный очаг инфекции;
· Пульпотомия;
· Обработка пародонтальных карманов;
· Экспозиция эмплантов;
· Гингивотомия и гингивопластика;
· Френэктомия;
· Лечение заболеваний слизистой;
· Реконструктивные и гранулематозные поражения;
· Оперативная стоматология.
4. Применение лазера в стоматологии
При помощи лазерных установок успешно лечится кариес начальной стадии, при этом лазер удаляет только пораженные участки, не затрагивая здоровые ткани зуба (дентин и эмаль).
Целесообразно применять лазер при запечатывании фиссур (естественных бороздок и канавок на жевательной поверхности зуба) и клиновидных дефектов.
Проведение пародонтологических операций в лазерной стоматологии позволяет добиться хороших эстетических результатов и обеспечить полную безболезненность операции. Лазерная обработка десен и фотодинамическая терапия с применением специального лазерного аппарата и водорослей уже после первого сеанса устраняет кровоточивость десен, а также неприятный запах изо рта. Даже при наличии глубоких карманов за несколько сеансов удается «закрыть» карманы. При этом происходит более быстрое оздоровление пародонтальной ткани и укрепление зубов.
Стоматологические лазерные аппараты применяются при удалении фибром без наложения швов, проводится чистая и стерильная процедура биопсии, проводятся бескровные хирургические операции на мягких тканях. Успешно лечатся заболевания слизистой оболочки полости рта: лейкоплакия, гиперкератозы, красный плоский лишай, лечении афтозных язв в полости рта пациента (закрываются нервные окончания).
При лечении зубных каналов (эндодонтия) лазер применяется для дезинфекции корневого канала при пульпитах и периодонтитах. Эффективность бактерицидного действия равна 100%.
Применение лазерной техники помогает при лечении повышенной чувствительности зубов. При этом микротвердость эмали увеличивается до 38%.
В эстетической стоматологии при помощи лазера удается изменить контур десен, форму ткани десен для формирования красивой улыбки, при необходимости легко и быстро удаляются уздечки языка. Наибольшую популярность в последнее время получило эффективное и безболезненное лазерное отбеливание зубов с сохранением стойкого результата на долгое время.
При установке зубного протеза лазер поможет создать очень точный микрозамок для коронки, что позволяет не обтачивать соседние зубы. При установке имплантатов лазерные приборы позволяют идеально определить место установки, произвести минимальный разрез тканей и обеспечить наискорейшее заживление области имплантации.
Лечение зубов лазером имеет и другие преимущества — например, при традиционной подготовке зуба к пломбированию стоматологу бывает очень сложно удалить размягченный дентин полностью и не задеть при этом здоровые ткани зуба. Лазер справляется с этой задачей идеально — он удаляет только те ткани, которые уже пострадали в результате развития кариозного процесса.
Поэтому лечение зубов лазером намного эффективнее традиционных технологий, ведь срок службы пломб во многом зависит от качества препарирования кариозной полости. К тому же параллельно с препарированием лазер обеспечивает антибактериальную обработку полости, что позволяет избежать развития под пломбой вторичного кариеса. Лечение кариеса лазером, помимо перечисленных качеств обеспечивает лечение зубов без боли и не затрагивает здоровые ткани зуба. Благодаря столь серьезным преимуществам данной технологии лечение зубов лазером широко применяется не только во взрослой, но и в детской стоматологии.
Новейшие стоматологические установки позволяют проводить не только лечение зубов лазером, но и разнообразные хирургические манипуляции без применения анестезии. Благодаря лазеру заживление разрезов слизистой проходит гораздо быстрее, исключается развитие отеков, воспалений и прочих осложнений, нередко возникающих после проведения стоматологических манипуляций.
В хирургической стоматологии практически всегда существует риск инфицирования раны после удаления зуба, проведенной имплантации зубов и других вмешательствах. Травмы тканей, полученные в результате хирургической операции, несоблюдение пациентом рекомендаций могут стать причиной развития вторичной инфекции. Применение лазера в хирургической стоматологии позволяет значительно снизить вероятность инфицирования раны, сократить количество введенного анестетика, существенно уменьшить кровоточивость операционной раны.
Важно и то, что после применения лазера при хирургических манипуляциях наблюдается быстрое заживление раны, чем обуславливается более комфортное состояние пациента после проведенной операции.
Антибактериальные свойства лазера позволяют использовать его для лечения не только кариеса, но и пародонтита. Лазер эффективно обрабатывает корни зубов и обеспечивает полную санацию патологических карманов, в результате чего сокращаются сроки лечения, да и сами манипуляции не доставляют пациентам неприятных ощущений.
Лечение зубов лазером особенно показано пациентам, страдающим повышенной чувствительностью зубов, беременным женщинам, пациентам, страдающим аллергическими реакциями на обезболивающие препараты. Противопоказаний к применению лазера до настоящего времени выявить не удалось. Недостатком лазерного лечения зубов можно считать лишь более высокую, по сравнению с традиционными методами, стоимость. На лечение зубов лазером цены значительно выше и связано это, в первую очередь, с дороговизной лазерного оборудования. Несмотря на это, преимущества лазерного лечения зубов оправдывают затраты. Об этом говорят восторженные отзывы пациентов, которые испытали на себе лечение зубов лазером.
лазер стоматология лечение луч
Заключение
Лазеры комфортны для пациента и имеют ряд преимуществ по сравнению с традиционными методами лечения. В настоящее время преимущества применения лазеров в стоматологии доказаны практикой и неоспоримы: безопасность, точность и быстрота, отсутствие нежелательных эффектов, ограниченное применение анестетиков — все это позволяет осуществлять щадящее и безболезненное лечение, ускорение сроков лечения, а следовательно создает более комфортные условия и для врача, и для пациента.
Литература
1. Аразашвили Л. Д. Лечение хронических верхушечных периодонтитов с использованием лазерного излучения // Актуальные вопросы эндодонтии. Труды ЦНИИС. — Москва, 1990. — С. 114−115.
2. Кодылев А. Г., Шумский А. В. Применение эрбий-хромового лазера в комплексном лечении периодонтита // Эндодонтия today. — 2008. — № 1. — С. 36−40
3. Кунин А. А. Современные аспекты эндодонтического лечения зубов // Клиническая стоматология. — 2003. — № 1. — С. 18−19.
4. Максимовский Ю. М. Эндодонтия и сохранение функций зуба // Новое в стоматологии. — 2001. — № 6. — С. 3−6.
5. Мороз Б. Т., Беликов А. В., Павловская И. В. Использование высокоинтенсивного лазерного излучения в эндодонтии // Институт стоматологии. — 1999. — № 4. — С. 34−35.
Показать Свернутьsinp.com.ua
Реферат
На тему:
«Лазеры в стоматологии»
Ижевск 2010
Введение
Слово лазер (laser) является акронимом слов «Light Amplification by Stimulated Emission of Radiation» (усиление света путем вынужденного излучения). Основы теории лазеров были заложены Эйнштейном в 1917 г. Удивительно, но только через 50 лет эти принципы были достаточно поняты, и технология смогла быть реализована практически. Первый лазер, использующий видимый, свет был разработан в 1960 году — в качестве лазерной среды использовался рубин, генерирующий красный луч интенсивного света. За этим в 1961 г. последовал другой кристаллический лазер, использовавший неодимовый алюмоиттриевый гранат (Nd: YAG). В 1964 г. физики компании Bell Laboratories изготовили газовый лазер с углекислым газом (CO2) в качестве лазерной среды. В тот же год был изобретен другой газовый лазер — впоследствии оказавшийся ценным для стоматологии — аргоновый. Стоматологи, занимавшиеся исследованием влияния рубинового лазера на эмаль зубов, обнаружили, что он вызывал образование трещин в эмали. В результате был сделан вывод — лазеры не имеют перспектив применения в стоматологии. Однако, в медицине исследование и клиническое использование лазеров процветало. В 1968 г. CO2-лазер впервые использовался для проведения хирургии мягких тканей. Вместе с ростом числа длин волн лазеров, развивались и показания к применению в общей и челюстно-лицевой хирургии. Лишь в середине 1980-х годов отмечено возрождение интереса к использованию лазеров в стоматологии для обработки твердых тканей, таких как эмаль. Хотя только некоторые типы лазеров, например Nd: YAG, годятся для обработки твердых тканей, потенциальная опасность и отсутствие специфичности к зубным тканям ограничивают их применение.
1. Принцип лазерного луча
Основным физическим процессом, который определяет действие лазерных аппаратов, является вынужденное испускание излучения. Это испускание образуется при тесном взаимодействии фотона с возбужденным атомом в момент точного совпадения энергии фотона с энергией возбужденного атома (молекулы). В конечном итоге этого тесного взаимодействия, атом (молекула) переходит из возбужденного состояния в невозбужденное, а излишек энергии излучается в виде нового фотона с абсолютно такой же энергией, поляризацией и направлением распространения, как и у первичного фотона. Простейший принцип работы стоматологического лазера заключается в колебании луча света между оптическими зеркалами и линзами, набирающим силу с каждым циклом. Когда достигается достаточная мощность, луч испускается. Этот выброс энергии вызывает тщательно контролируемую реакцию.
2. Взаимодействие лазера с тканью
Воздействие лазерного излучения на биологические структуры зависит от длины волны излучаемой лазером энергии, плотности энергии луча и временных характеристик энергии луча. Процессы, которые могут при этом происходить — поглощение, передача, отражение и рассеивание.
Поглощение — атомы и молекулы, которые составляют ткань, преобразовывают лазерную световую энергию в высокую температуру, химическую, акустическую или не лазерную световую энергию. На поглощение влияют длина волны, содержание воды, пигментация и тип ткани.
Передача — лазерная энергия проходит через ткань неизмененной.
Отражение — отраженный лазерный свет не влияет на ткань.
Рассеивание — индивидуальные молекулы и атомы принимают лазерный луч и отклоняют силу луча в направлении, отличном от исходного. В конечном счете, лазерный свет поглощается в большом объеме с менее интенсивным тепловым эффектом. На рассеивание влияет длина волны.
3. Лазеры в стоматологии
Аргоновый лазер (длина волны 488 нм и 514 нм): излучение хорошо абсорбируется пигментом в тканях, таких как меланин и гемоглобин. Длина волны 488 нм является такой же, как и в полимеразиционных лампах. При этом скорость и степень полимеризации светоотверждаемых материалов лазером намного превосходит аналогичные показатели при использовании обычных ламп. При использовании же аргонового лазера в хирургии достигается превосходный гемостаз.
Диодный лазер (полупроводниковый, длина волны 792−1030 нм): излучение хорошо поглощается в пигментированной ткани, имеет хороший гемостатический эффект, обладает противовоспалительным и стимулирующим репарацию эффектами. Доставка излучения происходит по гибкому кварц-полимерному световоду, что упрощает работу хирурга в труднодоступных участках. Лазерный аппарат имеет компактные габариты и прост в обращении и обслуживании. На данный момент это наиболее доступный лазерный аппарат по соотношению цена / функциональность.
Nd: YAG лазер (неодимовый, длина волны 1064 нм): излучение хорошо поглощается в пигментированной ткани и хуже в воде. В прошлом был наиболее распространен в стоматологии. Может работать в импульсном и непрерывном режимах. Доставка излучения осуществляется по гибкому световоду.
He-Ne лазер (гелий-неоновый, длина волны 610−630 нм): его излучение хорошо проникает в ткани и имеет фотостимулирующий эффект, вследствие чего находит свое применение в физиотерапии. Эти лазеры — единственные, которые имеются в свободной продаже и могут быть использованы пациентами самостоятельно.
CO2 лазер (углекислотный, длина волны 10 600 нм) имеет хорошее поглощение в воде и среднее в гидроксиапатите. Его использование на твердых тканях потенциально опасно вследствие возможного перегрева эмали и кости. Такой лазер имеет хорошие хирургические свойства, но существует проблема доставки излучения к тканям. В настоящее время CO2-системы постепенно уступают свое место в хирургии другим лазерам.
Эрбиевый лазер (длина волны 2940 и 2780 нм): его излучение хорошо поглощается водой и гидроксиапатитом. Наиболее перспективный лазер в стоматологии, может использоваться для работы на твердых тканях зуба. Доставка излучения осуществляется по гибкому световоду. Показания для применения лазера практически полностью повторяют список заболеваний, с которыми приходиться сталкиваться в своей работе врачу-стоматологу. К наиболее распространенным и востребованным показаниям относятся:
· Препарирование полостей всех классов, лечение кариеса;
· Обработка (протравливание) эмали;
· Стерилизация корневого канала, воздействие на апикальный очаг инфекции;
· Пульпотомия;
· Обработка пародонтальных карманов;
· Экспозиция эмплантов;
· Гингивотомия и гингивопластика;
· Френэктомия;
· Лечение заболеваний слизистой;
· Реконструктивные и гранулематозные поражения;
· Оперативная стоматология.
4. Применение лазера в стоматологии
При помощи лазерных установок успешно лечится кариес начальной стадии, при этом лазер удаляет только пораженные участки, не затрагивая здоровые ткани зуба (дентин и эмаль).
Целесообразно применять лазер при запечатывании фиссур (естественных бороздок и канавок на жевательной поверхности зуба) и клиновидных дефектов.
Проведение пародонтологических операций в лазерной стоматологии позволяет добиться хороших эстетических результатов и обеспечить полную безболезненность операции. Лазерная обработка десен и фотодинамическая терапия с применением специального лазерного аппарата и водорослей уже после первого сеанса устраняет кровоточивость десен, а также неприятный запах изо рта. Даже при наличии глубоких карманов за несколько сеансов удается «закрыть» карманы. При этом происходит более быстрое оздоровление пародонтальной ткани и укрепление зубов.
Стоматологические лазерные аппараты применяются при удалении фибром без наложения швов, проводится чистая и стерильная процедура биопсии, проводятся бескровные хирургические операции на мягких тканях. Успешно лечатся заболевания слизистой оболочки полости рта: лейкоплакия, гиперкератозы, красный плоский лишай, лечении афтозных язв в полости рта пациента (закрываются нервные окончания).
При лечении зубных каналов (эндодонтия) лазер применяется для дезинфекции корневого канала при пульпитах и периодонтитах. Эффективность бактерицидного действия равна 100%.
Применение лазерной техники помогает при лечении повышенной чувствительности зубов. При этом микротвердость эмали увеличивается до 38%.
В эстетической стоматологии при помощи лазера удается изменить контур десен, форму ткани десен для формирования красивой улыбки, при необходимости легко и быстро удаляются уздечки языка. Наибольшую популярность в последнее время получило эффективное и безболезненное лазерное отбеливание зубов с сохранением стойкого результата на долгое время.
При установке зубного протеза лазер поможет создать очень точный микрозамок для коронки, что позволяет не обтачивать соседние зубы. При установке имплантатов лазерные приборы позволяют идеально определить место установки, произвести минимальный разрез тканей и обеспечить наискорейшее заживление области имплантации.
Лечение зубов лазером имеет и другие преимущества — например, при традиционной подготовке зуба к пломбированию стоматологу бывает очень сложно удалить размягченный дентин полностью и не задеть при этом здоровые ткани зуба. Лазер справляется с этой задачей идеально — он удаляет только те ткани, которые уже пострадали в результате развития кариозного процесса.
Поэтому лечение зубов лазером намного эффективнее традиционных технологий, ведь срок службы пломб во многом зависит от качества препарирования кариозной полости. К тому же параллельно с препарированием лазер обеспечивает антибактериальную обработку полости, что позволяет избежать развития под пломбой вторичного кариеса. Лечение кариеса лазером, помимо перечисленных качеств обеспечивает лечение зубов без боли и не затрагивает здоровые ткани зуба. Благодаря столь серьезным преимуществам данной технологии лечение зубов лазером широко применяется не только во взрослой, но и в детской стоматологии.
Новейшие стоматологические установки позволяют проводить не только лечение зубов лазером, но и разнообразные хирургические манипуляции без применения анестезии. Благодаря лазеру заживление разрезов слизистой проходит гораздо быстрее, исключается развитие отеков, воспалений и прочих осложнений, нередко возникающих после проведения стоматологических манипуляций.
В хирургической стоматологии практически всегда существует риск инфицирования раны после удаления зуба, проведенной имплантации зубов и других вмешательствах. Травмы тканей, полученные в результате хирургической операции, несоблюдение пациентом рекомендаций могут стать причиной развития вторичной инфекции. Применение лазера в хирургической стоматологии позволяет значительно снизить вероятность инфицирования раны, сократить количество введенного анестетика, существенно уменьшить кровоточивость операционной раны.
Важно и то, что после применения лазера при хирургических манипуляциях наблюдается быстрое заживление раны, чем обуславливается более комфортное состояние пациента после проведенной операции.
Антибактериальные свойства лазера позволяют использовать его для лечения не только кариеса, но и пародонтита. Лазер эффективно обрабатывает корни зубов и обеспечивает полную санацию патологических карманов, в результате чего сокращаются сроки лечения, да и сами манипуляции не доставляют пациентам неприятных ощущений.
Лечение зубов лазером особенно показано пациентам, страдающим повышенной чувствительностью зубов, беременным женщинам, пациентам, страдающим аллергическими реакциями на обезболивающие препараты. Противопоказаний к применению лазера до настоящего времени выявить не удалось. Недостатком лазерного лечения зубов можно считать лишь более высокую, по сравнению с традиционными методами, стоимость. На лечение зубов лазером цены значительно выше и связано это, в первую очередь, с дороговизной лазерного оборудования. Несмотря на это, преимущества лазерного лечения зубов оправдывают затраты. Об этом говорят восторженные отзывы пациентов, которые испытали на себе лечение зубов лазером.
лазер стоматология лечение луч
Заключение
Лазеры комфортны для пациента и имеют ряд преимуществ по сравнению с традиционными методами лечения. В настоящее время преимущества применения лазеров в стоматологии доказаны практикой и неоспоримы: безопасность, точность и быстрота, отсутствие нежелательных эффектов, ограниченное применение анестетиков — все это позволяет осуществлять щадящее и безболезненное лечение, ускорение сроков лечения, а следовательно создает более комфортные условия и для врача, и для пациента.
Литература
1. Аразашвили Л. Д. Лечение хронических верхушечных периодонтитов с использованием лазерного излучения // Актуальные вопросы эндодонтии. Труды ЦНИИС. — Москва, 1990. — С. 114−115.
2. Кодылев А. Г., Шумский А. В. Применение эрбий-хромового лазера в комплексном лечении периодонтита // Эндодонтия today. — 2008. — № 1. — С. 36−40
3. Кунин А. А. Современные аспекты эндодонтического лечения зубов // Клиническая стоматология. — 2003. — № 1. — С. 18−19.
4. Максимовский Ю. М. Эндодонтия и сохранение функций зуба // Новое в стоматологии. — 2001. — № 6. — С. 3−6.
5. Мороз Б. Т., Беликов А. В., Павловская И. В. Использование высокоинтенсивного лазерного излучения в эндодонтии // Институт стоматологии. — 1999. — № 4. — С. 34−35.
Показать Свернутьreferat.bookap.info
Реферат
На тему:
«Лазеры в стоматологии»
Ижевск 2010
Введение
Слово лазер (laser) является акронимом слов «Light Amplification by Stimulated Emission of Radiation» (усиление света путем вынужденного излучения). Основы теории лазеров были заложены Эйнштейном в 1917 г. Удивительно, но только через 50 лет эти принципы были достаточно поняты, и технология смогла быть реализована практически. Первый лазер, использующий видимый, свет был разработан в 1960 году – в качестве лазерной среды использовался рубин, генерирующий красный луч интенсивного света. За этим в 1961 г. последовал другой кристаллический лазер, использовавший неодимовый алюмоиттриевый гранат (Nd:YAG). В 1964 г. физики компании Bell Laboratories изготовили газовый лазер с углекислым газом (CO2) в качестве лазерной среды. В тот же год был изобретен другой газовый лазер – впоследствии оказавшийся ценным для стоматологии – аргоновый. Стоматологи, занимавшиеся исследованием влияния рубинового лазера на эмаль зубов, обнаружили, что он вызывал образование трещин в эмали. В результате был сделан вывод – лазеры не имеют перспектив применения в стоматологии. Однако, в медицине исследование и клиническое использование лазеров процветало. В 1968 г. CO2-лазер впервые использовался для проведения хирургии мягких тканей. Вместе с ростом числа длин волн лазеров, развивались и показания к применению в общей и челюстно-лицевой хирургии. Лишь в середине 1980-х годов отмечено возрождение интереса к использованию лазеров в стоматологии для обработки твердых тканей, таких как эмаль. Хотя только некоторые типы лазеров, например Nd:YAG, годятся для обработки твердых тканей, потенциальная опасность и отсутствие специфичности к зубным тканям ограничивают их применение.
1 . Принцип лазерного луча
Основным физическим процессом, который определяет действие лазерных аппаратов, является вынужденное испускание излучения. Это испускание образуется при тесном взаимодействии фотона с возбужденным атомом в момент точного совпадения энергии фотона с энергией возбужденного атома (молекулы). В конечном итоге этого тесного взаимодействия, атом (молекула) переходит из возбужденного состояния в невозбужденное, а излишек энергии излучается в виде нового фотона с абсолютно такой же энергией, поляризацией и направлением распространения, как и у первичного фотона. Простейший принцип работы стоматологического лазера заключается в колебании луча света между оптическими зеркалами и линзами, набирающим силу с каждым циклом. Когда достигается достаточная мощность, луч испускается. Этот выброс энергии вызывает тщательно контролируемую реакцию.
2. Взаимодействие лазера с тканью
Воздействие лазерного излучения на биологические структуры зависит от длины волны излучаемой лазером энергии, плотности энергии луча и временных характеристик энергии луча. Процессы, которые могут при этом происходить – поглощение, передача, отражение и рассеивание.
Поглощение - атомы и молекулы, которые составляют ткань, преобразовывают лазерную световую энергию в высокую температуру, химическую, акустическую или не лазерную световую энергию. На поглощение влияют длина волны, содержание воды, пигментация и тип ткани.
Передача – лазерная энергия проходит через ткань неизмененной.
Отражение – отраженный лазерный свет не влияет на ткань.
Рассеивание – индивидуальные молекулы и атомы принимают лазерный луч и отклоняют силу луча в направлении, отличном от исходного. В конечном счете, лазерный свет поглощается в большом объеме с менее интенсивным тепловым эффектом. На рассеивание влияет длина волны.
3. Лазеры в стоматологии
Аргоновый лазер (длина волны 488 нм и 514 нм): излучение хорошо абсорбируется пигментом в тканях, таких как меланин и гемоглобин. Длина волны 488 нм является такой же, как и в полимеразиционных лампах. При этом скорость и степень полимеризации светоотверждаемых материалов лазером намного превосходит аналогичные показатели при использовании обычных ламп. При использовании же аргонового лазера в хирургии достигается превосходный гемостаз.
Диодный лазер (полупроводниковый, длина волны 792–1030 нм): излучение хорошо поглощается в пигментированной ткани, имеет хороший гемостатический эффект, обладает противовоспалительным и стимулирующим репарацию эффектами. Доставка излучения происходит по гибкому кварц-полимерному световоду, что упрощает работу хирурга в труднодоступных участках. Лазерный аппарат имеет компактные габариты и прост в обращении и обслуживании. На данный момент это наиболее доступный лазерный аппарат по соотношению цена / функциональность.
Nd: YAG лазер (неодимовый, длина волны 1064 нм): излучение хорошо поглощается в пигментированной ткани и хуже в воде. В прошлом был наиболее распространен в стоматологии. Может работать в импульсном и непрерывном режимах. Доставка излучения осуществляется по гибкому световоду.
He-Ne лазер (гелий-неоновый, длина волны 610–630 нм): его излучение хорошо проникает в ткани и имеет фотостимулирующий эффект, вследствие чего находит свое применение в физиотерапии. Эти лазеры – единственные, которые имеются в свободной продаже и могут быть использованы пациентами самостоятельно.
CO2 лазер (углекислотный, длина волны 10600 нм) имеет хорошее поглощение в воде и среднее в гидроксиапатите. Его использование на твердых тканях потенциально опасно вследствие возможного перегрева эмали и кости. Такой лазер имеет хорошие хирургические свойства, но существует проблема доставки излучения к тканям. В настоящее время CO2-системы постепенно уступают свое место в хирургии другим лазерам.
Эрбиевый лазер (длина волны 2940 и 2780 нм): его излучение хорошо поглощается водой и гидроксиапатитом. Наиболее перспективный лазер в стоматологии, может использоваться для работы на твердых тканях зуба. Доставка излучения осуществляется по гибкому световоду. Показания для применения лазера практически полностью повторяют список заболеваний, с которыми приходиться сталкиваться в своей работе врачу-стоматологу. К наиболее распространенным и востребованным показаниям относятся:
· Препарирование полостей всех классов, лечение кариеса;
· Обработка (протравливание) эмали;
· Стерилизация корневого канала, воздействие на апикальный очаг инфекции;
· Пульпотомия;
· Обработка пародонтальных карманов;
· Экспозиция эмплантов;
· Гингивотомия и гингивопластика;
· Френэктомия;
· Лечение заболеваний слизистой;
· Реконструктивные и гранулематозные поражения;
· Оперативная стоматология.
При помощи лазерных установок успешно лечится кариес начальной стадии, при этом лазер удаляет только пораженные участки, не затрагивая здоровые ткани зуба (дентин и эмаль).
Целесообразно применять лазер при запечатывании фиссур (естественных бороздок и канавок на жевательной поверхности зуба) и клиновидных дефектов.
Проведение пародонтологических операций в лазерной стоматологии позволяет добиться хороших эстетических результатов и обеспечить полную безболезненность операции. Лазерная обработка десен и фотодинамическая терапия с применением специального лазерного аппарата и водорослей уже после первого сеанса устраняет кровоточивость десен, а также неприятный запах изо рта. Даже при наличии глубоких карманов за несколько сеансов удается «закрыть» карманы. При этом происходит более быстрое оздоровление пародонтальной ткани и укрепление зубов.
Стоматологические лазерные аппараты применяются при удалении фибром без наложения швов, проводится чистая и стерильная процедура биопсии, проводятся бескровные хирургические операции на мягких тканях. Успешно лечатся заболевания слизистой оболочки полости рта: лейкоплакия, гиперкератозы, красный плоский лишай, лечении афтозных язв в полости рта пациента (закрываются нервные окончания).
При лечении зубных каналов (эндодонтия) лазер применяется для дезинфекции корневого канала при пульпитах и периодонтитах. Эффективность бактерицидного действия равна 100%.
Применение лазерной техники помогает при лечении повышенной чувствительности зубов. При этом микротвердость эмали увеличивается до 38%.
В эстетической стоматологии при помощи лазера удается изменить контур десен, форму ткани десен для формирования красивой улыбки, при необходимости легко и быстро удаляются уздечки языка. Наибольшую популярность в последнее время получило эффективное и безболезненное лазерное отбеливание зубов с сохранением стойкого результата на долгое время.
При установке зубного протеза лазер поможет создать очень точный микрозамок для коронки, что позволяет не обтачивать соседние зубы. При установке имплантатов лазерные приборы позволяют идеально определить место установки, произвести минимальный разрез тканей и обеспечить наискорейшее заживление области имплантации.
Лечение зубов лазером имеет и другие преимущества – например, при традиционной подготовке зуба к пломбированию стоматологу бывает очень сложно удалить размягченный дентин полностью и не задеть при этом здоровые ткани зуба. Лазер справляется с этой задачей идеально – он удаляет только те ткани, которые уже пострадали в результате развития кариозного процесса.
Поэтому лечение зубов лазером намного эффективнее традиционных технологий, ведь срок службы пломб во многом зависит от качества препарирования кариозной полости. К тому же параллельно с препарированием лазер обеспечивает антибактериальную обработку полости, что позволяет избежать развития под пломбой вторичного кариеса. Лечение кариеса лазером, помимо перечисленных качеств обеспечивает лечение зубов без боли и не затрагивает здоровые ткани зуба. Благодаря столь серьезным преимуществам данной технологии лечение зубов лазером широко применяется не только во взрослой, но и в детской стоматологии.
Новейшие стоматологические установки позволяют проводить не только лечение зубов лазером, но и разнообразные хирургические манипуляции без применения анестезии. Благодаря лазеру заживление разрезов слизистой проходит гораздо быстрее, исключается развитие отеков, воспалений и прочих осложнений, нередко возникающих после проведения стоматологических манипуляций.
В хирургической стоматологии практически всегда существует риск инфицирования раны после удаления зуба, проведенной имплантации зубов и других вмешательствах. Травмы тканей, полученные в результате хирургической операции, несоблюдение пациентом рекомендаций могут стать причиной развития вторичной инфекции. Применение лазера в хирургической стоматологии позволяет значительно снизить вероятность инфицирования раны, сократить количество введенного анестетика, существенно уменьшить кровоточивость операционной раны.
Важно и то, что после применения лазера при хирургических манипуляциях наблюдается быстрое заживление раны, чем обуславливается более комфортное состояние пациента после проведенной операции.
Антибактериальные свойства лазера позволяют использовать его для лечения не только кариеса, но и пародонтита. Лазер эффективно обрабатывает корни зубов и обеспечивает полную санацию патологических карманов, в результате чего сокращаются сроки лечения, да и сами манипуляции не доставляют пациентам неприятных ощущений.
Лечение зубов лазером особенно показано пациентам, страдающим повышенной чувствительностью зубов, беременным женщинам, пациентам, страдающим аллергическими реакциями на обезболивающие препараты. Противопоказаний к применению лазера до настоящего времени выявить не удалось. Недостатком лазерного лечения зубов можно считать лишь более высокую, по сравнению с традиционными методами, стоимость. На лечение зубов лазером цены значительно выше и связано это, в первую очередь, с дороговизной лазерного оборудования. Несмотря на это, преимущества лазерного лечения зубов оправдывают затраты. Об этом говорят восторженные отзывы пациентов, которые испытали на себе лечение зубов лазером.
лазер стоматология лечение луч
Заключение
Лазеры комфортны для пациента и имеют ряд преимуществ по сравнению с традиционными методами лечения. В настоящее время преимущества применения лазеров в стоматологии доказаны практикой и неоспоримы: безопасность, точность и быстрота, отсутствие нежелательных эффектов, ограниченное применение анестетиков – все это позволяет осуществлять щадящее и безболезненное лечение, ускорение сроков лечения, а следовательно создает более комфортные условия и для врача, и для пациента.
Литература
1. Аразашвили Л.Д. Лечение хронических верхушечных периодонтитов с использованием лазерного излучения // Актуальные вопросы эндодонтии. Труды ЦНИИС. – Москва, 1990. – С. 114–115.
2. Кодылев А.Г., Шумский А.В. Применение эрбий-хромового лазера в комплексном лечении периодонтита // Эндодонтия today. – 2008. – №1. – С. 36–40
3. Кунин А.А. Современные аспекты эндодонтического лечения зубов // Клиническая стоматология. – 2003. – №1. – С. 18–19.
4. Максимовский Ю.М. Эндодонтия и сохранение функций зуба // Новое в стоматологии. – 2001. – №6. – С. 3–6.
5. Мороз Б.Т., Беликов А.В., Павловская И.В. Использование высокоинтенсивного лазерного излучения в эндодонтии // Институт стоматологии. – 1999. – №4. – С. 34–35.
www.yurii.ru
В 60-е годы XX века были представлены первые лазеры для медицинских целей. С тех пор наука и техника совершили огромный скачок в развитии, позволяя использовать лазеры для огромного количества процедур и методик. В 90-е годы произошел прорыв лазеров в стоматологию, их стали использовать для работы с мягкими и твердыми тканями. В настоящее время в стоматологии лазеры используются для профилактики стоматологических заболеваний, в пародонтологии, терапевтической стоматологии, эндодонтии, хирургии и имплантологии. Применение лазеров — целесообразный метод для ежедневной помощи стоматологам во многих видах работ. Для некоторых процедур, например френулотомии, лазеры оказались настолько клинически эффективны, что стали «золотым» стандартом среди врачей. Они позволяют работать в сухом поле, что обеспечивает превосходную видимость и сокращает время операции. При использовании лазеров вероятность рубцевания очень мала, и практически не требуется применение швов. Они также обеспечивают абсолютную стерильность рабочего поля, что в большинстве случаев является абсолютной необходимостью, например при стерилизации корневого канала. Лазеры и лазерные установки в стоматологии: описание, классификация и характеристикиЛазерные устройства производят различной длины волны, которые взаимодействуют с определенными молекулярными компонентами в животных тканях. Каждая из этих волн воздействуют на определенные компоненты ткани - меланин, гемосидерин, гемоглобин, воду и другие молекулы. В медицине лазеры применяют для облучения тканей с простым лечебным эффектом, для стерилизации, для коагуляции и резекции (операционные лазеры), а также для высокоскоростного препарирования зубов. Лазерный свет поглощается определенным структурным элементом, входящим в состав биоткани. Поглощающее вещество носит название хромофор. Им могут являться различные пигменты (меланин), кровь, вода и др. Каждый тип лазера рассчитан на определенный хромофор, его энергия калибруется исходя из поглощающих свойств хромофора, а также с учетом области применения.
Лазерные взаимодействия с кальцийсодержащими тканями были изучены, используя различные по длине волны. В зависимости от таких лазерных параметров как продолжительность импульса, разряд длина волны, глубина проникновения, выделяют следующие типы лазеров: импульсный на красителе, He-Ne, рубиновый, александритовый, диодный, неодимовый (Nd: YAG), гольдмиевый (Nо: YAG), эрбиевый (Er: YAG), углекислотный (СО2).
В медицине лазеры применяют для облучения тканей с профилактическим или лечебным эффектом, стерилизации, для коагуляции и резки мягких тканей (операционные лазеры), а также для высокоскоростного препарирования твердых тканей зубов. Лазеры производят такие поверхностные изменения в эмали как кратерообразование, таяние и перекристализация.
В стоматологии наиболее часто применяют CO2 лазер для воздействия на мягкие ткани и эрбиевый лазер для препарирования твердых тканей. Существуют аппараты, совмещающие в себе несколько типов лазеров (например, для воздействия на мягкие и твердые ткани), а также изолированные приборы для выполнения конкретных узкоспециализированных задач (лазеры для отбеливания зубов).
Различают несколько режимов работы лазера: импульсный, непрерывный и комбинированный. В соответствии с режимом работы выбирается их мощность (энергетика). Таблица 1. Типы лазеров, глубина проникновения и хромофоры
Лазер | Длина волны, нм | Глубина проникновения, мкм (мм)* | Поглощающий хромофор | Типы ткани | Лазеры, используемыев стоматологии |
Nd: YAG с удвоением частоты | 532 | 1330 (1,33) | Меланин, Кровь | Мягкие | + |
Импульсный на красителе | 585 | 2000 (2,00) | Меланин, Кровь | Мягкие | + |
He-Ne (гелий-неоновый) | 633 | 4000 (4,00) | Меланин, Кровь | Мягкие, терапия | ++++ |
Рубиновый | 694 | 3,990 (3,99) | Меланин, Кровь | - | |
Александритовый | 755 | 4320 (4,32) | Меланин, Кровь | - | |
Диодный | 830980 | 4000 (4,00) 1300 (1,3) | Меланин, Кровь | Мягкие,отбеливание | +++++++ |
Неодимовый (Nd:YAG) | 1064 | 5315 (5,31) | Меланин, Кровь | Мягкие | ++ |
Гольдмиевый (Ho:YAG) | 2100 | 665 (0,66) | Вода | Мягкие | + |
Эрбиевый (Er:YAG) | 27802940 | 70 (0,07) 3 (0,003) | Вода Вода | Твердые (мягкие)Твердые (мягкие) | ++++++ |
Углекислотный (СО2) | 960010600 | 50 (0,05) 65 (0,065) | Вода Вода | Твердые (мягкие)Мягкие | ++++++ |
Режим работы лазеров и их энергетика.
Эрбиевый:
- импульсный, энергия/имп. 300…1000 мДж/имп.
СО2-лазер:
- импульсный (до 50 мДж/мм2)
- непрерывный (1-10 Вт)
- комбинированный
Типичный лазерный аппарат состоит из базового блока, световода и лазерного наконечника, которым врач непосредственно работает в полости рта пациента. Для удобства работы выпускаются различные типы наконечников: прямые, угловые, для калибровки мощности и т. д. Все они оборудованы системой охлаждения вода-воздух для постоянного контроля температуры и удаления отпрепарированных твердых тканей.
При работе с лазерной техникой должны использоваться специальные средства защиты зрения. Врач и пациент во время препарирования должны находиться в специальных очках. Следует отметить, что опасность потери зрения от лазерного излучения на несколько порядков меньше, чем от стандартного стоматологического фотополимеризатора. Лазерный луч не рассеивается и имеет очень небольшую площадь освещения (0,5мм² против 0,8см² у стандартного световода).
Лазер работает в режиме, посылая каждую секунду в среднем около десяти лучей. Лазерный луч, попадая на твердые ткани, испаряет тончайший слой около 0,003 мм. Препарирование происходит достаточно быстро, однако врач может контролировать процесс, немедленно прервав его одним движением. После препарирования лазером получается идеальная полость: края стенок закругленные, тогда как при препарировании турбиной стенки перпендикулярны поверхности зуба, и приходиться после этого проводить дополнительное финирование.
Кроме того, полость после препарирования лазером остается стерильной, как после длительной антисептической обработки, так как лазерный свет убивает патогенную флору.
Препарирование лазером процедура бесконтактная, компоненты лазерной установки непосредственно не контактируют с тканями - препарирование происходит дистанционно. Кроме несомненных практических преимуществ, применения лазера помогает существенно снизить себестоимость лечения. Работая лазером, можно полностью исключить из повседневных расходов боры, антисептические растворы, кислоту для протравливания эмали. Время, затрачиваемое врачом на лечение, сокращается более чем на 40%.Действие лазеров на тканиИсследования in vitro показали, что CO2 лазерное облучение предотвращает прогрессию кариозных повреждений до 85 процентов, что является сопоставимым ежедневному применению фторосодержащей зубной пасты.
Последующие исследования показали, что подобные эффекты характерны и для эрбиевых лазеров до 40-60 процентов, соответственно.
Существует также устройство, которое создано на основе Er:YAG лазера - лазерная гидрокинетическая система, или ЛГКС.
Механизм воздействия на твердые ткани этой системы заключается в "микровзрывах" воды входящей в состав эмали и дентина, при ее нагревании лучом. Процесс поглощения и нагревания приводит к микроразрушению твердых тканей и вымыванию частичек эмали и дентина из полости водно-воздушным спреем. Действие лазера на твердые ткани зуба будет подробнее рассмотрено ниже.
В ряде исследований отпрепарированые поверхности зуба оценивают по способности их формировать прилипание с различными бондинговыми агентами.
He-Ne и Nd:YAG системы, создают более слабую бондинговую поверхность что может быть достигнуто при кислотном протравливании. CO2 лазеры приводят к изменениям в эмали, в зависимости от того, какая длина волны используется, но, вообще, бондинг к этим поверхностям превосходит таковой, который возникает при кислотном протравливании эмали. Просмотр электронной микроскопии показал, что ЛГКС делает поверхности чистыми и мажущий слой при этом не образуется.
Температурная оценка зубов показывает, что в in vitro приготовленых полостях на человеческих зубах и в in vivo приготовленых полостях на зубах предварительно обезболенных собак не возникает никаких неблагоприятных температурных воздействий на пульпу. Патогистологические исследования в коренных зубах у животных и людей показали, что ткани пульпы не подвергаются никаким патологическим изменениям. Также не было отмечено изменений в одонтобластах.
Механизм действия на мягкие ткани СО2-лазера основан на поглощении водой энергии лазерного света и нагреве тканей, что позволяет послойно удалять мягкие ткани и коагулировать их с минимальной (0,1мм) зоной термонекроза близлежащих тканей и их карбонизацией.
Изменения в мягких тканях в результате воздействия СО2-лазера в зависимости от температуры представлены в таблице 2:
Таблица 2. Изменения в мягких тканях в результате воздействия СО2-лазера в зависимости от температуры
Температура | Визуальные изменения | Биологические изменения |
50-60°С | Нет | Нагрев |
60-70°С | Обесцвечивание | Порог коагуляции (некроза) |
65-90°С | Белый/серый | Денатурация ткани |
90-100°С | Сморщивание (эффект “попкорна”) | Вакуолизация |
100°С (латентный нагрев) | “Перья дыма” | Вапоризация, карбонизация |
Лазерный луч уникален тем, что сжимает энергию лазерного выхода в маленький, направленный и сфокусированный пучок высококогерентного монохромного света. Свойства лазерного луча позволяют сфокусировать его до очень маленького пятна, что позволяет достичь высочайшей плотности энергии при малой энергии импульса и даёт возможность проводить действительно уникальные процедуры. Er:YAG лазер с длиной волны 2.940 нм — лучший лазер выбора для процедур на твердых тканях зуба из-за самого высокого процента поглощения в воде и гидроксилапатите. Поглощение излучения Er:YAG лазера (2.940 нм) в эмали в 2 раза выше, чем Er:YSGG лазера (2790 нм). Экстремально высокое поглощение в воде позволяет эффективно удалять или разрезать твердые ткани при помощи микровспышек. (см. рис. 1) При направлении импульсов к маленькому пятну на тканях зуба вода в этом пятне очень быстро нагревается вплоть до испарения. Этот эффект и называется аблацией. Он приводит к удалению небольшого количества ткани-цели. Специально разработанная временная структура лазерных импульсов (технология VSP компании Fotona — Variable Square Pulsations, «прямоугольные импульсы изменяемой продолжительности») позволяет достичь очень эффективного удаления твердой ткани зуба без побочных тепловых эффектов. Обработанная поверхность остается прочной, гладкой, чистой и без трещин.
Рис 1. Лазерное препарирование твердых тканей зуба
В виде звездочек обозначены микровспышки, в виде кубиков – вода, в виде точек – твердые частицы.Исследование аблации твердой ткани зуба Er:YAG лазером показало, что имеется непосредственное и выраженное влияние длительности лазерного импульса на скорость препарирования эмали и дентина. Для эффективного препарирования эмали должны использоваться очень короткие лазерные импульсы (например, от 100 до 150 микросекунд), в то время как скорость препарирования дентина фактически одинакова при ширине импульса в диапазоне от 100 до 350 микросекунд. Скорость удаления той или иной ткани зависит от процентного содержания воды. Эмаль содержит в среднем 4% воды, в то время как дентин — 10%. Кариозный дентин содержит еще большее количество воды.
Исходя из описанного взаимодействия Er:YAG лазерного излучения с тканями зуба необходимо выделить следующие его преимущества перед классической механической обработкой:
Эмаль:
Теперь, после такого пространственного экскурса в глубины теоретической биофизики, перейдем к практическому применению лазерных технологий в стоматологии.
Показания для применения лазера практически полностью повторяют список заболеваний, с которыми приходиться сталкиваться в своей работе врачу-стоматологу. К наиболее распространенным и востребованным показаниям относятся:
Как уже отчасти было сказано выше, препарирование происходит следующим образом: лазер работает в импульсном режиме, посылая каждую секунду в среднем около 10-ти лучей. Каждый импульс несет в себе строго определенное количество энергии. Лазерный луч, попадая на твердые ткани, испаряет тончайший слой около 0,003мм. Микровзрыв, возникающий вследствие нагрева молекул воды, выбрасывает частички эмали и дентина, которые немедленно удаляются из полости водно-воздушным спреем. Процедура абсолютно безболезненна, поскольку нет сильного нагрева зуба и механических предметов (бора), раздражающих нервные окончания. Значит, при лечении кариеса отпадает необходимость в анестезии. Препарирование происходит достаточно быстро, однако врач способен точно контролировать процесс, немедленно прервав его одним движением. У лазера нет такого эффекта, как остаточное вращение турбины после прекращения подачи воздуха. Легкий и полный контроль при работе с лазером обеспечивает высочайшую точность и безопасность.
После препарирования лазером мы получаем идеальную полость, подготовленную к пломбированию. Края стенок полости закругленные, тогда как при работе турбиной стенки перпендикулярны поверхности зуба, и нам приходиться после препарирования проводить дополнительное финирование. После препарирования лазером в этом нет необходимости. Но самое главное – после лазерного препарирования отсутствует «смазанный слой», т.к. нет вращающихся частей, способных его создать. Поверхность абсолютно чистая, не нуждается в протравке и полностью готова к бондингу.
После лазера на эмали не остается трещин и сколов, которые обязательно образуются при работе борами.
Кроме того, полость после препарирования лазером остается стерильной и не требует длительной антисептической обработки, т.к. лазерный свет уничтожает любую патогенную флору.
При работе лазерной установки пациент не слышит так пугающего всех неприятного шума бормашины. Звуковое давление, создаваемое при работе лазером, в 20 раз меньше, чем у высококачественной импортной высокоскоростной турбины. Этот психологический фактор порой является решающим для пациента при выборе места лечения.
Кроме того, как уже отмечалось, препарирование лазером - процедура бесконтактная, т.е. ни один из компонентов лазерной установки непосредственно не контактирует с биологическими тканями - препарирование происходит дистанционно. После работы стерилизации подвергается только наконечник. Следует отметить, что отпрепарированные частицы твердых тканей вместе с инфекцией не выбрасываются с большой силой в воздух кабинета стоматолога, как это происходит при использовании турбины. При лазерном препарировании они не приобретают высокой кинетической энергии и сразу же осаждаются струей спрея. Все это позволяет организовать беспрецедентный по своей безопасности санитарно-эпидемиологический режим работы стоматологического кабинета, позволяющий свести до нуля всякий риск перекрестной инфекции, что сегодня особенно актуально. Подобный уровень инфекционного контроля, несомненно, должен быть по достоинству оценен как санитарно-эпидемиологическими службы, так и пациентами.
Кроме несомненных практических преимуществ, применение лазера может существенно снизить себестоимость лечения. Работая лазером, врач практически полностью исключают из повседневных расходов боры, кислоту для травления, средства антисептической обработки кариозной полости, резко снижается расход дезинфицирующих средств. Время, затрачиваемое врачом на лечение одного пациента, сокращается более чем на 40%!
Экономия времени достигается за счет следующих причин:
Подводя итог, можно выделить следующие несомненные преимущества препарирования твердых тканей зубов лазером:
У этой технологии большое будущее, и повсеместное внедрение лазерных систем в стоматологическую практику – лишь вопрос времени. Список литературы
topuch.ru