Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Психология математическая. Математика и психология реферат


Психология и математика ≪ Scisne?

Связь этих наук так или иначе затрагивают почти все авторы в своих исследованиях.

Использование математических методов способствует не только доказательно представлять те или иные выводы в исследовании, но и строго логично строить весь его процесс. Даже крупные ученые, написав немало трудов, возвращались к изучению математики с тем, чтобы увеличить свой творческий потенциал.

Изучение математики в школе положительно влияет на формирование мышления и речь школьников. Методисты доказали, например, что изучение учащимися геометрии в средней школе способствует развитию их умственных способностей.

К.Рамуль в книге "Из истории психологии" подробно описал математическую психологию И.Ф.Горбатова, для которого ее обоснование было делом величайшей важности в течение всей жизни. Другие ученые считали, что математические знания и способности помогли бы добиться важных разъяснений относительно предмета психологии.

Существует мнение, неоднократно высказывавшееся крупными учеными прошлого: область знания становится наукой, лишь применяя математику. С этим мнением, возможно, не согласятся многие гуманитарии. А зря: именно математика позволяет количественно сравнивать явления, проверять правильность словесных утверждений и тем самым добираться до истины либо приближаться к ней. Математика делает обозримыми длинные и подчас туманные словесные описания, проясняет и экономит мысль.

Математические методы позволяют обоснованно прогнозировать будущие события, вместо того, чтобы гадать на кофейной гуще или как-либо иначе. В общем, польза от применения математики велика, но и труда на ее освоение требуется много. Однако он окупается сполна.

Психология в своем научном становлении неизбежно должна была пройти и прошла путь математизации, хотя не во всех странах и не в полной мере.

Точной даты начала пути математизации, пожалуй, не знает ни одна наука. Однако для психологии в качестве условной даты начата этого пути можно принять 18 апреля 1822 г. Именно тогда в Королевском немецком научном обществе Иоганн Фридрих Гербарт прочел доклад «О возможности и необходимости применять в психологии математику». Основная идея доклада сводилась к упомянутому выше мнению: если психология хочет быть наукой, подобно физике, в ней нужно и можно применять математику.

Спустя два года после этого программного по своей сути доклада И. Ф. Гербарт издал книгу «Психология как наука, заново основанная на опыте, метафизике и математике». Эта книга примечательна во многих отношениях. Она явилась первой попыткой создания психологической теории, опирающейся на тот круг явлений, которые непосредственно доступны каждому субъекту, а именно на поток представлений, сменяющих друг друга в сознании.

Никаких эмпирических данных о характеристиках этого потока, полученных, подобно физике, экспериментальным путем, тогда не существовало. Поэтому Гербарт в отсутствие этих данных, как он сам писал, должен был придумывать гипотетические модели борьбы всплывающих и исчезающих в сознании представлений. Облекая эти модели в аналитическую форму,например φ =α(l-exp[-βt]), где t—время, φ—скорость изменения представлений, α и β — константы, зависящие от опыта, Гербарт, манипулируя числовыми значениями параметров, пытался описать возможные характеристики смены представлений.

По-видимому, И. Ф. Гербарту первому принадлежит мысль о том, что свойства потока сознания — это величины и, следовательно, они в дальнейшем развитии научной психологии подлежат измерению. Ему также принадлежит идея «порога сознания», и он первый употребил выражение «математическая психология».

У И. Ф. Гербарта в Лейпцигском университете нашелся ученик и последователь, позднее ставший профессором философии и математики, — Мориц-Вильгельм Дробиш. Он воспринял, развил и по-своему реализовал программную идею учителя.

В словаре Брокгауза и Ефрона о Дробише сказано, что еще в 30-х годах Х1Х века он занимался исследованиями по математике и психологии и публиковался на латинском языке. Но в 1842г. М.В.Дробиш издал в Лейпциге на немецком языке монографию под недвусмысленным названием «Эмпирическая психология согласно естественнонаучному методу».

Эта книга М.-В. Дробиша дает замечательный пример первичной формализации знаний в области психологии сознания. Там нет математики в смысле формул, символики и расчетов, но там есть четкая система понятий о характеристиках потока представлений в сознании как взаимосвязанных величинах.

Уже в предисловии М.-В. Дробиш написал, что эта книга предваряет другую, уже готовую, — имеется в виду книга по математической психологии. Но поскольку его коллеги-психологи недостаточно подготовлены в математике, постольку он счел необходимым продемонстрировать эмпирическую психологию сначала безо всякой математики, а лишь на твердых естественнонаучных основах.

Не знаю, подействовала ли эта книга на тогдашних философов и богословов, занимавшихся психологией. Скорее всего — нет. Но она, несомненно, подействовала, как и работы И. Ф. Гербарта, на лейпцигских ученых с естественнонаучным образованием.

Лишь через восемь лет, в 1850 г. в Лейпциге вышла в свет вторая основополагающая книга М.-В. Дробиша—«Первоосновы математической психологии». Таким образом, у этой психологической дисциплины тоже есть точная дата появления в науке.

Некоторые современные психологи, пишущие в области математической психологии, ухитряются начинать ее развитие с американского журнала, появившегося в 1963 г.

Воистину, «все новое — это хорошо забытое старое». Целое столетие до американцев развивалась математическая психология, точнее — математизированная психология. И начало процессу математизации нашей науки положили И. Ф. Гербарт и М.-В. Дробиш.

Надо сказать, что по части новаций математическая психология Дробиша уступает сделанному его учителем — Гербартом. Правда, Дробиш к двум борющимся в сознании представлениям добавил третье, а это сильно усложнило решения. Но главное, по-моему, в другом. Большую часть объема книги составляют примеры численного моделирования.

К сожалению, ни современники, ни потомки не поняли и не оценили научного подвига, совершенного М.-В. Дробишем: у него ведь не было компьютера для численного моделирования. А в современной психологии математическое моделирование — это продукт второй половины XX века.

В предисловии к нечаевскому переводу гербартианской психологии российский профессор А. И. Введенский, знаменитый своей "Психологией без всякой метафизики", весьма пренебрежительно отозвался о попытке Гербарта применять в психологии математику.

Но не такова была реакция естествоиспытателей. И психофизики, в частности Теодор Фехнер, и знаменитый Вильгельм Вундт, работавшие в Лейпциге, не могли пройти мимо основополагающих публикаций И.Ф.Гербартаи М.-В. Дробиша. Ведь именно они математически реализовали в психологии идеи Гербарта о психологических величинах, порогах сознания, времени реакций сознания человека, причем реализовали с использованием современной им математики.

Большие массивы числовых результатов измерений по тестам— в баллах, стали объектом многочисленных исследований, в том числе математико-психологических. Особая роль здесь принадлежит английскому инженеру, работавшему в Америке, — Чарльзу Спирмену.

Спирмен предложил теорию «генерального» фактора, определяющего совместную изменчивость переменных тестовых результатов, а также разработал метод выявления этого фактора по корреляционной матрице. Это был первый метод факторного анализа, созданный в психологии и для психологических целей.

С конца 20-х гг XX века математические методы все шире проникают в психологию и творчески используются в ней. Интенсивно развивается психологическая теория измерений.

На основе аппарата цепей Маркова разрабатываются стохастические модели научения в психологии поведения. Созданный в области биологии Рональдом Фишером дисперсионный анализ становится основным математическим методом в генетической психологии. Математические модели из теории автоматического регулирования и шенноновская теория информации широко применяются в инженерной и общей психологии

Должен возникнуть вопрос: какими особыми свойствами обладает математика, если одни и те же математические методы успешно применяются в различных науках? Отвечая на этот вопрос, следует обратиться к предмету математики и ее объектам.

На протяжении многих столетий считалось, что предметом математики является все сущее — природа в широком смысле.

Математики древности полагали, что математические формы имеют божественное происхождение. Так, Платон рассматривал геометрические фигуры как идеальные эйдосы, т. е. образы, созданные высшими богами для копирования людьми, конечно, уже не в той совершенной форме. А знаменитый Пифагор видел в числах и определенных числовых сочетаниях предустановленную гармонию небесных сфер.

Религиозное мировоззрение людей веками связывало божественное творение мира с математическими средствами, с помощью которых выражаются законы природы.

Глубоко религиозный сэр Исаак Ньютон верил, что «книга природы написана на языке математики», и широко использовал математические методы в своей натуральной философии.

Надо сказать, что, даже отказавшись от веры в божественное творение мира, многие математики продолжали считать природу предметом математики.

Нам широко известна формулировка, данная в свое время Ф. Энгельсом: «Предметом математики служат пространственные формы и количественные отношения материального мира».

Еще и сегодня можно встретить эту формулировку в учебной литературе. Правда, появились и другие трактовки предмета — как наиболее абстрактных моделей всего сущего. Но здесь, на мой взгляд, предмет математики опять-таки сужен до служебной функции — моделирования и снова природы в широком смысле.

Спрашивается, а правильно ли это, отказавшись от идеи творения, по-прежнему считать природу предметом математики? Ведь это не только не последовательно.

Дело в том, что один и тот же природный закон можно выразить математически по-разному и в пределах научной точности нельзя доказать, какое из выражений истинно. Примером могут служить логарифмический закон Вебера—Фехнера и степенной закон Стивенса, которые, как показал Ю. М. Забродин, оба выводятся при определенных допущениях из некоего обобщенного психофизического закона.

То обстоятельство, что один и тот же математический метод описывает явления из разных наук, тоже свидетельствует не в пользу природы как предмета математики.

Так если не природа, то что же является предметом математики? Мой ответ, несомненно, крайне удивит многих представителей физико-математических наук: предметом математики является ее собственный продукт—те математические объекты, из которых состоит математика как наука.

Математический объект — это продукт человеческой мысли, материализованный хотя бы в одной из пяти основных форм: вербальной, графической, табличной, символической или аналитической.

Конечно, древний мыслитель мог найти в природе аналоги математическим объектам — геометрическим формам, числам, как-либо физически воплощенным (прямая тростинка, пять камней и т. п.). Но ведь математическую сущность надо было абстрагировать от материальной природной формы. Лишь после этого она становилась математической, а не физической (биологической и т.д.). И сделать это мог только человек.

В длинном ряду поколений — и для практических целей, и ради интереса — люди создавали тот мир математических объектов (включая отношения и операции над объектами, которые тоже суть математические объекты), который называется математикой.

Подобно психологии, математика — это обширная и бурно развивающаяся область знаний. Но она также далеко не однородна: в ее составе выделяются не только многочисленные отрасли, но и «разные математики».

Существуют «чистая» и прикладная, «непрерывная» и дискретная, «не конструктивная» и конструктивная, формально-логическая и содержательная математики.

Пожалуй, так же как нет психолога, знающего все отрасли психологии, так нет и математика, знающего все отрасли и направления современной математики. Ведь даже энциклопедии и справочники наряду с классическими, традиционными разделами, общими для всех, содержат различные дополнительные, причем отнюдь не новые разделы математических сведений.

Обилие и разнообразие математических теорий и методов порождает проблемы выбора и практического использования математики за ее пределами, в том числе в психологии.

Абстрактный характер математики, ее независимость от природы в широком смысле и позволяют использовать математические методы в самых разных приложениях. Разумеется, при этом важно, чтобы метод был адекватен объекту, для изучения которого применяется.

В каждой науке, помимо ее предмета, предполагают существующими особые, свойственные данной науке методы.

Так, для современной психологии характерным является метод тестов. Используемые в ней методы наблюдения, беседы, эксперимента и т.д., о которых пишется в учебниках, не являются специфичными для психологии и широко используются в других науках. Вообще, за редким исключением, современные научные методы универсальны и применяются везде, где можно.

Аналогично обстоит дело с математикой. И хотя большинство математиков убеждены в специфичности аксиоматического подхода, математической индукции и доказательств, на самом деле все эти методы используются и за пределами математики.

Математические объекты существуют в текстах и мыслях думающих о них людей в одной, нескольких или всех из пяти основных форм — словесной, графической, табличной, символической и аналитической.

Это названия объектов, геометрические фигуры или чертежи и графики, различные таблицы, символы объектов, операций и отношений, наконец, различные формулы, которыми выражаются отношения между объектами.

Так вот математические методы представляют собой правила или процедуры построения, преобразования, метризации и вычисления математических объектов—всего четыре основных типа методов. Среди каждого из них есть простые и сложные, как, например, суммирование двух чисел и факторизация корреляционной матрицы. Пятый тип — комбинированный из основных — открывает неограниченные возможности конструирования новых математических методов, необходимых для определенных научных приложений.

Многие методы играют служебную роль в самой математике, как, в частности, доказательства теорем или определенные строгости изложения, так приветствуемые математиками.

Для практических приложений математических методов за пределами математики, в том числе в психологии, математические строгости и тонкости не нужны: они затеняют суть результатов, в которых математика должна находиться на заднем плане, как, например, логарифмическая основа психофизического закона Вебера—Фехнера.

scisne.net

Реферат - Методы математической статистики 2

Введение.

Психология получила статус науки благодаря эксперименту и использованию математики при обработке экспериментальных данных и психологических исследований. Математика в психологии служит таким логическим инструментом доказательства, давая возможность научного понимания психологических закономерностей и более глубокого их анализа Математическая статистика — область современной математики, основанная на теории вероятностей и занятая поиском законов изменения и способов измерения случайных величин, обоснованием методов расчетов, производимых с такими величинами.

Математическая статистика возникла (XVII в) и развивалась параллельно с теорией вероятностей. Дальнейшее развитие математической статистики (вторая половина XIX — начало XX в) обязано, в первую очередь, П.Л. Чебышеву, А.А. Маркову, А.М. Ляпунову, а также К. Гауссу, А. Кетле, Ф. Гальтону, К. Пирсону и др.

В XX в. Наиболее существенный вклад в математическую статистику был сделан советскими математиками (В.И. Романовский, Е.Е. Слуцкий, А.Н. Колмогоров, Н.В. Смирнов), а также английскими (Стъюдент, Р. Фишер, Э. Пирсон) и американскими (Ю. Нейман, А. Вальд) учеными.

Еще в середине XIX начале XX века наблюдается, правда, еще не вполне регулярные, но, тем не менее, приносящие обоюдную пользу, — попытки провести аналогии между психологическими и физическими исследованиями, особенно в области построения лабораторного эксперимента, анализа и обработки экспериментальных данных. Почти одновременно в психологию и физику приходят вероятностные и статистические методы, теория дифференциальных уравнений, вариационное исчисление и другие. О том, чтобы математически описать деятельность мозга мечтал И.П. Павлов.

Благодаря проникновению в количественные свойства психических явлений, психология получила множество логических доказательств, которые явились

научным обоснованием изучения психики человека. Именно поэтому математика как строгая логическая дисциплина необходима любому специалисту, практикующемуся в области психологии. Современная математическая статистика представляет собой большую и сложную систему знаний. Нельзя рассчитывать на то, что каж

дый психолог овладеет этими знаниями. Статистики разработали целый комплекс простых методов, которые совершенно доступны любому квалифицированному специалисту психологу.

Все необходимые для их применения вычисления можно вы

полнять вручную или на компьютере. Уместное грамотное применение этих методов позволит практику и исследователю, во всяком случае проведя начальную обработку, получить общую картину того, что дают количественные результаты его исследований, оперативно проконт

ролировать ход исследований. Статистические методы раскрывают связи между изучаемыми яв

лениями. Однако необходимо твердо знать, что, как бы ни была высока вероятность таких связей, они не дают права исследователю признать их причинно-следственными отношениями. Чтобы подтвердить или отвергнуть существование причинно-след

ственных отношений, исследователю зачастую приходится продумы

вать целые серии экспериментов. Если они будут правильно постро

ены и проведены, то статистика поможет извлечь из результатов этих экспериментов информацию, которая необходима исследователю, что

бы либо обосновать и подтвердить свою гипотезу, либо признать ее недоказанной.

Математическая статистика также нужна психологу не только для проведения научных исследований, а постоянно в его повседневной работе.

Далее в этой работе мы рассмотрим только самые первые ступени длинной

и крутой лестницы которую нужно преодолеть на пути к уверенному применению математических методов.

Основные понятия, используемые в математической обработке психологических данных.

1)генеральная совокупность и выборка

2) признаки и переменные.

3) шкалы измерения.

4) статистические гипотезы.

5) статистические критерии.

В математической статистике выделяют два фундаментальных понятия: генеральная совокупность и выборка.

Совокупностью – называется практически счетное множество некоторых объектов или элементов, интересующих исследователя;

Свойством совокупности называется реальное или воображаемое качество, присущее некоторым всем ее элементам. Свойство может быть случайным или неслучайным. Параметром совокупности называется свойство, которое можно квантифицировать в виде константы или переменной величины. Гомогенной или однородной называется совокупность, все характеристики которой присущи каждому ее элементу; Гетерогенной или неоднородной называется совокупность, характеристики которой сосредоточены в отдельных подмножествах элементов.

Важным параметром является объем совокупности – количество образующих ее элементов. Величина объема зависит от того, как определена сама совокупность, и какие вопросы нас конкретно интересуют. Понятно, что совокупности большого объема можно исследовать только выборочным путем.

Выборкой называется некоторая часть генеральной совокупности, то, что непосредственно изучается. Выборки классифицируются по репрезентативности, объему, способу отбора и схеме испытаний. Репрезентативная – выборка адекватно отображающая генеральную совокупность в качественном и количественном отношениях.Иными словами репрезентативная выборка представляет собой меньшую по размеру, но точную модель той генеральной совокупности которую она должна отражать, иначе результаты не совпадут с целями исследования [ 4; 33 ].

Репрезентативность зависит от объема, чем больше объем, тем выборка репрезентативней.

По схеме испытаний – выборки могут быть независимые и зависимые.

По объему выборки делят на малые и большие. К малым относят выборки, в которых число элементов n ≤ 30. Понятие большой выборки не определено, но большой считается выборка в которой число элементов > 200 и средняя выборка удовлетворяет условию 30≤ n≤ 200. Это деление условно.

2. Признаки и переменные — это измеряемые психологические явления. Такими явлениями могут быть время решения задачи, количество допущенных ошибок, уровень тревожности, показатель интеллектуальной лабильности, интенсивность агрессивных реакций, угол поворота корпуса в беседе, показатель социометрического статуса и множество других переменных. Понятия признака и переменной могут использоваться как взаимозаменяемые. Они являются наиболее общими. Иногда вместо них используются понятия показателя или уровня, например уровень настойчивости, показатель вербального интеллекта и др.

Математическая обработка — это оперирование со значениями признака, полученными у испытуемых в психологическом исследовании. Такие индивидуальные результаты называют также «наблюдениями», «наблюдаемыми значениями», «вариантами», «датами» и др. значение признака определяется при помощи специальных шкал измерения.

3. Шкалы измерения. Измерение — это приписывание числовых форм объектами или событиям в соответствии с определенными правилами.

С. Стивенсом предложена классификация из 4 типов шкал измерения:

а) Номинативная, или номинальная, или шкала наименований;

б) Порядковая, или ординальная, шкала;

в) Интервальная, или шкала равных интервалов;

г) Шкала равных отношений.

Шкала наименований. К этой шкале относятся материалы, в которых изучаемые объекты отличаются друг от друга по их качеству. При обработке таких материалов нет никакой нужды в том, чтобы располагать эти объекты в каком-то порядке, исходя из их характеристик.

Шкала порядка. Если в шкале наименований порядок следования изучаемых объектов практически не играет никакой роли, то в шкале порядка — это видно из ее названия — именно на эту последовательность переключается все внимание. К этой шкале в статистике относят такие исследовательские материалы, в которых рассмотрению подлежат объекты, принадлежащие к одному или нескольким классам, но отличающиеся при сравнении одного с другим: больше — меньше, выше — ниже и т.п.

Шкала интервалов. К ней относятся такие материалы, в которых дана количественная оценка изучаемого объекта в фиксированных единицах. Например, в опытах учитывалось, сколько точек могут поставить, работая с максимально доступной скоростью, испытуемые. Оценочными единицами в опытах служило число точек. Подсчитав их, исследователь получил то абсолютное число точек, которое оказалось возможным поставить за отведенное время каждому участнику опытов. Главная трудность при отнесении материалов к шкале интервалов состоит в том, что нужно располагать такой единицей, которая была бы при всех повторных изменениях тождественной самой себе, т.е. одинаковой и неизменной.

Шкала отношений. К этой шкале относятся материалы, в которых учитываются не только число фиксированных единиц, как в шкале интервалов, но и отношения полученных суммарных итогов между собой. Чтобы работать с такими отношениями, нужно иметь некую абсолютную точку, от которой ведется отчет. При изучении психологических объектов эта шкала практически неприменима.

4. Статистические гипотезы. Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде. Благодаря гипотезам исследователь не теряет путеводной нити в процессе расчетов и ему легко понять после их окончания, что, собственно, он обнаружил. Статистические гипотезы подразделяются на нулевые и альтернативные, направленные и ненаправленные.

Нулевая гипотеза — это гипотеза об отсутствий различий. Она обозначается как Н0 и называется нулевой потому, что содержит число 0: Х1 — Х2 = 0, где Х1, Х2 — сопоставляемые значения признаков. Нулевая гипотеза — это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий.

Альтернативная гипотеза — это гипотеза о значимости различий. Она обозначается как Н1. альтернативная гипотеза — это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой.

Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными.

5. Статистические критерии. Статистический критерий — это правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью. Статистический критерий обозначает метод расчета определенного числа и само это число. Среди возможных статистических критериев выделяют: односторонние и двусторонние,

параметрические и непараметрические, более и менее мощные.

Параметрические критерии — это критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (t-критерий Стъюдента, критерий F и др.) Непараметрические критерии — это критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий-Q Розенбаума, критерий-Т Вилкоксона и др.)

Параметрические критерии и непараметрические критерии имеют свои преимущества и недостатки.

Параметрические критерии могут оказаться несколько более мощными, чем непараметрические, но только в том случае, если признак измерен по интервальной шкале и нормально распределен. Лишь с некоторой натяжкой мы можем считать данные, представленные в стандартизованных оценках, как интервальные. Кроме того, проверка распределения «на

нормальность» требует достаточно сложных расчетов, результат которых заранее не известен. Может оказаться, что распределение признака отличается от нормального, и нам так или иначе все равно придется обратиться к непараметрическим критериям.

Непараметрические критерии лишены всех этих ограничений и не требуют таких длительных и сложных расчетов. По сравнению с параметрическими критериями они ограничены лишь в одном – с их помощью невозможно оценить взаимодействие двух или более условий или факторов, влияющих на изменение признака. [ 1; 16 ]

Статистический анализ экспериментальных данных

Рассматрим в самых общих чертах три главных раздела статистики.

Описательная статистика, как следует из названия, позволяет описывать, подытоживать и воспроизводить в виде таблиц или графиков данные того или иного распределения, вычислять среднее для данного распределения и его размах и дисперсию.

Задача индуктивной статистики — проверка гипотезы о том, можно ли распространить результаты, полученные на данной выборке, на всю популяцию (генеральную совокупность), из которой взята эта выборка. Иными словами, правила этого раздела статистики позволяют выяснить, до какой степени можно путем индукции обобщить на большее число объектов ту или иную закономерность, обнаруженную при изучении их ограниченной группы в ходе какого-либо наблюдения или эксперимента. Таким образом, при помощи индуктивной статистики делают какие-то выводы и обобщения, исходя из данных, полученных при изучении выборки.

 Наконец, измерение корреляции позволяет узнать, насколько связаны между собой две переменные, с тем чтобы можно было предсказывать возможные значения одной из них, если мы знаем другую.

Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологической диагностике, это будет информация индивидуально-психологических особенностях испытуемых.

Методами статистической обработки результатов эксперимента называются математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, получаемые в ходе эксперимента, можно обобщать, приводить в систему, выявляя скрытые в них закономерности. Речь идет о таких закономерностях статистического характера, которые существуют между изучаемыми в эксперименте переменными величинами.

Некоторые из методов математико-статистического анализа позволяют вычислять так называемые элементарные математические статистики, характеризующие выборочное распределение данных, например, выборочное среднее, выборочная дисперсия, мода, медиана и ряд других. Иные методы математической статистики, например, дисперсионный анализ, регрессионный анализ, позволяют судить о динамике изменения отдельных статистик выборки. С помощью третьей группы методов, скажем, корреляционного анализа, факторного анализа, методов сравнения выборочных данных, можно достоверно судить о статистических связях, существующих между переменными величинами, которые исследуют в данном эксперименте.

Все методы математико-статистического анализа условно делятся на первичные и вторичные. Первичными называют методы, с помощью которых можно получить показатели, непосредственно отражающие результаты производимых в эксперименте измерений. Соответственно под первичными статистическими показателями имеются в виду те, которые применяются в самих психодиагностических методиках и являются итогом начальной статистической обработки результатов психодиагностики. С помощью вторичных методов статистической обработки экспериментальных данных непосредственно проверяются, доказываются или опровергаются гипотезы, связанные с экспериментом. Эти методы, как правило, сложнее, чем методы первичной статистической обработки, и требуют от исследователя хорошей подготовки в области элементарной математики и статистики.

Методы первичной статистической обработки результатов эксперимента

К первичным методам статистической обработки относят, например, определение выборочной средней величины, выборочной дисперсии, выборочной моды и выборочной медианы. Рассмотрим методы вычисления элементарных математических статистик, начав с выборочного среднего.

Выборочное среднее значение как статистический показатель представляет собой среднюю оценку изучаемого в эксперименте психологического качества. Эта оценка характеризует степень его развития в целом у той группы испытуемых, которая была подвергнута психодиагностическому обследованию. Сравнивая непосредственно средние значения двух или нескольких выборок, мы можем судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества.

Дисперсия как статистическая величина характеризует, на сколько частные значения отклоняются от средней величины в данной выборке. Чем больше дисперсия, тем больше отклонения или разброс данных. Иногда вместо дисперсии для выявления разброса частных данных относительно средней используют производную от дисперсии величину, называемую выборочное отклонение. Оно равно квадрат ному корню, извлекаемому из дисперсии, и обозначается тем же самым знаком, что и дисперсия, только без квадрата — :

Медианой называется значение изучаемого признака, которое делит выборку, упорядоченную по величине данного признака, пополам. Справа и слева от медианы в упорядоченном ряду остается по одинаковому количеству признаков.Модой называют количественное значение исследуемого признака, наиболее часто встречающегося в выборке.

Выборочное среднее (среднее арифметическое) значение как статистический показатель представляет собой среднюю оценку изучаемого в эксперименте психологического качества. Эта оценка характеризует степень его развития в целом у той группы испытуемых, которая была подвергнута психодиагностическому обследованию. Сравнивая непосредственно средние значения двух или нескольких выборок, мы можем судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества.

Выборочное среднее определяется при помощи следующей формулы: где х — выборочная средняя величина или среднее арифметическое значение по выборке; n — количество испытуемых в выборке или частных психодиагностических показателей, на основе которых вычисляется средняя величина; хk — частные значения показателей у отдельных испытуемых. Всего таких показателей n, поэтому индекс k данной переменной принимает значения от 1 до n; ∑ — принятый в математике знак суммирования величин тех переменных, которые находятся справа от этого знака. Выражение соответственно означает сумму всех х с индексом k, от 1до n. В психодиагностике и в экспериментальных психолого-педагогических исследованиях среднее, как правило, не вычисляется с точностью, превышающей один знак после запятой, т.е. с большей, чем десятые доли единицы. В психодиагностических обследованиях большая точность расчетов не требуется и не имеет смысла, если принять во внимание приблизительность тех оценок, которые в них получаются, и достаточность таких оценок для производства сравнительно точных расчетов.

Мода.Числовой характеристикой выборки, как правило, не требующей вычислений, является так называемая мода. Модой называют количественное значение исследуемого признака, наиболее часто встречающееся в выборке. Для симметричных распределений признаков, в том числе для нормального распределения, значение моды совпадает со значениями среднего и медианы. Для других типов распределении, несимметричных, это не характерно. К примеру, в последовательности значений признаков 1, 2, 5, 2, 4, 2, 6, 7, 2 модой является значение 2, так как оно встречается чаще других значений — четыре раза.

Моду находят согласно следующим правилам:

1) В том случае, когда все значения в выборке встречаются одинаково часто, принято считать, что этот выборочный ряд не имеет моды. Например: 5, 5, 6, 6, 7, 7 — в этой выборке моды нет.

2) Когда два соседних (смежных) значения имеют одинаковую частоту и их частота больше частот любых других значений, мода вычисляется как среднее арифметическое этих двух значений. Например, в выборке 1, 2, 2, 2, 5, 5, 5, 6 частоты рядом расположенных значений 2 и 5 совпадают и равняются 3. Эта частота больше, чем частота других значений 1 и 6 (у которых она равна 1). Следовательно, модой этого ряда будет величина =3,5

3) Если два несмежных (не соседних) значения в выборке имеют равные частоты, которые больше частот любого другого значения, то выделяют две моды. Например, в ряду 10, 11, 11, 11, 12, 13, 14, 14, 14, 17 модами являются значения 11 и 14. В таком случае говорят, что выборка является бимодальной.

Могут существовать и так называемые мультимодальные распределения, имеющие более двух вершин (мод).

4) Если мода оценивается по множеству сгруппированных данных, то для нахождения моды необходимо определить группу с наибольшей частотой признака. Эта группа называется модальной группой.

Медиана. Медианой называется значение изучаемого признака, которое делит выборку, упорядоченную по величине данного признака, пополам. Справа и слева от медианы в упорядоченном ряду остается по одинаковому количеству признаков. Например, для выборки 2, 3, 4, 4, 5, 6, 8, 7, 9 медианой будет значение 5, так как слева и справа от него остается по четыре показателя. Если ряд включает в себя четное число признаков, то медианой будет среднее, взятое как полусумма величин двух центральных значений ряда. Для следующего ряда 0, 1, 1, 2, 3, 4, 5, 5, 6, 7 медиана будет равна 3,5.

Знание медианы полезно для того, чтобы установить, является ли распределение частных значений изученного признака симметричным и приближающимся к так называемому нормальному распределению. Средняя и медиана для нормального распределения обычно совпадают или очень мало отличаются друг от друга. Если выборочное распределение признаков нормально, то к нему можно применять методы вторичных статистических расчетов, основанные на нормальном распределении данных. В противном случае этого делать нельзя, так как в расчеты могут вкрасться серьезные ошибки.

Разброс выборки. Разброс (иногда эту величину называют размахом) выборки обозначается буквой R. Это самый простой показатель, который можно получить для выборки — разность между максимальной и минимальной величинами данного конкретного вариационного ряда, т.е.

R= хmax — хmin

Понятно, что чем сильнее варьирует измеряемый признак, тем больше величина R, и наоборот. Однако может случиться так, что у двух выборочных рядов и средние, и размах совпадают, однако характер варьирования этих рядов будет различный. Например, даны две выборки:

Х = 10 15 20 25 30 35 40 45 50X = 30 R = 40

Y = 10 28 28 30 30 30 32 32 50 Y=30 R = 40

При равенстве средних и разбросов для этих двух выборочных рядов характер их варьирования различен. Для того чтобы более четко представлять характер варьирования выборок, следует обратиться к их распределениям.

Дисперсия. Дисперсия — это среднее арифметическое квадратов отклонений значений переменной от её среднего значения.

Дисперсия как статистическая величина характеризует, насколько частные значения отклоняются от средней величины в данной выборке. Чем больше дисперсия, тем больше отклонения или разброс данных.

где 5 — выборочная дисперсия, или просто дисперсия;

2 (……) — выражение, означающее, что для всех х, от первого до последнего в данной выборке необходимо вычислить разности между частными и средними значениями, возвести эти разности в квадрат и просуммировать;

п — количество испытуемых в выборке или первичных значений, по которым вычисляется дисперсия. Однако сама дисперсия, как характеристика отклонения от среднего, часто неудобна для интерпретации.

Стандартное отклонение. Для того, чтобы приблизить размерность дисперсии к размерности измеряемого признака применяют операцию извлечения квадратного корня из дисперсии. Полученную величину называют стандартным отклонением.

Из суммы квадратов, делённых на число членв ряда извлекаеся квадратный корень.

Иными словами стандартное отклонение есть квадратный корень из дисперсии. Стандартное отклонение является более удобным показателем в

отличие от дисперсии. Для многих распределений мы можем приблизительно

знать, какой процент данных лежит внутри одного, двух, трех и более

стандартных отклонений среднего. [ 3; 7 ]

Иногда исходных частных первичных данных, которые подлежат статистической обработке, бывает довольно много, и они требуют проведения огромного количества элементарных арифметических операций. Для того чтобы сократить их число и вместе с тем сохранить нужную точность расчетов, иногда прибегают к замене исходной выборки частных эмпирических данных на интервалы. Интервалом называется группа упорядоченных по величине значений признака, заменяемая в процессе расчетов средним значением.

Вторичные методы обработки материалов психологических исследований.

С помощью вторичных методов статистической обработки экспериментальных данных непосредственно проверяются, доказываются или опровергаются гипотезы, связанные с экспериментом. Эти методы, как правило, сложнее, чем методы первичной статистической обработки, и требуют от исследователя хорошей подготовки в области элементарной математики и статистики. Обсуждаемую группу методов можно разделить на несколько подгрупп:

1. Регрессионное исчисление.

2. Методы сравнения между собой двух или нескольких элементарных статистик (средних, дисперсий и т.п.), относящихся к разным выборкам.

3. Методы установления статистических взаимосвязей между переменными, например их корреляции друг с другом.

4. Методы выявления внутренней статистической структуры эмпирических данных (например, факторный анализ).

Регрессионный анализ. Регрессионное исчисление — это метод математической статистики, позволяющий свести частные, разрозненные данные к некоторому линейному графику, приблизительно отражающему их внутреннюю взаимосвязь, и получить возможность по значению одной из переменных приблизительно оценивать вероятное значение другой

переменной [ 6;556 ].

Графическое выражение регрессионного уравнения называют линией регрессии. Линия регрессии выражает наилучшие предсказания зависимой переменой (Y) по независимым переменным (X).

Регрессию выражают с помощью двух уравнений регрессии, которые в самом прямом случае выглядят, как уравнения прямой.

Y = a 0 + a 1 * X (1)

X = b 0 + b 1 * Y (2) В уравнении (1) Y — зависимая переменная, X — независимая переменная, a 0 — свободный член, a 1 — коэффициент регрессии, или угловой коэффициент, определяющий наклон линии регрессии по отношению к осям координат.

В уравнении (2) X — зависимая переменная, Y — независимая переменная, b 0 — свободный член, b 1 — коэффициент регрессии, или угловой коэффициент, определяющий наклон линии регрессии по отношению к осям координат.

Количественное представление связи (зависимости) между Х и Y (между Y и X) называется регрессионным анализом. Главная задача регрессионного анализа заключается в нахождении коэффициентов a 0, b 0, a1и b 1 и определении уровня значимости полученных аналитических выражений, связывающих между собой переменные Х и У.

При этом коэффициенты регрессии a 1 и b 1 показывают, насколько в среднем величина одной переменной изменяется при изменении на единицу меры другой. Коэффициент регрессии a 1 в уравнении можно подсчитать по формуле: а коэффициент b 1 в уравнении по формуле где ryx — коэффициент корреляции между переменными X и Y;

Sx — среднеквадратическое отклонение, подсчитанное для переменной X;

Sy — среднеквадратическое отклонение, подсчитанное для переменной У/

Для применения метода линейного регрессионного анализа необходимо соблюдать следующие условия:

1. Сравниваемые переменные Х и Y должны быть измерены в шкале интервалов или отношений.

2. Предполагается, что переменные Х и Y имеют нормальный закон распределения.

3. Число варьирующих признаков в сравниваемых переменных должно быть одинаковым. [ 4; 263 ].

Корреляционный анализ. Следующий метод вторичной статистической обработки, посредством которого выясняется связь или прямая зависимость между двумя рядами экспериментальных данных, носит название метод корреляций. Он показывает, каким образом одно явление влияет на другое или связано с ним в своей динамике. Подобного рода зависимости существуют, к примеру, между величинами, находящимися в причинно-следственных связях друг с другом. Если выясняется, что два явления статистически достоверно коррелируют друг с другом и если при этом есть уверенность в том, что одно из них может выступать в качестве причины другого явления, то отсюда определенно следует вывод о наличии между ними причинно-следственной зависимости. [6;576]

Когда повышение уровня одной переменной сопровождается повышением уровня другой, то речь идёт о положительной корреляции. Если же рост одной переменной происходит при снижении уровня другой, то говорят об отрицательной корреляции. При отсутствии связи переменных мы имеем дело с нулевой корреляцией.

Имеется несколько разновидностей данного метода: линейный, ранговый, парный и множественный. Линейный корреляционный анализ позволяет устанавливать прямые связи между переменными величинами по их абсолютным значениям. Эти связи графически выражаются прямой линией, отсюда название «линейный». Ранговая корреляция определяет зависимость не между абсолютными значениями переменных, а между порядковыми местами, или рангами, занимаемыми ими в упорядоченном по величине ряду. Парный корреляционный анализ включает изучение корреляционных зависимостей только между парами переменных, а множественный, или многомерный, — между многими переменными одновременно. Распространенной в прикладной статистике формой многомерного корреляционного анализа является факторный анализ. [6; 577 ]

Коэффициент линейной корреляции определяется при помощи следующей формулы: где rxy — коэффициент линейной корреляции;

х, у — средние выборочные значения сравниваемых величин;

хi, уi — частные выборочные значения сравниваемых величин;

n — общее число величин в сравниваемых рядах показателей;

S2x,S2y — дисперсии, отклонения сравниваемых величин от средних значений.К коэффициенту ранговой корреляции в психолого-педагогических исследованиях обращаются в том случае, когда признаки, между которыми устанавливается зависимость, являются качественно различными и не могут быть достаточно точно оценены при помощи так называемой интервальной измерительной шкалы. Большинство показателей, которые получают в психолого-педагогических исследованиях, относятся к порядковым, а не к интервальным шкалам (например, оценки типа «да», «нет», «скорее нет, чем да» и другие, которые можно переводить в баллы), поэтому коэффициент линейной корреляции к ним неприменим. В этом случае обращаются к использованию коэффициента ранговой корреляции, формула которого следующая: где Rs — коэффициент ранговой корреляции по Спирмену;

di — разница между рангами показателей одних и тех же испытуемых в упорядоченных рядах;

n — число испытуемых или цифровых данных (рангов) в коррелируемых рядах.

Метод множественных корреляций в отличие от метода парных корреляций позволяет выявить общую структуру корреляционных зависимостей, существующих внутри многомерного экспериментального материала, включающего более двух переменных, и представить эти корреляционные зависимости в виде некоторой системы.

Для применения частного коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в шкале интервалов или отношений.

2. Предполагается, что все переменные имеют нормальный закон распределения.

3. Число варьирующих признаков в сравниваемых переменных должно быть одинаковым.

4. Для оценки уровня достоверности корреляционного отношения Пирсона следует пользоваться формулой (11.9) и таблицей критических значений для t-критерия Стьюдента при k = n — 2. [ 4; 253 ] Корреляционный анализ позволяет обнаружить наличие связи но не даёт оснований для установления причинно- следственных отношений.

Факторный анализ. Факторный анализ — статистический метод, который используется при обработке больших массивов экспериментальных данных. Задачами факторного анализа являются: сокращение числа переменных (редукция данных) и определение структуры взаимосвязей между переменными, т.е. классификация переменных, поэтому факторный анализ используется как метод сокращения данных или как метод структурной классификации.

Важное отличие факторного анализа от всех описанных выше методов заключается в том, что его нельзя применять для обработки первичных, или, как говорят, «сырых», экспериментальных данных, т.е. полученных непосредственно при обследовании испытуемых. Материалом для факторного анализа служат корреляционные связи, а точнее — коэффициенты корреляции Пирсона, которые вычисляются между переменными (т.е. психологическими признаками), включенными в обследование. Иными словами, факторному анализу подвергают корреляционные матрицы, или, как их иначе называют, матрицы интеркорреляций. Наименования столбцов и строк в этих матрицах одинаковы, так как они представляют собой перечень переменных, включенных в анализ. По этой причине матрицы интеркорреляций всегда квадратные, т.е. число строк в них равно числу столбцов, и симметричные, т.е. на симметричных местах относительно главной диагонали стоят одни и те же коэффициенты корреляции.

Главное понятие факторного анализа — фактор. Это искусственный статистический показатель, возникающий в результате специальных преобразований таблицы коэффициентов корреляции между изучаемыми психологическими признаками, или матрицы интеркорреляций. Процедура извлечения факторов из матрицы интеркорреляций называется факторизацией матрицы. В результате факторизации из корреляционной матрицы может быть извлечено разное количество факторов вплоть до числа, равного количеству исходных переменных. Однако факторы, выделяемые в результате факторизации, как правило, неравноценны по своему значению. Элементы факторной матрицы называется «факторными нагрузками или весами».При этом факторный вес демонстрирует меру или тесноту этой связи. [ 4; 276]

С помощью выявленных факторов объясняют взаимозависимость психологических явлений.

Чаще всего в итоге факторного анализа определяется не один, а несколько факторов, по-разному объясняющих матрицу интеркорреляций переменных. В таком случае факторы делят на генеральные, общие и единичные. Генеральными называются факторы, все факторные нагрузки которых значительно отличаются от нуля (нуль нагрузки свидетельствует о том, что данная переменная никак не связана с остальными и не оказывает на них никакого влияния в жизни). Общие — это факторы, у которых часть факторных нагрузок отлична от нуля. Единичные — это факторы, в которых существенно отличается от нуля только одна из нагрузок. [6; 283 ]

Факторный анализ может быть уместен, если выполняются следующие критерии.

1. Нельзя факторизовать качественные данные, полученные по шкале наименований, например, такие, как цвет волос (черный / каштановый / рыжий) и т.п.

2. Все переменные должны быть независимыми, а их распределение должно приближаться к нормальному.

3. Связи между переменными должны быть приблизительно линейны или, по крайней мере, не иметь явно криволинейного характера.

4. В исходной корреляционной матрице должно быть несколько корреляций по модулю выше 0,3. В противном случае достаточно трудно извлечь из матрицы какие-либо факторы.

5. Выборка испытуемых должна быть достаточно большой. Рекомендации экспертов варьируют. Наиболее жесткая точка зрения рекомендует не применять факторный анализ, если число испытуемых меньше 100, поскольку стандартные ошибки корреляции в этом случае окажутся слишком велики.

Однако если факторы хорошо определены (например, с нагрузками 0,7, а не 0,3), экспериментатору нужна меньшая выборка, чтобы выделить их. Кроме того, если известно, что полученные данные отличаются высокой надежностью (например, используются валидные тесты), то можно анализировать данные и по меньшему числу испытуемых. [4;283].

В теоретическом плане использование факторного анализа связано с разработкой так называемого факторно-аналитического подхода к изучению структуры личности, темперамента и способностей. Использование факторного анализа в этих сферах основано на широко принятом допущении, согласно которому наблюдаемые и доступные для прямого измерения показатели являются лишь косвенными и/или частными внешними проявлениями более общих характеристик. Эти характеристики, в отличие от первых, являются скрытыми, так называемыми латентными переменными, поскольку они представляют собой понятия или конструкты, которые не доступны для прямого измерения. Однако они могут быть установлены путем факторизации корреляционных связей между наблюдаемыми чертами и выделением факторов, которые (при условии хорошей структуры) можно интерпретировать как статистическое выражение искомой латентной переменной.

Заключение.

Как говорит Мак-Коннелл, статистика — это прежде всего способ мышления, и для ее применения нужно лишь иметь немного здравого смысла и знать основы математики. В нашей повседневной жизни мы, сами о том не догадываясь, постоянно занимаемся статистикой. Хотим ли мы спланировать бюджет, рассчитать потребление бензина автомашиной, оценить усилия, которые потребуются для усвоения какого-то курса, с учетом полученных до сих пор отметок, предусмотреть вероятность хорошей и плохой погоды по метеорологической сводке или вообще оценить, как повлияет то или иное событие на наше личное или совместное будущее, — нам постоянно приходится отбирать, классифицировать и упорядочивать информацию, связывать ее с другими данными так, чтобы можно было сделать выводы, позволяющие принять верное решение. Все эти виды деятельности мало отличаются от тех операций, которые лежат в основе научного исследования и состоят в синтезе данных, полученных на различных группах объектов в том или ином эксперименте, в их сравнении с целью выяснить черты различия между ними, в их сопоставлении с целью выявить показатели, изменяющиеся в одном направлении, и, наконец, в предсказании определенных фактов на основании тех выводов, к которым приводят полученные результаты. Именно в этом заключается цель статистики в науках вообще, особенно в гуманитарных. В последних нет ничего абсолютно достоверного, и без статистики выводы в большинстве случаев были бы чисто интуитивными и не могли бы составлять солидную основу для интерпретации данных, полученных в других исследованиях. Если данные, полученные в эксперименте, качественного характера, то правильность делаемых на основе их выводов полностью зависит от интуиции, эрудиции и профессионализма исследователя, а также от логики его рассуждений. Если же эти данные количественного типа, то сначала проводят их первичную, а затем вторичную статистическую обработку. Первичная статистическая обработка заключается в определении необходимого числа элементарных математических статистик. Такая обработка почти всегда предполагает как минимум определение выборочного среднего значения. В тех случаях, когда информативным показателем для экспериментальной проверки предложенных гипотез является разброс данных относительного среднего, вычисляется дисперсия или квадратическое отклонение. Значение медианы рекомендуется вычислять тогда, когда предполагается использовать методы вторичной статистической обработки, рассчитанные на нормальное распределение, Для такого рода распределения выборочных данных медиана, а также мода совпадают или достаточно близки к средней величине. Этим критерием можно воспользоваться для того, чтобы приблизительно судить о характере полученного распределения первичных данных.

Вторичная статистическая обработка (сравнение средних, дисперсий, распределений данных, регрессионный анализ, корреляционный анализ, факторный анализ и др.) проводится в том случае, если для решения задач или доказательства предложенных гипотез необходимо определить статистические закономерности, скрытые в первичных экспериментальных данных. Приступая к вторичной статистической обработке, исследователь прежде всего должен решить, какие из различных вторичных статистик ему следует применить для обработки первичных экспериментальных данных. Решение принимается на основе учета характера проверяемой гипотезы и природы первичного материала, полученного в результате проведения эксперимента. Если экспериментальная гипотеза содержит предположение о том, что в результате проводимого психолого-педагогического исследования возрастут (или уменьшатся) показатели какого-либо качества, то для сравнения до — и постэкспериментальных данных рекомендуется использовать критерий Стъюдента или χ2-критерий. К последнему обращаются в том случае, если первичные экспериментальные данные относительны и выражены, например, в процентах.

Если экспериментально проверяемая гипотеза включает в себя утверждение о причинно-следственной зависимости между некоторыми переменными, то её целесообразно проверять, обращаясь к коэффициентам линейной или ранговой корреляции. Линейная корреляция используется в том случае, когда измерения независимой и зависимой переменных производятся при помощи интервальной шкалы, а изменения этих переменных до и после эксперимента небольшие. К ранговой корреляции обращаются тогда, когда достаточно оценить изменения, касающиеся порядка следования друг за другом по величине независимых и зависимых переменных, или когда их изменения достаточно велики, или когда измерительный инструмент был порядковым, а не интервальным.

Иногда гипотеза включает предположение о том, что в результате эксперимента возрастут или уменьшатся индивидуальные различия между испытуемыми. Такое предположение хорошо проверяется с помощью критерия Фишера, позволяющего сравнить дисперсии до и после эксперимента. Результаты количественного и качественного анализа материала, полученного в ходе проведения эксперимента, первичной и вторичной статистической обработки этого материала, используются для доказательства правильности предложенных гипотез. Выводы об их истинности являются логическим следствием доказательства, в процессе которого в качестве основного аргумента выступает безупречность логики самого доказательства, а в качестве фактов — то, что установлено в результате количественного и качественного анализа экспериментальных данных.

Факты в ходе доказательства обязательно должны соотноситься с гипотезами. В процессе такого соотнесения выясняется, насколько полно имеющиеся факты доказывают, подтверждают предложенные гипотезы.

В заключении хочется сказать, что психологу никогда не бывает скучно, потому что он всегда изучает и исследует – людей, ситуации, самого себя. Он постоянно ищет свой путь в выявлении новых закономерностей и фактов. Методы математической статистики могут оказать на этом пути неоценимую помощь, но они лишь средство. которое не должно заслонить собою цель. Необходимо помнить, что достоверная статистическая тенденция – это всё же не психологическая закономерность, что могут быть закономерности более высокого порядка, чем те что выявляются с помощью математических методов.

Если продолжить аналогию С.Стивенса с верёвочной лестницей, то мы используем верёвочную лестницу чтобы подняться наверх, хотя знаем, что и без неё можем летать. Главное чтобы из-за привязанности к верёвочной лестнице мы не утратили этой способности к полёту.[7; 304].

Немов Р.С. Психология. Кн.3: Психодиагностика. Введение в научное психологическое исследование с элементами математической статистики. — М.: ВЛАДОС, 1998. – 632 с.

www.ronl.ru

Математика и психология — доклад

Математика  и психология 

 Психология  научного изучения связей между  психическими процессами, эмоции  и поведение.  Математики и  психологии связаны в трех  основных направлениях.  Во-первых, психологи изучать математические  познания, то есть, развитие мозга,  приобретение и применение математических навыков.  Во-вторых, психологи исследовать людей чувства и отношения к математике.  В-третьих, психологи используют математики, в частности, статистика, как профессиональный инструмент для количественной оценки и анализа их научных результатов.

  Психологи,  работающие в области математического  исследования познания, как люди  обрабатывают информацию, интерпретировать  математические символы, а также  разработать и использовать стратегии  для решения математических задач.  Например, эти навыки особенно важны для так называемой "слово" задач, где письменные описания должны быть переведены на уравнениях.  Большинство студентов считают "слово" проблемы сложнее решить, чем другие типы математических задач.  Это потому, что "слово" проблемы требуют различных навыков от головного мозга, включая способность читать и понимать смысл и контекст словами, способность воспринимать и определить математическую задачу, возможность назначать математических символов для неизвестных и, наконец, способность применять стратегии решения проблем и рассчитать правильный ответ.

Математические  познания является очень важной областью в психологии.  Она приносит пользу ученых и врачей изучения мозга, и  это помогает педагогам разработать  более эффективные методы обучения по математике.  Кроме того, его исследование имеет важное значение для развития «умных» компьютеров, нейронные сети, нечеткая логика, роботов и искусственного интеллекта.

Психологи также изучают, как люди думают о  математике, потому что чувства человека о предмете, повлиять на их желание учиться и использовать его.  Например, культурные и тендерные различия в отношении к математике влияют результаты тестов.  Еще одна область, которой уделяется достаточно много внимания называют фобией математика или математика беспокойства.  Что касается фобии страха математики.  Люди с математикой фобии становятся настолько неудобно и тревожно, когда сталкиваются с математическими задачами, которые они могут испытывать физические симптомы, включая увеличение частоты сердечных сокращений, нервной желудка, и затрудненное дыхание, которые мешают им сосредоточиться и обучения.  Эти чувства были прослежены на различных источников, в том числе негативный опыт в учебный класс, бедных самооценку, отсутствие должного понимания применение математики к "реальной жизни", и застенчивость, которая не позволяет задавать вопросы.

Третья  основная связь между психологией  и математики является то, что психологи  используют математические и статистические инструменты для количественного  определения и анализа их результатов научных исследований.  Это использование называется психометрии и возникает в результате применения научного метода в психологии, то есть систематический метод сбора данных, гипотез развития и экспериментальной проверки, которые могут быть продублированы и проверены другими учеными.

 Одним  из примеров является психометрии  коэффициента интеллекта (IQ) тест, стандартизированный  тест, который измеряет относительный интеллекта человека.  Оценка IQ является относительное измерение, результата IQ 100 относительно среднего балла.  IQ баллы для большой части населения являются примером статистической функции. называется нормальным распределением.  Нормальные кривые или гауссовой кривых знакомы колоколообразной кривой, в которой измерения графике по оси Х и частота на графике по оси ординат.  Большинство оценки IQ падению широкой части кривой вблизи среднего значения 100.  Как оценки отклоняться негативно или позитивно от 100, они уменьшаются по частоте.

 Вопрос  методологии является одним из  видов анализа, используемых в психологии для измерения и количественной оценки чувства группы людей по определенной теме.  Например, большая группа студентов может быть задан следующий вопрос: "Как вы относитесь к вашей школе?"  Разнообразные ответы будут собраны, начиная от "Я ненавижу школу" до "Я люблю её" с помощью ответов будет выведен среднестатистический результат качества школы.  А произойдет это так. Ограниченное число мнений будут отобрано, которые представляет спектр ответов.  В течение последующихопросов, студенты будут читать образца Q и ранжировать их уровень согласия с каждым мнение по шкале от -4 до +4, в котором указывает -4 решительное несогласие и +4 указывает на сильное соглашение с мнением.  Этот процесс называется Q сортировки.  В результате численного данные могут быть проанализированы с использованием статистических функций обеспечивают математическое описание студенческого мнения о своей школе.  

                        

Доклад

на тему:

Применение  математики в психологии.     

Работу  выполнила:

Студентка 29 группы

Акимова Зоя.                

САМАРА 2011 год.

student.zoomru.ru

Психология математическая — реферат

ТЕМА: ОСНОВЫ МАТЕМАТИЧЕСКОЙ ПСИХОЛОГИИ                      

ПЛАН

Введение

1.Методологические  основы  исследований  в  области   математической 

психологии

2. Предмет,  объект  математической  психологии  и   основной  метод  исследования

3. Об  идеальном   объекте  исследования   в  математической  психологии

Заключение

Список  литературы 

 

ВВЕДЕНИЕ

    Математические  методы начали применяться в психологических  исследованиях практически одновременно с выделением психологии как самостоятельной  науки. Однако термин «математическая психология» появился впервые, по-видимому, в названии руководства по математической психологии, вышедшего в 1963 г. Таким образом, математическая психология как ветвь психологической науки заявила о себе ровно 20 лет назад, т. е. это относительно молодая дисциплина в системе психологического знания. Возникновение математической психологии явилось закономерным следствием интенсификации математизации психологического знания, выражавшейся в стремлении все большего числа психологов формулировать результаты своих исследований на языке математики, в частности в форме математических моделей. Возникновение математической психологии в начале 60-х годов означает, что в развитии процесса математизации психологического знания наступил новый этап, на котором ряд ведущих психологов стал активно использовать язык математики в своих исследованиях, и этот факт ими осознан как качественный скачок в процессе математизации психологического знания.

    Естественно, что в начале своего становления  математическая психология включала в свою проблематику лишь довольно узкий круг психологических проблем. Это были такие проблемы, уровень теоретической разработки которых позволил в максимальной степени применить математические методы, причем в основном такие, которые были уже к тому времени разработаны для решения задач, возникающих в других науках. Таковы, например, статистическая теория обнаружения сигналов, теория передачи информации, теория автоматического регулирования, теория марковских цепей, теория конечных и вероятностных автоматов и др.

    Однако  за время своего двадцатилетнего  развития математическая психология развивалась  как в интенсивном плане, углубляя и развивая те теории, которые входили  в ее проблематику в 60-х годах, так  и в экстенсивном плане, захватывая все новые области психологического знания. Так, по мнению Б. Г. Ананьева «математизация современной психологии распространялась на все ее разделы и дисциплины без какого-либо исключения».

    Тем не менее, современная математическая психология в значительной степени представляет собой совокупность разрозненных теорий различной степени общности и глубины разработки. Такое ее состояние делает актуальной задачу разработки конкретно-методологических основ математической психологии, анализ истории развития основных проблем математической психологии, определение места и роли математической психологии в системе психологических дисциплин, определение предмета, объекта и основного ее метода исследования и, наконец, построение идеальных объектов, анализом которых она занимается в соответствии с уровнями рассмотрения объекта психологического исследования. 

1. МЕТОДОЛОГИЧЕСКИЕ  ОСНОВЫ ИССЛЕДОВАНИЙ В ОБЛАСТИ  МАТЕМАТИЧЕСКОЙ ПСИХОЛОГИИ

    По  степени дробности уровня рассмотрения объекта психологического изучения Б. Ф. Ломов выделяет следующие основные уровни исследования:

    1) человек в системе общественных  отношений;

    2) деятельность и общение, т.  е. когнитивная, регулятивная  и коммуникативная функции психики;

    3) отдельные психические процессы;

    4) физиологические основы психических  явлений.

    Математическая  психология как отрасль психологической  науки характеризуется тенденцией к применению математических методов  в исследовании объекта психологического изучения.

    Чтобы охарактеризовать роль математической психологии в психологическом исследовании и ее место в системе психологических дисциплин, необходимо предварительно рассмотреть общеметодологические проблемы процесса научного познания с точки зрения материалистической диалектики и указать место и роль в процессе научного познания математических методов.

    Объект  психологического  исследования —  человек и коллектив, пожалуй, один из самых сложных объектов, которые  изучает наука.

    Диалектический  принцип единства и борьбы противоположностей как сущности развития — ведущий  при исследовании проблем развития коллективов и личности и проблем системогенеза деятельности. При этом переход количественных изменений в качественные характеризует развитие как явление, а закон отрицания отрицания представляет собой синтез явления и сущности развития.

    Принцип историзма позволяет определить основной критерий исследования развития коллектива и личности. Сущность его состоит в том, что человек рассматривается не только как действующее, но и как самоизменяющееся, саморазвивающееся существо, являющееся одновременно и субъектом, и результатом своей деятельности.

    Важнейшим методологическим принципом, позволяющим  сопоставить рассмотрение развитие человека в системе общественных отношении и исследований деятельности и общения является принцип диалектического  единства развития и функционирования, включающийся в том, что функционирование и его законы могут быть поняты только как следствие законов развития, но само развитие проявляется только в изменении законов функционирования.

    Важнейшим конкретно-методологическим методом  к изучению психических феноменов служит системный подход. В психологических исследованиях деятельности системный подход принял в основном форму системно-структурно-функционального подхода, при котором акцент ставится на изучении функционирования рассматриваемых систем, на связь структуры в функции системы.

    В исследованиях, в которых на первый план выступают проблемы развития, принцип системно-структурно-функционального  подхода должен быть дополнен диалектическим принципом, отражающим сущность развития. Такой подход был назван системно-диалектическим.

    Для его конкретизации рассмотрим, с  одной стороны, учение об основных этапах познавательной процедуры раскрытия  сущности явлений, а с другой —  определение предмета математики.

    Основные  моменты учения об этапах развития познания сущности явления состоят в следующем.

    На  основе наблюдения и описания некоторой  совокупности объективных явлений  в результате выделения и отождествления сходных объектов формируется эмпирическое понятие, объективным аналогом которого является нематериальный объект — сходное как таковое.

    Следующим важнейшим этапом раскрытия сущности является процесс формирования теоретического понятия как процесс перехода от эмпирического содержания сходного к не эмпирическому содержанию, объективным  аналогом которого является отдельное. Теоретическая концепция формируется на том этапе, выступает как гипотеза об основании сущности, механизма явления, подлежащая последующей проверке.

    Следующий этап состоит в конкретизации  теоретического понятия (теории) или, другими словами, в построении модели явления, отражающей суть гипотезы, сформулированной в теоретическом понятии (теории явления). Результатом являются отдельные объекты, модели, содержание которых совпадает с содержанием основания, отраженного в гипотетическом теоретическом понятии.

    Наконец, на последнем этапе сопоставляются формы проявления оснований (в частности, функционирования модели явления) с  исходными явлениями. Если при этом обнаруживается, что первоначальные явления можно рассматривать  как «превращенные» формы проявления основания, то исходные явления можно считать получившими рациональное объяснение», а гипотезу — доказанной. Таким образом, можно сказать, что сущность явления есть проявляемое основание.

    Безусловно, важнейшим этапом процесса раскрытия сущности является этап формулировка абстрактного теоретического понятия.

    Чтобы выявить место математических методов  в процессе научного познания, необходимо обратиться к рассмотрению предмета математики как науки.

      Современное представление о  предмете математики состоит в том, что «предмет математики — это теоретический образ объекта, его абстрактное и идеализированное представление».

    Сопоставление данного определения с содержанием  этапов познавательной процедуры раскрытия  сущности явления позволяет сделать вывод, что математические методы применимы на этапе конкретизации теории в теоретических представлениях. При этом если строится математическая модель изучаемого явления, то именно она является теоретическим представлением, в котором конкретизируется теория.

    С таким пониманием роли моделирования  и моделей в процессе познания согласуется принятое в математике определение модели, гласящее, что  возможная реализация положений  некоторой теории называется моделью. Таким образом, модель—это реализованные  в материальной форме (например, физические модели или программы на ЭВМ) теоретические представления.

    Поэтому модели, отчужденные от их создателя-исследователя, доступны такому же исследованию, какому доступны любые другие явления материального  мира. Модель, созданную одним исследователем, может изучать другой исследователь.

    Отметим, что наиболее полно и последовательно  математический метод познания воплотился в аксиоматическом методе, ставшим  центральным методом в современной  математике. Этот метод состоит в  том, что та или иная ветвь математики строится дедуктивным путем, который предполагает изначальную формулировку аксиом и постулатов, в которых в явном виде формулируются все предпосылки, которые кладутся в основу теории. Аксиомы и постулаты являются абстрактными формулировками, связывающими друг с другом основные понятия теории, выступающими, в свою очередь, абстракциями форм и отношений действительного мира.

    В этой связи интересно отметить, что  выдающийся математик Д. Гильберт, формулируя в 1900 г. на II Международном конгрессе математиков свои знаменитые проблемы, относящиеся к нерешенным в то время математическим задачам, сформулировал шестую проблему как задачу аксиоматического построения (наподобие аксиоматической геометрии) «тех физических дисциплин, в которых уже теперь математика играет выдающуюся роль». «Небольшим количеством аксиом охватить возможно более общий класс физических явлений, а затем присоединением каждой следующей аксиомы прийти к более специальным теориям».

    В настоящее время далеко не ясно, в какой степени выполнена задача, поставленная Д. Гильбертом в его шестой проблеме даже для физики, однако можно отметить тенденцию в построении все большего числа таких аксиоматизированных теорий не только в физике, но и в других отраслях естествознания. В качестве примера такой теории, относящейся к психологии, можно привести теорию полезности, математическую теорию научения и др.

    Отметим, что по степени развитости логической структуры обычно выделяются четыре типа теорий: эмпирические (описательные), гипотетико-дедуктивные, аксиоматизированные содержательные и формализованные,

    Попытка рассмотреть в указанном аспекте  современные психологические теории приводит к следующим выводам.

    В результате дифференциации психологического знания в настоящее время насчитывается несколько десятков психологических дисциплин, предмет которых — различные типы психических явлений и которые находятся на различных этапах развития логической структуры психологического знания. В рамках психологии можно найти примеры теорий трех первых типов. Однако основная масса психологических теорий носит в настоящее время либо описательный характер, либо  гипотетико-дедуктивный.

    Роль  математизации психологического знания заключается в развитии логической структуры психологических теорий от описательных к гипотетико-дедуктивным и далее к аксиоматизированным содержательным. Математизация психологического знания является, таким образом, фундаментальной проблемой психологической науки, разработка которой способствует развитию теоретической психологии, так как «описание тех или иных психологических явлений при помощи математических методов является не только средством   обработки данных наблюдения и эксперимента, но также мощным средством их обобщения, а следовательно, и   построения психологической теории.              

turboreferat.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.