Читать реферат по биологии: "Модели и моделирование в биологии". Реферат моделирование в биологии


Модели и моделирование в биологии

 

 

Содержание

1.     Концептуальные уровни в химии….………………………………..2

2.     Концептуальные уровни в биологии………………………………..3

3.     Модели и моделирование в биологии…………………….……......9

4.     Список использованной литературы…….………………………....16

 

1. Концептуальные уровни современной химии

По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению ос­новной задачи. Развитие этих подходов обусловило фор­мирование четырех концептуальных систем химических знаний.

Концептуальные подходы к решению основной пробле­мы химии, появлялись последователь­но.

Первоначально свойства веществ связывались исключи­тельно с их составом (в этом суть учения о составе). На этом уровне развития содержание химии исчерпывалось ее традиционным, менделеевским определением - как науки о химических элементах и их соединениях.

Далее учение о составе было дополнено концепцией структурной химии. Структурная концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структу­рой молекул. В рамках этого подхода возникло понятие «ре­акционная способность», включающая представление о химической активности отдельных фрагментов молекулы — отдельных ее атомов (и даже отдельных химических свя­зей) или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналити­ческой науки в науку синтетическую. Этот подход позволил в конечном итоге создать промышленные технологии синте­за многих органических веществ.

Затем было развито учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химичес­ких превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы изменения свойств получаемых веществ.

Последний этап концептуального развития химии свя­зан с использованием в ней некоторых принципов, реализо­ванных в химизме живой природы. В рамках эволюцион­ной химии осуществляется поиск таких условий, при кото­рых в процессе химических превращений идет самосовер­шенствование катализаторов реакций. По существу речь идет об изучении и применении самоорганизации химических систем, происходящих в клетках живых организмов.

Каждая новая концептуальная ступень в развитии хи­мии, означает не отрицание подходов, использовавшихся ранее, а опору на них как на основание. Все показанные на схеме концептуальные системы используются не порознь, а во взаимосвязи. Последовательное дополнение химии назван­ными концептуальными системами составляет логику раз­вития этой науки.

Термин «концептуальная система», а не «концепция» использован в приведенных выше рассуждениях не случай­но. Причина этого заключается в том, что на каждой ступе­ни рассмотренной «лесенки» развития химии, в свою оче­редь, были использованы различные научные идеи для ре­шения конкретных проблем. Примером тому служит выда­ющееся открытие в области химии, сделанное на пути ре­шения одной из исходных проблем химии — проблемы химического элемента.

 

2. Концептуальные уровни в  биологии

     2.1 Особенности биологического уровня организации материи.

   2.1.1 ПРЕДМЕТ БИОЛОГИИ. ЕЕ СТРУКТУРА И ЭТАПЫ РАЗВИТИЯ

    Определение предмета биологии на первый взгляд кажется довольно простым.

   Биология - это наука о живом, его строении, формах активности, сообществах живых организмов, их распространении и развитии, связях друг с другом и с неживой природой.

      В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассматривать с разных точек зрения.

- По объектам исследования биология подразделяется на вирусологию, бактериологию, ботанику, зоологию, антропологию.

- По свойствам, проявлениям живого в биологии выделяются:

морфология - наука о строении живых организмов;

физиология - наука о функционировании организмов;

 молекулярная биология, изучающая микроструктуру живых тканей и клеток;

экология, рассматривающая образ жизни растений и животных и их взаимосвязи с окружающей средой;

генетика, исследующая законы наследственности и изменчивости.

-По уровню организации исследуемых живых объектов выделяются:

 анатомия, изучающая макроскопическое строение животных:

гистология, изучающая строение тканей;

цитология исследующая строение живых клеток.

Важнейшим инструментом дальнейшего познания этого мира служит категория «живого», являющаяся ключевой, исходной для всей системы биологических наук.

В развитии биологии выделяют три основных этапа:

 1) систематики (К. Линней),

 2) эволюционный (Ч. Дарвин),

 3) биологии микромира (Г. Мендель).

 Каждый из них связан с изменением представлений о мире живого, самих основ биологического мышления, со сменой биологических парадигм.

 

2.1.2. Свойства живых организмов.

         Определение сущности живого.

      Интуитивно мы все понимаем, что есть живое и что - мертвое. Так, один из авторов предложил следующее «глубокомысленное» определение:

 живой организм - это тело, слагаемое из живых объектов;

 неживое тело - слагаемое из неживых объектов.

    Это означает, что дать точное определение жизни весьма непросто. Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни.

К числу свойств живого обычно относят следующие.

- Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах.

- Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию.

- Живые организмы активно реагируют на окружающую среду. Если толкнуть камень, то он пассивно сдвигается с места. Если толкнуть животное, оно отреагирует активно: убежит, нападет или изменит форму.

Способность реагировать на внешние раздражения - универсальное свойство всех живых существ, как растений, так и животных.

- Живые организмы не только изменяются, но и усложняются. Так, у растения или животного появляются новые ветви или новые органы, отличающиеся по своему химическому составу от породивших их структур.

- Все живое размножается. Эта способность к самовоспроизведению, пожалуй, самая поразительная способность живых организмов. Причем потомство и похоже, и в то же время чем-то отличается от родителей. В этом проявляется действие механизмов наследственности и изменчивости, определяющих эволюцию всех видов живой природы.

- Сходство потомства с родителями обусловлено еще одной замечательной особенностью живых организмов - передавать потомкам заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах - единицах наследственности, мельчайших внутриклеточных структурах.

Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько видоизменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

-- Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение крота, рыбы, лягушки, дождевого червя полностью соответствует условиям, в которых они живут.

 Обобщая и несколько упрощая сказанное о специфике живого, можно отметить, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе, а неживые тела не питаются, не дышат, не растут и не размножаются.

Из совокупности этих признаков вытекает следующее обобщенное определение сущности живого:

   жизнь есть форма существования сложных, открытых систем, способных к самоорганизации и самовоспроизведению.

     Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты.

 

2.2.  Структурные уровни живого.

        Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе разных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.

                                

                                                                             рис. 4-1

- Биосферный - включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая, в частности, проблема, как изменение концентрации углекислого газа в атмосфере. Используя этот подход, ученые выяснили, что в  последнее время концентрация углекислого газа возрастает  ежегодно на 0,4%, создавая опасность глобального повышения  температуры, возникновения так называемого «парникового  эффекта».

- Уровень   биогеоценозов   выражает   следующую   ступень  структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих     единый природный комплекс, экосистему.  Рациональное использование  природы невозможно  без знания  структуры  и функционирования биогеоценозов, или экосистем.

- Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций. А затем на этой основе можно будет поддерживать оптимальную численность популяций. Этот уровень также чрезвычайно важен для исследования путей исторического развития живого, его эволюции.

- Организменный и органо-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.

- Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения.

- Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.

 

   2.3. Клеточная теория. Строение и функции клетки

        Своего рода «первокирпичики» имеются на каждом из основных уровней организации природы, в биологии это - живая клетка, которая является фундаментальной  основой  живого мира. Ее исследование помогает уяснить специфику всего живого.

    Создание клеточной теории, основы которой были заложены немецкими учеными Т. Шванном и М.Я.Шлейденом, стало одним из крупнейших достижений биологии XIX в. Основное положение клеточной теории состоит в утверждении, что все растительные и животные организмы состоят из клеток, сходных по своему строению.

     Многочисленные исследования в области цитологии - новой биологической науки, специально занимающейся исследованием живой клетки, показали, что все клетки имеют некоторые общие свойства не только в строении, но и в функциях. Так, клетки осуществляют обмен веществ, способны к саморегуляции своего состояния, могут передавать наследственную информацию.

        Вместе с тем выяснилось, что клетки весьма многообразны. Они могут существовать как одноклеточные организмы (амебы), а также в составе многоклеточных. У клеток разный срок существования. Жизненный цикл любой клетки завершается или делением и продолжением жизни, но уже в обновленном виде, или гибелью.

Клетки образуют ткани (нервная, мышечная и т.д.), а несколько типов тканей - органы (сердце, легкие и пр.). Группы органов, связанные с решением каких-то общих задач, называют системами организма.

        Клетка имеет сложную структуру. Она обособляется от внешней среды оболочкой, которая, будучи неплотной и рыхлой, обеспечивает взаимодействие клетки с внешним миром, обмен с ним веществом, энергией, информацией. Обмен веществ, обеспечиваемый клетками, - важнейшее свойство всего  живого.

 Это свойство в биологической литературе называют  метаболизмом клеток.

     Метаболизм в свою очередь служит основой для другого (важнейшего свойства клетки - сохранения стабильности, устойчивости условий внутренней среды клетки. Это свойство  клеток, присущее всей живой системе, называют гомеостазом.

      Гомеостаз,  т.е.  постоянство  состава  клетки,   поддерживается обменом веществ, или метаболизмом.

       Но кто же в клетке обеспечивает управление всем этим сложным многоступенчатым процессом? Но общепризнано, что все нити управления внутриклеточным обменом находятся в особых структурах, как правило, в ядре клетки, в очень длинных цепях молекул нуклеиновых кислот (ДНК, РНК), исходной структурной единицей которых является ген. Это своего рода природное кибернетическое устройство, содержащее инструкцию, информацию, коды, определяющие характер всей деятельности клетки как по обмену веществ, так и по самовоспроизведению. Именно гены обеспечивают важнейшие метаболические и наследственные функции клетки, как и всего организма в целом.

    Открытие в XX в. структуры и функционирования генетического аппарата клетки в развитии биологии сыграло такую же роль, как и открытие атомного ядра в физике. Если открытие ядра позволило человеку овладеть практически неисчерпаемыми запасами энергии, то открытие генов дало возможность людям вмешиваться в свойства живой клетки, управлять механизмами наследственности, практически решать задачи клонирования (копирования) живых организмов.

 

 

3. МОДЕЛИРОВАНИЕ КАК КАТЕГОРИЯ. МОДЕЛИ В БИОЛОГИИ.

 

3.1. Понятие моделирования.

Моделирование - это исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (живых и неживых систем, инженерных конструкций, разнообразных процессов - физических, химических, биологических и др.) и конструируемых объектов (для определения, уточнения их характеристик, рационализации способов построения).

Моделирование - познавательный прием, одна из форм отражения. Моделирование характеризует один из важных путей познания. Возможность моделирования, т.е. переноса результатов, полученных в ходе построения и исследования моделей, на оригинал, основана на том, что модель в определенном смысле отображает (воспроизводит, моделирует) какие-либо его черты. При этом такое отображение основано на понятиях изоморфизма и гомоморфизма между изучаемым объектом и некоторым другим объектом-оригиналом и часто осуществляется путем предварительного исследования (теоретического или экспериментального) того и другого. Поэтому для успешного моделирования необходимо наличие уже сложившихся теорий исследуемых явлений, или хотя бы обоснованных гипотез, указывающих предельно допустимые при построении моделей упрощения. Результативность моделирования значительно возрастает, если при построении модели и переносе результатов с модели на оригинал, можно воспользоваться некоторой теорией, уточняющей связанную с используемой процедурой моделирования, идею подобия.

Для явлений одной и той же физической природы такая теория, основанная на понятии размерности физических величин, хорошо разработана. Но для моделирования сложных систем и процессов, например, биологических, используется теория больших систем, модели сложных динамических систем живой природы.

Моделирование всегда используется вместе с другими общенаучными и специальными методами. Можно разделить «материальное» (предметное) и «идеальное» моделирование. Первое можно рассматривать как экспериментальное, второе - как теоретическое. Такое разделение условно как в силу взаимосвязи обоюдного влияния этих методов, так и наличия гибридных форм, например, «мысленный эксперимент». «Материальное» моделирование подразделяется на физическое и предметно-математическое. «Идеальное» моделирование может происходить на уровне самых общих, может быть не до конца осознанных, «модельных представлений». Моделирование на ЭВМ, получившее значительное распространение в последние годы, еще называют «кибернетическим», оно является предметно-математическим по форме и идеальным по содержанию.

Моделирование тесно связано с экспериментом. Изучение какого-либо явления на его кибернетической модели можно рассматривать как особый вид эксперимента: «модельный эксперимент», отличающийся от обычного («прямого» эксперимента) тем, что в процесс познания включается «промежуточное звено» - модель, являющаяся и средством и объектом экспериментального исследования, заменяющим изучаемый объект. Модельный эксперимент позволяет изучать такие объекты, прямой эксперимент над которыми затруднен, экономически не выгоден или вообще невозможен в силу тех или иных причин.

Моделирование предполагает использование абстрагирования и идеализации. Отображая существенные свойства оригинала и отвлекаясь от несущественного, модель выступает как специфическая форма реализации абстракции. Выделяют три уровня абстракции:      уровень      потенциальной      осуществимости,      уровень      «реальной» осуществимости и уровень практической целесообразности. На всех уровнях, однако, необходимо учитывать, что моделирование оригинала не может дать полного знания о нем. Эта черта особенно существенна, когда предметом моделирования выступают сложные системы, поведение которых зависит от большого числа взаимосвязанных факторов различной природы. Такие системы отображаются в различных моделях. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки критериев сравнения. Примером такого рода моделей может служит моделирование различных форм деятельности мозга. Создаваемые модели интеллекта и психических функций - например, в виде эвристических программ на ЭВМ - показывают, что моделирование мышления как информационного процесса возможно в различных аспектах: формально-логическом, индуктивном, нейрологическом, эвристическом и др.

 

3.2.   Понятие модели

Модель - это образ или праобраз какого-либо объекта или системы объектов («оригинала» данной модели), используемый при определенных условиях в качестве их заместителя. Модель может быть системой и более высокого уровня абстракции, чем оригинал (выражают идею «имитации») и более низкого (реализуют принцип «реального воплощения»). В естественных науках обычно следуют первому из упомянутых пониманий термина.

В соответствии с различными назначениями методов моделирования понятие модели используется не только и не столько с целью получения объяснений различных явлений, сколько для предсказания интересующих исследователя явлений. Оба эти аспекта использования моделей оказываются особенно плодотворными при отказе от полной формализации этого понятия. Модель - прежде всего- орудие познания. На современном этапе развития науки характерно значительное расширение арсенала применяемых моделей. Широкие возможности открывает использование компьютерных моделей, которые можно рассматривать как «универсальные моделирующие системы».

 

3.3.   Модели в биологии

Применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций, экосистем.

В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические).

Б и о л о г и ч е с к и е модели воспроизводят на лабораторных животных определенные состояния или заболевания, встречающиеся у животных или у человека. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей - искусственно вызванные генетические нарушения, инфекционные процесс, интоксикации, воспроизведение гипертонических и гипоксических состояний, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозы и эмоциональные состояния. Для создания биологических моделей применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или ведение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.

Ф и з и к о -х и м и ч е с к и е модели воспроизводят химическими или физическими средствами биологические структуры, функции или процессы и, как правило, являются далеким подобием моделируемого биологического явления. Начиная с 60-х гг. 19в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Немецкий ученый М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSO4 в водном растворе K4[Fe(CN)6]; французский физик С. Ледюк (1907), погружая в насыщенный раствор K3PO4 сплавленный CaCl2, получил - благодаря действию сил поверхностного натяжения и осмоса - структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешне сходство с протоплазмой; такая модель воспроизводила даже амебное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским ученым К. Маттеуччи и немцем Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. Присоединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский ученый Р. Лилли на модели распространяющейся по нерву волны возбуждения воспроизвел ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, закон «все или ничего», двустороннее приведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и появлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, ее отростке и синапсе. Построены также механические машины с электронным управлением, моделирующие сложные действия поведения. Однако, такие модели сильно упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики, чем для биологии.

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов, их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых внутри организма клеток.

Модели биологических мембран (пленка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов -дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т.д.

М а т е м а т и ч е с к и е модели (математические и логико-математические описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математических моделей и дают материал для ее дальнейшей корректировки. «Проигрывание» математической модели биологического явления на ЭВМ позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математические модели позволяют в отдельных случаях предсказать некоторые явления, ранее неизвестные исследователю. Так, модель сердечной деятельности, предложенная голландскими учеными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математических моделей физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учеными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских ученых У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А.Н. Колмогоров). Марковская математическая модель процесса эволюции построена О.С. Кулагиной и А.А. Ляпуновым. И.М. Гельфандом и М.Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. Показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков - синергий, а не путем независимого управления каждой мышцей.

В настоящее время в области математического моделирования биообъектов и биосистем сложились работают следующие научные школы: Научно-исследовательский институт новых медицинских технологий Минздрава РФ, Тульский государственный университет, Институт математики НАН Украины. Разработаны: универсальный метод моделирования физиологических систем человека в норме и патологии на основе вычисления рекуррентных рядов; аппарат дифференциальных форм (внешней алгебры) применен для решения задач биоэнергоинформационного обмена и гемодинамики; для формирования алгоритмов моделирования процессов мышления и внутриорганного биоинформационного обмена, базирующихся на солитонном механизме волновой передачи, разработан метод решения канонических уравнений и др.

 

 

Список  используемой литературы

 

1. Концепции современного естествознания: учебное пособие, под ред. А.В. Кокина, изд-во «Приор Эксперт бюро», - Москва, 1998 год

2. Проблемы развития химии под ред. Г.А. Фединой, - Ленинград, 1989 год

3. Концепции современного естествознания: учебник для вузов, под ред. А.П. Садохина, из-во Эксмо,  – Москва, 2006 год.

4. Концепции современного естествознания. Хрестоматия для студентов гуманитарных ВУЗОВ, Высшая школа, изд-во Астрель, АСТ, 2004 год.

6.Моделирование в химии и биологии………………….………..стр.23

7.Бионеорганическая химия………………………….….………….стр.23

www.referatmix.ru

Шпаргалка - Модели и моделирование в биологии

Содержание

1. Концептуальные уровни в химии….………………………………..2

2. Концептуальные уровни в биологии………………………………..3

3. Модели и моделирование в биологии…………………….……......9

4. Список использованной литературы…….………………………....16

1. Концептуальные уровни современной химии

По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению ос­новной задачи. Развитие этих подходов обусловило фор­мирование четырех концептуальных систем химических знаний.

Концептуальные подходы к решению основной пробле­мы химии, появлялись последователь­но.

Первоначально свойства веществ связывались исключи­тельно с их составом (в этом суть учения о составе). На этом уровне развития содержание химии исчерпывалось ее традиционным, менделеевским определением — как науки о химических элементах и их соединениях.

Далее учение о составе было дополнено концепцией структурной химии. Структурная концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структу­рой молекул. В рамках этого подхода возникло понятие «ре­акционная способность», включающая представление о химической активности отдельных фрагментов молекулы — отдельных ее атомов (и даже отдельных химических свя­зей) или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналити­ческой науки в науку синтетическую. Этот подход позволил в конечном итоге создать промышленные технологии синте­за многих органических веществ.

Затем было развито учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химичес­ких превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы изменения свойств получаемых веществ.

Последний этап концептуального развития химии свя­зан с использованием в ней некоторых принципов, реализо­ванных в химизме живой природы. В рамках эволюцион­ной химии осуществляется поиск таких условий, при кото­рых в процессе химических превращений идет самосовер­шенствование катализаторов реакций. По существу речь идет об изучении и применении самоорганизации химических систем, происходящих в клетках живых организмов.

Каждая новая концептуальная ступень в развитии хи­мии, означает не отрицание подходов, использовавшихся ранее, а опору на них как на основание. Все показанные на схеме концептуальные системы используются не порознь, а во взаимосвязи. Последовательное дополнение химии назван­ными концептуальными системами составляет логику раз­вития этой науки.

Термин «концептуальная система», а не «концепция» использован в приведенных выше рассуждениях не случай­но. Причина этого заключается в том, что на каждой ступе­ни рассмотренной «лесенки» развития химии, в свою оче­редь, были использованы различные научные идеи для ре­шения конкретных проблем. Примером тому служит выда­ющееся открытие в области химии, сделанное на пути ре­шения одной из исходных проблем химии — проблемы химического элемента.

2. Концептуальные уровни в биологии

2.1 Особенности биологического уровня организации материи.

2.1.1 ПРЕДМЕТ БИОЛОГИИ. ЕЕ СТРУКТУРА И ЭТАПЫ РАЗВИТИЯ

Определение предмета биологии на первый взгляд кажется довольно простым.

Биология — это наука о живом, его строении, формах активности, сообществах живых организмов, их распространении и развитии, связях друг с другом и с неживой природой.

В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассматривать с разных точек зрения.

— По объектам исследования биология подразделяется на вирусологию, бактериологию, ботанику, зоологию, антропологию.

— По свойствам, проявлениям живого в биологии выделяются:

морфология — наука о строении живых организмов;

физиология — наука о функционировании организмов;

молекулярная биология, изучающая микроструктуру живых тканей и клеток;

экология, рассматривающая образ жизни растений и животных и их взаимосвязи с окружающей средой;

генетика, исследующая законы наследственности и изменчивости.

-По уровню организации исследуемых живых объектов выделяются:

анатомия, изучающая макроскопическое строение животных:

гистология, изучающая строение тканей;

цитология исследующая строение живых клеток.

Важнейшим инструментом дальнейшего познания этого мира служит категория «живого», являющаяся ключевой, исходной для всей системы биологических наук.

В развитии биологии выделяют три основных этапа:

1) систематики (К. Линней),

2) эволюционный (Ч. Дарвин),

3) биологии микромира (Г. Мендель).

Каждый из них связан с изменением представлений о мире живого, самих основ биологического мышления, со сменой биологических парадигм.

2.1.2. Свойства живых организмов.

Определение сущности живого.

Интуитивно мы все понимаем, что есть живое и что — мертвое. Так, один из авторов предложил следующее «глубокомысленное» определение:

живой организм — это тело, слагаемое из живых объектов;

неживое тело — слагаемое из неживых объектов.

Это означает, что дать точное определение жизни весьма непросто. Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни.

К числу свойств живого обычно относят следующие.

— Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах.

— Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию.

— Живые организмы активно реагируют на окружающую среду. Если толкнуть камень, то он пассивно сдвигается с места. Если толкнуть животное, оно отреагирует активно: убежит, нападет или изменит форму.

Способность реагировать на внешние раздражения — универсальное свойство всех живых существ, как растений, так и животных.

— Живые организмы не только изменяются, но и усложняются. Так, у растения или животного появляются новые ветви или новые органы, отличающиеся по своему химическому составу от породивших их структур.

— Все живое размножается. Эта способность к самовоспроизведению, пожалуй, самая поразительная способность живых организмов. Причем потомство и похоже, и в то же время чем-то отличается от родителей. В этом проявляется действие механизмов наследственности и изменчивости, определяющих эволюцию всех видов живой природы.

— Сходство потомства с родителями обусловлено еще одной замечательной особенностью живых организмов — передавать потомкам заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах — единицах наследственности, мельчайших внутриклеточных структурах.

Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько видоизменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

— Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение крота, рыбы, лягушки, дождевого червя полностью соответствует условиям, в которых они живут.

Обобщая и несколько упрощая сказанное о специфике живого, можно отметить, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе, а неживые тела не питаются, не дышат, не растут и не размножаются.

Из совокупности этих признаков вытекает следующее обобщенное определение сущности живого:

жизнь есть форма существования сложных, открытых систем, способных к самоорганизации и самовоспроизведению.

Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты.

2.2. Структурные уровни живого.

Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе разных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.

рис. 4-1

— Биосферный — включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая, в частности, проблема, как изменение концентрации углекислого газа в атмосфере. Используя этот подход, ученые выяснили, что в последнее время концентрация углекислого газа возрастает ежегодно на 0,4%, создавая опасность глобального повышения температуры, возникновения так называемого «парникового эффекта».

— Уровень биогеоценозов выражает следующую ступень структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.

— Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций. А затем на этой основе можно будет поддерживать оптимальную численность популяций. Этот уровень также чрезвычайно важен для исследования путей исторического развития живого, его эволюции.

— Организменный и органо-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.

— Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения.

— Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.

2.3. Клеточная теория. Строение и функции клетки

Своего рода «первокирпичики» имеются на каждом из основных уровней организации природы, в биологии это — живая клетка, которая является фундаментальной основой живого мира. Ее исследование помогает уяснить специфику всего живого.

Создание клеточной теории, основы которой были заложены немецкими учеными Т. Шванном и М.Я.Шлейденом, стало одним из крупнейших достижений биологии XIX в. Основное положение клеточной теории состоит в утверждении, что все растительные и животные организмы состоят из клеток, сходных по своему строению.

Многочисленные исследования в области цитологии — новой биологической науки, специально занимающейся исследованием живой клетки, показали, что все клетки имеют некоторые общие свойства не только в строении, но и в функциях. Так, клетки осуществляют обмен веществ, способны к саморегуляции своего состояния, могут передавать наследственную информацию.

Вместе с тем выяснилось, что клетки весьма многообразны. Они могут существовать как одноклеточные организмы (амебы), а также в составе многоклеточных. У клеток разный срок существования. Жизненный цикл любой клетки завершается или делением и продолжением жизни, но уже в обновленном виде, или гибелью.

Клетки образуют ткани (нервная, мышечная и т.д.), а несколько типов тканей — органы (сердце, легкие и пр.). Группы органов, связанные с решением каких-то общих задач, называют системами организма.

Клетка имеет сложную структуру. Она обособляется от внешней среды оболочкой, которая, будучи неплотной и рыхлой, обеспечивает взаимодействие клетки с внешним миром, обмен с ним веществом, энергией, информацией. Обмен веществ, обеспечиваемый клетками, — важнейшее свойство всего живого.

Это свойство в биологической литературе называют метаболизмом клеток.

Метаболизм в свою очередь служит основой для другого (важнейшего свойства клетки — сохранения стабильности, устойчивости условий внутренней среды клетки. Это свойство клеток, присущее всей живой системе, называют гомеостазом.

Гомеостаз, т.е. постоянство состава клетки, поддерживается обменом веществ, или метаболизмом.

Но кто же в клетке обеспечивает управление всем этим сложным многоступенчатым процессом? Но общепризнано, что все нити управления внутриклеточным обменом находятся в особых структурах, как правило, в ядре клетки, в очень длинных цепях молекул нуклеиновых кислот (ДНК, РНК), исходной структурной единицей которых является ген. Это своего рода природное кибернетическое устройство, содержащее инструкцию, информацию, коды, определяющие характер всей деятельности клетки как по обмену веществ, так и по самовоспроизведению. Именно гены обеспечивают важнейшие метаболические и наследственные функции клетки, как и всего организма в целом.

Открытие в XX в. структуры и функционирования генетического аппарата клетки в развитии биологии сыграло такую же роль, как и открытие атомного ядра в физике. Если открытие ядра позволило человеку овладеть практически неисчерпаемыми запасами энергии, то открытие генов дало возможность людям вмешиваться в свойства живой клетки, управлять механизмами наследственности, практически решать задачи клонирования (копирования) живых организмов.

3. МОДЕЛИРОВАНИЕ КАК КАТЕГОРИЯ. МОДЕЛИ В БИОЛОГИИ.

3.1. Понятие моделирования.

Моделирование — это исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (живых и неживых систем, инженерных конструкций, разнообразных процессов — физических, химических, биологических и др.) и конструируемых объектов (для определения, уточнения их характеристик, рационализации способов построения).

Моделирование — познавательный прием, одна из форм отражения. Моделирование характеризует один из важных путей познания. Возможность моделирования, т.е. переноса результатов, полученных в ходе построения и исследования моделей, на оригинал, основана на том, что модель в определенном смысле отображает (воспроизводит, моделирует) какие-либо его черты. При этом такое отображение основано на понятиях изоморфизма и гомоморфизма между изучаемым объектом и некоторым другим объектом-оригиналом и часто осуществляется путем предварительного исследования (теоретического или экспериментального) того и другого. Поэтому для успешного моделирования необходимо наличие уже сложившихся теорий исследуемых явлений, или хотя бы обоснованных гипотез, указывающих предельно допустимые при построении моделей упрощения. Результативность моделирования значительно возрастает, если при построении модели и переносе результатов с модели на оригинал, можно воспользоваться некоторой теорией, уточняющей связанную с используемой процедурой моделирования, идею подобия.

Для явлений одной и той же физической природы такая теория, основанная на понятии размерности физических величин, хорошо разработана. Но для моделирования сложных систем и процессов, например, биологических, используется теория больших систем, модели сложных динамических систем живой природы.

Моделирование всегда используется вместе с другими общенаучными и специальными методами. Можно разделить «материальное» (предметное) и «идеальное» моделирование. Первое можно рассматривать как экспериментальное, второе — как теоретическое. Такое разделение условно как в силу взаимосвязи обоюдного влияния этих методов, так и наличия гибридных форм, например, «мысленный эксперимент». «Материальное» моделирование подразделяется на физическое и предметно-математическое. «Идеальное» моделирование может происходить на уровне самых общих, может быть не до конца осознанных, «модельных представлений». Моделирование на ЭВМ, получившее значительное распространение в последние годы, еще называют «кибернетическим», оно является предметно-математическим по форме и идеальным по содержанию.

Моделирование тесно связано с экспериментом. Изучение какого-либо явления на его кибернетической модели можно рассматривать как особый вид эксперимента: «модельный эксперимент», отличающийся от обычного («прямого» эксперимента) тем, что в процесс познания включается «промежуточное звено» — модель, являющаяся и средством и объектом экспериментального исследования, заменяющим изучаемый объект. Модельный эксперимент позволяет изучать такие объекты, прямой эксперимент над которыми затруднен, экономически не выгоден или вообще невозможен в силу тех или иных причин.

Моделирование предполагает использование абстрагирования и идеализации. Отображая существенные свойства оригинала и отвлекаясь от несущественного, модель выступает как специфическая форма реализации абстракции. Выделяют три уровня абстракции: уровень потенциальной осуществимости, уровень «реальной» осуществимости и уровень практической целесообразности. На всех уровнях, однако, необходимо учитывать, что моделирование оригинала не может дать полного знания о нем. Эта черта особенно существенна, когда предметом моделирования выступают сложные системы, поведение которых зависит от большого числа взаимосвязанных факторов различной природы. Такие системы отображаются в различных моделях. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки критериев сравнения. Примером такого рода моделей может служит моделирование различных форм деятельности мозга. Создаваемые модели интеллекта и психических функций — например, в виде эвристических программ на ЭВМ — показывают, что моделирование мышления как информационного процесса возможно в различных аспектах: формально-логическом, индуктивном, нейрологическом, эвристическом и др.

3.2. Понятие модели

Модель — это образ или праобраз какого-либо объекта или системы объектов («оригинала» данной модели), используемый при определенных условиях в качестве их заместителя. Модель может быть системой и более высокого уровня абстракции, чем оригинал (выражают идею «имитации») и более низкого (реализуют принцип «реального воплощения»). В естественных науках обычно следуют первому из упомянутых пониманий термина.

В соответствии с различными назначениями методов моделирования понятие модели используется не только и не столько с целью получения объяснений различных явлений, сколько для предсказания интересующих исследователя явлений. Оба эти аспекта использования моделей оказываются особенно плодотворными при отказе от полной формализации этого понятия. Модель — прежде всего- орудие познания. На современном этапе развития науки характерно значительное расширение арсенала применяемых моделей. Широкие возможности открывает использование компьютерных моделей, которые можно рассматривать как «универсальные моделирующие системы».

3.3. Модели в биологии

Применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций, экосистем.

В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические).

Б и о л о г и ч е с к и е модели воспроизводят на лабораторных животных определенные состояния или заболевания, встречающиеся у животных или у человека. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей — искусственно вызванные генетические нарушения, инфекционные процесс, интоксикации, воспроизведение гипертонических и гипоксических состояний, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозы и эмоциональные состояния. Для создания биологических моделей применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или ведение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.

Ф и з и к о -х и м и ч е с к и е модели воспроизводят химическими или физическими средствами биологические структуры, функции или процессы и, как правило, являются далеким подобием моделируемого биологического явления. Начиная с 60-х гг. 19в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Немецкий ученый М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSO4 в водном растворе K4 [Fe(CN)6 ]; французский физик С. Ледюк (1907), погружая в насыщенный раствор K3 PO4 сплавленный CaCl2, получил — благодаря действию сил поверхностного натяжения и осмоса — структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешне сходство с протоплазмой; такая модель воспроизводила даже амебное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским ученым К. Маттеуччи и немцем Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. Присоединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский ученый Р. Лилли на модели распространяющейся по нерву волны возбуждения воспроизвел ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, закон «все или ничего», двустороннее приведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и появлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, ее отростке и синапсе. Построены также механические машины с электронным управлением, моделирующие сложные действия поведения. Однако, такие модели сильно упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики, чем для биологии.

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов, их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых внутри организма клеток.

Модели биологических мембран (пленка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов -дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т.д.

М а т е м а т и ч е с к и е модели (математические и логико-математические описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математических моделей и дают материал для ее дальнейшей корректировки. «Проигрывание» математической модели биологического явления на ЭВМ позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математические модели позволяют в отдельных случаях предсказать некоторые явления, ранее неизвестные исследователю. Так, модель сердечной деятельности, предложенная голландскими учеными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математических моделей физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учеными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских ученых У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А.Н. Колмогоров). Марковская математическая модель процесса эволюции построена О.С. Кулагиной и А.А. Ляпуновым. И.М. Гельфандом и М.Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. Показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков — синергий, а не путем независимого управления каждой мышцей.

В настоящее время в области математического моделирования биообъектов и биосистем сложились работают следующие научные школы: Научно-исследовательский институт новых медицинских технологий Минздрава РФ, Тульский государственный университет, Институт математики НАН Украины. Разработаны: универсальный метод моделирования физиологических систем человека в норме и патологии на основе вычисления рекуррентных рядов; аппарат дифференциальных форм (внешней алгебры) применен для решения задач биоэнергоинформационного обмена и гемодинамики; для формирования алгоритмов моделирования процессов мышления и внутриорганного биоинформационного обмена, базирующихся на солитонном механизме волновой передачи, разработан метод решения канонических уравнений и др.

Список используемой литературы

1. Концепции современного естествознания: учебное пособие, под ред. А.В. Кокина, изд-во «Приор Эксперт бюро», — Москва, 1998 год

2. Проблемы развития химии под ред. Г.А. Фединой, — Ленинград, 1989 год

3. Концепции современного естествознания: учебник для вузов, под ред. А.П. Садохина, из-во Эксмо, – Москва, 2006 год.

4. Концепции современного естествознания. Хрестоматия для студентов гуманитарных ВУЗОВ, Высшая школа, изд-во Астрель, АСТ, 2004 год.

6.Моделирование в химии и биологии………………….………… стр.23

7.Бионеорганическая химия………………………….….………….стр.23

www.ronl.ru

Научная работа - Модели и моделирование в биологии

Содержание

1. Концептуальные уровни в химии….………………………………..2

2. Концептуальные уровни в биологии………………………………..3

3. Модели и моделирование в биологии…………………….……......9

4. Список использованной литературы…….………………………....16

1. Концептуальные уровни современной химии

По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению ос­новной задачи. Развитие этих подходов обусловило фор­мирование четырех концептуальных систем химических знаний.

Концептуальные подходы к решению основной пробле­мы химии, появлялись последователь­но.

Первоначально свойства веществ связывались исключи­тельно с их составом (в этом суть учения о составе). На этом уровне развития содержание химии исчерпывалось ее традиционным, менделеевским определением — как науки о химических элементах и их соединениях.

Далее учение о составе было дополнено концепцией структурной химии. Структурная концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структу­рой молекул. В рамках этого подхода возникло понятие «ре­акционная способность», включающая представление о химической активности отдельных фрагментов молекулы — отдельных ее атомов (и даже отдельных химических свя­зей) или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналити­ческой науки в науку синтетическую. Этот подход позволил в конечном итоге создать промышленные технологии синте­за многих органических веществ.

Затем было развито учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химичес­ких превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы изменения свойств получаемых веществ.

Последний этап концептуального развития химии свя­зан с использованием в ней некоторых принципов, реализо­ванных в химизме живой природы. В рамках эволюцион­ной химии осуществляется поиск таких условий, при кото­рых в процессе химических превращений идет самосовер­шенствование катализаторов реакций. По существу речь идет об изучении и применении самоорганизации химических систем, происходящих в клетках живых организмов.

Каждая новая концептуальная ступень в развитии хи­мии, означает не отрицание подходов, использовавшихся ранее, а опору на них как на основание. Все показанные на схеме концептуальные системы используются не порознь, а во взаимосвязи. Последовательное дополнение химии назван­ными концептуальными системами составляет логику раз­вития этой науки.

Термин «концептуальная система», а не «концепция» использован в приведенных выше рассуждениях не случай­но. Причина этого заключается в том, что на каждой ступе­ни рассмотренной «лесенки» развития химии, в свою оче­редь, были использованы различные научные идеи для ре­шения конкретных проблем. Примером тому служит выда­ющееся открытие в области химии, сделанное на пути ре­шения одной из исходных проблем химии — проблемы химического элемента.

2. Концептуальные уровни в биологии

2.1 Особенности биологического уровня организации материи.

2.1.1 ПРЕДМЕТ БИОЛОГИИ. ЕЕ СТРУКТУРА И ЭТАПЫ РАЗВИТИЯ

Определение предмета биологии на первый взгляд кажется довольно простым.

Биология — это наука о живом, его строении, формах активности, сообществах живых организмов, их распространении и развитии, связях друг с другом и с неживой природой.

В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассматривать с разных точек зрения.

— По объектам исследования биология подразделяется на вирусологию, бактериологию, ботанику, зоологию, антропологию.

— По свойствам, проявлениям живого в биологии выделяются:

морфология — наука о строении живых организмов;

физиология — наука о функционировании организмов;

молекулярная биология, изучающая микроструктуру живых тканей и клеток;

экология, рассматривающая образ жизни растений и животных и их взаимосвязи с окружающей средой;

генетика, исследующая законы наследственности и изменчивости.

-По уровню организации исследуемых живых объектов выделяются:

анатомия, изучающая макроскопическое строение животных:

гистология, изучающая строение тканей;

цитология исследующая строение живых клеток.

Важнейшим инструментом дальнейшего познания этого мира служит категория «живого», являющаяся ключевой, исходной для всей системы биологических наук.

В развитии биологии выделяют три основных этапа:

1) систематики (К. Линней),

2) эволюционный (Ч. Дарвин),

3) биологии микромира (Г. Мендель).

Каждый из них связан с изменением представлений о мире живого, самих основ биологического мышления, со сменой биологических парадигм.

2.1.2. Свойства живых организмов.

Определение сущности живого.

Интуитивно мы все понимаем, что есть живое и что — мертвое. Так, один из авторов предложил следующее «глубокомысленное» определение:

живой организм — это тело, слагаемое из живых объектов;

неживое тело — слагаемое из неживых объектов.

Это означает, что дать точное определение жизни весьма непросто. Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни.

К числу свойств живого обычно относят следующие.

— Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах.

— Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию.

— Живые организмы активно реагируют на окружающую среду. Если толкнуть камень, то он пассивно сдвигается с места. Если толкнуть животное, оно отреагирует активно: убежит, нападет или изменит форму.

Способность реагировать на внешние раздражения — универсальное свойство всех живых существ, как растений, так и животных.

— Живые организмы не только изменяются, но и усложняются. Так, у растения или животного появляются новые ветви или новые органы, отличающиеся по своему химическому составу от породивших их структур.

— Все живое размножается. Эта способность к самовоспроизведению, пожалуй, самая поразительная способность живых организмов. Причем потомство и похоже, и в то же время чем-то отличается от родителей. В этом проявляется действие механизмов наследственности и изменчивости, определяющих эволюцию всех видов живой природы.

— Сходство потомства с родителями обусловлено еще одной замечательной особенностью живых организмов — передавать потомкам заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах — единицах наследственности, мельчайших внутриклеточных структурах.

Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько видоизменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

— Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение крота, рыбы, лягушки, дождевого червя полностью соответствует условиям, в которых они живут.

Обобщая и несколько упрощая сказанное о специфике живого, можно отметить, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе, а неживые тела не питаются, не дышат, не растут и не размножаются.

Из совокупности этих признаков вытекает следующее обобщенное определение сущности живого:

жизнь есть форма существования сложных, открытых систем, способных к самоорганизации и самовоспроизведению.

Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты.

2.2. Структурные уровни живого.

Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе разных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.

рис. 4-1

— Биосферный — включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая, в частности, проблема, как изменение концентрации углекислого газа в атмосфере. Используя этот подход, ученые выяснили, что в последнее время концентрация углекислого газа возрастает ежегодно на 0,4%, создавая опасность глобального повышения температуры, возникновения так называемого «парникового эффекта».

— Уровень биогеоценозов выражает следующую ступень структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.

— Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций. А затем на этой основе можно будет поддерживать оптимальную численность популяций. Этот уровень также чрезвычайно важен для исследования путей исторического развития живого, его эволюции.

— Организменный и органо-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.

— Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения.

— Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.

2.3. Клеточная теория. Строение и функции клетки

Своего рода «первокирпичики» имеются на каждом из основных уровней организации природы, в биологии это — живая клетка, которая является фундаментальной основой живого мира. Ее исследование помогает уяснить специфику всего живого.

Создание клеточной теории, основы которой были заложены немецкими учеными Т. Шванном и М.Я.Шлейденом, стало одним из крупнейших достижений биологии XIX в. Основное положение клеточной теории состоит в утверждении, что все растительные и животные организмы состоят из клеток, сходных по своему строению.

Многочисленные исследования в области цитологии — новой биологической науки, специально занимающейся исследованием живой клетки, показали, что все клетки имеют некоторые общие свойства не только в строении, но и в функциях. Так, клетки осуществляют обмен веществ, способны к саморегуляции своего состояния, могут передавать наследственную информацию.

Вместе с тем выяснилось, что клетки весьма многообразны. Они могут существовать как одноклеточные организмы (амебы), а также в составе многоклеточных. У клеток разный срок существования. Жизненный цикл любой клетки завершается или делением и продолжением жизни, но уже в обновленном виде, или гибелью.

Клетки образуют ткани (нервная, мышечная и т.д.), а несколько типов тканей — органы (сердце, легкие и пр.). Группы органов, связанные с решением каких-то общих задач, называют системами организма.

Клетка имеет сложную структуру. Она обособляется от внешней среды оболочкой, которая, будучи неплотной и рыхлой, обеспечивает взаимодействие клетки с внешним миром, обмен с ним веществом, энергией, информацией. Обмен веществ, обеспечиваемый клетками, — важнейшее свойство всего живого.

Это свойство в биологической литературе называют метаболизмом клеток.

Метаболизм в свою очередь служит основой для другого (важнейшего свойства клетки — сохранения стабильности, устойчивости условий внутренней среды клетки. Это свойство клеток, присущее всей живой системе, называют гомеостазом.

Гомеостаз, т.е. постоянство состава клетки, поддерживается обменом веществ, или метаболизмом.

Но кто же в клетке обеспечивает управление всем этим сложным многоступенчатым процессом? Но общепризнано, что все нити управления внутриклеточным обменом находятся в особых структурах, как правило, в ядре клетки, в очень длинных цепях молекул нуклеиновых кислот (ДНК, РНК), исходной структурной единицей которых является ген. Это своего рода природное кибернетическое устройство, содержащее инструкцию, информацию, коды, определяющие характер всей деятельности клетки как по обмену веществ, так и по самовоспроизведению. Именно гены обеспечивают важнейшие метаболические и наследственные функции клетки, как и всего организма в целом.

Открытие в XX в. структуры и функционирования генетического аппарата клетки в развитии биологии сыграло такую же роль, как и открытие атомного ядра в физике. Если открытие ядра позволило человеку овладеть практически неисчерпаемыми запасами энергии, то открытие генов дало возможность людям вмешиваться в свойства живой клетки, управлять механизмами наследственности, практически решать задачи клонирования (копирования) живых организмов.

3. МОДЕЛИРОВАНИЕ КАК КАТЕГОРИЯ. МОДЕЛИ В БИОЛОГИИ.

3.1. Понятие моделирования.

Моделирование — это исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (живых и неживых систем, инженерных конструкций, разнообразных процессов — физических, химических, биологических и др.) и конструируемых объектов (для определения, уточнения их характеристик, рационализации способов построения).

Моделирование — познавательный прием, одна из форм отражения. Моделирование характеризует один из важных путей познания. Возможность моделирования, т.е. переноса результатов, полученных в ходе построения и исследования моделей, на оригинал, основана на том, что модель в определенном смысле отображает (воспроизводит, моделирует) какие-либо его черты. При этом такое отображение основано на понятиях изоморфизма и гомоморфизма между изучаемым объектом и некоторым другим объектом-оригиналом и часто осуществляется путем предварительного исследования (теоретического или экспериментального) того и другого. Поэтому для успешного моделирования необходимо наличие уже сложившихся теорий исследуемых явлений, или хотя бы обоснованных гипотез, указывающих предельно допустимые при построении моделей упрощения. Результативность моделирования значительно возрастает, если при построении модели и переносе результатов с модели на оригинал, можно воспользоваться некоторой теорией, уточняющей связанную с используемой процедурой моделирования, идею подобия.

Для явлений одной и той же физической природы такая теория, основанная на понятии размерности физических величин, хорошо разработана. Но для моделирования сложных систем и процессов, например, биологических, используется теория больших систем, модели сложных динамических систем живой природы.

Моделирование всегда используется вместе с другими общенаучными и специальными методами. Можно разделить «материальное» (предметное) и «идеальное» моделирование. Первое можно рассматривать как экспериментальное, второе — как теоретическое. Такое разделение условно как в силу взаимосвязи обоюдного влияния этих методов, так и наличия гибридных форм, например, «мысленный эксперимент». «Материальное» моделирование подразделяется на физическое и предметно-математическое. «Идеальное» моделирование может происходить на уровне самых общих, может быть не до конца осознанных, «модельных представлений». Моделирование на ЭВМ, получившее значительное распространение в последние годы, еще называют «кибернетическим», оно является предметно-математическим по форме и идеальным по содержанию.

Моделирование тесно связано с экспериментом. Изучение какого-либо явления на его кибернетической модели можно рассматривать как особый вид эксперимента: «модельный эксперимент», отличающийся от обычного («прямого» эксперимента) тем, что в процесс познания включается «промежуточное звено» — модель, являющаяся и средством и объектом экспериментального исследования, заменяющим изучаемый объект. Модельный эксперимент позволяет изучать такие объекты, прямой эксперимент над которыми затруднен, экономически не выгоден или вообще невозможен в силу тех или иных причин.

Моделирование предполагает использование абстрагирования и идеализации. Отображая существенные свойства оригинала и отвлекаясь от несущественного, модель выступает как специфическая форма реализации абстракции. Выделяют три уровня абстракции: уровень потенциальной осуществимости, уровень «реальной» осуществимости и уровень практической целесообразности. На всех уровнях, однако, необходимо учитывать, что моделирование оригинала не может дать полного знания о нем. Эта черта особенно существенна, когда предметом моделирования выступают сложные системы, поведение которых зависит от большого числа взаимосвязанных факторов различной природы. Такие системы отображаются в различных моделях. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки критериев сравнения. Примером такого рода моделей может служит моделирование различных форм деятельности мозга. Создаваемые модели интеллекта и психических функций — например, в виде эвристических программ на ЭВМ — показывают, что моделирование мышления как информационного процесса возможно в различных аспектах: формально-логическом, индуктивном, нейрологическом, эвристическом и др.

3.2. Понятие модели

Модель — это образ или праобраз какого-либо объекта или системы объектов («оригинала» данной модели), используемый при определенных условиях в качестве их заместителя. Модель может быть системой и более высокого уровня абстракции, чем оригинал (выражают идею «имитации») и более низкого (реализуют принцип «реального воплощения»). В естественных науках обычно следуют первому из упомянутых пониманий термина.

В соответствии с различными назначениями методов моделирования понятие модели используется не только и не столько с целью получения объяснений различных явлений, сколько для предсказания интересующих исследователя явлений. Оба эти аспекта использования моделей оказываются особенно плодотворными при отказе от полной формализации этого понятия. Модель — прежде всего- орудие познания. На современном этапе развития науки характерно значительное расширение арсенала применяемых моделей. Широкие возможности открывает использование компьютерных моделей, которые можно рассматривать как «универсальные моделирующие системы».

3.3. Модели в биологии

Применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций, экосистем.

В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические).

Б и о л о г и ч е с к и е модели воспроизводят на лабораторных животных определенные состояния или заболевания, встречающиеся у животных или у человека. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей — искусственно вызванные генетические нарушения, инфекционные процесс, интоксикации, воспроизведение гипертонических и гипоксических состояний, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозы и эмоциональные состояния. Для создания биологических моделей применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или ведение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.

Ф и з и к о -х и м и ч е с к и е модели воспроизводят химическими или физическими средствами биологические структуры, функции или процессы и, как правило, являются далеким подобием моделируемого биологического явления. Начиная с 60-х гг. 19в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Немецкий ученый М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSO4 в водном растворе K4 [Fe(CN)6 ]; французский физик С. Ледюк (1907), погружая в насыщенный раствор K3 PO4 сплавленный CaCl2, получил — благодаря действию сил поверхностного натяжения и осмоса — структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешне сходство с протоплазмой; такая модель воспроизводила даже амебное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским ученым К. Маттеуччи и немцем Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. Присоединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский ученый Р. Лилли на модели распространяющейся по нерву волны возбуждения воспроизвел ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, закон «все или ничего», двустороннее приведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и появлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, ее отростке и синапсе. Построены также механические машины с электронным управлением, моделирующие сложные действия поведения. Однако, такие модели сильно упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики, чем для биологии.

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов, их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых внутри организма клеток.

Модели биологических мембран (пленка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов -дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т.д.

М а т е м а т и ч е с к и е модели (математические и логико-математические описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математических моделей и дают материал для ее дальнейшей корректировки. «Проигрывание» математической модели биологического явления на ЭВМ позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математические модели позволяют в отдельных случаях предсказать некоторые явления, ранее неизвестные исследователю. Так, модель сердечной деятельности, предложенная голландскими учеными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математических моделей физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учеными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских ученых У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А.Н. Колмогоров). Марковская математическая модель процесса эволюции построена О.С. Кулагиной и А.А. Ляпуновым. И.М. Гельфандом и М.Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. Показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков — синергий, а не путем независимого управления каждой мышцей.

В настоящее время в области математического моделирования биообъектов и биосистем сложились работают следующие научные школы: Научно-исследовательский институт новых медицинских технологий Минздрава РФ, Тульский государственный университет, Институт математики НАН Украины. Разработаны: универсальный метод моделирования физиологических систем человека в норме и патологии на основе вычисления рекуррентных рядов; аппарат дифференциальных форм (внешней алгебры) применен для решения задач биоэнергоинформационного обмена и гемодинамики; для формирования алгоритмов моделирования процессов мышления и внутриорганного биоинформационного обмена, базирующихся на солитонном механизме волновой передачи, разработан метод решения канонических уравнений и др.

Список используемой литературы

1. Концепции современного естествознания: учебное пособие, под ред. А.В. Кокина, изд-во «Приор Эксперт бюро», — Москва, 1998 год

2. Проблемы развития химии под ред. Г.А. Фединой, — Ленинград, 1989 год

3. Концепции современного естествознания: учебник для вузов, под ред. А.П. Садохина, из-во Эксмо, – Москва, 2006 год.

4. Концепции современного естествознания. Хрестоматия для студентов гуманитарных ВУЗОВ, Высшая школа, изд-во Астрель, АСТ, 2004 год.

6.Моделирование в химии и биологии………………….………… стр.23

7.Бионеорганическая химия………………………….….………….стр.23

www.ronl.ru

Реферат - Принципы моделирования биологических систем, явлений и процессов

Особенности моделирования в биологии. Сложность жизни проявляется в переплетении различных уровней организации живых объектов, что приводит к определенной специфичности при моделировании биологических явлений. Как и в других отраслях естествознания, в биологии в основе моделирования лежит представление о замещении какой-либо сложной системы более простой и доступной для изучения. Часто с этой целью в качестве упрощенных материальных моделей достаточно развитых явлений используются более простые формы живых организмов. Как отмечал Н.И.Вавилов, открытию сцепления генов наряду с коротким жизненным циклом дрозофилы содействовало наличие у нее по сравнению с более развитыми организмами небольшого количества хромосом [20]. Успехам молекулярной биологии во многом способствовал удачный выбор объекта исследований (бактерий и вирусов). В практику биохимии вошло изучение отдельных биохимических реакций, воспроизводимых в культуре клеток ткани in vitro. Эти и многие другие примеры дают представление о биологическом аналоге материальной, физической модели.

В современном биологическом модельном эксперименте широко применяются физические и кибернетические методы. Тесное переплетение подходов биофизики, биоинформатики, биокибернетики дает возможность использовать в исследовательских целях специальные конструкции, воспроизводящие отдельные функции живого организма на чуждой ему вещественной основе.

Однако далеко не всегда модель биологического объекта должна быть очень сложной. Иногда важные результаты можно получить с помощью достаточно простых приспособлений, как это было с механической моделью-макетом ДНК, созданной Дж.Уотсоном и Ф.Криком по результатам рентгеноструктурного анализа этой молекулы [21]. Одно из возможных представлений ДНК отражено на рис.1.3.

Говоря о математических моделях, необходимо подчеркнуть, что разнообразие биологических систем, процессов и явлений привело к тому, что для их моделирования привлекаются представления различных математических дисциплин [22]. При этом в зависимости от характера и свойств изучаемых процессов и явлений для моделирования выбирается аппарат либо дискретной, либо непрерывной математики (см. рис. 1.4).

Методы дискретной математики (например, алгебра, теория вероятностей) оказались наиболее удобным и естественным средством для моделирования свойств уникальных объектов, количественные характеристики которых меняются скачкообразно, без промежуточных стадий. Например, для описания возрастной струк­туры популяций применяется матричное исчисление. На теоретико-вероятностном подходе покоится все здание клас­сической генетики. В последнее время для описания самых разнообразных классов биологических закономерностей все шире применяются более молодые отрасли математики, в частности теория конечных автоматов.

 

Рис. 1.4. Соотношение свойств биологических систем и используемых для их количественного описания математических методов (по [22]).

 

Когда поведение изучаемого объекта характеризуется непрерывными изменениями, адекватным средством моделирования являются методы непрерывной математики с их богатым аппаратом дифференциальных, интегральных и интегро-дифференциальных уравнений. Однако при определенных условиях эти методы можно применять и к процессам, дискретным по своей природе. В принципе процесс размножения микроорганизмов до­пустимо идеализированно рассматривать как непрерыв­ный. Очень широко такие представления используются при моделировании процессов в экологии. В целом детер­министский подход к моделируемым объектам, основанный на применении дифференциальных и интегральных урав­нений, охватывает многие области современной теоретиче­ской биологии. На базе этого математического аппарата сформировалась новая научная дисциплина – биологиче­ская кинетика. В ней на основе идей физической и химиче­ской кинетики строятся математические модели протекаю­щих в клетке химических реакций и описываются многие аспекты клеточного метаболизма. Методы биологической кинетики наряду с теорией информации используются и в молекулярной генетике.

Однако возможна и несколько иная классификация математических моделей, предполагающая разбиение их на два класса [23]:

1. Модели данных.

2. Модели систем.

Согласно этой классификации статистика является основным средством для построения моделей данных, когда целью является поиск математической функции (полином, экспонента и др.), наиболее точно описывающей имеющийся набор экспериментальных данных. Модели систем основаны на конкретных гипотезах о структуре и физических принципах функционирования изучаемого явления. Такие модели предназначены для теоретического изучения ме­ханизмов явления или структуры системы, особенно если исследователь имеет дело с большой систе­мой. Для построения теоретических моделей таких больших систем используются алгебраические, теоретико-множественные, логические, сетевые, графовые и другие подходы.

Завершая разговор о моделях, применяемых в биологии, следует упомянуть о текстовых моделях представления знаний и данных. Наиболее широко они применяются в биоинформатике для описания молекулярно-биологических и молекулярно-генетических данных (строение рибонуклеиновых кислот и белков, секвенирование ДНК, построение генных сетей и т.п.).

Применение некоторых информационных технологий в биологии.Компьютерная алгебра и биоинформатика. Говоря о биологическом приложении различных математических подходов, необходимо отметить в этом плане теорию информации [24]. Попытки ее широкого использования в биологии, психологии и других дисциплинах, не имеющих прямого отношения к теории связи относятся к началу 1950-х годов и связаны c именем Г.Кастлера [25]. Однако к 1970-м годам проявилось определенное разочарование в этом подходе за счет того, что статистическая теория информации фактически имеет дело только с количественной мерой информации, не выясняя глубинной природы самого этого явления, и начались попытки выхода за пределы исходных ограничений этой теории [12,26]. Нам представляется перспективным разработка компьютерных технологий, в которых аппарат теории информации используется для оценки степени связи отдельных элементов биологической системы. Пример использования такого подхода для решения задач эколого-генетического характера, когда налицо уникальные данные или небольшие выборки, подробно описывается автором в книге [27]. Однако в целом наиболее успешно теоретико-информационный подход используется в молекулярной генетике и геномике.

Проблемы самоорганизации сложных динамических систем, к которым относятся и биологические, возникновения и ценности биологической/генетической информации рассматриваются в рамках достаточно молодой науки – синергетики (см., например, монографии Г.Хакена [28], Д.С.Чернавского [29]).

Следует также вспомнить о биологическом приложении теории нечетких множеств [30], нашедшей широкое применение в дисциплинах медико-биологического профиля, где она используется в прикладных разработках. Основное направление здесь – распознавание образов и таксономия, т.е. области исследований, в которых имеет место нечеткая кластеризация. Используется этот аппарат также в медицине как теоретическая основа для принятия решений в нечетких, размытых условиях [31]. Весьма перспективным представляется этот подход и в нейробиологических исследованиях, особенно в связи с разработкой нейрокомпьютеров. Однако сочетание малого (недостаточного или уникального) количества экспериментальной информации и неконтролируемых (нечетких) условий, по нашему мнению, может служить критерием для применения этой теории не только в медицине, но и в экологии. Поэтому теория нечетких множеств может оказаться перспективной для описания самых разнообразных фундаментальных закономерностей живой природы.

В современной биологии нашли широкое применение не только теоретические, так и прикладные направления кибернетики и информатики. Дальнейшее развитие математического моделирования в биологии видится на пути применения современных средств компьютерной математики (или компьютерной алгебры, что означает то же самое) как инструмента подготовки высококвалифицированных специалистов, построения содержательных моделей, накопления, обработки и хранения информации, полученной в результате исследования этих моделей.

Эта задача может быть решена, во-первых, путем преподавания математики на биологических факультетах, используя такие средства как Maple, Derive или Mathematica [32–34], во-вторых, введением на биологических и математических факультетах университетов спецкурсов «Компьютерный эксперимент в естествознании», «Математическое моделирование в биологии», «Компьютерная биология», «Компьютерная математика» и т.д. с использованием специализированных пакетов для Mathematica: Dynamic Visualizer, Wavelet Explorer, Experimental Data Analyst, Time Series, Fuzzy Logic. В следующих главах мы приведем несколько примеров использования компьютерной математики для решения биологических задач.

 

www.ronl.ru

Читать реферат по биологии: "Модели и моделирование в биологии"

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Содержание

    Концептуальные уровни в химии….………………………………..2 Концептуальные уровни в биологии………………………………..3 Модели и моделирование в биологии…………………….……......9 Список использованной литературы…….………………………....16

1. Концептуальные уровни современной химии

По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению основной задачи. Развитие этих подходов обусловило формирование четырех концептуальных систем химических знаний.

Концептуальные подходы к решению основной проблемы химии, появлялись последовательно.

Первоначально свойства веществ связывались исключительно с их составом (в этом суть учения о составе). На этом уровне развития содержание химии исчерпывалось ее традиционным, менделеевским определением - как науки о химических элементах и их соединениях.

Далее учение о составе было дополнено концепцией структурной химии. Структурная концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структурой молекул. В рамках этого подхода возникло понятие «реакционная способность», включающая представление о химической активности отдельных фрагментов молекулы — отдельных ее атомов (и даже отдельных химических связей) или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналитической науки в науку синтетическую. Этот подход позволил в конечном итоге создать промышленные технологии синтеза многих органических веществ.

Затем было развито учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химических превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы изменения свойств получаемых веществ.

Последний этап концептуального развития химии связан с использованием в ней некоторых принципов, реализованных в химизме живой природы. В рамках эволюционной химии осуществляется поиск таких условий, при которых в процессе химических превращений идет самосовершенствование катализаторов реакций. По существу речь идет об изучении и применении самоорганизации химических систем, происходящих в клетках живых организмов.

Каждая новая концептуальная ступень в развитии химии, означает не отрицание подходов, использовавшихся ранее, а опору на них как на основание. Все показанные на схеме концептуальные системы используются не порознь, а во взаимосвязи. Последовательное дополнение химии названными концептуальными системами составляет логику развития этой науки.

Термин «концептуальная система», а не «концепция» использован в приведенных выше рассуждениях не случайно. Причина этого заключается в том, что на каждой ступени рассмотренной «лесенки» развития химии, в свою очередь, были использованы различные научные идеи для решения конкретных проблем. Примером тому служит выдающееся открытие в области химии, сделанное на пути решения одной из исходных проблем химии — проблемы химического элемента.2. Концептуальные уровни в биологии

2.1 Особенности биологического уровня организации материи.

2.1.1 ПРЕДМЕТ БИОЛОГИИ. ЕЕ СТРУКТУРА И ЭТАПЫ РАЗВИТИЯ

Определение предмета биологии на первый взгляд кажется довольно простым.

Биология - это наука о живом, его строении, формах активности, сообществах живых организмов, их распространении и развитии, связях друг с другом и с неживой природой.

В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассматривать с разных точек зрения.

- По объектам исследования биология подразделяется на вирусологию, бактериологию, ботанику, зоологию, антропологию.

- По свойствам, проявлениям живого в биологии выделяются:

морфология - наука о строении живых организмов;

физиология - наука о функционировании организмов;

молекулярная биология, изучающая микроструктуру живых тканей и клеток;

экология, рассматривающая образ жизни растений и животных и их взаимосвязи с окружающей средой;

генетика, исследующая законы наследственности и изменчивости.

-По уровню организации исследуемых живых объектов выделяются:

анатомия, изучающая макроскопическое строение животных:

гистология, изучающая строение тканей;

цитология исследующая строение живых клеток.

Важнейшим инструментом дальнейшего познания этого мира служит категория «живого», являющаяся ключевой, исходной для всей системы биологических наук.

В развитии биологии выделяют три основных этапа:

1) систематики (К. Линней),

2) эволюционный (Ч. Дарвин),

3) биологии микромира (Г. Мендель).

Каждый из них связан с изменением представлений о мире живого, самих основ биологического мышления, со сменой биологических парадигм. 2.1.2. Свойства живых организмов.

Определение сущности живого.

Интуитивно мы все понимаем, что есть живое и что - мертвое. Так, один из авторов предложил следующее «глубокомысленное» определение:

живой организм - это тело, слагаемое из живых объектов;

неживое тело - слагаемое из неживых объектов.

Это означает, что дать точное определение жизни весьма непросто. Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни.

К числу свойств живого обычно относят следующие.

- Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах.

- Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию.

- Живые организмы активно реагируют на окружающую среду. Если толкнуть камень, то он пассивно сдвигается с места. Если толкнуть животное, оно отреагирует активно: убежит, нападет или изменит форму.

Способность реагировать на внешние раздражения - универсальное свойство всех живых существ, как растений, так и животных.

- Живые организмы не только изменяются, но и усложняются. Так, у растения или животного появляются новые ветви или новые органы, отличающиеся по своему химическому составу от породивших их структур.

- Все живое размножается. Эта способность к самовоспроизведению, пожалуй, самая поразительная способность живых организмов. Причем потомство и похоже, и в то же время чем-то отличается от родителей. В этом проявляется действие механизмов наследственности и изменчивости, определяющих эволюцию всех видов живой природы.

- Сходство потомства с родителями обусловлено еще одной замечательной особенностью живых организмов - передавать потомкам заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах - единицах наследственности, мельчайших внутриклеточных структурах.

Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько видоизменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

-- Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение крота, рыбы, лягушки, дождевого червя полностью соответствует условиям, в которых они живут.

Обобщая и несколько упрощая сказанное о специфике живого, можно отметить, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе, а неживые тела не питаются, не дышат, не растут и не размножаются.

Из совокупности этих признаков вытекает следующее обобщенное определение сущности живого:

жизнь есть форма существования сложных, открытых систем, способных к самоорганизации и самовоспроизведению.

Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты. 2.2. Структурные уровни живого.

Структурный, или системный, анализ

referat.co

Статья - Модели и моделирование в биологии

Содержание

1. Концептуальные уровни в химии….………………………………..2

2. Концептуальные уровни в биологии………………………………..3

3. Модели и моделирование в биологии…………………….……......9

4. Список использованной литературы…….………………………....16

1. Концептуальные уровни современной химии

По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению ос­новной задачи. Развитие этих подходов обусловило фор­мирование четырех концептуальных систем химических знаний.

Концептуальные подходы к решению основной пробле­мы химии, появлялись последователь­но.

Первоначально свойства веществ связывались исключи­тельно с их составом (в этом суть учения о составе). На этом уровне развития содержание химии исчерпывалось ее традиционным, менделеевским определением — как науки о химических элементах и их соединениях.

Далее учение о составе было дополнено концепцией структурной химии. Структурная концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структу­рой молекул. В рамках этого подхода возникло понятие «ре­акционная способность», включающая представление о химической активности отдельных фрагментов молекулы — отдельных ее атомов (и даже отдельных химических свя­зей) или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналити­ческой науки в науку синтетическую. Этот подход позволил в конечном итоге создать промышленные технологии синте­за многих органических веществ.

Затем было развито учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химичес­ких превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы изменения свойств получаемых веществ.

Последний этап концептуального развития химии свя­зан с использованием в ней некоторых принципов, реализо­ванных в химизме живой природы. В рамках эволюцион­ной химии осуществляется поиск таких условий, при кото­рых в процессе химических превращений идет самосовер­шенствование катализаторов реакций. По существу речь идет об изучении и применении самоорганизации химических систем, происходящих в клетках живых организмов.

Каждая новая концептуальная ступень в развитии хи­мии, означает не отрицание подходов, использовавшихся ранее, а опору на них как на основание. Все показанные на схеме концептуальные системы используются не порознь, а во взаимосвязи. Последовательное дополнение химии назван­ными концептуальными системами составляет логику раз­вития этой науки.

Термин «концептуальная система», а не «концепция» использован в приведенных выше рассуждениях не случай­но. Причина этого заключается в том, что на каждой ступе­ни рассмотренной «лесенки» развития химии, в свою оче­редь, были использованы различные научные идеи для ре­шения конкретных проблем. Примером тому служит выда­ющееся открытие в области химии, сделанное на пути ре­шения одной из исходных проблем химии — проблемы химического элемента.

2. Концептуальные уровни в биологии

2.1 Особенности биологического уровня организации материи.

2.1.1 ПРЕДМЕТ БИОЛОГИИ. ЕЕ СТРУКТУРА И ЭТАПЫ РАЗВИТИЯ

Определение предмета биологии на первый взгляд кажется довольно простым.

Биология — это наука о живом, его строении, формах активности, сообществах живых организмов, их распространении и развитии, связях друг с другом и с неживой природой.

В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассматривать с разных точек зрения.

— По объектам исследования биология подразделяется на вирусологию, бактериологию, ботанику, зоологию, антропологию.

— По свойствам, проявлениям живого в биологии выделяются:

морфология — наука о строении живых организмов;

физиология — наука о функционировании организмов;

молекулярная биология, изучающая микроструктуру живых тканей и клеток;

экология, рассматривающая образ жизни растений и животных и их взаимосвязи с окружающей средой;

генетика, исследующая законы наследственности и изменчивости.

-По уровню организации исследуемых живых объектов выделяются:

анатомия, изучающая макроскопическое строение животных:

гистология, изучающая строение тканей;

цитология исследующая строение живых клеток.

Важнейшим инструментом дальнейшего познания этого мира служит категория «живого», являющаяся ключевой, исходной для всей системы биологических наук.

В развитии биологии выделяют три основных этапа:

1) систематики (К. Линней),

2) эволюционный (Ч. Дарвин),

3) биологии микромира (Г. Мендель).

Каждый из них связан с изменением представлений о мире живого, самих основ биологического мышления, со сменой биологических парадигм.

2.1.2. Свойства живых организмов.

Определение сущности живого.

Интуитивно мы все понимаем, что есть живое и что — мертвое. Так, один из авторов предложил следующее «глубокомысленное» определение:

живой организм — это тело, слагаемое из живых объектов;

неживое тело — слагаемое из неживых объектов.

Это означает, что дать точное определение жизни весьма непросто. Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни.

К числу свойств живого обычно относят следующие.

— Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах.

— Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию.

— Живые организмы активно реагируют на окружающую среду. Если толкнуть камень, то он пассивно сдвигается с места. Если толкнуть животное, оно отреагирует активно: убежит, нападет или изменит форму.

Способность реагировать на внешние раздражения — универсальное свойство всех живых существ, как растений, так и животных.

— Живые организмы не только изменяются, но и усложняются. Так, у растения или животного появляются новые ветви или новые органы, отличающиеся по своему химическому составу от породивших их структур.

— Все живое размножается. Эта способность к самовоспроизведению, пожалуй, самая поразительная способность живых организмов. Причем потомство и похоже, и в то же время чем-то отличается от родителей. В этом проявляется действие механизмов наследственности и изменчивости, определяющих эволюцию всех видов живой природы.

— Сходство потомства с родителями обусловлено еще одной замечательной особенностью живых организмов — передавать потомкам заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах — единицах наследственности, мельчайших внутриклеточных структурах.

Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько видоизменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

— Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение крота, рыбы, лягушки, дождевого червя полностью соответствует условиям, в которых они живут.

Обобщая и несколько упрощая сказанное о специфике живого, можно отметить, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе, а неживые тела не питаются, не дышат, не растут и не размножаются.

Из совокупности этих признаков вытекает следующее обобщенное определение сущности живого:

жизнь есть форма существования сложных, открытых систем, способных к самоорганизации и самовоспроизведению.

Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты.

2.2. Структурные уровни живого.

Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе разных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.

рис. 4-1

— Биосферный — включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая, в частности, проблема, как изменение концентрации углекислого газа в атмосфере. Используя этот подход, ученые выяснили, что в последнее время концентрация углекислого газа возрастает ежегодно на 0,4%, создавая опасность глобального повышения температуры, возникновения так называемого «парникового эффекта».

— Уровень биогеоценозов выражает следующую ступень структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.

— Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций. А затем на этой основе можно будет поддерживать оптимальную численность популяций. Этот уровень также чрезвычайно важен для исследования путей исторического развития живого, его эволюции.

— Организменный и органо-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.

— Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения.

— Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.

2.3. Клеточная теория. Строение и функции клетки

Своего рода «первокирпичики» имеются на каждом из основных уровней организации природы, в биологии это — живая клетка, которая является фундаментальной основой живого мира. Ее исследование помогает уяснить специфику всего живого.

Создание клеточной теории, основы которой были заложены немецкими учеными Т. Шванном и М.Я.Шлейденом, стало одним из крупнейших достижений биологии XIX в. Основное положение клеточной теории состоит в утверждении, что все растительные и животные организмы состоят из клеток, сходных по своему строению.

Многочисленные исследования в области цитологии — новой биологической науки, специально занимающейся исследованием живой клетки, показали, что все клетки имеют некоторые общие свойства не только в строении, но и в функциях. Так, клетки осуществляют обмен веществ, способны к саморегуляции своего состояния, могут передавать наследственную информацию.

Вместе с тем выяснилось, что клетки весьма многообразны. Они могут существовать как одноклеточные организмы (амебы), а также в составе многоклеточных. У клеток разный срок существования. Жизненный цикл любой клетки завершается или делением и продолжением жизни, но уже в обновленном виде, или гибелью.

Клетки образуют ткани (нервная, мышечная и т.д.), а несколько типов тканей — органы (сердце, легкие и пр.). Группы органов, связанные с решением каких-то общих задач, называют системами организма.

Клетка имеет сложную структуру. Она обособляется от внешней среды оболочкой, которая, будучи неплотной и рыхлой, обеспечивает взаимодействие клетки с внешним миром, обмен с ним веществом, энергией, информацией. Обмен веществ, обеспечиваемый клетками, — важнейшее свойство всего живого.

Это свойство в биологической литературе называют метаболизмом клеток.

Метаболизм в свою очередь служит основой для другого (важнейшего свойства клетки — сохранения стабильности, устойчивости условий внутренней среды клетки. Это свойство клеток, присущее всей живой системе, называют гомеостазом.

Гомеостаз, т.е. постоянство состава клетки, поддерживается обменом веществ, или метаболизмом.

Но кто же в клетке обеспечивает управление всем этим сложным многоступенчатым процессом? Но общепризнано, что все нити управления внутриклеточным обменом находятся в особых структурах, как правило, в ядре клетки, в очень длинных цепях молекул нуклеиновых кислот (ДНК, РНК), исходной структурной единицей которых является ген. Это своего рода природное кибернетическое устройство, содержащее инструкцию, информацию, коды, определяющие характер всей деятельности клетки как по обмену веществ, так и по самовоспроизведению. Именно гены обеспечивают важнейшие метаболические и наследственные функции клетки, как и всего организма в целом.

Открытие в XX в. структуры и функционирования генетического аппарата клетки в развитии биологии сыграло такую же роль, как и открытие атомного ядра в физике. Если открытие ядра позволило человеку овладеть практически неисчерпаемыми запасами энергии, то открытие генов дало возможность людям вмешиваться в свойства живой клетки, управлять механизмами наследственности, практически решать задачи клонирования (копирования) живых организмов.

3. МОДЕЛИРОВАНИЕ КАК КАТЕГОРИЯ. МОДЕЛИ В БИОЛОГИИ.

3.1. Понятие моделирования.

Моделирование — это исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (живых и неживых систем, инженерных конструкций, разнообразных процессов — физических, химических, биологических и др.) и конструируемых объектов (для определения, уточнения их характеристик, рационализации способов построения).

Моделирование — познавательный прием, одна из форм отражения. Моделирование характеризует один из важных путей познания. Возможность моделирования, т.е. переноса результатов, полученных в ходе построения и исследования моделей, на оригинал, основана на том, что модель в определенном смысле отображает (воспроизводит, моделирует) какие-либо его черты. При этом такое отображение основано на понятиях изоморфизма и гомоморфизма между изучаемым объектом и некоторым другим объектом-оригиналом и часто осуществляется путем предварительного исследования (теоретического или экспериментального) того и другого. Поэтому для успешного моделирования необходимо наличие уже сложившихся теорий исследуемых явлений, или хотя бы обоснованных гипотез, указывающих предельно допустимые при построении моделей упрощения. Результативность моделирования значительно возрастает, если при построении модели и переносе результатов с модели на оригинал, можно воспользоваться некоторой теорией, уточняющей связанную с используемой процедурой моделирования, идею подобия.

Для явлений одной и той же физической природы такая теория, основанная на понятии размерности физических величин, хорошо разработана. Но для моделирования сложных систем и процессов, например, биологических, используется теория больших систем, модели сложных динамических систем живой природы.

Моделирование всегда используется вместе с другими общенаучными и специальными методами. Можно разделить «материальное» (предметное) и «идеальное» моделирование. Первое можно рассматривать как экспериментальное, второе — как теоретическое. Такое разделение условно как в силу взаимосвязи обоюдного влияния этих методов, так и наличия гибридных форм, например, «мысленный эксперимент». «Материальное» моделирование подразделяется на физическое и предметно-математическое. «Идеальное» моделирование может происходить на уровне самых общих, может быть не до конца осознанных, «модельных представлений». Моделирование на ЭВМ, получившее значительное распространение в последние годы, еще называют «кибернетическим», оно является предметно-математическим по форме и идеальным по содержанию.

Моделирование тесно связано с экспериментом. Изучение какого-либо явления на его кибернетической модели можно рассматривать как особый вид эксперимента: «модельный эксперимент», отличающийся от обычного («прямого» эксперимента) тем, что в процесс познания включается «промежуточное звено» — модель, являющаяся и средством и объектом экспериментального исследования, заменяющим изучаемый объект. Модельный эксперимент позволяет изучать такие объекты, прямой эксперимент над которыми затруднен, экономически не выгоден или вообще невозможен в силу тех или иных причин.

Моделирование предполагает использование абстрагирования и идеализации. Отображая существенные свойства оригинала и отвлекаясь от несущественного, модель выступает как специфическая форма реализации абстракции. Выделяют три уровня абстракции: уровень потенциальной осуществимости, уровень «реальной» осуществимости и уровень практической целесообразности. На всех уровнях, однако, необходимо учитывать, что моделирование оригинала не может дать полного знания о нем. Эта черта особенно существенна, когда предметом моделирования выступают сложные системы, поведение которых зависит от большого числа взаимосвязанных факторов различной природы. Такие системы отображаются в различных моделях. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки критериев сравнения. Примером такого рода моделей может служит моделирование различных форм деятельности мозга. Создаваемые модели интеллекта и психических функций — например, в виде эвристических программ на ЭВМ — показывают, что моделирование мышления как информационного процесса возможно в различных аспектах: формально-логическом, индуктивном, нейрологическом, эвристическом и др.

3.2. Понятие модели

Модель — это образ или праобраз какого-либо объекта или системы объектов («оригинала» данной модели), используемый при определенных условиях в качестве их заместителя. Модель может быть системой и более высокого уровня абстракции, чем оригинал (выражают идею «имитации») и более низкого (реализуют принцип «реального воплощения»). В естественных науках обычно следуют первому из упомянутых пониманий термина.

В соответствии с различными назначениями методов моделирования понятие модели используется не только и не столько с целью получения объяснений различных явлений, сколько для предсказания интересующих исследователя явлений. Оба эти аспекта использования моделей оказываются особенно плодотворными при отказе от полной формализации этого понятия. Модель — прежде всего- орудие познания. На современном этапе развития науки характерно значительное расширение арсенала применяемых моделей. Широкие возможности открывает использование компьютерных моделей, которые можно рассматривать как «универсальные моделирующие системы».

3.3. Модели в биологии

Применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций, экосистем.

В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические).

Б и о л о г и ч е с к и е модели воспроизводят на лабораторных животных определенные состояния или заболевания, встречающиеся у животных или у человека. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей — искусственно вызванные генетические нарушения, инфекционные процесс, интоксикации, воспроизведение гипертонических и гипоксических состояний, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозы и эмоциональные состояния. Для создания биологических моделей применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или ведение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.

Ф и з и к о -х и м и ч е с к и е модели воспроизводят химическими или физическими средствами биологические структуры, функции или процессы и, как правило, являются далеким подобием моделируемого биологического явления. Начиная с 60-х гг. 19в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Немецкий ученый М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSO4 в водном растворе K4 [Fe(CN)6 ]; французский физик С. Ледюк (1907), погружая в насыщенный раствор K3 PO4 сплавленный CaCl2, получил — благодаря действию сил поверхностного натяжения и осмоса — структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешне сходство с протоплазмой; такая модель воспроизводила даже амебное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским ученым К. Маттеуччи и немцем Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. Присоединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский ученый Р. Лилли на модели распространяющейся по нерву волны возбуждения воспроизвел ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, закон «все или ничего», двустороннее приведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и появлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, ее отростке и синапсе. Построены также механические машины с электронным управлением, моделирующие сложные действия поведения. Однако, такие модели сильно упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики, чем для биологии.

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов, их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых внутри организма клеток.

Модели биологических мембран (пленка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов -дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т.д.

М а т е м а т и ч е с к и е модели (математические и логико-математические описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математических моделей и дают материал для ее дальнейшей корректировки. «Проигрывание» математической модели биологического явления на ЭВМ позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математические модели позволяют в отдельных случаях предсказать некоторые явления, ранее неизвестные исследователю. Так, модель сердечной деятельности, предложенная голландскими учеными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математических моделей физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учеными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских ученых У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А.Н. Колмогоров). Марковская математическая модель процесса эволюции построена О.С. Кулагиной и А.А. Ляпуновым. И.М. Гельфандом и М.Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. Показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков — синергий, а не путем независимого управления каждой мышцей.

В настоящее время в области математического моделирования биообъектов и биосистем сложились работают следующие научные школы: Научно-исследовательский институт новых медицинских технологий Минздрава РФ, Тульский государственный университет, Институт математики НАН Украины. Разработаны: универсальный метод моделирования физиологических систем человека в норме и патологии на основе вычисления рекуррентных рядов; аппарат дифференциальных форм (внешней алгебры) применен для решения задач биоэнергоинформационного обмена и гемодинамики; для формирования алгоритмов моделирования процессов мышления и внутриорганного биоинформационного обмена, базирующихся на солитонном механизме волновой передачи, разработан метод решения канонических уравнений и др.

Список используемой литературы

1. Концепции современного естествознания: учебное пособие, под ред. А.В. Кокина, изд-во «Приор Эксперт бюро», — Москва, 1998 год

2. Проблемы развития химии под ред. Г.А. Фединой, — Ленинград, 1989 год

3. Концепции современного естествознания: учебник для вузов, под ред. А.П. Садохина, из-во Эксмо, – Москва, 2006 год.

4. Концепции современного естествознания. Хрестоматия для студентов гуманитарных ВУЗОВ, Высшая школа, изд-во Астрель, АСТ, 2004 год.

6.Моделирование в химии и биологии………………….………… стр.23

7.Бионеорганическая химия………………………….….………….стр.23

www.ronl.ru

Контрольная работа - Модели и моделирование в биологии

Содержание

1. Концептуальные уровни в химии….………………………………..2

2. Концептуальные уровни в биологии………………………………..3

3. Модели и моделирование в биологии…………………….……......9

4. Список использованной литературы…….………………………....16

1. Концептуальные уровни современной химии

По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению ос­новной задачи. Развитие этих подходов обусловило фор­мирование четырех концептуальных систем химических знаний.

Концептуальные подходы к решению основной пробле­мы химии, появлялись последователь­но.

Первоначально свойства веществ связывались исключи­тельно с их составом (в этом суть учения о составе). На этом уровне развития содержание химии исчерпывалось ее традиционным, менделеевским определением — как науки о химических элементах и их соединениях.

Далее учение о составе было дополнено концепцией структурной химии. Структурная концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структу­рой молекул. В рамках этого подхода возникло понятие «ре­акционная способность», включающая представление о химической активности отдельных фрагментов молекулы — отдельных ее атомов (и даже отдельных химических свя­зей) или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналити­ческой науки в науку синтетическую. Этот подход позволил в конечном итоге создать промышленные технологии синте­за многих органических веществ.

Затем было развито учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химичес­ких превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы изменения свойств получаемых веществ.

Последний этап концептуального развития химии свя­зан с использованием в ней некоторых принципов, реализо­ванных в химизме живой природы. В рамках эволюцион­ной химии осуществляется поиск таких условий, при кото­рых в процессе химических превращений идет самосовер­шенствование катализаторов реакций. По существу речь идет об изучении и применении самоорганизации химических систем, происходящих в клетках живых организмов.

Каждая новая концептуальная ступень в развитии хи­мии, означает не отрицание подходов, использовавшихся ранее, а опору на них как на основание. Все показанные на схеме концептуальные системы используются не порознь, а во взаимосвязи. Последовательное дополнение химии назван­ными концептуальными системами составляет логику раз­вития этой науки.

Термин «концептуальная система», а не «концепция» использован в приведенных выше рассуждениях не случай­но. Причина этого заключается в том, что на каждой ступе­ни рассмотренной «лесенки» развития химии, в свою оче­редь, были использованы различные научные идеи для ре­шения конкретных проблем. Примером тому служит выда­ющееся открытие в области химии, сделанное на пути ре­шения одной из исходных проблем химии — проблемы химического элемента.

2. Концептуальные уровни в биологии

2.1 Особенности биологического уровня организации материи.

2.1.1 ПРЕДМЕТ БИОЛОГИИ. ЕЕ СТРУКТУРА И ЭТАПЫ РАЗВИТИЯ

Определение предмета биологии на первый взгляд кажется довольно простым.

Биология — это наука о живом, его строении, формах активности, сообществах живых организмов, их распространении и развитии, связях друг с другом и с неживой природой.

В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру его можно рассматривать с разных точек зрения.

— По объектам исследования биология подразделяется на вирусологию, бактериологию, ботанику, зоологию, антропологию.

— По свойствам, проявлениям живого в биологии выделяются:

морфология — наука о строении живых организмов;

физиология — наука о функционировании организмов;

молекулярная биология, изучающая микроструктуру живых тканей и клеток;

экология, рассматривающая образ жизни растений и животных и их взаимосвязи с окружающей средой;

генетика, исследующая законы наследственности и изменчивости.

-По уровню организации исследуемых живых объектов выделяются:

анатомия, изучающая макроскопическое строение животных:

гистология, изучающая строение тканей;

цитология исследующая строение живых клеток.

Важнейшим инструментом дальнейшего познания этого мира служит категория «живого», являющаяся ключевой, исходной для всей системы биологических наук.

В развитии биологии выделяют три основных этапа:

1) систематики (К. Линней),

2) эволюционный (Ч. Дарвин),

3) биологии микромира (Г. Мендель).

Каждый из них связан с изменением представлений о мире живого, самих основ биологического мышления, со сменой биологических парадигм.

2.1.2. Свойства живых организмов.

Определение сущности живого.

Интуитивно мы все понимаем, что есть живое и что — мертвое. Так, один из авторов предложил следующее «глубокомысленное» определение:

живой организм — это тело, слагаемое из живых объектов;

неживое тело — слагаемое из неживых объектов.

Это означает, что дать точное определение жизни весьма непросто. Современная биология при описании живого идет по пути перечисления основных свойств живых организмов. При этом подчеркивается, что только совокупность данных свойств может дать представление о специфике жизни.

К числу свойств живого обычно относят следующие.

— Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах.

— Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию.

— Живые организмы активно реагируют на окружающую среду. Если толкнуть камень, то он пассивно сдвигается с места. Если толкнуть животное, оно отреагирует активно: убежит, нападет или изменит форму.

Способность реагировать на внешние раздражения — универсальное свойство всех живых существ, как растений, так и животных.

— Живые организмы не только изменяются, но и усложняются. Так, у растения или животного появляются новые ветви или новые органы, отличающиеся по своему химическому составу от породивших их структур.

— Все живое размножается. Эта способность к самовоспроизведению, пожалуй, самая поразительная способность живых организмов. Причем потомство и похоже, и в то же время чем-то отличается от родителей. В этом проявляется действие механизмов наследственности и изменчивости, определяющих эволюцию всех видов живой природы.

— Сходство потомства с родителями обусловлено еще одной замечательной особенностью живых организмов — передавать потомкам заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах — единицах наследственности, мельчайших внутриклеточных структурах.

Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько видоизменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

— Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение крота, рыбы, лягушки, дождевого червя полностью соответствует условиям, в которых они живут.

Обобщая и несколько упрощая сказанное о специфике живого, можно отметить, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе, а неживые тела не питаются, не дышат, не растут и не размножаются.

Из совокупности этих признаков вытекает следующее обобщенное определение сущности живого:

жизнь есть форма существования сложных, открытых систем, способных к самоорганизации и самовоспроизведению.

Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты.

2.2. Структурные уровни живого.

Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе разных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.

рис. 4-1

— Биосферный — включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая, в частности, проблема, как изменение концентрации углекислого газа в атмосфере. Используя этот подход, ученые выяснили, что в последнее время концентрация углекислого газа возрастает ежегодно на 0,4%, создавая опасность глобального повышения температуры, возникновения так называемого «парникового эффекта».

— Уровень биогеоценозов выражает следующую ступень структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.

— Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций. А затем на этой основе можно будет поддерживать оптимальную численность популяций. Этот уровень также чрезвычайно важен для исследования путей исторического развития живого, его эволюции.

— Организменный и органо-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.

— Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения.

— Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.

2.3. Клеточная теория. Строение и функции клетки

Своего рода «первокирпичики» имеются на каждом из основных уровней организации природы, в биологии это — живая клетка, которая является фундаментальной основой живого мира. Ее исследование помогает уяснить специфику всего живого.

Создание клеточной теории, основы которой были заложены немецкими учеными Т. Шванном и М.Я.Шлейденом, стало одним из крупнейших достижений биологии XIX в. Основное положение клеточной теории состоит в утверждении, что все растительные и животные организмы состоят из клеток, сходных по своему строению.

Многочисленные исследования в области цитологии — новой биологической науки, специально занимающейся исследованием живой клетки, показали, что все клетки имеют некоторые общие свойства не только в строении, но и в функциях. Так, клетки осуществляют обмен веществ, способны к саморегуляции своего состояния, могут передавать наследственную информацию.

Вместе с тем выяснилось, что клетки весьма многообразны. Они могут существовать как одноклеточные организмы (амебы), а также в составе многоклеточных. У клеток разный срок существования. Жизненный цикл любой клетки завершается или делением и продолжением жизни, но уже в обновленном виде, или гибелью.

Клетки образуют ткани (нервная, мышечная и т.д.), а несколько типов тканей — органы (сердце, легкие и пр.). Группы органов, связанные с решением каких-то общих задач, называют системами организма.

Клетка имеет сложную структуру. Она обособляется от внешней среды оболочкой, которая, будучи неплотной и рыхлой, обеспечивает взаимодействие клетки с внешним миром, обмен с ним веществом, энергией, информацией. Обмен веществ, обеспечиваемый клетками, — важнейшее свойство всего живого.

Это свойство в биологической литературе называют метаболизмом клеток.

Метаболизм в свою очередь служит основой для другого (важнейшего свойства клетки — сохранения стабильности, устойчивости условий внутренней среды клетки. Это свойство клеток, присущее всей живой системе, называют гомеостазом.

Гомеостаз, т.е. постоянство состава клетки, поддерживается обменом веществ, или метаболизмом.

Но кто же в клетке обеспечивает управление всем этим сложным многоступенчатым процессом? Но общепризнано, что все нити управления внутриклеточным обменом находятся в особых структурах, как правило, в ядре клетки, в очень длинных цепях молекул нуклеиновых кислот (ДНК, РНК), исходной структурной единицей которых является ген. Это своего рода природное кибернетическое устройство, содержащее инструкцию, информацию, коды, определяющие характер всей деятельности клетки как по обмену веществ, так и по самовоспроизведению. Именно гены обеспечивают важнейшие метаболические и наследственные функции клетки, как и всего организма в целом.

Открытие в XX в. структуры и функционирования генетического аппарата клетки в развитии биологии сыграло такую же роль, как и открытие атомного ядра в физике. Если открытие ядра позволило человеку овладеть практически неисчерпаемыми запасами энергии, то открытие генов дало возможность людям вмешиваться в свойства живой клетки, управлять механизмами наследственности, практически решать задачи клонирования (копирования) живых организмов.

3. МОДЕЛИРОВАНИЕ КАК КАТЕГОРИЯ. МОДЕЛИ В БИОЛОГИИ.

3.1. Понятие моделирования.

Моделирование — это исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (живых и неживых систем, инженерных конструкций, разнообразных процессов — физических, химических, биологических и др.) и конструируемых объектов (для определения, уточнения их характеристик, рационализации способов построения).

Моделирование — познавательный прием, одна из форм отражения. Моделирование характеризует один из важных путей познания. Возможность моделирования, т.е. переноса результатов, полученных в ходе построения и исследования моделей, на оригинал, основана на том, что модель в определенном смысле отображает (воспроизводит, моделирует) какие-либо его черты. При этом такое отображение основано на понятиях изоморфизма и гомоморфизма между изучаемым объектом и некоторым другим объектом-оригиналом и часто осуществляется путем предварительного исследования (теоретического или экспериментального) того и другого. Поэтому для успешного моделирования необходимо наличие уже сложившихся теорий исследуемых явлений, или хотя бы обоснованных гипотез, указывающих предельно допустимые при построении моделей упрощения. Результативность моделирования значительно возрастает, если при построении модели и переносе результатов с модели на оригинал, можно воспользоваться некоторой теорией, уточняющей связанную с используемой процедурой моделирования, идею подобия.

Для явлений одной и той же физической природы такая теория, основанная на понятии размерности физических величин, хорошо разработана. Но для моделирования сложных систем и процессов, например, биологических, используется теория больших систем, модели сложных динамических систем живой природы.

Моделирование всегда используется вместе с другими общенаучными и специальными методами. Можно разделить «материальное» (предметное) и «идеальное» моделирование. Первое можно рассматривать как экспериментальное, второе — как теоретическое. Такое разделение условно как в силу взаимосвязи обоюдного влияния этих методов, так и наличия гибридных форм, например, «мысленный эксперимент». «Материальное» моделирование подразделяется на физическое и предметно-математическое. «Идеальное» моделирование может происходить на уровне самых общих, может быть не до конца осознанных, «модельных представлений». Моделирование на ЭВМ, получившее значительное распространение в последние годы, еще называют «кибернетическим», оно является предметно-математическим по форме и идеальным по содержанию.

Моделирование тесно связано с экспериментом. Изучение какого-либо явления на его кибернетической модели можно рассматривать как особый вид эксперимента: «модельный эксперимент», отличающийся от обычного («прямого» эксперимента) тем, что в процесс познания включается «промежуточное звено» — модель, являющаяся и средством и объектом экспериментального исследования, заменяющим изучаемый объект. Модельный эксперимент позволяет изучать такие объекты, прямой эксперимент над которыми затруднен, экономически не выгоден или вообще невозможен в силу тех или иных причин.

Моделирование предполагает использование абстрагирования и идеализации. Отображая существенные свойства оригинала и отвлекаясь от несущественного, модель выступает как специфическая форма реализации абстракции. Выделяют три уровня абстракции: уровень потенциальной осуществимости, уровень «реальной» осуществимости и уровень практической целесообразности. На всех уровнях, однако, необходимо учитывать, что моделирование оригинала не может дать полного знания о нем. Эта черта особенно существенна, когда предметом моделирования выступают сложные системы, поведение которых зависит от большого числа взаимосвязанных факторов различной природы. Такие системы отображаются в различных моделях. Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки критериев сравнения. Примером такого рода моделей может служит моделирование различных форм деятельности мозга. Создаваемые модели интеллекта и психических функций — например, в виде эвристических программ на ЭВМ — показывают, что моделирование мышления как информационного процесса возможно в различных аспектах: формально-логическом, индуктивном, нейрологическом, эвристическом и др.

3.2. Понятие модели

Модель — это образ или праобраз какого-либо объекта или системы объектов («оригинала» данной модели), используемый при определенных условиях в качестве их заместителя. Модель может быть системой и более высокого уровня абстракции, чем оригинал (выражают идею «имитации») и более низкого (реализуют принцип «реального воплощения»). В естественных науках обычно следуют первому из упомянутых пониманий термина.

В соответствии с различными назначениями методов моделирования понятие модели используется не только и не столько с целью получения объяснений различных явлений, сколько для предсказания интересующих исследователя явлений. Оба эти аспекта использования моделей оказываются особенно плодотворными при отказе от полной формализации этого понятия. Модель — прежде всего- орудие познания. На современном этапе развития науки характерно значительное расширение арсенала применяемых моделей. Широкие возможности открывает использование компьютерных моделей, которые можно рассматривать как «универсальные моделирующие системы».

3.3. Модели в биологии

Применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций, экосистем.

В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические).

Б и о л о г и ч е с к и е модели воспроизводят на лабораторных животных определенные состояния или заболевания, встречающиеся у животных или у человека. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей — искусственно вызванные генетические нарушения, инфекционные процесс, интоксикации, воспроизведение гипертонических и гипоксических состояний, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозы и эмоциональные состояния. Для создания биологических моделей применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или ведение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.

Ф и з и к о -х и м и ч е с к и е модели воспроизводят химическими или физическими средствами биологические структуры, функции или процессы и, как правило, являются далеким подобием моделируемого биологического явления. Начиная с 60-х гг. 19в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Немецкий ученый М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSO4 в водном растворе K4 [Fe(CN)6 ]; французский физик С. Ледюк (1907), погружая в насыщенный раствор K3 PO4 сплавленный CaCl2, получил — благодаря действию сил поверхностного натяжения и осмоса — структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешне сходство с протоплазмой; такая модель воспроизводила даже амебное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским ученым К. Маттеуччи и немцем Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. Присоединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский ученый Р. Лилли на модели распространяющейся по нерву волны возбуждения воспроизвел ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, закон «все или ничего», двустороннее приведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и появлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, ее отростке и синапсе. Построены также механические машины с электронным управлением, моделирующие сложные действия поведения. Однако, такие модели сильно упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики, чем для биологии.

Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов, их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых внутри организма клеток.

Модели биологических мембран (пленка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов -дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т.д.

М а т е м а т и ч е с к и е модели (математические и логико-математические описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математических моделей и дают материал для ее дальнейшей корректировки. «Проигрывание» математической модели биологического явления на ЭВМ позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математические модели позволяют в отдельных случаях предсказать некоторые явления, ранее неизвестные исследователю. Так, модель сердечной деятельности, предложенная голландскими учеными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математических моделей физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учеными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских ученых У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А.Н. Колмогоров). Марковская математическая модель процесса эволюции построена О.С. Кулагиной и А.А. Ляпуновым. И.М. Гельфандом и М.Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. Показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков — синергий, а не путем независимого управления каждой мышцей.

В настоящее время в области математического моделирования биообъектов и биосистем сложились работают следующие научные школы: Научно-исследовательский институт новых медицинских технологий Минздрава РФ, Тульский государственный университет, Институт математики НАН Украины. Разработаны: универсальный метод моделирования физиологических систем человека в норме и патологии на основе вычисления рекуррентных рядов; аппарат дифференциальных форм (внешней алгебры) применен для решения задач биоэнергоинформационного обмена и гемодинамики; для формирования алгоритмов моделирования процессов мышления и внутриорганного биоинформационного обмена, базирующихся на солитонном механизме волновой передачи, разработан метод решения канонических уравнений и др.

Список используемой литературы

1. Концепции современного естествознания: учебное пособие, под ред. А.В. Кокина, изд-во «Приор Эксперт бюро», — Москва, 1998 год

2. Проблемы развития химии под ред. Г.А. Фединой, — Ленинград, 1989 год

3. Концепции современного естествознания: учебник для вузов, под ред. А.П. Садохина, из-во Эксмо, – Москва, 2006 год.

4. Концепции современного естествознания. Хрестоматия для студентов гуманитарных ВУЗОВ, Высшая школа, изд-во Астрель, АСТ, 2004 год.

6.Моделирование в химии и биологии………………….………… стр.23

7.Бионеорганическая химия………………………….….………….стр.23

www.ronl.ru


Смотрите также