Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Свойства тяжелой и легкой воды. Легкая и тяжелая вода реферат


Реферат Тяжёлая вода

скачать

Реферат на тему:

Схематическое изображение молекулы тяжёлой воды

План:

    Введение
  • 1 История открытия
  • 2 Свойства
  • 3 Нахождение в природе
  • 4 Биологическая роль и физиологическое воздействие
  • 5 Некоторые сведения
  • 6 Получение
  • 7 Применение
  • 8 Другие виды тяжёлых вод
    • 8.1 Полутяжёлая вода
    • 8.2 Сверхтяжёлая вода
    • 8.3 Тяжёлокислородные изотопные модификации воды
    • 8.4 Общее число изотопных модификаций воды
  • Примечания

Введение

Тяжёлая вода Общая информация Свойства
Схематическое изображение молекулы тяжёлой воды
Другие названия оксид дейтерия
Формула D2O
Молярная масса 20,04 г/моль
В твёрдом виде лёд
Вид прозрачная жидкость без цвета,вкуса и запаха
Номер CAS [7732-20-0]
Плотностьи фазовое состояние 1104,2 кг/м³, жидкость1017,7 кг/м³, твёрдая (при н. у.)
Растворимость Малорастворима в диэтиловом эфире;Смешивается с этанолом;C обычной водой смешиваетсяв любых пропорциях.
удельная теплоёмкость 4,105 кДж/К·кг
Точка плавления 3,81 °C (276,97 K)
Точка кипения 101,43 °C (374,55 K)
Константа диссоциациикислоты (pKa)
Вязкость 0,00125 Па·с (0,0125 пз) при 20 °C

Тяжёлая вода́ (также оксид дейтерия) — обычно этот термин применяется для обозначения тяжёловодородной воды. Тяжёловодородная вода имеет ту же химическую формулу, что и обычная вода, но вместо атомов обычного лёгкого изотопа водорода (протия) содержит два атома тяжёлого изотопа водорода — дейтерия. Формула тяжёловодородной воды обычно записывается как D2O или 2h3O. Внешне тяжёлая вода выглядит как обычная — бесцветная жидкость без вкуса и запаха.

1. История открытия

Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году, за что ученый был удостоен Нобелевской премии по химии в 1934 году. А уже в 1933 году Гилберт Льюис выделил чистую тяжёловодородную воду.

2. Свойства

Свойства тяжёлой воды
Молекулярная масса 20,03 а.е.м.
Давление паров 10 мм. рт. ст. (при 13,1 °C), 100 мм. рт. ст. (при 54 °C)
Показатель преломления 1,32844 (при 20 °C)
Энтальпия образования ΔH −294,6 кДж/моль (ж) (при 298 К)
Энергия Гиббса образования G −243,48 кДж/моль (ж) (при 298 К)
Энтропия образования S 75,9 Дж/моль·K (ж) (при 298 К)
Мольная теплоёмкость Cp 84,3 Дж/моль·K (жг) (при 298 К)
Энтальпия плавления ΔHпл 5,301 кДж/моль
Энтальпия кипения ΔHкип 45,4 кДж/моль
Критическое давление 21,86 МПа
Критическая плотность 0,363 г/см³

3. Нахождение в природе

В природных водах один атом дейтерия приходится на 6400 атомов протия. Почти весь он находится в составе молекул полутяжёлой воды DHO, одна такая молекула приходится на 3200 молекул лёгкой воды. Лишь очень незначительная часть атомов дейтерия формирует молекулы тяжёлой воды D2O, поскольку вероятность двух атомов дейтерия встретиться в составе одной молекулы в природе мала (примерно 0,5×10−7). При искусственном повышении концентрации дейтерия в воде эта вероятность растёт.

4. Биологическая роль и физиологическое воздействие

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими (мыши, крысы, собаки)[1] показали, что замещение 25 % водорода в тканях дейтерием приводит к стерильности, иногда необратимой. Более высокие концентрации приводят к быстрой гибели животного; так, млекопитающие, которые пили тяжёлую воду в течение недели, погибли, когда половина воды в их теле была дейтерирована; рыбы и беспозвоночные погибают лишь при 90 % дейтерировании воды в теле. Простейшие способны адаптироваться к 70% раствору тяжёлой воды, а водоросли и бактерии способны жить даже в чистой тяжёлой воде[1]. Человек может без видимого вреда для здоровья выпить несколько стаканов тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней.Таким образом, тяжёлая вода гораздо менее токсична, чем, например, поваренная соль. Тяжёлая вода использовалась для лечения артериальной гипертензии у людей в суточных дозах до 1,7 г дейтерия на кг веса пациента; этот метод запатентован (U.S. Patent 5223269  (англ.)).

5. Некоторые сведения

Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200—250 долларов за литр[]).

Среди населения бытует миф о том, что при длительном кипячении природной воды концентрация тяжёлой воды в ней повышается, что якобы может вредно сказаться на здоровье[источник?]. В действительности же реальное повышение концентрации тяжёлой воды при кипячении ничтожно (менее процента[источник не указан 105 дней]) и к тому же, как сказано выше, тяжёлая вода практически не ядовита[источник?]. Гораздо сильнее сказывается на вкусе и свойствах воды при кипячении повышение концентрации растворённых солей.

6. Получение

Стоимость производства тяжёлой воды определяется затратами энергии. Поэтому при обогащении тяжёлой воды применяют последовательно разные технологии — вначале пользуются технологиями с бо́льшими потерями тяжёлой воды, но более дешёвыми, а в конце — более энергозатратными, но с меньшими потерями тяжёлой воды.

С 1933 по 1946 годы единственным применявшимся методом обогащения был электролиз. В последующем появились технологии ректификации жидкого водорода и изотопного обмена в системах водород — жидкий аммиак, водород — вода и сероводород — вода. Современное массовое производство во входном потоке использует воду, дистиллированную из электролита цехов получения электролитического водорода, с содержанием 0,1-0,2 % тяжёлой воды.

На первой стадии концентрирования применяется двухтемпературная противоточная сероводородная технология изотопного обмена, выходная концентрация тяжёлой воды 5-10 %. На второй — каскадный электролиз раствора щёлочи при температуре около 0 °C, выходная концентрация тяжёлой воды 99,75-99,995 %.

7. Применение

Важнейшим свойством тяжёловодородной воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии, биологии и гидрологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино SNO (Канада) содержит 1000 тонн тяжёлой воды.

8. Другие виды тяжёлых вод

8.1. Полутяжёлая вода

Выделяют также полутяжёлую воду (известную также под названиями дейтериевая вода, монодейтериевая вода, гидроксид дейтерия), у которой только один атом водорода замещён дейтерием. Формулу такой воды записывают так: DHO или ²HHO. Следует отметить, что вода, имеющая формальный состав DHO, вследствие реакций изотопного обмена реально будет состоять из смеси молекул DHO, D2O и h3O (в пропорции примерно 2:1:1). Это замечание справедливо и для THO и TDO.

8.2. Сверхтяжёлая вода

Сверхтяжёлая вода содержит тритий, период полураспада которого более 12 лет. По своим свойствам сверхтяжёлая вода (T2O) еще заметнее отличается от обычной: кипит при 104 °C, замерзает при +9 °C и имеет плотность 1,21 г/см³.[2] Известны (то есть получены в виде более или менее чистых макроскопических образцов) все девять вариантов сверхтяжёлой воды: THO, TDO и T2O с каждым из трёх стабильных изотопов кислорода (16O, 17O и 18O). Иногда сверхтяжёлую воду называют просто тяжёлой водой, если это не может вызвать путаницы. Сверхтяжёлая вода имеет высокую радиотоксичность.

8.3. Тяжёлокислородные изотопные модификации воды

Термин тяжёлая вода применяют также по отношению к тяжёлокислородной воде, у которой обычный лёгкий кислород 16O заменён одним из тяжёлых стабильных изотопов 17O или 18O. Тяжёлые изотопы кислорода существуют в природной смеси, поэтому в природной воде всегда есть примесь обеих тяжёлокислородных модификаций. Тяжёлокислородная вода, в частности, 1h318O, используется в ранней диагностике онкологических заболеваний[источник не указан 459 дней].

8.4. Общее число изотопных модификаций воды

Если подсчитать все возможные нерадиоактивные соединения с общей формулой Н2О, то общее количество возможных изотопных модификаций воды всего девять (так как существует два стабильных изотопа водорода и три — кислорода):Стабильные:

  • Н216O − лёгкая вода, или просто вода
  • Н217O
  • Н218O − тяжёлокислородная вода
  • HD16O − полутяжёлая вода
  • HD17O
  • HD18O
  • D216O − тяжёлая вода
  • D217O
  • D218O

Радиоактивные:

  • T216O
  • T217O
  • T218O
  • DT16O
  • DT17O
  • DT18O
  • HT16O
  • HT17O
  • HT18O

С учётом трития их число возрастает до 18. Таким образом, кроме обычной, наиболее распространённой в природе «лёгкой» воды 1h316O, в общей сложности существует 8 нерадиоактивных (стабильных) и 9 слаборадиоактивных «тяжёлых вод».

Всего же общее число возможных «вод» с учётом всех известных изотопов водорода (7) и кислорода (17) формально равняется 476. Однако распад почти всех радиоактивных изотопов водорода и кислорода происходит за секунды или доли секунды (важным исключением является тритий, период полураспада которого более 12 лет). Например, все более тяжёлые, чем тритий, изотопы водорода живут порядка 10−20 с; за это время никакие химические связи просто не успевают образоваться, и, следовательно, молекул воды с такими изотопами не бывает. Тяжёлые радиоизотопы кислорода имеют периоды полураспада от нескольких десятков секунд до наносекунд. Поэтому макроскопические образцы воды с такими изотопами получить невозможно, хотя молекулы и микрообразцы могут быть получены.

Примечания

  1. ↑ 12D. J. Kushner, Alison Baker, and T. G. Dunstall (1999). «Pharmacological uses and perspectives of heavy water and deuterated compounds». Can. J. Physiol. Pharmacol. 77 (2): 79–88. DOI:10.1139/cjpp-77-2-79 - dx.doi.org/10.1139/cjpp-77-2-79. PMID 10535697 - www.ncbi.nlm.nih.gov/pubmed/10535697?dopt=Abstract. “used in boron neutron capture therapy ... D2O is more toxic to malignant than normal animal cells ... Protozoa are able to withstand up to 70% D2O. Algae and bacteria can adapt to grow in 100% D2O”
  2. Тритий // Химическая энциклопедия Т.5 — Москва — Научное издательство «Большая Российская энциклопедия» — 1998

wreferat.baza-referat.ru

Реферат Лёгкая вода

скачать

Реферат на тему:

План:

    Введение
  • 1 Изотопика воды
  • 2 Международные стандарты на природные воды различного изотопного состава
  • 3 Свойства и эффекты лёгкой воды
    • 3.1 Биологические свойства
  • Примечания

Введение

Лёгкая вода — изотополог воды 1h316O[1][2], образованный лёгкими стабильными изотопами входящих в него элементов, содержание которого в природной воде составляет 99.73 — 99.76 мол.%.

1. Изотопика воды

Изотопы — разновидности атомов одного и того же химического элемента, имеющие одинаковые заряд ядра и строение электронных оболочек, различающиеся по массе ядер. Разница масс обусловлена тем, что ядра изотопов содержат одинаковое число протонов p и различное число нейтронов n. Комбинации различных атомов-изотопов дают набор молекул-изотопологов.

Изотопологи — молекулы, различающиеся только по изотопному составу атомов, из которых они состоят. Изотополог имеет в своём составе, по крайней мере, один атом определенного химического элемента, отличающийся по количеству нейтронов от остальных.

Молекула воды состоит из двух атомов водорода и одного атома кислорода.

Водород имеет два стабильных изотопа — протий (Н) — 1H и дейтерий (D) — 2H.

У кислорода три устойчивых изотопа: 16O, 17O и 18O (табл.1).

Таблица 1. Изотопы воды

Элемент Водород Кислород Изотоп Н D 16O 17O 18O Количество протонов в ядре 1 1 8 8 8 Количество нейтронов в ядре 0 1 8 9 10 Атомная масса 1 2 16 17 18

Комбинации 5 стабильных изотопов водорода и кислорода дают набор 9 молекул-изотопологов воды (табл.2).

Таблица 2. Изотопологи воды

Изотополог 1h316O 1HD16O D216O 1h317O 1HD17O D217O 1h318O 1HD18O D218O Изотопы водорода 1H 1H, D D 1H 1H, D D 1H 1H, D D Изотопы кислорода 16O 16O 16O 17O 17O 17O 18O 18O 18O Молекулярная масса 18 19 20 19 20 21 20 21 22

Молекула 1h316O является самой лёгкой из совокупности всех изотопологов воды. Именно воду 1h316O следует считать классической или лёгкой водой.

Лёгкая вода как моноизотопная композиция 1h316O является предельным случаем изотопной чистоты. В естественных условиях такой чистой лёгкой воды не существует. Для получения изотополога 1h316O ведут тонкую многостадийную очистку природных вод или синтезируют из исходных элементов 1h3 и 16O2. Природная вода представляет собой многокомпонентную смесь изотопологов. Содержание самого лёгкого изотополога в ней значительно превосходит концентрацию всех остальных вместе взятых. В природных водах в 1000000 молекул в среднем содержится 997284 молекул 1h316O, 311 молекул 1HD16O, 390 молекул 1h317O, и около 2005 молекул 1h318O. Концентрация молекул воды, содержащих тяжёлые изотопы D, 17O, 18O, в природной воде колеблется в пределах, зафиксированных в основных стандартах изотопного состава гидросферы SMOW и SLAP (табл.3). Весовые количества изотопологов в природной воде рассчитаны на основании данных прямого определения их содержания методом молекулярной спектроскопии [3].

Таблица 3. Рассчитанные весовые количества изотопологов в природной воде, соответствующие международным стандартам SMOW (средняя молекулярная масса = 18,01528873) и SLAP (средняя молекулярная масса = 18,01491202), [4].

Изотополог воды Молекулярная масса Содержание, г/кг SMOW SLAP 1h316O 18,01056470 997,032536356 997,317982662 1HD16O 19,01684144 0,328000097 0,187668379 D216O 20,02311819 0,000026900 0,000008804 1h317O 19,01478127 0,411509070 0,388988825 1HD17O 20,02105801 0,000134998 0,000072993 D217O 21,02733476 0,000000011 0,000000003 1h318O 20,01481037 2,227063738 2,104884332 1HD18O 21,02108711 0,000728769 0,000393984 D218O 22,02736386 0,000000059 0,000000018

Как видно из таблицы 3, в природной воде весовая концентрация тяжёлых изотопологов может достигать 2,97 г/кг, что является значимой величиной, сопоставимой, например, с содержанием минеральных солей.

Природная вода, близкая по содержанию изотополога 1h316O к стандарту SLAP, а также специально очищенная с существенно увеличенной долей этого изотополога по сравнению со стандартом SLAP, определяется как особо чистая лёгкая вода (менее строгое определение, которое применимо в реальной жизни).

В лёгкой воде доля самого лёгкого изотополога составляет (мол.%): 99.76 < 1h316O ≤ 100.

Если из воды, отвечающей стандарту SMOW, удалить все тяжёлые молекулы, массовое содержание которых составляет 2,97 г/кг и заменить их на 1h316O, то масса 1 л такой лёгкой и изотопно чистой воды уменьшится на 250 мг. Таким образом, параметры лёгкой воды, в первую очередь, её «лёгкость» и изотопный состав поддаются измерению с помощью таких методов, как масс-спектрометрия, гравиметрия, лазерная абсорбционная спектроскопия[5], ЯМР.

2. Международные стандарты на природные воды различного изотопного состава

Содержание тяжёлых изотопов водорода и кислорода в природных водах определяется двумя международными стандартами, введенными Международным агентством по атомной энергии (МАГАТЭ)[6][7]:

  • Стандарт SMOW (Standard Mean Ocean Water) определяет изотопный состав глубинной воды Мирового океана.
  • Стандарт SLAP (Standard Light Antarctic Precipitation) определяет изотопный состав природной воды из Антарктики.

По международному стандарту SMOW абсолютное содержание дейтерия и кислорода-18 в океанической воде составляет[8] : D SMOW /1H SMOW=(155,76±0,05)×10−6, или 155,76 ppm 18O SMOW/16O SMOW =(2005,20±0,45)×10−6, или 2005 ppm. Для стандарта SLAP концентрации в воде составляют[9]: дейтерия D/H=89×10−6 или 89 ppm, кислорода-18 18O/16O=1894×10−6 или 1894 ppm.

Содержание лёгкого изотополога 1h316O в воде, соответствующей по изотопному составу SMOW, составляет 997,0325 г/кг (99,73 мол. %). Доля самого лёгкого изотополога в воде, соответствующей по изотопному составу SLAP, составляет 997,3179 г/кг (99,76 мол. %).

Стандарт SLAP характеризует самую лёгкую природную воду на Земле. Вода в различных точках земного шара неодинакова по своей лёгкости.

3. Свойства и эффекты лёгкой воды

Изотопологи отличаются друг от друга по физическим, химическим и биологическим свойствам (табл.4).

Таблица 4. Изменение физических свойств воды при изотопном замещении

Физические свойства 1h316O D216O 1h318O
Плотность при 20 °C, г/см3 0.9970 1.1051 1.1106
Температура максимальной плотности, °C 3.98 11.24 4.30
Температура плавления при 1 атм, °C 0 3.81 0.28
Температура кипения при 1 атм, °C 100 101,42 100,14
Давление пара при 100 °C, Торр 760,00 721,60 758,10
Вязкость при 20 °C, сантипуаз 1,002 1,247 1,056

Равновесное давление паров у изотопологов воды различается, и весьма существенно. Чем меньше масса молекулы воды, тем выше давление пара, а это означает, что пар, равновесный с водой, всегда обогащён лёгкими изотопами кислорода и водорода. Относительно малой массы элементов разница масс изотопов велика, поэтому они способны сильно фракционировать в природных процессах: D/H → 100 %, 18O/16O →12,5 %. Изотопы водорода и кислорода наиболее эффективно фракционирует в процессах испарения-конденсации и кристаллизации воды.

Тяжёлые изотопологи в природной воде являются примесями по отношению к 1h316O, которые по некоторым исследованиям можно рассматривать как дефекты структуры [10].

Устранение гетерогенности воды по изотопному составу приводит к увеличению её гомогенности. Лёгкая вода является более однородной жидкостью. Тяжелоизотопные молекулы, содержащиеся в воде в природных концентрациях, практически не оказывают заметного влияния на неживые системы. В наибольшей степени эффекты лёгкой воды проявляются на биологических объектах, для которых характерны каскадные реакции.

Реакция биосистем при воздействии на них воды может изменяться в зависимости от количественных и качественных изменений её изотопного состава. В ходе эволюции живых организмов произошёл отбор биохимических процессов с настройкой их только на один изотоп, как правило, лёгкий [11]. В организме человека происходит «фракционирование изотопов, сопровождающееся удалением тяжёлых стабильных изотопов водорода и кислорода воды»[12]. Применение воды с повышенной концентрацией тяжёлых изотопов, в частности, дейтерия, вызывает выраженные токсические эффекты на уровне организма [13][14]. В то же время на разных объектах зарегистрирована положительная биологическая активность вод с пониженным, относительно природного, содержанием тяжелых изотопологов, в частности дейтерия и кислорода 18[15][16]. Проводимые в ГНЦ РФ «Институт медико-биологических проблем» РАН систематические исследования по созданию среды обитания космонавтов с оптимальным изотопным составом биогенных химических элементов показали, что вода с пониженным по сравнению с природным содержанием тяжелоизотопных молекул является необходимым компонентом системы жизнеобеспечения космонавтов во время длительных полётов [17]

3.1. Биологические свойства

В качестве универсальной среды, в которой идут все биологические реакции, лёгкая вода увеличивает скорость этих реакций по сравнению с водой природного изотопного состава. Этот эффект известен под названием кинетический изотопный эффект растворителя [18].

Наиболее сильное влияние очистка воды от тяжёлых изотопологов оказывает на энергетический аппарат живой клетки. Дыхательную цепь митохондрий отличают каскадные реакции. Тяжёлые изотопологи замедляют скорость реакций дыхательной цепи. На примере реакции генерации перекиси водорода митохондриями с янтарной кислотой в качестве субстрата экспериментально доказан общий ингибирующий эффект тяжёлых изотопологов воды. Снижение их содержания в воде до уровня ниже природных концентраций деингибирует и достоверно ускоряет исследованную реакцию [19].

Под влиянием лёгкой воды деингибируется инициируемый глюкозой выход инсулина из ткани поджелудочной железы и островков Лангерганса и увеличивается поглощение глюкозы клетками. Лёгкая вода увеличивает скорость метаболических реакций, например, при старении, метаболическом синдроме, диабете и т. п.[20][неавторитетный источник?].

Лёгкая вода проявляет противоопухолевую активность, что показано в работах учёных, проводимых в исследовательских центрах разных стран [21][22][23][24]. По данным Г.Шомлаи, результаты клинических испытаний, проведённых в 1994—2001 гг. в Венгрии, показали, что уровень выживаемости больных, употреблявших лёгкую воду в сочетании с традиционными методами лечения или после них выше, чем у больных, использовавших только химио- или лучевую терапию [25].

Выполненные в ГНЦ РФ «Институт медико-биологических проблем» РАН исследования показали, что лёгкая вода обладает защитным действием при облучении животных гамма-лучами в низких дозах, проявляющимся в снижении степени тяжести лучевого повреждения и активации процессов восстановления. Механизмы влияния лёгкой воды на организм подопытных животных связаны с повышением общей резистентности организма, частью которой является и радиационная резистентность [26]. Показано, что вода с пониженным содержанием тяжёлых изотопологов по сравнению с уровнем их природных концентраций при длительном использовании не оказывает токсического влияния на организм подопытных животных.

Токсикопротекторные свойства легкой воды подтверждены экспериментальными исследованиями [27] , из которых следует, что легкая вода, очищенная от тяжелых изотопологов, за счет своих транспортных свойств эффективно выводит токсины и продукты метаболизма из организма.

Примечания

  1. Кульский Л. А., Даль В. В., Ленчина Л. Вода знакомая и загадочная.- Киев: «Радянська школа», 1982.- 120 с.
  2. Петрянов-Соколов И. В. Самое необычное вещество в мире.// Химия и жизнь. 2007. № 1. с.26.
  3. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, 1998, 60, 665. Rothman et al., J. Quant. Spectrosc. Radiat. Transfer, 2003, 82, p.9.
  4. Патент RU 2295493. «Способ и установка для производства лёгкой воды». Соловьев С. П. - www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&rn=6221&DocNumber=2295493&TypeFile=pdf
  5. Lis G., Wassenaar L. I., Hendry M. J. High-Precision Laser Spectroscopy D/H and 18O/16O Measurements of Microliter Natural Water Samples.// Anal. Chem. 2008. V. 80 (1). P. 287—293
  6. Ферронский В. И., Поляков В. А. Изотопия гидросферы. М.: Наука, 1983 г.
  7. Craig, H. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. // Science. 1961. V. 133. PP. 1833−1834.
  8. Hagemann R., Niff G., Roth E. Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. // Tellus. 1970. V.22. N6. PP.712-715.
  9. De Wit J.C., van der Straaten C.M.; Mook W.G. Determination of the Absolute Hydrogen Isotopic Ratio of VSMOW and SLAP. // Geostandards Newsletter. 1980. V. 4. N. 1. PP. 33−36.
  10. Смирнов А. Н., Лапшин В. Б., Балышев А. В., Лебедев И. М., Гончарук В. В., Сыроешкин А. В. Структура воды: гигантские гетерофазные кластеры воды. // Химия и технология воды. . — 2005.- № 2. — C. 11-37; Смирнов А. Н., Сыроешкин А. В. Супранадмолекулярные комплексы воды. // Рос. хим. ж. — 2004.- Т.48 — № 2. — C. 125—135
  11. Синяк Ю. Е.., Григорьев А. И. Оптимальный изотопный состав биогенных химических элементов на борту пилотируемых космических аппаратов. // Авиакосмическая и экологическая медицина. 1996. Т. 30, № 4, С. 26.
  12. Синяк Ю. Е., Скуратов В. М., Гайдадымов В. Б., Иванова С. М., Покровский Б. Г. Григорьев А. И. Исследование фракционирования стабильных изотопов водорода и кислорода на международной космической станции. // Авиакосмическая и экологическая медицина. 2005. Т. 39, № 6, С. 43.
  13. Денько Е. И. Действие тяжёлой воды (D2O) на клетки животных, растений и микроорганизмы. // Усп. совр. биол.. 1970. Т. 70, № 4, С. 41.
  14. Лобышев В. И. Механизмы термодинамических и кинетических изотопных эффектов D2O в биологических системах Автореф. докт. диссертации. Москва, — 1987 (биофак МГУ)
  15. GLEASON J.D., FRIEDMAN I. Oats may grow better in water depleted in oxygen 18 and deuterium. NATURE 256, 305 (24 July 1975)
  16. Bild W, Năstasă V, Haulică I. In vivo and in vitro research on the biological effects of deuterium-depleted water: 1. Influence of deuterium-depleted water on cultured cell growth. // Rom J. Physiol. 2004. V.41. N 1-2. P:53-67.
  17. Sinyak Y., Grigoriev A., Gaydadimov V., Gurieva T., Levinskih M., Pokrovskii B. Deuterium-free water (1h3O) in complex life-support systems of long-tern space missions. // Acta Astronautica. 2003. V. 52, P. 575.
  18. Райхардт К. «Растворители и эффекты среды в органической химии». -М.: «Мир», 1991. — 763 с.
  19. Pomytkin I.A., Kolesova O.E. //Bulletin of Experimental Biology and Medicine. 2006. V.142. N 5. - www.vetonco.ru/docs/lw_article_2006.pdf
  20. Патент RU 2270017 Способ лечения больных сахарным диабетом. Тимаков А. А. и др.
  21. Gyöngyi Z, Somlyai G. Deuterium depletion can decrease the expression of C-myc Ha-ras and p53 gene in carcinogen-treated mice. // In Vivo. 2000. V.14. N.3. P. 437.
  22. Berdea P., Cuna S., Cazacu M., Tudose M. Deuterium variation of human blood serum. // Studia Universitatis Babeş-Bolyai, Physica. 2001. Special issue
  23. Krempels K., Somlyai I., Somlyai G. A Retrospective Evaluation of the Effects of Deuterium Depleted Water Consumption on 4 Patients with Brain Metastases from Lung Cancer. // Integrative Cancer Therapies. 2008. V.7. N.3. P. 172—181. - www.hyd.hu/downloads/retrospective_evaluation.pdf
  24. Cong F.-S., Zhang Y.-R., Sheng H.-C., Ao Z.-H., Zhang S.-Y., Wang J.-Y. Deuterium-depleted water inhibits human lung carcinoma cell growth by apoptosis. // Experimental and Therapeutic Medicine. 2010. V.1. N.2. P.277-283 - www.spandidos-publications.com/etm/1/2/277
  25. Somlyai G. «Let’s Defeat Cancer!». Akadémiai Kiadó, Budapest, 2001.
  26. Раков Д. В. Влияние воды с пониженным содержанием дейтерия и кислорода 18О на развитие лучевых повреждений в организме мелких лабораторных животных при низких дозах гамма-облучения : диссертация … Канд. биол. наук.- Москва, 2007.- 143 с.
  27. Doina P.M. et al., Bulletin UASVM, Veterinary Medicine. 2008. V.65(1). P.1843 - journals.usamvcj.ro/veterinary/article/viewFile/1248/1222

wreferat.baza-referat.ru

Легкая и тяжелая вода

До 1932 года никто и понятия не имел, что в природе может быть еще и тяжелая вода, в состав которой могут входить тяжелые изотопы водорода — дейтерий и тритий пусть даже в мизерных количествах.

Именно это обстоятельство и послужило причиной того, что эти элементы «прятались» от ученых, маскируясь под ошибки опытов и недостаточную точность измерений.

Тяжелый водород — дейтерий был открыт американским физико-химиком Гарольдом Юри (1893-1981) в 1931 году. Одному из своих помощников Г.Юри поручил выпарить шесть литров жидкого водорода и в последней фракции объемом 3 см3 спектральным анализом впервые был обнаружен тяжелый изотоп водорода с атомной массой в два раза превышающий известный протий.

Это открытие произвело ошеломляющее впечатление прежде всего на ученых атомщиков всего мира, а немного позже и на ученых различных областей науки. Правда, еще раньше, в том же 1931 году, Берже и Мендель обнаружили, что атомный вес водорода, измеренный химическим методам, отличается от результатов, полученных с помощью масс-спектрометров. Хотя отличие это оказалось и небольшим, но оно повторялось от опыта к опыту.

Ученые пришли к выводу, что, по-видимому, существует тяжелый изотоп водорода с атомным весом 2.

В 1932 году Г.Юри и Э.Ф.Осборн впервые обнаружили в природной воде тяжелую воду.

Через два года Гарольд Юри был удостоен Нобелевской премии.

Открытие третьего сверхтяжелого изотопа водорода трития с атомным весом 3 первые годы держали в секрете по стратегическим соображениям. В 1951 году была получена и исследована тритиевая вода. Если дейтериевая вода сейчас уже хороша изучена практически во всех отраслях науки и техники, то «звездный» час тритиевой воды еще не настал.

А причина в том, что трития на Земле исчезающе малое количество (всего около 25-30 кг) и содержится он в основном в воде (всего около 20 кг).

В отличие от протия и дейтерия тритий радиоактивный элемент с периодом полураспада девять лет.

По своим свойствам сверхтяжелая тритиевая вода отличается от протиевой (легкой) воды больше, чем дейтериевая вода.

Тритий зарождается в сверхвысоких слоях атмосферы в основном при бомбардировке ядер азота нейтронами космического излучения.

В природной воде содержание трития ничтожно — всего 10-18 атомных процента. И тем не менее он есть и в питьевой воде.

По своим свойствам Т2О еще заметней отличается от Н2О, чем тяжелая вода: она кипит при 104 °С, имеет плотность 1,33, лед из нее плавится при 9 °С.

Тритиевая вода применяется при термоядерных реакциях, а кроме того, как и тяжелая, используется в химических и биологических исследованиях в качестве меченой. Как изотопный индикатор тритий более приемлем, чем дейтерий, из-за высокой чувствительности и простоты определения.

Кроме водорода, изотопы были обнаружены и у кислорода, причем целых шесть, помимо всем известного О16 (с молекулярным весом 16). Три из них оказались радиоактивными — О14, О15 и О19, а О16, О17 и O18 — стабильными. О16, О17 и О18 содержатся во всех природных водах, причем их соотношение (с колебаниями до 1%) таково: на 10000 частей О16 приходится 4 части О17 и 20 частей О18.

По физическим свойствам тяжелокислородная вода меньше отличается от обычной, чем тяжеловодородная. Получают ее в основном из природной воды фракционной перегонкой и используют как источник препаратов с меченным кислородом.

Таким образом, учитывая все разнообразие изотопного состава водорода и кислорода, можно говорить о 36 изотопных разновидностях воды (рис. 5). Девять из них включают только стабильные изотопы и составляют основное содержание природной воды. В ней преобладает обычная вода Н12О16 (99,73%), далее следует тяжелокислородные воды h22О17 (0,04%) и Н12О18 (0,2%), а также изотопная разновидность тяжелой воды h2D1O16 (0,03%). В дальнейшем, говоря о воде и называя ее общеизвестную формулу Н2О мы будем иметь в виду, что состав ее многообразен, но основной компонент Н12О16.

Рис. 5. Известные изотопы воды. В рамке 7 видов молекул воды со стабильными изотопами кислорода и водорода, содержащимися в природных водах.

Страницы: 1 2 3 4 5 6 7 8 9 10 11

www.prostovoda.net

Реферат - Осторожно, тяжелая вода

М. Аджиев

Тяжелая вода очень дорога и дефицитна. Однако если удастся найти дешевый и практичный способ ее получения, то области применения этого редкого пока ресурса заметно расширятся. Могут открыться новые страницы в химии, биологии, а это новые материалы, неизвестные соединения, может быть, и неожиданные формы жизни.

Рис. 1. Молекулы воды прочно связаны друг с другом и образуют устойчивую молекулярную конструкцию, которая сопротивляется любым внешним воздействиям, в частности тепловым. (Именно поэтому, чтобы превратить воду в пар, нужно подвести к ней много тепла). Молекулярная конструкция воды скреплена каркасом из особых квантово-механических связей, названных в 1920 году двумя американскими химиками Латимером и Родебушем водородными. Все аномальные свойства воды, включая необычное поведение при замерзании, объясняются с точки зрения концепции водородных связей.

Вода в природе бывает нескольких «сортов». Обычная, или протиевая (Н2 О). Тяжелая, или дейтериевая (D2 O). Сверхтяжелая, или тритиевая (Т2 О), но ее в природе почти нет. Различается вода и по изотопному составу кислорода. Всего же насчитывается не менее 18 ее изотопных разновидностей.

Если мы откроем водопроводный кран и наберем чайник, то там будет не однородная вода, а ее смесь. При этом дейтериевых «вкраплений» окажется очень немного – примерно 150 граммов на тонну. Получается, что тяжелая вода есть повсюду – в каждой капле! Проблема в том, как ее взять. Ныне во всем мире ее добыча связана с огромными затратами энергии и очень сложным оборудованием.

Однако есть предположение, что на планете Земля возможны такие природные ситуации, когда тяжелая и обычная вода на какое-то время отделяются одна от другой – D2 O из рассеянного, «растворенного» состояния переходит в концентрированное. Так, может быть, существуют месторождения тяжелой воды? Пока однозначного ответа нет: никто из исследователей этим вопросом прежде не занимался.

А вместе с тем известно, что физико-химические свойства D2 O совсем иные, чем у Н2 0 – ее постоянного спутника. Так, температура кипения тяжелой воды +101,4°С, а замерзает она при +3,81°С.Ее плотность на 10 процентов больше, чем у обычной.

Надо также заметить, что происхождение тяжелой воды, по-видимому, сугубо земное – в космосе ее следов не обнаружено. Дейтерий образуется из протия вследствие захвата им нейтрона космического излучения. Мировой океан, ледники, атмосферная влага – вот природные «фабрики» тяжелой воды.

Рис. 2. Зависимость плотности обычной и тяжелой воды от температуры. Разница в плотности одной и другой разновидностей воды превышает 10%, и поэтому возможны условия, когда переход в твердое состояние при охлаждении происходит вначале у тяжелой воды, а затем у обычной. Во всяком случае, физика не запрещает появления участков твердой фазы с повышенным содержанием дейтерия. Такому «тяжелому» льду на диаграмме соответствует заштрихованный участок. Если бы вода была «нормальной», а не аномальной жидкостью, то зависимость плотности от температуры имела бы вид, показанный пунктирной линией.

Итак, поскольку есть заметная разница в плотности между D2 O и Н2 О, то именно плотность, а также агрегатное состояние и могут служить наиболее чувствительными критериями в поисках возможных месторождений тяжелой воды – ведь эти критерии связаны с температурой окружающей среды. А как известно, окружающая среда наиболее «контрастна» в высоких широтах планеты.

Но к настоящему времени сложилось мнение, что воды высоких широт бедны дейтерием. Поводом к этому стали результаты исследований проб воды и льда из Большого Медвежьего озера в Канаде и из других северных водоемов. Обнаружились также колебания в содержании дейтерия по сезонам года – зимой, например, в реке Колумбия его меньше, чем летом. Эти отклонения от нормы связывались с особенностями распределения атмосферных осадков, которые, как принято предполагать, «разносят» дейтерий по планете.

Похоже, что никто из исследователей сразу не заметил скрытого противоречия в этом утверждении. Да, атмосферные осадки влияют на распределение дейтерия по водоемам планеты, однако они никак не влияют на глобальный процесс образования дейтерия!

Когда на Севере наступает осень, в реках начинается быстрое остывание водной массы, которое убыстряется под воздействием вечной мерзлоты, одновременно идет ассоциация молекул h3 O. Наконец, наступает критический момент максимальной плотности – температура воды всюду чуть ниже +4°С.И тогда в придонной зоне на некоторых участках интенсивно намораживается рыхлый подводный лед.

В отличие от обычного льда он не имеет правильной кристаллической решетки, у него иная структура. Центры его кристаллизации различны: камни, коряги и разные неровности, причем не обязательно лежащие на дне и связанные с мерзлым грунтом. Появляется рыхлый лед на реках глубоких, со спокойным – ламинарным – течением.

Подводное ледообразование обычно заканчивается тем, что льдины всплывают на поверхность, хотя в это время никакого другого льда нет. Подводный лед иногда появляется и летом. Возникает вопрос: что это за «вода в воде», которая меняет свое агрегатное состояние, когда установившаяся температура в реке слишком высока для того, чтобы в лед превращалась обычная Н2 О, чтобы, как говорят физики, произошел фазовый переход?

Можно допустить, что рыхлый лед представляет собой обогащенные концентрации тяжелой воды. Кстати, если это так, то нужно помнить, что тяжелая вода не отличима от обычной, однако потребление ее внутрь организма может вызвать тяжелые отравления. К слову сказать, местные жители высоких широт не употребляют речной лед для приготовления пищи – только озерный лед или снег.

«Механизм» фазового перехода D2 O в реке очень напоминает тот, что используется химиками в так называемых кристаллизационных колоннах. Только в северной реке «колонна» растянута на сотни километров и не столь контрастна по температурному режиму.

Если же иметь в виду, что через центры кристаллизации в реке за короткое время проходят сотни и тысячи кубических метров воды, из которых превращается в лед – намораживается – пусть тысячная доля процента, то и этого достаточно, чтобы говорить о способности тяжелой воды концентрироваться, то есть образовывать месторождения.

Только присутствием таких концентраций можно объяснить тот доказанный факт, что зимой в северных водоемах процентное содержание дейтерия заметно уменьшается. Да и полярные воды, как показывают пробы, тоже бедны дейтерием, и в Арктике, вполне вероятно, есть районы, где плавают в основном только льдины, обогащенные дейтерием, – ведь рыхлый донный лед появляется первым и тает последним.

Больше того, как показали исследования, ледники и льды высоких широт в целом богаче тяжелыми изотопами, чем воды, омывающие льды. Например, в Южной Гренландии, в районе станции «Дай-3», выявлены изотопные аномалии на поверхности ледников, и происхождение таких аномалий пока не объяснено. Значит, могут встретиться и льдины, обогащенные дейтерием. Дело, как говорится, за малым – нужно найти эти пока еще гипотетические месторождения тяжелой воды.

www.ronl.ru

Тяжёлая вода

О.В.Мосин

Тяжёлая вода (оксид дейтерия) — имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода — атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D2O или 2h3O. Внешне тяжёлая вода выглядит как обычная — бесцветная жидкость без вкуса и запаха.

По своим свойствам тяжелая вода заметно отличается от обычной воды. Реакции с тяжелой водой протекают медленнее, чем с обычной, константы диссоциации молекулы тяжёлой воды меньше таковых для обычной воды.

Молекулы тяжёловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году году. А уже в 1933 году Гильберт Льюис получил чистую тяжёловодородную воду путём электролиза обычной воды.

В природных водах соотношение между тяжёлой и обычной водой составляет 1:5500 (в предположении, что весь дейтерий находится в виде тяжёлой воды D2O, хотя на самом деле он частично находится в составе полутяжёлой воды HDO).

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70%-ной тяжёлой воде) (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. В этом отношении тяжёлая вода менее токсична, чем, например, поваренная соль.

Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока (ориентировочно 200-250 долларов за кг).

Физические свойства обычной и тяжёлой воды 

Физические свойства D2O h3O
Молекулярная масса 20 18
Плотность при 20°C (г/см3) 1,1050 0,9982
t° кристаллизации (°C) 3,8 0
t° кипения (°C) 101,4 100

 

Свойства тяжёлой воды

Важнейшим свойством тяжёлой воды является то, что она практически не поглощает нейтроны, поэтому используется в ядерных реакторах для торможения нейтронов и в качестве теплоносителя. Она используется также в качестве изотопного индикатора в химии и биологии. В физике элементарных частиц тяжёлая вода используется для детектирования нейтрино; так, крупнейший детектор солнечных нейтрино в Канаде содержит 1 килотонну тяжёлой воды.

Российскими учёными из ПИЯВ разработаны на опытных установках оригинальные технологии получения и очистки тяжелой воды. В 1995 была введена в эксплуатацию первая в России и одна из первых в мире опытно-промышленная установка на основе метода изотопного обмена в системе вода-водород и электролиза воды (ЭВИО).

Высокая эффективность установки ЭВИО дает возможность получать тяжелую воду с содержанием дейтерия > 99,995 % ат. Отработанная технология обеспечивает высокое качество тяжелой воды, включая глубокую очистку тяжелой воды от трития до остаточной активности, позволяющей без ограничений использовать тяжелую воду в медицинских и научных целях. Возможности установки позволяют полностью обеспечить потребности российских предприятий и организаций в тяжелой воде и дейтерии, а также экспортировать часть продукции. За время работы для нужд Росатома и других предприятий России были произведены более 20 тонн тяжёлой воды и десятки килограммов газообразного дейтерия.

Существует также и полутяжёлая (или дейтериевая) вода, у которой только один атом водорода замещен дейтерием. Формулу такой воды записывают так: DHO.

Термин тяжёлая вода применяют также по отношению к воде, у которой любой из атомов заменен тяжёлым изотопом:

• к тяжёлокислородной воде (в ней лёгкий изотоп кислорода 16O замещен тяжёлыми изотопами 17O или 18O),

• к тритиевой и сверхтяжёлой воде (содержащей вместо атомов 1H его радиоактивный изотоп тритий 3H).

Если подсчитать все возможные различные соединения с общей формулой Н2О, то общее количество возможных «тяжёлых вод» достигнет 48. Из них 39 вариантов — радиоактивные, а стабильных вариантов всего девять: Н216O, Н217O, Н218O, HD16O, HD17O, HD18O, D216O, D217O, D218O. На сегодняшний день в лабораториях получены не все варианты тяжёлой воды.

Тяжелая вода играет значительную роль в различных биологических процессах. Российские исследователи давно обнаружили, что тяжелая вода тормозит рост бактерий, водорослей, грибов, высших растений и культуры тканей животных. А вот вода со сниженной до 50% концентрацией дейтерия (так называемая "бездейтериевая" вода) обладает антимутагенными свойствами, способствует увеличению биомассы и количества семян, ускоряет развитие половых органов и стимулирует сперматогенез у птиц.

За рубежом пробовали поить тяжелой водой мышей со злокачественными опухолями. Та вода оказалась по настоящему мертвой: и опухоли губила, и мышей. Различные исследователи установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Подопытных собак, крыс и мышей поили водой, треть которой была заменена тяжелой водой. Через недолгое время начиналось расстройство обмена веществ животных, разрушались почки. При увеличении доли тяжелой воды животные погибали. И наоборот, снижение содержания дейтерия на 25% ниже нормы в воде, которую давали животным, благотворно сказалось на их развитии: свиньи, крысы и мыши дали потомство, во много раз многочисленнее и крупнее обычного, а яйценосность кур поднялась вдвое.

Тогда Российские исследователи взялись за "облегченную" воду. Эксперименты проводили на 3 моделях перевиваемых опухолей: карцинома легких Льюис, быстро растущая саркома матки и рак шейки матки, который развивается медленно. "Бездейтериевую" воду исследователи получали по технологии, разработанной в Институте космической биологии. В основе метода лежит электролиз дистиллированной воды. В опытных группах животные с перевитыми опухолями получали воду с пониженным содержанием дейтерия, в контрольных группах - обычную. Животные начали пить "облегченную" и контрольную воду в день перевивки опухоли и получали ее до последнего дня жизни.

Вода с пониженным содержанием дейтерия задерживает появление первых узелков на месте перевивки рака шейки матки. На время возникновения узелков других типов опухоли облегченная вода не действует. Но во всех опытных группах, начиная с первого дня измерений и практически до завершения эксперимента, объем опухолей был меньше, чем в контрольной группе. К сожалению, хотя тяжёлая вода и тормозит развитие всех исследованных опухолей, жизнь экспериментальным мышам она не продлевает.

И тогда раздались голоса в пользу полного изъятия дейтерия из употребленной в пищу воды. Это привело бы к ускорению обменных процессов в организме человека, а, следовательно, к увеличению его физической и интеллектуальной активности. Но вскоре возникли опасения, что полное изъятие из воды дейтерия приведет к сокращению общей длительности человеческой жизни. Ведь известно, что наш организм почти на 70% состоит из воды. И в этой воде 0,015% дейтерия. По количественному содержанию (в атомных процентах) он занимает 12-е место среди химических элементов, из которых состоит организм человека. В этом отношении его следует отнести к разряду микроэлементов. Содержание таких микроэлементов как медь, железо, цинк, молибден, марганец в нашем теле в десятки и сотни раз меньше, чем дейтерия. Что же случится, если удалить весь дейтерий? На этот вопрос науке еще предстоит ответить. Пока же несомненным является тот факт, что, меняя количественное содержание дейтерия в растительном или животном организме, мы можем ускорять или замедлять ход жизненных процессов.

www.o8ode.ru

Свойства тяжелой и легкой воды

Свойства тяжелой и легкой воды.

Тяжёлая вода (также оксид дейтерия) — обычно этот термин применяется для обозначения тяжёловодородной воды. Тяжёловодородная вода имеет ту же химическую формулу, что и обычная вода, но вместо атомов обычного лёгкого изотопа водорода (протия) содержит два атома тяжёлого изотопа водорода — дейтерия. Формула тяжёловодородной воды обычно записывается как D2O или 2h3O. Внешне тяжёлая вода выглядит как обычная — бесцветная жидкость без вкуса и запаха.

Тяжелая вода играет значительную роль в различных биологических процессах. Различные исследователи независимо друг от друга установили, что тяжелая вода действует отрицательно на растительные и живые организмы. Но всё же, как показали исследования многие клетки бактерий, водорослей и растений могут быть адаптированы к росту на тяжёлой воде. Как сообщил ведущий научный сотрудник Пущинского института теоретической и экспериментальной биофизики РАН Виктор Кутышенко, в ходе экспериментов было установлено, что чайный гриб адаптируется к воде, на 98% состоящей из тяжелой, всего за сутки. Это рекорд среди исследованных до сих пор организмов. Грибы помещали в среду, где, кроме тяжелой воды, содержались чайный настой и протонированная глюкоза. За адаптацией наблюдали по скорости утилизации глюкозы и накопления промежуточных метаболитов: этилового спирта и уксусной кислоты. Содержание метаболитов измеряли с помощью ЯМР-спектрометра. При пересадке в тяжелую воду рост чайного гриба на сутки приостанавливался, а затем возобновлялся, хотя и с меньшей скоростью, чем в контроле. Это рекорд по адаптации к воде из дейтерия, большинству микроорганизмов для этого нужны недели и месяцы, а прежнему чемпиону - хлорелле - 6 суток.

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности, более высокие концентрации приводят к быстрой гибели животного. Однако некоторые микроорганизмы способны жить в 70% растворе D2O в h3O (простейшие) и даже в чистой тяжёлой воде (бактерии). Человек может без видимого вреда для здоровья выпить стакан тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней. Таким образом, тяжёлая вода менее токсична, чем, например, поваренная соль.

Среди населения бытует миф о том, что при длительном кипячении природной воды концентрация тяжёлой воды в ней повышается, что якобы может вредно сказаться на здоровье. В действительности же повышение концентрации тяжёлой воды при кипячении ничтожно (к тому же тяжёлая вода практически не ядовита).

Лёгкая вода — изотополог воды, образованный лёгкими стабильными изотопами входящих в него элементов, содержание которого в природной воде составляет 99.73 — 99.76 мол.%.

Лёгкая вода – это вода, очищенная от тяжёлой воды. Изотоп водорода, дейтерий, отличающийся наличием в ядре «лишнего» нейтрона, может образовывать с кислородом молекулу воды. Такая вода, в молекуле которой атом водорода замещён атомом дейтерия, называется тяжёлой. Содержание дейтерия в различных природных водах очень неравномерно. Оно может меняться от 0,03 % (относительно общего количества атомов водорода) – это вода из Антарктического льда, - самая лёгкая природная вода – в ней дейтерия в 1,5 раза меньше, чем в морской воде. Талая снеговая и ледниковая воды в горах и некоторых других регионах Земли также содержат меньше тяжелой воды, чем та, которую мы обычно пьем.

Наиболее сильное влияние очистка воды от тяжёлых изотопологов оказывает на энергетический аппарат живой клетки. Дыхательную цепь митохондрий отличают каскадные реакции. Тяжёлые изотопологи замедляют скорость реакций дыхательной цепи. На примере реакции генерации перекиси водорода митохондриями с янтарной кислотой в качестве субстрата экспериментально доказан общий ингибирующий эффект тяжёлых изотопологов воды. Снижение их содержания в воде до уровня ниже природных концентраций деингибирует и достоверно ускоряет исследованную реакцию.

Под влиянием лёгкой воды деингибируется инициируемый глюкозой выход инсулина из ткани поджелудочной железы и островков Лангерганса и увеличивается поглощение глюкозы клетками. Лёгкая вода увеличивает скорость метаболических реакций, например, при старении, метаболическом синдроме, диабете и т. п.

Лёгкая вода проявляет противоопухолевую активность, что показано в работах учёных, проводимых в исследовательских центрах разных стран. По данным Г.Шомлаи, результаты клинических испытаний, проведённых в 1994—2001 гг. в Венгрии, показали, что уровень выживаемости больных, употреблявших лёгкую воду в сочетании с традиционными методами лечения или после них выше, чем у больных, использовавших только химио- или лучевую терапию.

Источники:

  • http://www.o8ode.ru/article/oleg/tagelaa_voda.htm
  • http://www.o8ode.ru/article/oleg/light/
  • http://ru.wikipedia.org/wiki/%D0%9B%D1%91%D0%B3%D0%BA%D0%B0%D1%8F_%D0%B2%D0%BE%D0%B4%D0%B0

Полезный совет?

Расскажите друзьям

www.domotvetov.ru

Тяжёлая вода

Формула тяжелой водыТяжелая вода имеет ту же формулу, что и обычная, но вместо атомов водорода в ней содержатся его изотопы, именуемые дейтерием. По своему внешнему виду она не отличается от водопроводной воды и представляет собой бесцветную жидкость без запаха и вкуса.

Общие сведения

Что такое тяжелая вода, впервые поведал Гарольд К. Юри ещё в 1931 году. А два года спустя Гилбертом Ньютоном Льюисом впервые была получена чистая тяжёловодородная вода. Её второе название – окись дейтерия. Формула тяжёлой воды — D2О. Она состоит из атомов кислорода и водорода, которые содержатся в ней в форме дейтерия. По сравнению с водородом, дейтерий приблизительно в два раза тяжелее. Поэтому молекулярная масса обычной воды составляет 18 г/моль, в то время как вес тяжёлой – примерно 20.

Существует миф, который гласит, что долгое кипячение природной воды приводит к повышению концентрации тяжёлой, что может негативно сказаться на человеческом здоровье. Однако это далеко не так: в действительности эта концентрация ничтожно мала. Кроме этого, доказан факт, что тяжёлая вода не является ядовитой. Она считается слаботоксичной. В её среде продолжительность химических реакций, по сравнению с простой водой, снижается.

Основные свойства

К тяжёлой воде учёные давно проявляют повышенный интерес. Ведь сразу же после её получения стало очевидным, что она наделена особыми свойствами, которые отличаются от обычной воды. Тяжёлая вода – это жидкость, которая является абсолютно непригодной для развития и жизни в ней микробов, рыб или червей. Она противопоказана для употребления животными, поскольку после утоления жажды ею они просто погибнут.Загрязненная вода

Аэробные растения не способны с её помощью стимулировать свою жизненную активность. Однако в тяжёлой воде прекрасно развиваются водоросли и бактерии. Изучая свойства тяжёлой воды, учёные пришли к выводу, что она имеет значение не только как лабораторный компонент. Оказалось, что она входит в состав обычной воды. Правда, содержание тяжёлой воды в ней имеет очень малую концентрацию.

Физические свойства тяжёлой воды значительно отличаются от обычной воды. Например, закипает она при t101,4 °С, замерзает — при 3,81 °C. Она обладает плотностью (ρ) — 1,1 г/см3 при t25 °C. Её вязкость на 20% превышает показатель питьевой воды. Практически все соли растворяются в ней намного хуже, чем в других водах. Немаловажное свойство тяжёлой воды – неспособность поглощать нейтроны.

Применение тяжёлой воды

Учёные, которые открыли тяжелую воду – D2О, долго не понимали, какую пользу она может приносить. И только через определённый промежуток времени другие исследователи раскрыли её промышленные и научные возможности. На сегодняшний день её активно применяют:

  • в ядерных технологиях;
  • в работе ядерных реакторов, где с их помощью осуществляется торможение нейтронов. Также её используют как теплоноситель;
  • как изотопный индикатор в физике, химии, гидрологии, биологии;
  • в качестве детектора определённых элементарных частиц.

Поскольку сегодня активно изучается вероятность применения дейтерия в качестве топлива при управляемом термоядерном синтезе, возможно, что очень скоро тяжёлую воду будут использовать как новый источник энергии. Стоит отметить, что, кроме тяжёлой, существуют ещё полутяжёлая, сверхтяжёлая вода, а также некоторые модификации изотопов.

Отличия между легкой и тяжелой водой

Визуальное сравнение легкой и тяжелой воды даст возможность убедиться, что по своим внешним признакам они не отличаются. Разницу может ощутить организм человека. С помощью тяжёлой воды замедляются все реакции, а при накоплении дейтерия в организме тормозятся все обменные процессы. В результате необратимые возрастные изменения ускоряются, что влечёт за собой развитие многих болезней, включая онкологические.Капля воды в ладоне

А вот лёгкая вода, которая имеет восстановленную структуру, является физиологически очень ценной жидкостью, поскольку:

  • доставляет клеткам человеческого организма запас энергии при помощи отрицательного окислительного потенциала;
  • отличается слабощелочным рН, который соответствует внутриклеточной и межклеточной жидкости;
  • благотворно влияет на обмен веществ благодаря сниженному поверхностному натяжению;
  • обеспечивает антиоксидантную защиту клеток.

Тяжелая вода в жизни человека

Очень часто тяжёлую воду, угнетающую всё живое, называют мёртвой. Она содержится практически во всех водах: в реках, морях, озёрах, снеге, дожде… Интересным фактом является то, что в осадках в виде дождя дейтерия несколько больше, чем в снеге. Поскольку, по мнению некоторых исследователей, избыточное употребление тяжелой воды провоцирует многие заболевания, в некоторых случаях необходимо контролировать количество ее потребления.

Ввиду того, что с помощью механических фильтров избавиться от неё невозможно, пожалуй, единственный способ, когда тяжелая вода в домашних условиях может быть отделена от обычной, — при приготовлении талой воды. Именно в ледяной корочке, которая образуется первой при замерзании, содержится дейтерий тяжёлой воды. Поэтому эту корочку необходимо удалить сразу после её появления.

Однако, следуя принципу, что в природе не бывает ничего лишнего, свойства тяжёлой воды и польза от её применения в разных сферах требует тщательного изучения. Ведь она имеет потенциал, который должен быть реализован в будущем.

Тяжелая вода. Изотопы: Видео

vseowode.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.