Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

/ Лазерное оружиеГАРИПОВА. Лазерное оружие реферат


Лазерное оружиеГАРИПОВА

Введение

Лазерное оружие (ЛО) – вид оружия направленной энергии, основанный на использовании электромагнитного излучения высокоэнергетических лазеров. Поражающий эффект ЛО определяется в основном термомеханическим и ударно – импульсным воздействием лазерного луча на цель.

В зависимости от плотности потока лазерного излучения эти воздействия могут привести к временному ослеплению человека или к разрушению корпуса ракеты, самолета и др. В последнем случае в результате теплового воздействия лазерного луча происходит расплавление или испарение оболочки поражаемого объекта. При достаточно большой плотности энергии в импульсном режиме наряду с тепловым осуществляется ударное воздействие, обусловленное возникновением плазмы.

Из всего многообразия лазеров наиболее приемлемыми для лазерного оружия считаются твердотельные, химические, со свободными электронами, рентгеновские лазеры с ядерной накачкой и др. Твердотельный лазер (ТТЛ) рассматривается специалистами США в качестве одного из перспективных типов генераторов для систем лазерного оружия самолетного базирования, предназначенных для решения задач поражения МБР, БРПЛ, оперативно‑тактических, крылатых ракет и самолетов, подавления оптоэлектронных средств ПВО, а также для защиты самолетов‑носителей ЯО от управляемых ракет с любыми системами наведения. В последние годы наблюдается существенный прогресс, связанный с переходом от ламповой накачки активных элементов к накачке с помощью лазерных диодов. Кроме того, возможность генерации излучения в ТТЛ на нескольких длинах волн позволяет использовать этот тип лазеров не только в силовом, но и в информационном канале системы оружия (для обнаружения, распознавания целей и точного наведения на них луча силового лазера).

Основная часть

Продолжаются работы по созданию и рентгеновских лазеров, энергия излучения которых в 100-10000 раз превышает энергию излучения лазеров оптического диапазона и способна проникать, в отличие от обычных лазеров, сквозь большие толщи различных материалов. Известно, что лазерное рентгеновское устройство с накачкой от маломощного ядерного взрыва отрабатывалось при проведении подземных испытаний ядерного оружия. Оно генерирует импульс рентгеновского излучения продолжительностью несколько наносекунд в диапазоне с длиной волны 0,0014 мкм. В отличие от химических лазеров, поражающих цели когерентными лучами за счет теплового воздействия, рентгеновский лазер поражает цели путем ударного импульсного воздействия, приводящего к испарению материала поверхности цели.

Лазерное оружие характеризует скрытность применения (отсутствие пламени, дыма, звука), высокая точность, практически мгновенное действие, сопоставимое со скоростью света, и возможность применения в пределах прямой видимости. Однако его поражающее действие в определенной степени зависит от прозрачности атмосферы и снижается в сложных метеоусловиях (туман, дождь, снегопад, задымленность и запыленность атмосферы). "Лазерная стрельба" производилась через отверстие диаметром 125 см, расположенное в днище фюзеляжа модифицированного военно-транспортного самолета. Как отметил вице-президент и главный менеджер противоракетных систем компании "Боинг" Скотт Фанчер, "Первые стрельбы лазера, установленного на самолет показывают, что программа идет нужным темпом в направлении создания высокоточного оружия, которое значительно снизит сопутствующий ущерб". Планируется, что после серии дополнительных испытаний на земле и в воздухе, в 2008 г. будут проведены стрельбы химического лазера по наземным мишеням из вращающейся пушки, установленной под днищем самолета. В прошлом году на этой авиабазе было проведено около 50 испытаний лазера в лабораторных условиях.

Разрабатываемое компанией "Боинг" лазерное оружие должно поражать цели при минимальном ущербе для окружающих. При выполнении этого условия новое оружие может быть использовано при проведении боевых операций в городских условиях. В случае обеспечения возможности перенастройки лазера и мощности излучаемого им луча, это оружие может быть использовано как для летального, так и нелетального воздействия на человека. В последнем случае оно может быть использовано для разгона демонстраций в городских условиях. По данным разработчиков, при полной мощности излучения может быть взорван бензобак автомобиля, а при пониженной – повреждена покрышка колеса и остановлен автомобиль без ущерба для водителя и техники.

Эта же компания разрабатывает боевой лазер воздушного базирования, который может быть использован в системе противоракетной обороны страны. Устройство мегаваттного класса планируется устанавливать на модифицированных самолетах типа "Боинг-747" для уничтожения баллистических ракет противника еще на разгонном участке траекторий их полета. Основой комплекса является кислородно-йодистый лазер, выходная мощность излучения которого может составлять несколько мегаватт. Как считают специалисты, этот комплекс может иметь дальность действия до 400 км.

В различное время после 2000 г. сообщалось о разработке и испытаниях боевого оружия на основе применения лазера. Так, стало известно о том, что американское агентство по перспективным разработкам DARPA (Defence Advanced Research Projects Agency) разработало новое мощное лазерное оружие, которое может быть установлено на борту самолета-истребителя для уничтожения ракет на расстоянии в десятки километров. В отличие от предыдущих образцов, новый тип боевого лазерного оружия (High Energy Liquid Laser Area Defence System - HELLADS) может быть размещен под крылом обычного истребителя. При массе в 750 кг с системой охлаждения новое оружие занимает не более 2 куб. метров.

Как важное подтверждение усилий американских специалистов по созданию эффективного лазерного оружия следует рассматривать сообщения о том, что "Боингу", как подрядчику Пентагона, увеличивается субсидирование на проведение работ в этой области. По словам неназванного эксперта "…нынешние успехи американцев по данному направлению несомненны, как несомненно и то, что они не остановятся на достигнутом".

Израиль также достаточно энергично занимается проблемой создания эффективного боевого лазерного оружия, способного поражать цели типа "реактивный снаряд". Израильское правительство очень заинтересовано в обладании таким средством для борьбы с ракетами, которые используют воинствующие исламские группировки для обстрела территории Израиля. О создании такого оружия было сказано в соглашении, подписанном в апреле 1996 г. бывшим президентом США Биллом Клинтоном и тогдашним израильским премьер-министром Шимоном Пересом. Договор был направлен на оказание помощи Израилю по обеспечению его от нападения с воздуха.

Совместно с американскими специалистами в США был создан сверхмощный лазер, который был способен поражать артиллерийский снаряд в полете. В ходе испытаний инфракрасные детекторы зарегистрировали взрыв снаряда в полете после облучения его лучом лазера. Этот мобильный тактический высокоэнергетичный лазер был создан корпорацией TRW по заказу американской армии и израильского министерства обороны. До этого с его помощью была сбита ракета реактивной системы залпового огня типа "Катюша". Испытания были проведены в штате Нью Мексико. По данным разработчиков, химический лазер генерирует мощный сконцентрированный световой луч, который не ослабляет своего напора и не отклоняется от траектории, а радиус его действия может достигать десятков и сотен километров.

Южная Корея, как сообщили СМИ в ноябре прошлого года, также создает лазерное оружие, которое будет способно выводить из строя ракетные и артиллерийские системы КНДР. Мощная лазерная установка разрабатывается группой исследователей из министерства обороны и нескольких южнокорейских военных компаний. Это стало известно после сообщения японской печати со ссылкой на южнокорейские источники. "Лазерные пушки", для обеспечения их высокой мобильности, планируется установить на специальных автотранспортных средствах. Завершить разработку нового оружия планируется к 2010 г. с последующей его передачей армии для использования в качестве средства обороны в случае применения Северной Кореей ракет и дальнобойной артиллерии.

Япония, в целях защиты от северокорейских баллистических ракет, планирует разработать мощный лазер, способный их сбивать. Первоначально это будет лазерная установка наземного базирования, в последующем она может быть установлена на самолетах. Для реализации этого проекта управление обороны будет запрашивать у правительства страны необходимые средства с целью разработки дополнительного средства защиты островов от возможного пуска баллистических ракет со стороны КНДР. По мнению японского оборонного ведомства, ЗРК Patriot должен поражать ракеты в атмосфере, Ageis SM-3 – на заатмосферном, а лазерное оружие - сразу после пуска на начальном участке траектории полета. По этой схеме ведутся работы и в США. По данным газеты "Майнити", Токио уже обратился к руководству США с просьбой о содействии в разработке лазерного оружия.

Соответствующие консультации между представителями Пентагона и Японии состоялись в конце 2007 г., но окончательного ответа со стороны Токио пока нет, что объясняется необходимостью выяснения мнения японских компаний, которым предстоит участвовать в осуществлении проекта. Однако более реальными причинами представляются существование ряда проблем технического характера. Они связаны с тем, что американская сторона пока смогла испытать систему наведения ABL на борту самолета Boeing B-747-400F на земле и в воздухе. В ходе испытаний была проверена лазерная система наведения, система управления лучом разработки компании Lockheed Martin и боевая информационно-управляющая система (БИУС) компании Boeing. По предварительным оценкам стоимость одного такого самолета превысит 1 млрд. долларов. Считается, что США заинтересованы в развитии американо-японского военного сотрудничества и стремятся поставить японский научный и финансовый потенциал на службу американским интересам.

Китай, можно предположить, также как и другие высокотехнологичные страны обладает лазерным оружием. По сообщениям СМИ, он мог создать лазерный комплекс, способный сбивать ракеты на низких высотах, на основе разработок, полученных от России. Лазерным лучом, предположительно, поражается система управления ракеты.

Россия, по мнению экспертов и данным СМИ, была первой страной, достигшей в этой области заметных результатов. Как сообщил РИА Новости неназванный эксперт, комментируя сообщения об успешных испытаниях компанией "Боинг" химического лазера на самолете, Россия начала заниматься разработками в области тактического лазерного оружия раньше США и имеет в своем арсенале опытные образцы высокоточных боевых химических лазеров. По его словам, "Первая подобная установка была испытана нами еще в 1972 году. Уже тогда отечественная мобильная "лазерная пушка" была способна успешно поражать воздушные цели. С тех пор возможности России в данной области значительно возросли, и США приходится нас догонять". Он отметил, что в настоящее время на эти работы выделяется значительно больше средств, что, несомненно, приведет к дальнейшим успехам.

Так, еще в мае 2006 г. ряд российских СМИ сообщили о том, что отечественная программа вооружений предполагает в перспективе осуществление работ по исследованию и разработке лазерного и кинетического оружия. Об этом заявил генеральный разработчик баллистических ракет "Тополь" и "Булава" Юрий Соломонов. По его словам, "В программе вооружений, которая одобрена научно-техническим советом Военно-промышленной комиссии, есть соответствующие разделы, где работы в этом направлении предполагаются". Ю.Соломонов сообщил, что американские и японские ученые уже тогда вели научные разработки в рамках системы ПРО, рассчитанные до 2025 г., и российские ученые должны реагировать на эти факты для защиты безопасности государства. Успехи отечественных создателей лазерного оружия, как и вышесказанное, подтверждаются следующими известными фактами.

В 1977 г. в ОКБ им. Г.М. Бериева начались работы по созданию летающей лаборатории "1А" на борту которой размещалась лазерная установка, предназначенная для исследования распространения лучей в верхних слоях атмосферы. Эти работы проводились в широкой кооперации с предприятиями и научными организациями всей страны, основным из которых являлось ЦКБ "Алмаз", возглавляемое доктором технических наук, академиком Б.В.Бункиным. В Таганроге, заместителем главного конструктора по самолету был В.Д. Заремба, ведущим конструктором - Ю.А. Бондарев. Базовым самолетом для создания летающей лаборатории под индексом А-60 был выбран Ил-76МД, на котором были проведены глубокие доработки, изменившие его внешний вид. В носовой части самолета вместо штатного метеорадара был установлен бульбообразный обтекатель со специальной аппаратурой, а по бокам фюзеляжа под обтекателями располагались турбогенераторы обеспечивающей энергосистемы. Створки грузового люка были сняты, а сам люк зашит. Были доработаны двери и убраны передние аварийные выходы.

Лазерная "пушка" была размещена под обтекателем и чтобы не ухудшать аэродинамику самолета, оптическая головка лазера в полете могла убираться. Верх фюзеляжа между крылом и килем был вырезан и заменен створками, состоящими из нескольких сегментов. Они убирались внутрь фюзеляжа, а на их место выдвигалась башенка с "пушкой". Впервые летающая лабораторию "1А" поднялась в воздух 19.08.1981 г. экипажем, который возглавил летчик-испытатель Е.А. Лахмостов. По некоторым данным этот самолет вскоре сгорел на авиабазе Чкаловская.

29.08.1991 г., экипаж под управлением летчика-испытателя В.П. Демьяновского, поднял в воздух вторую летающую лабораторию "1А2" СССР-86879. На её борту размещался новый вариант специального комплекса, модифицированного с учетом предыдущих испытаний. Работы на летающей лаборатории "1А2" по усовершенствованию и модификации специального комплекса и его систем продолжаются.

По данным других источников, в конце 60 гг. в местечке Сары-Шаган (Казахстан) была построена лазерная установка "Терра-3". В США в то время шли работы по созданию боевого лазера по программе "Восьмая карта". В интервью газете "Красная звезда" один из ведущих специалистов советской программы военных лазеров профессор Петр Зарубин отметил, что к 1985 г. наши ученые точно знали, что в США не могут создать компактный боевой лазер, а энергия самого мощного из них не превышала тогда энергии взрыва малокалиберного пушечного снаряда. Продолжение работ на установке "Терра-3" обеспечило бы создание мощного квантового локатора, способного за сотни километров определить дальность до цели, ее размеры, форму и траекторию движения. В то время на установке уже был локатор, работу которого в 1984 г. предлагалось проверить на реальных космических объектах, находящихся на орбите.

Заключение

Перспективы создания боевого лазерного оружия эксперты в этой области, несмотря на противоречивые и недоказанные данные в связи с закрытостью этой темы, оценивают, как реалистичные. Это обусловлено, в первую очередь, бурным развитием современных технологий, расширением области использования лазерных средств для других целей, стремлением создать такое оружие и теми преимуществами, которыми оно обладает в сравнении с традиционными средствами поражения. По некоторым оценкам реальное появление боевого лазерного оружия возможно в период 2015-2020 годы.

Казанский Государственный Медицинский Университет

Кафедра анестезиологии, реаниматологии и медицины катастроф

Доклад на тему:

«Лазерное оружие»

Выполнила:

Студентка гр. 2506

Гарипова А.Р.

Проверил:

Доцент, К.м.н., Ковалев М.И.

Казань, 2015

Список использованной литературы:

1. Newsru.com

2. Гражданская защита. Понятийно-терминологический словарь. — М.: Издательство «Флайст», Информационно-издательский центр «Геополитика». Под общей редакцией Ю. Л. Воробьева. 2001.

3. http://www.arms-expo.ru/news/archive/lazernoe-oruzhie---realii-nashego-vremeni02-09-2009-04-26-00/

studfiles.net

Лазерное оружие | Военное оружие и армии Мира

Привычный для нас термин «лазер» является аббревиатурой от Light Amplification by Stimulated Emission of Radiation, что в переводе означает «усиление света посредством вынужденного излучения».

Впервые о лазере всерьез заговорили во второй половине XX века. Первое действующее лазерное устройство американский физик Теодор Мейман представил в 1960 году, а в наши дни лазеры используются в самых различных сферах. Довольно давно они нашли применение и в военной технике, хотя вплоть до последнего времени речь шла преимущественно о нелетальном вооружении, способном временно ослепить противника или вывести из строя его оптику. Полноценные боевые лазерные комплексы, способные уничтожать технику, пока находятся на стадии разработки, и когда именно они встанут в строй, сказать пока сложно.

Основные проблемы связаны с большой стоимостью и высокой энергозатратностью лазерных комплексов, а также их способностью наносить реальный урон высокозащищенной технике. Тем не менее, с каждым годом ведущие страны мира все активнее разрабатывают боевые лазеры, постепенно увеличивая мощность своих прототипов. Разработку лазерного оружия правильнее всего было бы назвать инвестициями в будущее, когда новые технологии позволят всерьез говорить о целесообразности таких систем.

Крылатый лазер

Одним из самых нашумевших проектов лазерных боевых систем стал экспериментальный Boeing YAL-1. В роли платформы для размещения боевого лазера выступил модифицированный авиалайнер Boeing 747-400F.

YAL-1A_Airborne_Laser_unstowed

Американцы всегда искали способы защитить свою территорию от неприятельских ракет, и проект YAL-1 создавался именно для этой цели. В его основе лежит химический кислородный лазер мощностью 1 МВт. Главное преимущество YAL-1 перед другими средствами противоракетной обороны — это то, что лазерный комплекс теоретически способен уничтожать ракеты на начальном этапе полета. Американские военные не единожды заявляли об успешных испытаниях лазерной установки. Тем не менее, реальная эффективность такого комплекса видится довольно сомнительной, и программа, обошедшаяся в 5 млрд долларов, была свернута в 2011 году. Впрочем, полученные в ней наработки нашли применение в других проектах боевых лазеров.

Щит Моисея и клинок Дядюшки Сэма

Израиль и США — мировые лидеры в области разработки боевых лазерных комплексов. В случае с Израилем создание таких систем обусловлено необходимостью противостоять частым ракетным обстрелам территории страны. В самом деле, если уверенно поражать цели типа баллистической ракеты лазер сможет еще нескоро, то бороться с ракетами малой дальности ему вполне под силу уже сейчас.

Палестинские неуправляемые ракетные снаряды «Кассам»» — источник постоянной головной боли для израильтян, и дополнительной гарантией безопасности должна была стать американо-израильская лазерная система ПРО Nautilus. Основную роль в разработке самого лазера сыграли специалисты американской компании Northrop Grumman. И хотя израильтяне вложили в Nautilus более 400 млн долларов, в 2001 году они вышли из проекта. Официально результаты испытаний ПРО были положительными, но военное руководство Израиля отнеслось к ним скептически, и в итоге американцы остались единственными участниками проекта. Разработка комплекса была продолжена, но до серийного производства дело так и не дошло. Зато опыт, накопленный в процессе испытаний Nautilus, был использован для разработки лазерного комплекса Skyguard.

MTHEL

Системы противоракетной обороны Skyguard и Nautilus построены вокруг высокоэнергетического тактического лазера — THEL (Tactical High Energy Laser). Согласно заявлениям разработчиков, THEL способен эффективно поражать реактивные снаряды, крылатые ракеты, баллистические ракеты малой дальности и беспилотники. При этом THEL может стать не только эффективной, но и весьма экономичной системой ПРО: один выстрел будет стоить всего около 3 тыс. долларов, намного дешевле пуска современной противоракеты. С другой стороны, говорить о реальной экономичности подобных систем можно будет лишь после их принятия на вооружение.

THEL — это химический лазер мощностью около 1 МВт. После обнаружения цели радаром компьютер ориентирует лазерную установку и производит выстрел. В доли секунды лазерный луч заставляет детонировать вражеские ракеты и снаряды. Критики проекта предрекают, что такого результата можно достичь лишь в идеальных погодных условиях. Возможно, именно поэтому ранее вышедшие из проекта Nautilus израильтяне не заинтересовались комплексом Skyguard. Но американские военные называют лазерную установку революцией в области вооружений. По словам разработчиков, серийное производство комплекса может начаться совсем скоро.

Лазер в море

Большой интерес к лазерным системам ПРО проявляет военно-морское ведомство США. По замыслу, лазерные комплексы смогут дополнить привычные средства защиты боевых кораблей, взяв на себя роль современных скорострельных зенитных орудий, таких, как Mark 15. Разработка подобных систем сопряжена с рядом трудностей. Мелкие капли воды во влажном морском воздухе заметно ослабляют энергию лазерного луча, однако эту проблему разработчики обещают решить за счет увеличения мощности лазера.

Одна из последних разработок в этой области — MLD (Maritime Laser Demonstrator). Лазерная установка MLD — всего лишь демонстратор, но в будущем ее концепция может лечь в основу полноценных боевых систем. Комплекс разработан компанией Northrop Grumman. Первоначально мощность установки была небольшой и составила 15 КВт, однако и ей во время испытаний удалось уничтожить надводную мишень — резиновую лодку. Конечно, в будущем специалисты Northrop Grumman намерены увеличить мощность лазера.

Maritime-Laser-Demonstration-MLD

На авиасалоне «Фарнборо — 2010» американская компания Raytheon представила на суд общественности собственный концепт боевого лазера LaWS (Laser Weapon System). Эта лазерная установка объединена в единый комплекс с корабельной зенитной пушкой Mark 15 и на испытаниях сумела поразить беспилотник на дистанции около 3 км. Мощность лазерной установки LaWS составляет 50 КВт, чего достаточно, чтобы прожечь 40-миллиметровую стальную пластину.

В 2011 году компании Boeing и ВАЕ Systems начали разработку комплекса TLS (Tactical Laser System), в котором лазерная установка также совмещается со скорострельным 25-миллиметровым артиллерийским орудием. Считается, что эта система сможет эффективно поражать крылатые ракеты, самолеты, вертолеты и небольшие надводные цели на дальности до 3 км. Скорострельность Tactical Laser System должна составить около 180 импульсов в минуту.

Мобильный лазерный комплекс

Другая разработка компании Boeing — HEL-MD (High Energy Laser Mobile Demonstrator) — должна устанавливаться на мобильную платформу — восьмиколесный грузовик. На испытаниях, которые прошли в 2013 году, комплекс HEL-MD успешно поразил учебные мишени. Потенциальными целями для подобной лазерной установки могут стать не только беспилотники, но и артиллерийские снаряды. В скором времени мощность HEL-MD будет доведена до 50 КВт, а в обозримом будущем составит 100 КВт.

1360207764_m02009102600001

Еще один образец мобильного лазера недавно представила немецкая компания Rheinmetall. Лазерный комплекс HEL (High-Energy Laser) установили на бронетранспортер Boxer. Комплекс способен обнаруживать, сопровождать и уничтожать цели — как в воздухе, так и на земле. Мощности достаточно для уничтожения беспилотников и ракет малой дальности.

Перспективы

Известный эксперт в области перспективных вооружений Андрей Шалыгин рассказывает: — Лазерное оружие является оружием буквально прямой видимости. Цель нужно обнаружить на прямой линии, навести на нее лазер и устойчиво сопровождать, чтобы успеть передать количество энергии, достаточное для повреждения. Соответственно, загоризонтное поражение невозможно, устойчивое гарантированное поражение на больших дистанциях — тоже невозможно. Для больших дистанций установка должна быть поднята как можно выше. Поражение маневрирующих целей затруднено, поражение экранированных целей затруднено… В цифрах все это выглядит слишком банально, чтобы вообще об этом говорить всерьез, по сравнению даже с примитивными действующими системами ПВО.

Кроме этого существуют два фактора, которые еще более усложняют ситуацию. Энерговооруженность носителя такого оружия в сегодняшних условиях должна быть огромна. Это делает всю систему либо чрезвычайно громоздкой, либо чрезвычайно дорогой, либо имеющей массу других недостатков вроде малого суммарного времени нахождения в боевой готовности, большого времени приведения в боевую готовность, огромной стоимости выстрела и так далее. Вторым существенным фактором,ограничивающим действие лазерного оружия, является оптическая неоднородность среды. В примитивном понимании — любая заурядная непогода с осадками делает применение такого оружия ниже уровня облачности совершенно бесполезным занятием, а защита от него в нижних слоях атмосферы представляется весьма простой.

Поэтому пока не приходится говорить о том, что образцы любого ноу-хау в лазерном оружии в обозримом будущем смогут стать чем-то большим, нежели не самое лучшее оружие ближнего боя для корабельных группировок в хорошую погоду и для авиационных дуэлей, проходящих выше уровня облачности. Как правило, экзотические системы вооружения являются одним из самых эффективных способов «сравнительно честного» зарабатывания денег лоббистами. Поэтому в целях решения тактических задач боевыми единицами в рамках военного искусства можно легко найти десяток-другой гораздо более эффективных, дешевых и простых решений поставленных задач.

Разрабатываемые американцами системы авиационного базирования могут найти весьма ограниченное применение для локальной защиты от средств воздушного нападения выше уровня облачности. Однако стоимость таких решений значительно превышает существующие системы без всяких перспектив ее снижения, а боевые возможности существенно ниже.

С открытием материалов для конструирования сверхпроводящих систем, работающих при температурах, близких к окружающей среде, а также в случае создания компактных мобильных высокоэнергетических источников мощности, лазерные установки будут производиться и в России. Они могут пригодиться для целей ближней ПВО во флоте и применяться на надводных кораблях, для начала — в составе систем на основе таких платформ, как ЗК Пальма или АК-130-176.

В сухопутных войсках такие системы в полностью боеспособном виде известны всему миру еще со времен, когда Чубайс пытался открыто продавать их за границу. Они даже выставлялись с этой целью в рамках МАКС-2003. Например, МЛТК-50 — конверсионная разработка в интересах Газпрома, которая велась Троицким институтом инновационных и термоядерных исследований (ТРИНИТИ) и НИИЭФА имени Ефремова. Его появление на рынке, собственно, и привело к тому, что весь мир сразу внезапно продвинулся вперед в конструировании аналогичных систем. При этом в настоящее время энергетика систем позволяет иметь не сдвоенный, а обычный одиночный автомобильный модуль.

Похоже, что лазерные комплексы — это оружие не завтрашнего и даже не послезавтрашнего дня. Многие критики считают, что разработка лазерных систем — и вовсе пустая трата денег и времени, а крупные оборонные корпорации с помощью таких проектов просто осваивают новые средства. Впрочем, подобная точка зрения справедлива лишь отчасти. Возможно, боевой лазер еще нескоро станет полноценным оружием, но окончательно ставить на нем крест было бы преждевременно.

    805      

warfor.me

Лучевое оружие и его виды

Создавая традиционные виды вооружения, ученые развитых государств большое внимание уделяют боевым изделиям ОНФП. Данной аббревиатурой называется любая разновидность вооружения, основанная на ранее не используемых физических принципах. К ОНФП принадлежат: лучевое оружие, геофизическое, кинетическое, инфразвуковое, радиочастотное, генное, а также средства ведения информационной войны. Главная задача ОНФП заключается в том, чтобы нейтрализовать противника без человеческих жертв и разрушений. В статье содержится информация о лучевом оружии.

лучевое оружие

Определение понятия

Лучевое оружие – это наступательный вид вооружения, в котором поражающим фактором является лазерный луч.

Сам лазер представляет собой систему, в которой присутствуют следующие элементы:

  • Активная (или рабочая) газовая, твердая или жидкая среда.
  • Мощный источник энергии.
  • Резонатор в виде системы зеркал.

Лазерное вооружение является системой специальных устройств, которые превращают энергию в остронаправленные лучи или в концентрированные пучки. Функцию данных устройств выполняют специальные генераторы. Энергия может быть электрической, световой, химической и тепловой. В зависимости от того, во что устройства преобразуют электромагнитную энергию, лучевое оружие в качестве поражающего фактора может использовать лазер или узконаправленный ускоренный пучок насыщенных энергией частиц.

лучевое оружие теслы

Принцип действия

При наведении любого вида лучевого оружия на цель, та подвергается разрушительному воздействию предельно высокой температуры. Это ведет к тому, что сверхчувствительные элементы объекта плавятся и даже испаряются. В результате попадания лазера на человека у того наблюдаются термические ожоги. Также лазер разрушительно воздействует на органы зрения.

Преимущества

К преимуществам данного вида лазерного оружия можно отнести:

  • Скрытность. При использовании лазера отсутствуют такие внешние признаки, как огонь, дым и звук.
  • Высокая точность.
  • Мгновенность действия. Объект сгорает за считанные секунды. Чтобы перенести луч на новую цель, требуется очень мало времени.
  • Прямолинейность.
  • Высокая скорость. У объекта не остается времени на то, чтобы уклониться.
  • Отсутствие отдачи.
  • Бесконечность «боекомплекта». Он зависит только от мощности источника энергии.

Применение лазерного луча

Лазеры используются в космической отрасли. С их помощью уничтожаются межконтинентальные баллистические ракеты и искусственные спутники Земли. Достаточно эффективным является данное оружие и в тактических зонах вооруженных конфликтов, где лазер применяется для поражения органов зрения противника.

«Оружие будущего»

В США создаются лазеры, в которых используются химические свойства азота. Для «запитки» азотно-лучевого оружия применяется энергия, которая образуется в результате сгорания этилена в трифториде азота.

К сильным сторонам таких лазеров можно отнести:

  • Экологическую чистоту. В отличие от ядерного оружия, при использовании лазера не образуется радиация.
  • Относительную дешевизну. Азот в неограниченных количествах имеется в любой точке планеты.

«Лучи смерти»

Этот вид вооружения называется еще «пучковым». Объясняется такое название тем, что функцию поражающего элемента в данном оружии осуществляют заряженные или нейтральные частицы (электроны, протоны, нейтральные атомы водорода), собранные в остронаправленные пучки и разогнанные на очень большую скорость. В космическом пространстве пучковое ускорительное оружие используется для вывода из строя электронного оборудования межконтинентальных, баллистических и крылатых ракет. При ведении наземных боевых операций при помощи пучков уничтожается военная техника противника. Кроме того, ускорительное оружие пагубно воздействует на живую силу. Им, в первую очередь, поражаются гемоглобин крови, ферменты нервной системы, молекулы воды в живых организмах.

новое лучевое оружие

Как утверждают американские военные эксперты, у США имеется возможность эффективно воздействовать из космоса на большие площади земной поверхности при помощи ускорительного лучевого оружия. Массовое поражение людей и других живых организмов, находящихся на охваченных территориях, потенциально может стать результатом такого воздействия. Неофициально данный вид вооружения называют «лучами смерти».

История создания

В первой половине XX века идеей применения преобразованных в целенаправленные лучи различных видов энергии занимался проживавший в то время в Америке сербский ученый Никола Тесла. Лучевое оружие Теслы базировалось на совершенно новом физическом принципе, который еще не применялся в его прежних изобретениях по передаче электрической энергии на большие дистанции.

лучевое оружие массового поражения

В разработках ученого транслируемая в атмосфере энергия фокусировалась при помощи луча на определенном объекте. Как утверждал физик, при помощи лазерного луча можно уничтожать с расстояния 400 тыс. метров до 10 тыс. единиц авиационной техники противника. Для генерации луча должны были создать специальные станции стоимостью 2 млн долларов. На их строительство, по словам ученого, ушло бы не менее трех месяцев. Доктором Джоном Трампом, занимавшим должность руководителя Национального комитета обороны США, подобные заявления были восприняты как спекулятивные и лишенные возможности к их реализации. Желая уравновесить мировой баланс и предотвратить начало второй мировой войны, в 1940 году Н. Тесла предложил правительству США раскрыть секреты своего «супер-оружия». Не получив должного понимания в Америке, ученый с подобными предложениями обращался и к правительствам других государств. Изобретение физика вызвало интерес в Советском Союзе. На переговорах с Н. Теслой интересы СССР в США представляла фирма «Амторг». За 25 тыс. долларов сербский изобретатель продал советским ученым планы для изготовления вакуумных камер, применяемых в лучевом оружии. В США изобретением физика заинтересовалось только после его смерти. Агентами ФБР были произведены обыски в кабинете ученого и изъята вся его документация.

Советские наработки

Проектирование и испытание «луча смерти» осуществлялись в строгой секретности. Только в 1960 году широкая общественность впервые могла увидеть, что собой представляет лазерное оружие. В годы холодной войны соперничающими советскими и американскими учеными была активизирована работа по созданию своих «лучей смерти». В обоих государствах в эти проекты были вложены очень большие суммы. Испытания не прекратились даже после окончания холодной войны.

С целью обеспечить стратегическую противокосмическую и противоракетную оборону новым, очень эффективным и мощным поражающим средством, советскими учеными уже в 1950 году были начаты проекты по созданию сверхмощного лазерного оружия «Терра» и «Омега». Местом испытаний стал казахстанский полигон Сары-Шаган. После развала Советского Союза все работы на данном полигоне были прекращены.

Первая демонстрация

В 1984 году при помощи лазерного локатора «Терры» был подвергнут облучению американский шаттл «Челенджер». В результате нарушилась работа связи и электронного оборудования корабля. Кроме того, у членов экипажа было отмечено ухудшение самочувствия. Американцы поняли, что они стали объектом электромагнитного воздействия со стороны Советского Союза. За весь период холодной войны этот эпизод с использованием лучевого оружия был единственным.

Советские самоходные лазерные комплексы

В 80-е годы ученые СССР разработали программу боевой лазерной системы самоходного комплекса «Сжатие». Проектирование осуществлялось сотрудниками НПО «Астрофизика». Комплекс предназначался для того, чтобы прожигать броню вражеских танков и выводить из строя их оптико-электронные системы.

виды лучевого оружия

В 1983 году на базе самоходной установки «Шилка» был разработан новый лазерный комплекс «Сангвин». Его задача: уничтожать оптические системы, которыми оборудованы вертолеты противника.

лучевое оружие россии

Кроме того, советскими учеными специально для космонавтов было изготовлено несколько единиц ручного лазерного оружия. Однако эти несмертельные карабины и пистолеты так и не понадобились. Они лежали на складах до 1990 года.

Американский лазер YAL-1А

В середине прошлого столетия учеными США специально для самолета Boeing-747-400F был спроектирован лазер YAL-1А. Его задача состояла в уничтожении вражеских баллистических ракет. Несмотря на то что это лазерное оружие было успешно испытано, устанавливать его на воздушный корабль на практике оказалось нецелесообразным. Объясняется это тем, что максимальная дальность YAL-1А не превышает 200 км. Пилот Boeing-747 не станет приближаться к противнику при наличии у того даже самой минимальной системы противовоздушной обороны.

азотно лучевое оружие

HEL MD

В 2013 году в США было разработано новое лучевое оружие. Его мощность составляет 10 кВт. В 2017-м новый лазер уже прошел свое боевое крещение в Персидском заливе. С его помощью были сбиты один беспилотный летательный аппарат и несколько минометных мин. К 2020 году американские ученые планируют данный лазер усовершенствовать. В конечном итоге система HEL MD будет собой представлять 100-киловатную установку.

Израильская лазерная система ПРО

В этой стране ученые также разрабатывают мощные противоракетные лазеры. Для атак на территории Израиля палестинскими террористами использовались ракеты «Кассам». В это время США развернуло программу «Стратегической оборонной инициативы» (СОИ). Американской компанией Northrop Grumman в конце 90-х совместно с израильскими учеными велись разработки лазерной системы противоракетной обороны Nautilus. Планировалось, что вооруженные силы Израиля воспользуются ею для защиты от палестинских ракет. Однако вскоре Израиль из СОИ вышел, а лазерная система так и не поступила на вооружение государства.

Лучевое оружие России

По словам замминистра обороны Юрия Борисова, в 2014 году специально для наземных машин, вертолетов, боевых самолетов и кораблей поступили на вооружение несколько лазерных комплексов. Что они собой представляют, а также информация о их количестве на данный момент не разглашается. Сегодня российская армия испытывает лазерную установку А-60, которой в дальнейшем планируют оснастить самолет Ил-76. Местом лазера стала носовая часть воздушного корабля. В ходе испытаний оказалось, что «оружие будущего» малоэффективно в туманную и облачную погоду и нуждается в доработке. Также на качество луча отрицательно воздействуют высокая облачность и снег.

И все же данный вид вооружения считается самым перспективным. В хороших погодных условиях дальность боевого луча А-60 составляет 1500 км. Он эффективен для уничтожения баллистических ракет, вражеских самолетов, танков и систем противовоздушной обороны. Как планируют российские ученые, усовершенствованным оружием в скором будущем будут комплектовать системы противоракетной обороны Российской Федерации.

Лазеры в искусстве

При упоминании о лазерах, у многих возникают ассоциации с известным фильмом «Звездные войны». Именно там впервые появилась идея применения лучевых винтовок, пистолетов и мечей. Позже подобное вооружение позаимствовали разработчики различных компьютерных игр.

двемерское лучевое оружие

Ярким примером может стать ролевая игра «Скайрим». Тому, кто побывал в виртуальном мире «Скайрима», хорошо знакомо двемерское лучевое оружие. Введя определенный мод для дальнейшего прохождения игры, можно экипироваться лучевым одноручным мечом, секирой, топором или кинжалом.

fb.ru

Реферат Применение лазеров в военном деле

МОСКОВСКИЙ ОРДЕНА ЛЕНИНА

АВИАЦИОННЫЙ ИНСТИТУТ

имени СЕРГО ОРДЖОНИКИДЗЕ

реферат на тему:

ПРИМЕНЕНИЕ ЛАЗЕРОВ

В ВОЕННОЙ ТЕХНИКЕ

студент гр. 04-314

Амигуд Леонид

МАИ 1995г.

ПРИМЕНЕНИЕ ЛАЗЕРОВ В ВОЕННОМ ДЕЛЕ

К настоящему времени сложились основные направления, по которым

идет внедрение лазерной техники в военное дело. Этими направлениями

являются:

1. Лазерная локация (наземная, бортовая, подводная).

2. Лазерная связь.

3. Лазерные навигационные системы.

4. Лазерное оружие.

5. Лазерные системы ПРО и ПКО.

Ускоренными темпами идет внедрение лазеров в военную технику

США, Франции, Англии, Японии, Германии, Швейцарии. Государственные

учреждения этих стран всемерно поддерживают и финансируют работы

в данной области.

1. ЛАЗЕРНАЯ ЛОКАЦИЯ

Лазерной локацией в зарубежной печати называют область

оптикоэлектроники, занимающуюся обнаружением и определением

местоположения различных объектов при помощи электромагнитных волн

оптического диапазона, излучаемых лазерами. Объектами лазерной

локации могут стать танки, корабли, ракеты, спутники, промышленные

и вооруженные сооружения. Принципиально лазерная локация осуществляется

активным методом.

В основе лазерной локации, так же как и в радиолокации лежат

три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон, на котором

она расположена, по-разному отражают упавшее на них излучение.

Лазерное излучение отражается от всех предметов: металлических и

неметаллических, от леса, пашни, воды. Более того, оно отражается от

любых объектов, размеры которых меньше длины волны, лучше, чем

радиоволны. Это хорошо известно из основной закономерности отражения,

по которой следует, что чем короче длина волны, тем лучше она

отражается. Мощность отраженнного в этом случае излучения обратно

пропорциональна длине волны в четвертой степени. Лазерному локатору

принципиально присуща и большая обнаружительная способность, чем

радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась

по мере развития радиолокации тенденция к перехода от длинных волн к

более коротким. Однако изготовление генераторов радиодиапазона,

излучающих сверх короткие радиоволны становилось все труднее и труднее,

а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы

в технике локации.

2. Способность распространяться прямолинейно. Использование

узконаправленного лазерного луча, которым проводится просмотр

пространства, позволяет определить направление на объект(пеленг цели)

Это направление находят по расположению оси оптической системы,

формирующей лазерное излучение. Чем уже луч, тем с большей точностью

может быть определен пеленг.

Простые расчеты показывают - чтобы получить коэффициент

направленности около 1.5, при использовании радиоволн сантиметрового

диапазона, нужно иметь антенну диаметром около 10м. Такую антенну

трудно поставить на танк, а тем более на летательный аппарат. Она

громоздка и нетранспортабельна. Нужно использовать более короткие

волны.

Угловой раствор луча лазера, изготовленного с помощью

твердотельного активного вещества, как известно составляет всего

1.0 ... 1.5 градуса и при этом без дополнительных оптических систем.

Следовательно габариты лазерного локатора могут быть значительно

меньше, чем аналогичного радиолокатора. Использование же

незначительных по габаритам оптических систем позволит сузить луч

лазера до нескольких угловых минут, если в этом возникнет

необходимость.

3. Способность лазерного излучения распространяться с постоянной

скоростью дает возможность определять дальность до объекта. Так, при

импульсном методе дальнометрирования используется следующее соотношение:

L = ct/2

где L - расстояние до обькта, с - скорость распространения излучения,

t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная

точность измерения дальности определяется точностью измерения

времени прохождения импульса энергии до объекта и обратно. Совершенно

ясно, что чем короче импульс, тем лучше.

Какими же параметрами принято характеризовать локатор? Каковы

его паспортные данные? Рассмотрим некоторые из них.

Прежде всего зона действия. Под ней понимают область пространства,

в которой ведется наблюдение. Ее границы обусловлены максимальной и

минимальной дальностями действия и пределами обзора по углу места и

азимуту. Эти размеры определяются назначением военного лазерного

локатора.

Другим параметром является время обзора. Под ним понимается

время, в течении которого лазерный луч производит однократный

обзор заданного объема пространства.

Следующим параметром локатора является определяемые координаты.

Они зависят от назначения локатора. Если он предназначен для

определения местонахождения наземных и подводных объектов, то

достаточно измерять две координаты: дальность и азимут. При наблюдении

за воздушными объектами нужны три координаты. Эти координаты следует

определять с заданной точностью, которая зависит от систематических

и случайных ошибок. Будем пользоваться таким понятием как

разрешающая способность. Под разрешающей способностью понимается

возможность раздельного определения координат близко расположенных целей.

Каждой координате соответствует своя разрешающая способность. Кроме

того, используется такая характеристика, как помехозащищенность. Это

способность лазерного локатора работать в условиях естественных

и искусственных помех. И весьма важной характеристикой локатора

является надежность. Это свойство локатора сохранять свои характеристики

в установленных пределах в заданных условиях эксплуатации.

1.1 НАЗЕМНЫЕ ЛАЗЕРНЫЕ ДАЛЬНОМЕРЫ

Лазерная дальнометрия является одной из первых областей

практического применения лазеров в зарубежной военной технике. Первые

опыты относятся к 1961г., а сейчас лазерные дальномеры используются в

наземной военной техники(артиллеристские, танковые), и в авиации

(дальномеры, высотомеры, целеуказатели), и на флоте. Эта техника прошла

боевые испытания во Вьетнаме и на Ближнем Востоке. В настоящее время ряд

дальномеров принят в армиях капиталистических стран.

Задача определения расстояния между дальномером и целью сводится

к измерению соответствующего интервала времени между зондирующим сигналом

и сигналом, отраженным от цели. Различают три метода измерения дальности

в зависимости от того, какой характер модуляции лазерного излучения

используется в дальномере: импульсный фазовый или фазо-импульсный.

Сущность импульсного метода дальнометрирования состоит в том, что к

объекту посылают зондирующий импульс, он же запускает временной счетчик

в дальномере. Когда отраженный объектом импульс приходит к дальномеру,

то он останавливает работу счетчика. По временному интервалу автоматически

высвечивается перед оператором расстояние до объекта. Погрешность такого

метода измерения 30см. Зарубежные специалисты считают, что для решения

ряда практических задач это вполне достаточно.

При фазовом методе дальнометрирования лазерное излучение модулируется

по синусоидальному закону. При этом интенсивность излучения меняется в

значительных пределах. В зависимости от дальности до объекта изменяется

фаза сигнала, упавшего на объект. Отраженный от объекта сигнал придет

на приемное устройство также с определенной фазой, зависящей от расстояния.

Оценим погрешность фазового дальномера, пригодного работать в полевых

условиях. Специалисты утверждают, что оператору(не очень квалифицирован-

ному солдату) не сложно определить фазу с ошибкой не более одного градуса,

следовательно погрешность будет составлять примерно 5см.

Первый лазерный дальномер XM-23 прошел испытание во Вьетнаме и был

принят на вооружение в армии США. Он рассчитан на использование передовых

наблюдательных пунктах сухопутных войск. Источником излучения в нем

является лазер с выходной мощностью 2.5Вт и длительностью импульса 30нс.

В конструкции дальномера широко используются интегральные схемы.

Излучатель, приемник и оптические элементы смонтированы в моноблоке,

который имеет шкалы точного отсчета азимута и угла места цели. Питание

дальномера производится от батареи никелево-кадмиевых аккумуляторов

напряжением 24В, обеспечивающий 100 измерений дальности без подзарядки.

Также интересен шведский дальномер. Он предназначен для использования

в системах управления бортовой корабельной и береговой артиллерии.

Конструкция дальномера отличается особой прочностью, что позволяет

применять его в сложных условиях. Дальномер можно сопрягать при

необходимости с усилителем изображения или телевизионным визиром. Режим

работы дальномера предусматривает либо измерения через каждые 2с в

течение 20с, либо через каждые 4с в течение длительного времени. Цифровые

индикаторы дальности работают таким образом, что когда один из индикаторов

выдает последнюю измеренную дальность, в памяти другого хранятся четыре

предыдущие измеренные дистанции.

Как утверждает зарубежная печать, весьма удачным оказался норвежский

лазерный дальномер LP-4. Он имеет в качестве модулятора добротности оптико-

механический затвор. Приемная часть дальномера является одновременно

визиром оператора. Диаметр оптической системы составляет 70мм. Приемником

служит портативный фотодиод. Счетчик снабжен схемой стробирования по

дальности, действующий по установке оператора от 200 до 3000м. В схеме

оптического визира перед окуляром помещен защитный фильтр для предохранения

глаза от воздействия своего лазера при приеме отраженного импульса.

Излучатель и приемник смонтированы в одном корпусе. Угол места цели

определяется в градусах ~25 градусов. Аккумулятор обеспечивает 150

измерений дальности без подзарядки, его масса всего 1кг. Дальномер прошел

испытания и был закуплен Канадой, Швецией, Данией, Италией, Австралией.

Портативные лазерные дальномеры разработаны за рубежом для

пехотных подразделений и передовых артиллерийских наблюдателей. Один из

таких дальномеров выполнен в виде бинокля. Источник излучения и приемник

смонтированы в общем корпусе с монокулярным оптическим визиром

шестикратного увеличения, в поле зрения которого имеется световое табло

из светодиодов, хорошо различимых как ночью, так и днем. В лазере в

качестве источника излучения используется аллюминиево-иттириевый гранат,

с модулятором добротности на ниобате лития. Это обеспечивает пиковую

мощность в 1.5 МВт. В приемной части используется сдвоенный лавинный

фотодетектор с широкополосным малошумящим усилителем, что позволяет

детектировать короткие импульсы с малой мощностью. Ложные сигналы,

отраженные от близлежащих предметов исключаются с помощью схемы

стробирования по дальности. Источником питания является малогабаритная

аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки.

Электронные блоки дальнометра выполнены на интегральных схемах, что

позволило довести массу дальномера вместе с источником питания до 2кг.

Установка лазерных дальномеров на танки сразу заинтересовала

зарубежных разработчиков вооенного вооружения. Это объясняется тем, что

на танке можно ввести дальномер в систему управления огнем танка, чем

повысить его боевые качества. Для этого в США был разработан дальномер

AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного

артиллерийского дальномера на рубине, однако помимо выдачи данных о

дальности на цифровое табло имел устройство, обеспечивающее ввод

дальности в счетно-решающее устройство системы управления огнем танка.

При этом измерение дальности может производиться как наводчиком пушки так

и командиром танка. Режим работы дальномера - 15 измерений в минуту в

течение одного часа.

1.2 НАЗЕМНЫЕ ЛОКАТОРЫ

Как сообщает печать, за рубежом разрабатывается ряд стационарных

лазерных локаторов. Эти локаторы предназначены для слежения за ракетами

на начальном этапе полета, а также для слежения за самолетами и спутниками.

Большое значение придается лазерному локатору, включенному в систему

ПРО и ПКО. По проекту американской системы именно оптический локатор

обеспечивает выдачу точных координат головной части или спутника в систему

лазерного поражения цели. Локатор типа "ОПДАР" предназначен для слежения за

ракетами на активном участке их полета. Тактические требования определяют

незначительную дальность действия локатора, поэтому на нем установлен

газовый лазер, работающий на гелий-неоновой смеси, излучающий

электромагнитную энергию на волне 0.6328мкм при входной мощности всего

0.01Вт. Лазер работает в непрерывном режиме, но его излучение модулируется

с частотой 100МГц. Передающая оптическая система собрана из оптических

элементов по схеме Кассагрена, что обеспечивает очень незначительную

ширину расходимости луча. Локатор монтируется на основании, относительно

которого он может с помощью следящей системы устанавливаться в нужном

направлении с высокой точностью. Эта следящая система управляется

сигналами, которые поступают через кодирующее устройство. Разрядность кода

составляет 21 единицу двоичной информации, что позволяет устанавливать

локатор в нужном направлении с точностью около одной угловой секунды.

Приемная оптическая система имеет диаметр входной линзы 300мм. В ней

установлен интерференционный фильтр, предназначенный для подавления

фоновых помех, а также устройство, обеспечивающее фазовое детектирование

отраженной ракетой сигналов. В связи с тем, что локатор работает по

своим объектам, то с целью увеличения отражательной способности ракеты

на нее устанавливается зеркальный уголковый отражатель, который представляет

собой систему из пяти рефлекторов, обеспечивающих распределение упавшей

на них световой энергии таким образом, что основная ее часть идет в

сторону лазерного локатора. Это повышает эффективность отражающей

способности ракеты в тысячи раз.

Локатор имеет три устройства слежения по углам: точный и грубый

датчики по углам и еще инфракрасную следящую систему. Технические

данные первого датчика определяются в основном оптическими характеристиками

приемо-передающей системы. А так как диаметр входной оптической системы

равен 300мм и фокусное расстояние равно 2000м, то это обеспечивает

угловую разрешающую способность 80 угловых секунд. Сканирующее устройство

имеет полосу пропускания 100Гц. Второй датчик имеет оптическую систему с

диаметром 150мм и меньшее фокусное расстояние. Это дает разрешающую

способность по углу всего 200 угловых секунд, т.е. обеспечивает меньшую

точность, чем первый. В качестве приемников излучения оба канала оснащены

фотоумножителями, т.е. наиболее чувствительными элементами из имеющихся.

Перед приемником излучения располагается интерференционный фильтр с

полосой пропускания всего в 1.5 ангстрема. Это резко снижает долю

приходящего излучения от фона. Полоса пропускания согласована с длиной

волны излучения лазера, чем обеспечивается прохождение на приемник только

своего лазерного излучения.

Локатор позволяет работать в пределах от 30 до 30000м. Предельная

высота полета ракеты 18000м. Сообщается, что этот локатор обычно

располагается от ракеты на расстоянии около 1000м и на линии,

составляющей с плоскостью полета ракеты 45 градусов. Измерение параметров

движения ракеты с такой высокой точностью на активном участке полета

дает возможность точно рассчитать точку ее падения.

Локатор для слежения. Рассмотрим локатор созданный по заказу

НАСА и предназначенный для слежения за спутниками. Он предназначался для

слежения за собственными спутниками и работал совместно с радиолокатором,

который выдавал координаты спутника с низкой точностью. Эти координаты

использовались для предварительного наведения лазерного локатора,

который выдавал координаты с высокой точностью. Целью эксперимента было

определение того, насколько отклоняется истинная траектория спутника от

расчетной, - чтобы узнать распределение поля тяготения Земли по всей ее

сфере. Для этого на полярную орбиту был запущен спутник "Эксплорер-22".

Его орбита была рассчитана с высокой точностью, но в качестве исходных

данных вложили информацию, что поле тяготения определяется формой Земли,

т.е. использовали упрощенную модель. Если же теперь в процессе полета

спутника наблюдалось уменьшение высоты его относительно расчетной

траектории, то очевидно, что на этом участке имеются аномалии в поле

тяготения.

По спутнику "Эксплорер-22" была, по сообщению НАСА, проведена

серия экспериментов и часть этих данных была опубликована. В одном из

сообщений говорится, что на расстоянии 960 км. ошибка в дальности

составляла 3м. Минимальный угол, считываемый с кодируемого устройства,

был равен всего пяти угловым секундам.

Интересно, что в это время появилось сообщение, что американцев

опередили в их работе французские инженеры и ученые. Сотрудники лаборатории

Сан-Мишель де Прованс провели серию экспериментов по наблюдению за тем же

спутником, используя лазерный локатор своего производства.

1.3 БОРТОВЫЕ ЛАЗЕРНЫЕ СИСТЕМЫ

Зарубежная печать сообщает, что в военной авиации стран США и

НАТО стали широко использоваться лазерные дальномеры и высотомеры, они дают

высокую точность измерения дальности или высоты, имеют небольшие габариты и

легко встраиваются в систему управления огнем. Помимо этих задач на

лазерные системы сейчас возложен ряд других задач. К ним относятся наведение

и целеуказание. Лазерные системы наведения и целеуказания используются

в вертолетах, самолетах и беспилотных летательных аппаратах. Их разделяют

на полуактивные и активные. Принцип построения полуактивной системы

следующий:

цель облучается излучением лазера или непрерывно или импульсно,

но так, что-бы исключить потерю цели лазерной системы самонаведения,

для чего подбирается соответствующая частота посылок. Освещение цели

производится либо с наземного, либо с воздушного наблюдательного пункта;

отраженное от цели излучение лазера воспринимается головкой

самонаведения, установленной на ракете или бомбе, которая определяет

ошибку в рассогласовании положения оптической оси головки с траекторией

полета. Эти данные вводятся в систему управления, которая и обеспечивает

точное наведение ракеты или бомбы на освещаемую лазером цель.

Лазерные системы охватывают следующие виды боеприпасов:

бомбы, ракеты класса "воздух-земля", морские торпеды. Боевое применение

лазерных систем самонаведения определяется типом системы, характером цели и

условиями боевых действий. Например, для управляемых бомб целеуказатель

и бомба с головкой самонаведения могут находиться на одном носителе.

Для борьбы с тактическими наземными целями в зарубежных лазерных

системах целеуказание может быть производиться с вертолетов или с помощью

наземных переносных целеуказателей, а поражение выполняться с вертолетов

или самолетов. Но отмечается и сложность использования целеуказателей с

воздушных носителей. Для этого требуется совершенная система стабилизации

для удержания лазерного пятна на цели.

1.4 ЛАЗЕРНЫЕ СИСТЕМЫ РАЗВЕДКИ

Для разведки с воздушных в зарубежных армиях используются самые

различные средства: фотографические, телевизионные, инфракрасные,

радиотехнические и др. Сообщается, что наибольшую емкость полезной

информации дают средства фоторазведки. Но им присущи такие недостатки, как

невозможность ведения скрытной разведки в ночных условиях, а также

длительные сроки обработки передачи и предоставления материалов, несущих

информацию. Передавать оперативно информацию позволяют телевизионные

системы, но они не позволяют работать ночью и в сложных метеоусловиях.

Радиосистемы позволяют работать ночью и в плохих метеоусловиях, но они

имеют относительно невысокую разрешающую способность.

Принцип действия лазерной системы воздушной разведки заключается

в следующем. Излучение с бортового носителя облучает разведуемый участок

местности и расположенные на нем объекты по-разному отражают упавшее на

него излучение. Можно заметить, что один и тот же объект, в зависимости

от того, на каком фоне он расположен имеет различный коэффициент яркости,

следовательно, он имеет демаскирующие признаки. Его легко выделить на

окружающем фоне. Отраженный подстилающей поверхностью и объектами, на

ней расположенными, лазерное излучение собирается приемной оптической

системой и направляется на чувствительный элемент. Приемник преобразует

отраженное от поверхности излучение и электрический сигнал, который

будет промодулирован по амплитуде в зависимости от распределения яркости.

Поскольку в лазерных системах разведки реализуется, как правило, строчно-

кадровая развертка, то такая система близка к телевизионной. Узконаправленный

луч лазера развертывается перпендикулярно направлению полета самолета.

Одновременно с этим сканирует и диаграмма направленности приемной

системы. Это обеспечивает формирование строки изображения. Развертка по

кадру обеспечивается движением самолета. Изображение регистрируется либо

на фотопленку, либо может производиться на экране электронно-лучевой

трубки.

1.5 ГОЛОГРАФИЧЕСКИЕ ИНДИКАТОРЫ НА ЛОБОВОМ СТЕКЛЕ

Для использования в прицельно-навигационной системе ночного

видения, предназначенной для истребителя F-16 и штурмовика A-10 был

разработан голографический индикатор на лобовом стекле. В связи с тем, что

габариты кабины самолетов невелики, то с тем, что-бы получить большое

мгновенное поле зрения индикатора разработчиками было решено разместить

коллимирующий элемент под приборной доской. Оптическая система включает

три раздельных элемента, каждый из которых обладает свойствами

дифракционных оптических систем: центральный изогнутый элемент выполняет

функции коллиматора, два других элемента служат для изменения положения

лучей. Разработан метод отображения на одном экране объединенной

информации: в форме растра и в штриховой форме, что достигается благодаря

использованию обратного хода луча при формировании растра с интервалом

времени 1.3мс, в течении которого на ТВ-экране воспроизводится информация в

буквенно-цифровой форме и в виде графических данных, формируемых штриховым

способом. Для экрана ТВ-трубки индикатора используется узкополосный

люминофор, благодаря чему обеспечивается хорошая селективность голографической

системы при воспроизведении изображений и пропускание света без розового

оттенка от внешней обстановки. В процессе этой работы решалась проблема

приведения наблюдаемого изображения в соответствие с изображением на

индикаторе при полетах на малых высотах в ночное время (система ночного

видения давала несколько увеличенное изображение), которым летчик не мог

пользоваться, поскольку при этом несколько искажалась картина, которую

можно бы было получить при визуальном обзоре. Исследования показали, что

в этих случаях летчик теряет уверенность, стремится лететь с меньшей

скоростью и на большой высоте. Необходимо было создать систему,

обеспечивающую получение действительного изображения достаточно большого

размера, чтобы летчик мог пилотировать самолет визуально ночью и в сложных

метеоусловиях, лишь изредка сверяясь с приборами. Для этого потребовалось

широкое поле индикатора, при котором расширяются возможности летчика по

пилотированию самолета, обнаружению целей в стороне от маршрута и

производству противозенитного маршрута и маневра атаки целей. Для

обеспечения этих маневров необходимо большое поле зрения по углу места и

азимуту. С увеличением угла крена самолета летчик должен иметь широкое

поле зрения во вертикали. Установка коллимирующего элемента как можно

выше и ближе к глазам летчика была достигнута за счет применения

голографических элементов в качестве зеркал для изменения направления

пучка лучей. Это хотя и усложнило конструкцию, однако дало возможность

использовать простые и дешевые голографические элементы с высокой

отдачей.

В США разрабатывается голографический координатор для распознавания

и сопровождения целей. Основным назначением такого коррелятора является

выработка и контроль сигналов управления наведения ракеты на среднем

и заключительном участках траектории полета. Это достигается путем мгновенного

сравнения изображений земной поверхности, находящейся в поле зрения

системы в нижней и передней полусфере, с изображением различных участков

земной поверхности по заданной траектории, хранимым в запоминающем устройстве

системы. Таким образом обеспечивается возможность непрерывного определения

местонахождения ракеты на траектории с использованием близко лежащих

участков поверхности, что позволяет проводить коррекцию курса в

условиях частичного затемнения местности облаками. Высокая точность на

заключительном этапе полета достигается с помощью сигналов коррекции с

частотой меньше 1 Гц. Для системы управления ракетой не требуется

инерциальная система координат и координаты точного положения цели.

Как сообщается, исходные данные для данной системы должны обеспечиваться

преварительной аэро- или космической разведкой и состоять из серии

последовательных кадров, представляющих собой Фурье-спектр изображения

или панорамные фотографии местности, как это делается при использовании

существующего площадного коррелятора местности. Применение этой схемы,

как утверждают специалисты, позволит производить пуски ракет с носителя,

находящщегося вне зоны ПВО противника, с любой высоты и точки траектории,

при любом ракурсе, обеспечит высокую помехоустойчивость, наведения

управляемого оружия после пуска по заданнее выбранным и хорошо

замоскированным стационарным целям. Образец аппаратуры включает в себя

входной объектив, устройство преобразования текущего изображения,

работающего в реальном масштабе времени, голографической линзовой матрицы,

согласованной с голографическим запоминающим устройством,лазера,входного

фотодетектора и электронных блоков. Особенностью данной схемы является

использование линзовой матрицы из 100 элементов, имеющих формат 10x10.

Каждая элементарная линза обеспечивает обзор всей входной аппаратуры и,

следовательно, всего сигнала от поступающего на вход изображения

местности или цели. На заданной фокальной плоскости образуется соответственно

100 Фурье спектров этого вхлдного сигнала. Таким образом мгновенный входной

сигнал адресуется одновременно к 100 позициям памяти. В соответствии

в линзовой матрице изготавливается голографическая память большой

емкости с использованием согласованных фильтров и учетом необходимых

условий применения. Сообщается, что на этапе испытания системы был

выявлен ряд ее важных характеристик.

1. Высокая обнаружительная способность как при низкой, так и при высокой

контрастности изображения, способность правильно опознать входную

информацию, если даже имеется только часть ее.

2. Возможность плавного автоматического перехода сигналов сопровождения

при смене одного изображения местности другим, содержащимся в запоминающем

устройстве.

3. Возможность расширения зоны пуска ракеты путем запоминания несколько близко расположенных участков местности, из которых каждая имеет соответствующую

ориентацию на цель. В процессе полета ракета может быстро переведена на заданную траекторию, зависяцую от динамики ракеты.

Оглавление:

Введение .............................................................................. 1

1 Лазерная локация .............................................................. 1

1.1 Наземные лазерные дальномеры .................................... 2

1.2 Наземные локаторы ....................................................... 4

1.3 Бортовые лазерные системы .......................................... 5

1.4 Лазерные системы разведки ........................................... 6

1.5 Голографические индикаторы на лобовом стекле.......... 7

Реферат Оборудование космических кораблей На космических кораблях используются все лучшие разработки человечества, на них опробуются новейшие передовые технологии, и бортовое оборудование космических кораблей – также наисовременнейшее.

Сочинения: Фронтовой бомбардировщик Су-24 К концу 50-х годов основу советской фронтовой ударной авиации составляли устаревшие бомбардировщики Ил-28, постепенно заменяемые самолетами Як-28 и Су-7Б. Однако в начале 60-х годов существенно меняется доктрина применения фронтовой ударной авиации. Под изменившиеся требования американская фирма General Dynamics разрабатывает истребитель-бомбардировщик нового поколения - F-111.

Реферат Воздушно-десантные войска России Воздушно-десантные войска (ВДВ), высокомобильный род войск вооруженных сил, предназначенный для охвата противника по воздуху и ведения боевых действий в его тылу. ВДВ РФ являются средством ВГК и могут составлять основу мобильных сил. Они подчиняются непосредственно командующему ВДВ и состоят из воздушно-десантных дивизий, бригад, отд. частей и учреждений.

Реферат Военно-Морской флот Российской Федераций Отечественный военно-морской флот - составная часть вооруженных сил нашей страны - создавался для ведения боевых действий на морских и океанских театрах военных действий. Он включает в себя несколько родов сил, качественно отличных друг от друга и способных в определенных условиях решать боевые задачи самостоятельно или совместно с другими силами.

Реферат Архимед. Его достижения в области математики Архимед родился в 287 году до н.э. в Сиракузах на острове Сицилия. Отец Архимеда - астроном и математик Фидий. Фидий дал сыну хорошее образование. Затем Архимед продолжил своё обучение в Александрии, где познакомился со знаменитым астрономом Кононом, астрономом и математиком Эратосфеном, с которыми он поддерживал в дальнейшем научную переписку.

Доклад: Проблема разоружения Международное сотрудничество за мир, решение глобальных проблем безопасности, разоружение и урегулирование конфликтов Все глобальные проблемы пронизаны идеей географического единства человечества и требуют широкого международного сотрудничества для своего решения.

Реферат Лазеры. Основы устройства и применение их в военной технике И вот он наступил ХХ век. Уже самое его начало было отмечено величайшими достижениями человеческого ума. 7 мая 1895 г. на заседании Русского физико- химического общества Попов А.С. продемонстрировал изобретенное им устройство связи без проводов, а год спустя аналогичное устройство связи без проводов, а год спустя аналогичное устройство предложил итальянский техник и предприниматель Г.Маркони .

Реферат Лазер Прежде всего следует отметить, что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющи

Реферат Назначение и область применения лазеров Изобретение лазера стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 г., и сразу же началось бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных у

nreferat.ru

Лазерное оружие: мифы и перспективы.

27

Сейчас на смену химическим лазерам идут твердотельные лазерные системы с полупроводниковой накачкой. Именно на них делает ставку Пентагон, поскольку они гораздо ком­пактнее, проще и дешевле в эксплуа­тации, чем химические лазеры, долго­вечнее, легко (без трансформации выходного напряжения) совместимы с ядерной и солнечной энергетикой,позволяют обеспечить дальнейшее масштабирование выходных параме­тров, а эффективность их функцио­нирования существенно выше. Ком­пания «Нортроп» уже представила работоспособный твердотельный лазер мощностью 105 кВт и намерена существенно увеличить его мощность.

 По данным из лабораторий США уже идет отработка 500кВт. лазера. Впо­следствии «гиперболоиды» предпо­лагается устанавливать на наземные ("HEL ТТЛ, морские ("MLD") и воз­душные платформы (программа "HELLADS"; лазер для F-35, В-1, Х-47). Другое направление продвигает ком­пания "Raytheon", сделавшая ставку на волоконные «агрегаты». 50-кило-ваттный лазер "LaWS" планируется интегрировать с зенитным артилле­рийским комплексом "Phalanx CIWS" и его сухопутной версией "Centurion C-RAM". Кроме того, недавно появи­лось сообщение об успешном про­движении в США работ по боевому лазеру на свободных электронах. В то же время не нужно забывать про комплекс "Альфа"(НБ/ОБ лазер мощ­ностью 4,5МВт), лежащий на земле и ждущий решения о запуске. Дове­дение твердотельных лазеров до мно-гомегаваттной мощности требует вре­мени и значительных средств. Однако, накопленный опыт создания стра­тегических лазерных комплексов в прежние годы и твердая уверенность в достижимости поставленной цели на новой выстраданной основе — соз­дание мощного лазерного оружия -помогают значительно ускорить темп работ в данной области новых техно­логий. Следует, однако, заметить, что тактические лазерные комплексы на меньших уровнях мощностей в США уже весьма близки к тиражированию и реальному применению. Так что эксперты Пентагона явно не думают о закрытии перспективных лазерных программ. Речь здесь идет об эффек­тивной системе дезинформации. В прошлогоднем докладе той же орга­низации «Горизонты технологий» говорится о глобальном изменении «правил игры» после распространения «оружия направленной энергии», которое превратит традиционные символы военной мощи в устаревший хлам на уровне пушечных ядер и кавалерии... А пока в США развива­ются лазерные программы, в России наблюдается "лазерная апатия". Байки на тему «лазеры — это блеф» распро­страняют некомпетентные блоггеры и околонаучные деятели, имевшие 

некоторое отношение к лазерной про­грамме тридцать лет назад. В итоге вокруг боевых 27.2лазеров сформиро­вался эпический набор мифов. Рас­смотрим наиболее нелепые из них:

Миф 1. Боевые лазеры разрабаты­ваются четыре десятка лет, прогресса не видно.

Цитата из российской прессы: «В 70-х взяли 150-тонный "Боинг-707", прилепили туда лазер и успешно пожгли мелкие ракеты. В 2000-х взяли 350-тонный "Боинг-747" прилепили туда лазер потяжелее, помощнее и успешно пожгли ракеты большего раз­мера. Лет через 20 выкупят у Украины списанную «Мрию» (640 тонн) и вот она, "Звезда Смерти". Да, все это, наверное, сможет не то что «Скад», а даже какой-нибудь «Тэпходон» сжечь. Правда, только на полигоне и один раз, не более».

Под «150-тонным «Боингом-707», на который «прилепили лазер», оче­видно, имеется в виду 137-тонный КС-135 (танкер на базе «707»-го), пере­квалифицированный в 1973 г. в NKC-135ALL. В 1983-м установленный на самолете лазер сбил несколько ракет «воздух-воздух» «Сайдуиндер» на дальности до 5 км - и еще кое-что по мелочи. Что изменилось с тех пор? Согласно вышеприведенному специ­алисту - только размеры самолета.

А как обстоят дела в реальности? Даже так называемые «мегаваттные» лазеры непрерывного действия 80-х мегаватты не излучали, а больше потребляли. Лазерный комплекс "Miracle" именуемый в свое время 2,2-мегаваттным, впоследствии в боевом варианте фигурировал как "THEL" - «тактический высоко­энергетический лазер» ("MIRACLE" с системой наведения-сопровождения "SEALITE"), в сверхъестественной мощи не был замечен. Что уж гово­рить о более раннем и в пять раз более слабом АЬЬ.Есть ли с тех пор прогресс? Лазер ABL имеет мощность 1,1 МВт - и это не потребляемая мощность, а мощность в луче. Таким образом, на 350-тонный Боинг действительно «прилепили» лазер «помощнее» — примерно в 50 раз... Однако следует понимать, что фактические возмож­ности лазера определяет не мощность как таковая, а уровень концентрации излучения - т.е. способность «пушки» создавать не просто мощный, но и узконаправленный луч. ALL обладал уровнем концентрации излучения 10 в 13-й степени Дж/(ср*с). На ABL он составляет порядка 10 в 18 степени Дж/(ср»с) - т.е. в 10 тыс. раз больше. Эти достижения складываются не только из прямолинейного роста мощ­ности. Последние 30 лет стали пери­одом чрезвычайно быстрого развития адаптивной оптики, позволяющей компенсировать воздействие турбу­лентности атмосферы и лазерного тракта на проходящий луч. Кроме того, лазеры одного и того же класса радикально уменьшились в размерах. Первая версия "THEL" весила 180 тонн и с трудом утрамбовывалась в шесть трейлеров. При этом лазер был фторводородным, то есть исполь­зовал крайне агрессивные химикаты. Второе поколение «тактиков» (ATL) было уже кислород - йодным (COIL) и на порядок более компактным. Наконец, новый твердотельный лазер "Nortrop" весит 1,5 т вместе с системой охлаждения. В дальнейшем его массу предполагается снизить до 750 кг. В итоге наземная версия системы состоит из единственного грузовика "НЕМТТ A3" командного пункта на «Хамви» и буксируемой «двуколки» с радаром "AN/MPQ-64". В то же время в США ведется напряженная работа по переводу непрерывного режима в импульсно-периодический, что позволит резко увеличить дальность функционального воздействия на ОВТ.

Разговоры о том, что «боевые лазеры разрабатываются уже сорок лет - значит, они безнадежны», сви­детельствуют лишь о безграмотности в технических вопросах. Прорывные технологии всегда отрабатываются несколько десятков лет до всту­пления в фазу зрелости. Так, само­леты к моменту первого полета имели почти 60 лет предыстории - первые летающие модели были построены в 1840-х, полноразмерные аэропланы пытались строить с 1868-го. Это, по сути, классическая схема развития любой технологии, использующей новые физические принципы. Сначала - долгий «инкубационный период» без очевидных практических резуль­татов, потом - «большой скачок».

Миф 2. "Лазеры невозможно использовать долго, обычно работа их кратковременна, буквально в течение нескольких секунд

Это далеко не так! В действитель­ности химические и твердотельные боевые лазеры 28обеспечивают именно непрерывное излучение мощности - в течение минут и десятков минут. Сле­дующим шагом в развитии мощных лазерных систем, несомненно, станет реализация варьируемой временной структуры излучения с целью под­нятия пиковой мощности излучения для обеспечения механизма абляции и устранения эффекта экранировки мишени плазмой.

Миф 3. «Энергетика» лазерного оружия ничтожна по сравнению с огнестрельным. «Для сравнения: мощность 76-мм дивизионной пушки Ф-22 образца 1936 года оказывается на уровне 150 МВт. В 150 раз больше (чем у ABL)!... Это еще мы не учиты­ваем энергию ВВ в самом снаряде. Там еще столько же. Вдумайтесь в этот простейший факт: маленькая древняя пушка времен второй мировой по цене металлолома в сотни раз мощнее ультрасовременного «боевого» лазера весом десятки тонн и стоимостью свыше $5 млрд. Один только выстрел из ABL стоит миллионы долларов. И этот выстрел по энергетике сравним с очередью крупнокалиберного пуле­мета».

Такое сравнение мощности, раз­виваемой в течение 0,01 сек, с мощ­ностью постоянного излучения, и с помощью этого сравнения - «дока­зательство» неполноценности более «долгоиграющего» оружия противо­речит даже курсу школьной физики. Попробуем провести сравнение корректным способом - подсчитав энергию, отправляющуюся к цели.

Дульная энергия 12,7 мм крупно­калиберного пулемета "НСВ 15"-17,5 кДж, при боевой скорострельности 80-100 выстрелов в минуту. Иными словами, даже 100 квт лазер - это «три с половиной» крупнокалиберных пулемета (6000 кДж/мин против 1750). Вернемся, однако, к пушке. Дульная энергия Ф-22 - 1,35 МДж, в то время как мощность ABL - 1,1 МВт, т.е. 1,1 МДж ежесекундно. Таким образом, в минуту лазер выбрасывает 48 «снарядов». Переведя МВт мощ­ности в тротиловый эквивалент, мы получим 240 г взрывчатки в секунду и 14,4 кг в минуту, что эквивалентно содержимому 18 осколочно-фугасных снарядов от той же пушки. Однако, фактическая «ценность» лазера выше. Дело в том, что даже при прицельной стрельбе из огнестрельного оружия основная часть «энергии» достается не врагу, а окрестному ландшафту. Виной тому - добрый десяток фак­торов (ветер, колебания влажности, давления и температуры воздуха, сила Кориолиса и т.д.), обеспечивающих пуле или снаряду неизбежное рассе­ивание. А поток фотонов летит ровно туда, куда его направили, исключая огромное количество непроизводи­тельных потерь.

Миф 4. КПД лазеров — единицы процентов.

Фактически он у боевых лазеров до 20,6%, и это не предел. В рамках про­граммы "RELI" КПД намечено поднять до 25%. Волоконные лазеры, которые приспособила к военным задачам "Raytheon", уже сейчас имеют КПД около 30%. У огнестрельного оружия — 20-40%. В то же время КПД пока меньших, но неуклонно растущих по мощности твердотельных систем с полупроводниковой накачкой уже сегодня составляет более 50% и от разработки к разработке приближа­ется к своему физическому пределу близкому к 85%.

Миф 5.. Лазерный  луч   имеет  огромную  дифракциоону ю  р асходимость

.«Здесь вступает в силу непреодо­лимый физически закон дифракции, который гласит - излучение лазера всегда расходится с углом, пропорци­ональным отношению длины волны к диаметру пучка. Если мы возьмем кон­кретно боевой инфракрасный лазер с длиной волны 2 мкм (на такой длине работают боевые лазеры "THEL" и т.п.) и диаметр пучка 1 см, то мы получим угол расхождения 0.2 мрад (это очень незначительное угловое расхождение - например, обычные лазерные указки/дальномеры расхо­дятся на 5 мрад. и больше). Однако, расхождение 0.2 мрад. на дистанции 100 метров увеличит диаметр пятна с 1 см до примерно 3 см. То есть, плот­ность воздействия упадет пропорцио­нально площади в 7 раз всего лишь на 100 метрах. А на километре плотность луча упадет уже в 300 раз».

На самом деле боевой лазер, излу­чающий пучок с исходным диаметром 1 см - это плод нездоровой фантазии, не отягощенной хотя бы минималь­ными знаниями в этой области. В дей­ствительности, при использовании фокусирующей оптики дифракци­онная расходимость равна примерно \/D, где лямбда - длина волны, a D - диаметр зеркала, он же - исходный диаметр пучка, постепенно сужаю­щегося к цели из-за фокусировки; большой стартовый диаметр пучка, а это метры, обеспечивает низкую диф­ракционную расходимость. В случае с ABL длина волны равна 1,315 мкм, а диаметр зеркала — 1,5 м, поделив одно на другое, получаем расходи­мость около 10 в минус 6-й степени радиан. Иными словами, луч лазерного «Боинга» «расплывется» на километровом расстоянии всего на... 1 мм. На расстоянии 200 км, дифрак­ционная расходимость составит 20 см. Фактическая расходимость луча ABL превышает дифракционный предел всего лишь в 1,2 раза.

Миф 6. От лазерного оружия можно легко защититься - например, алюминиевым зеркалом. Это еще один перл.

Действительно, металлы могут иметь близкие к 100% коэффици­енты отражения. Однако, во-первых, эти коэффициенты, тем не менее, не равны 100%. Так на длине волны в 1 мкм для большинства конструк­ционных металлов коэффициент отражения падает до 75%. Реальная ракета после старта, кроме того, будет иметь значительные загрязнения. Между тем, современные «гипербо­лоиды» излучают именно в «окрест­ностях» 1 мкм (ABL - 1,315 мкм). При этом 25% от сотен киловатт с лихвой хватит, даже в непрерывном режиме, чтобы разогреть и подплавить тонкий верхний слой обшивки, на чем отра­жение и закончится — поглощение лазерного излучения быстро растет вместе с ростом температуры, и резко подскакивает после начала плавления. В импульсно-периодическом режиме ситуация обостряется еще больше.

А как же с абсолютно «детским» вопросом - «если лазерный луч можно фокусировать и наводить зеркалом, то почему тем же зеркалом нельзя защититься»? В самих лазерах исполь­зуются, как правило, многослойные диэлектрические зеркала, способные отражать очень много - но в крайне узком диапазоне и только под строго определенными углами. Кроме того, они охлаждаемые - а со всей поверх­ностью цели это проделать, как пра­вило, невозможно. Иными словами, простой, эффективной и дешевой защиты от мощных лазеров не суще­ствует. 

Миф 7. Проблема перегрева для лазеров не решаема. «На каждый МВт мощности лазера генерируется 4 мега­ватта тепла, которые способны рас­калить самолет докрасна и спалить дотла. Система охлаждения со ско­ростью газового потока 1800 м/сек. (сопло Лаваля) оказывается неспо­собной сбросить все вырабатываемое тепло из фюзеляжа самолета».

В реальности «утилизация» коли­честв тепла в единицы мегаватт сама по себе достаточно тривиальна. Кто-нибудь видел «раскалившийся докрасна» тепловоз? Между тем, при­личный дизель мощностью 2 МВт сбрасывает в масло и систему охлаж­дения более 1 МВт. Куда менее проста задача вывода тепла из ограничен­ного объема собственно «орудия». В случае с химическим лазером ABL разогретые продукты реакции просто выдуваются из резонатора хорошо известным соплом Лаваля, а далее для охлаждения используется жидкий аммиак. Достаточно громоздкая система с проблемными криоген­ными компонентами — однако, она действительно способна «утилизи­ровать» очень внушительные коли­чества тепла. Тактические твердо­тельные лазеры, которым предстоит избавляться от 400 кВт тепла, вполне обходятся без криогенных «холодиль­ников». Так, "HELLADS" — это про­дукт «скрещивания» нормального твердотельника и лазера с жидким рабочим телом; циркуляция послед­него и выводит избыточное тепло за пределы «пушки». Примечателен и свежий продукт "General Atomic" — аккумулятор тепловой энергии, спе­циально созданный для охлаждения лазеров. Модуль весом 35 кг способен поглотить 230 кВт, в этом случае тепло расплавляет энергоемкий материал, похожий на воск. В итоге режим "HELLADS" обеспечивает перехват в течение двух минут указанной мощ­ности непрерывного излучения с последующим тридцатисекундным перерывом.

Миф 8. Мощных и компактных источников энергии для боевых лазеров не существует.

Отчасти это действительно так -100 кВт твердотельный лазер пока не представляется возможным взгромоз­дить на что-либо меньшее, чем гру­зовик из-за необходимости иметь под рукой генератор на 500 кВт и конден­саторы соответствующей мощности. Таковы реальные масштабы про­блемы, не имеющие ничего общего с фантазиями. На практике гибридный вариант грузовика "НЕМТТ — НЕМТТ A3" даже в базовой комплек­тации имеет электрогенератор на 350 кВт, способный обеспечить до 200 кВт «экспортируемой» мощности. При повышении мощности двигателя до 505 л.с. A3 может обеспечить «внеш­нему» потребителю 400 кВт. При­ятным дополнением является батарея конденсаторов на 1,5 МДж. Иными словами, там, где обитателям блогос-феры мерещатся электростанции -на самом деле маячит один грузовик, хотя и довольно высокотехноло­гичный. Вместе с тем, проблема энер­гетики в космосе может решаться и иными, более эффективными путями.29

Так, например, хорошо отрабо­таны ядерные источники питания, солнечная энергетика с ее неограни­ченными возможностями.

Миф 9. Каждый выстрел лазера стоит миллионы.

В действительности один выстрел ABL стоит $10 тыс.; отечественные «16 миллионов» — пропагандистское... преувеличение. Это примерная стои­мость незатейливой носимой ПТУР вроде «Фагота». Более серьезные 

про­тивотанковые ракеты стоят десятки тысяч долларов, "Maverick" (ракета воздух-поверхность с дальностью в 28 км) - $154 тыс., одна ракета к «Patriot» — $3,8 млн. Стоимость выстрела так­тических лазеров еще меньше, чем у ABL — даже у фторводородного 'THEL" она составляла $2-3 тыс., при том, что фактически этот лазер использовал не водород, а достаточно дорогой дейтерий.

Миф 10. Все задачи, которые могут быть решены лазерным оружием, легче и дешевле решаются традицион­ными средствами.

Это умозаключение уже доказало свою   несостоятельность.

Пример - попытки Израиля защититься от ракетных атак ХАМАС с помощью противоракет (система "Iron Dome"). Один пуск противоракеты обходится в $30- 40 тыс. Стоимость ракеты для «Града» составляет порядка $1 тыс., стоимость «Кассамов» не превы­шает $200. Таким образом, перехват будет обходиться в 40-200 раз дороже, чем само средство нападения. Как заметил по этому поводу представи­тель ХАМАС Тарик Абу Назар, «если каждый удар наших ракетчиков будет стоить израильтянам десятки тысяч долларов, мы будем считать, что цель достигнута». В итоге отдельные газет­чики обвиняют в «распиле» не разра­ботчиков лазеров, а тех, кто закрыл соответствующую израильско-аме­риканскую программу. Ограниченно применимой - из-за малого радиуса действия и огромного расхода боеприпасов - оказалась и система «Centurion».

Разумеется, это далеко не полный список легенд о лазерах. Большин­ство из них построено по тому же принципу — либо сознательная ложь, либо старательное превращение мухи в слона. На самом деле лазеры на поле боя - реальны, а армия, которая сможет обзавестись ими, получит вну­шительное преимущество. Так, ави­ация, способная активно обороняться от зенитных ракет и ракет воздух-воздух, станет гораздо в меньшей сте­пени уязвимой для средств ПВО. При этом развитие лазерных технологий является критически важным вовсе не для американцев. Боевые лазеры -очевидный ассимметричный ответ на превосходство Запада по высокоточному оружию. «Идеология» послед­него в предельно грубой форме сво­дится к тому, что вместо высыпания десятков болванок «по площади» на голову противнику точно «укладыва­ется» единичный, хотя и гораздо более дорогой боеприпас. Однако, такая схема особенно уязвима по отно­шению к лазерным оборонительным системам, которым все равно, что «жечь» — архаический снаряд за две сотни долларов или дорогущий уль­трасовременный прибор или высо­котехнологичный агрегат военной техники. При этом количество высо­коточных целей не столь велико, а их стоимость - в десятки раз больше, чем у самого дорогостоящего лазерного «выстрела».

30Однако, вместо попыток догнать США у нас в России ограничива­ются разработками идейно уста­ревших лазеров — неэффективных, громоздких и не позволяющих в обозримой    перспективе    достичь поставленных целей. Зато чрезмерно процветает анти-пропаганда. При­чины такого развития обстановки вполне очевидны:

Во-первых, весьма успешная советская лазерная программа 70-80-х была буквально "зарезана" в начале 90-х как неперспективная - и персо­нажи, сделавшие это, по понятным причинам не слишком жаждут отве­чать за свои конъюнктурные решения, и занимаются в значительной степени более прибыльным и безопасным для карьеры бизнесом.

Во-вторых, если за производством традиционных видов вооружения в нашей стране стоят вполне опреде­ленные бизнес-интересы, то лазер­ного лобби в нашей стране практи­чески не существует, т. к. иных уж нет, а те далече.

В-третьих, значительная часть рос­сийской политической элиты всегда готова закрыть глаза на усиление воз­никающей "ассимметрии" в области стратегических вооружений - просто чтобы не раздражать «партнеров» и всегда иметь гарантированный доступ к своим счетам в западных банках.

В-четвертых, продолжать бороться за интересы обороноспо­собности страны сегодня не так уж и безопасно для личной карьеры и здоровья. Нужно обладать завидным мужеством, большим научным кру­гозором, интуицией и специальными знаниями в данной области высоких технологий, а также хорошим виде­нием перспективы дальнейшего раз­вития стратегической обстановки в мире для отстаивания своей позиции в современных условиях.

Послесловие. Уже очевидно, что в мире разворачивается новый виток технологической гонки. К сожалению, не от нас это зависит, не мы это начи­наем. Наиболее развитые страны, опираясь на свое технологическое преимущество, направляют много­миллиардные средства на разработку высокотехнологичных лазерных систем следующих поколений. Их вложения в новые технологии соз­дания лазерного оружия просто не сопоставимы с тем, что делаем мы. Они в десятки раз больше. Так в раз­витие полупроводниковой лазерной накачки твердотельных лазеров США по данным японских СМИ (на 2008г.) уже вложили более 85 млрд. долларов. Именно о необходимости ускорен­ного развития высоких технологий в своем выступлении на расширенном заседании Госсовета говорил Пре­зидент России Д. А. Медведев. В этой связи важно отметить и мнение аме­риканских специалистов, заключающееся в том, что сегодня одним из наиболее эффективных средств заво­евания технологического превосход­ства в мире по-прежнему являются лазерные технологии. Россия уси­лиями Нобелевских лауреатов А. М. Прохорова, Н. Г. Басова и Секретаря ЦК КПСС Д. Ф. Устинова всегда была одним из мировых лидеров в этой области. И сегодня, именно в резуль­тате ускоренной разработки лазеров и технологий на их основе возможно:

-  обеспечение качественно нового уровня развития промышленности, науки и технологии, возрождение научно-технической мощи России на базе современных высоких техно­логий;

-  завоевание Россией лидирующей роли в ряде областей научно-техниче­ского и технологического прогресса;

-  оживление значительного числа предприятий ряда отраслей рос­сийской промышленности, хорошо известных своими разработками в прежние годы;

-  укрепление за Россией лидирую­щего положения в космической сфере деятельности и обеспечение страте­гических и геополитических приори­тетов страны в современном мире;

-       обеспечение коммерческой выгоды от реализации широкого спектра лазерных программ, срав­нимой с выгодой, получаемой сегодня от торговли природными ресурсами.

www.unionexpert.ru

Лазерное оружие. Новые сочинения по зарубежной литературе

Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект (пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0... 1.5 градуса и при этом без дополнительных оптических систем.

Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение: L = ct/2, где L - расстояние до объекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

Прежде всего, зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.

Следующим параметром локатора является определяемые координаты.

Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и подводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Будем пользоваться таким понятием как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей.

Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных и искусственных помех. И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.

1.1 НАЗЕМНЫЕ ЛАЗЕРНЫЕ ДАЛЬНОМЕРЫ

Лазерная дальнометрия является одной из первых областей практического применения лазеров в зарубежной военной технике. Первые опыты относятся к 1961г., а сейчас лазерные дальномеры используются в наземной военной техники артиллеристские, танковые) , и в авиации (дальномеры, высотомеры, целеуказатели) , и на флоте. Эта техника прошла боевые испытания во Вьетнаме и на Ближнем Востоке. В настоящее время ряд дальномеров принят в армиях капиталистических стран.

Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отраженным от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный фазовый или фазоимпульсный.

Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылают зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру, то он останавливает работу счетчика. По временному интервалу автоматически высвечивается перед оператором расстояние до объекта. Погрешность такого метода измерения 30см. Зарубежные специалисты считают, что для решения ряда практических задач это вполне достаточно.

При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону. При этом интенсивность излучения меняется в значительных пределах. В зависимости от дальности до объекта изменяется фаза сигнала, упавшего на объект. Отраженный от объекта сигнал придет на приемное устройство также с определенной фазой, зависящей от расстояния.

Оценим погрешность фазового дальномера, пригодного работать в полевых условиях. Специалисты утверждают, что оператору(не очень квалифицированному солдату) не сложно определить фазу с ошибкой не более одного градуса, следовательно погрешность будет составлять примерно 5 см.

Первый лазерный дальномер XM-23 прошел испытание во Вьетнаме и был принят на вооружение в армии США. Он рассчитан на использование передовых наблюдательных пунктах сухопутных войск. Источником излучения в нем является лазер с выходной мощностью 2.5Вт и длительностью импульса 30нс.

В конструкции дальномера широко используются интегральные схемы.

Излучатель, приемник и оптические элементы смонтированы в моноблоке, который имеет шкалы точного отсчета азимута и угла места цели. Питание дальномера производится от батареи никелево-кадмиевых аккумуляторов напряжением 24В, обеспечивающий 100 измерений дальности без подзарядки.

Также интересен шведский дальномер. Он предназначен для использования в системах управления бортовой корабельной и береговой артиллерии.

Конструкция дальномера отличается особой прочностью, что позволяет применять его в сложных условиях. Дальномер можно сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режим работы дальномера предусматривает либо измерения через каждые 2с в течение 20с, либо через каждые 4с в течение длительного времени. Цифровые индикаторы дальности работают таким образом, что когда один из индикаторов выдает последнюю измеренную дальность, в памяти другого хранятся четыре предыдущие измеренные дистанции.

Как утверждает зарубежная печать, весьма удачным оказался норвежский лазерный дальномер LP-4. Он имеет в качестве модулятора добротности оптикомеханический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр оптической системы составляет 70мм. Приемником служит портативный фотодиод. Счетчик снабжен схемой стробирования по дальности, действующий по установке оператора от 200 до 3000м. В схеме оптического визира перед окуляром помещен защитный фильтр для предохранения глаза от воздействия своего лазера при приеме отраженного импульса.

Излучатель и приемник смонтированы в одном корпусе. Угол места цели определяется в градусах ~25 градусов. Аккумулятор обеспечивает 150 измерений дальности без подзарядки, его масса всего 1кг. Дальномер прошел испытания и был закуплен Канадой, Швецией, Данией, Италией, Австралией.

Портативные лазерные дальномеры разработаны за рубежом для пехотных подразделений и передовых артиллерийских наблюдателей. Один из таких дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется аллюминиево-иттириевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1.5 МВт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем, что позволяет детектировать короткие импульсы с малой мощностью. Ложные сигналы, отраженные от близлежащих предметов исключаются с помощью схемы стробирования по дальности. Источником питания является малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки.

Электронные блоки дальнометра выполнены на интегральных схемах, что позволило довести массу дальномера вместе с источником питания до 2кг.

Установка лазерных дальномеров на танки сразу заинтересовала зарубежных разработчиков военного вооружения. Это объясняется тем, что на танке можно ввести дальномер в систему управления огнем танка, чем повысить его боевые качества. Для этого в США был разработан дальномер AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного артиллерийского дальномера на рубине, однако помимо выдачи данных о дальности на цифровое табло имел устройство, обеспечивающее ввод дальности в счетно-решающее устройство системы управления огнем танка.

При этом измерение дальности может производиться как наводчиком пушки так и командиром танка. Режим работы дальномера - 15 измерений в минуту в течение одного часа.

Больше сочинений по этой теме
Больше рефератов этого автора

www.uznaem-kak.ru

Лазерное оружие

Лазерное оружие

Основная статья: Лазерное оружие

С середины 50-х годов XX века в СССР осуществлялись широкомасштабные работы по разработке и испытанию  лазерного оружия высокой мощности, как средства непосредственного  поражения целей в интересах  стратегической противокосмической и  противоракетной обороны. Среди  прочих были реализованы программы  «Терра» и «Омега». Испытания  лазеров осуществлялись на полигоне Сары-Шаган (ПВО, ПРО, ПКО, СККП, СПРН) в Казахстане. После распада Советского Союза работы на полигоне Сары-Шаган были остановлены.

В середине марта 2009 года американская корпорация Northrop Grumman объявила о создании твердотельного электрического лазера мощностью около 100 квт. Разработка данного устройства была произведена в рамках программы по созданию эффективного мобильного лазерного комплекса, предназначенного для борьбы с наземными и воздушными целями.

Лазерный прицел

Револьвер, оснащённый лазерным прицелом.

В большинстве военных  применений лазер используется для  облегчения прицеливания с помощью  какого-нибудь оружия. Например, лазерный прицел — это маленький лазер, обычно работающий в видимом диапазоне  и прикреплённый к стволу пистолета  или винтовки так, что его луч  параллелен стволу. Благодаря слабой расходимости лазерного луча, даже на больших расстояниях прицел даёт маленькое пятнышко. Человек просто наводит это пятно на цель и  таким образом видит, куда именно направлен его ствол.

Большинство лазеров используют красный лазерный диод. Некоторые  используют инфракрасный диод, чтобы  получить пятно, не видимое невооруженным  глазом, но различимое приборами ночного  видения. В 2007 году компания Lasermax, специализирующаяся на выпуске лазеров для военных целей, объявила о начале первого массового производства зелёных лазеров, доступных для стрелкового оружия. Предполагается, что зеленый лазер будет лучше, чем красный, видим в условиях яркого света по причине более высокой чувствительности сетчатки человеческого глаза к зеленой области спектра.

Системы обнаружения снайперов

Принцип данных систем основывается на том, что луч, проходя через  линзы, будет отражаться от какого-либо светочувствительного объекта (оптические преобразователи, сетчатка глаза и  т. д.).

Как преимущество — подобные системы являются активными, то есть обнаруживают снайперов до выстрела, а не после. С другой стороны эти  системы демаскируют себя, так  как являются излучателями.

Такие системы выпускаются  как в России, так и в других странах.

Постановка помех снайперам

Возможна постановка помех  путем «сканирования» лазерным лучом  местности, не позволяя вражеским снайперам  вести прицельную стрельбу или даже наблюдение в оптические приборы.

 

Введение противника в  заблуждение

В данном случае подразумевается  «несмертельное» вооружение, главное назначение которого — предотвратить нападение со стороны противника. Устройство создаёт лазерный луч небольшой мощности, направляемый в сторону противника (в основном, эта технология используется против авиации и танков). Противник полагает, что на него нацелено высокоточное оружие, он вынужден спрятаться или отступить вместо нанесения собственного удара.

Лазерный дальномер

Лазерный дальномер —  устройство, состоящее из импульсного  лазера и детектора излучения. Измерив  время, за которое луч преодолевает путь до отражателя и обратно и зная значение скорости света, можно рассчитать расстояние между лазером и отражающим объектом. Лазерный дальномер — простейший вариант лидара. Значение расстояния до цели может использоваться для наведения оружия, например танковой пушки.

Лазерное наведение

Другое военное применение лазеров — оружейные системы  наведения. Такие системы представляют собой лазер небольшой мощности, «подсвечивающий» цель для боеприпасов  с лазерным наведением — «умных»  бомб или ракет, запускаемых с  самолёта. Ракета автоматически меняет свой полет, ориентируясь на отраженное пятно лазерного луча на цели, обеспечивая таким образом высокую точность попадания. Лазерный излучатель может находиться как на самом самолёте, так и на земле. В устройствах лазерного наведения обычно используются инфракрасные лазеры, так как их работу проще скрыть от противника.

Лазерное стрелковое оружие (потенциально)

Первым военным применением  лазеров, которое всем приходит на ум, обычно становится использование их в конструкции лазерного стрелкового  оружия, способного уничтожать пехоту, танки и даже самолёты. На практике такие идеи сразу наталкиваются на серьёзное препятствие — при современном уровне технологий лазер, способный нанести повреждение человеку (с учётом источника питания) окажется слишком тяжёлым для переноски в одиночку, а устройство, обладающее достаточной мощностью для выведения из строя танка, будет крайне громоздким и чувствительным к вибрациям устройством, что сделает невозможным его полевое применение. В первую очередь это объясняется чрезвычайно низким КПД лазера: для получения достаточного (для повреждения цели) количества излучаемой энергии, необходимо затратить в десятки (иногда сотни) раз больше энергии для накачки рабочего тела лазера. В частности, для нанесения повреждения, аналогичного удару пули тридцатого калибра (в энергетическом соотношении) требуется лазерный импульс мощностью около 5 килоджоулей; 1,6 килоджоуль будет эквивалентен 9-мм пуле соответственно. Лучевой импульс продолжительностью в секунду, таким образом, должен иметь мощность 1600 ватт. При этом следует учесть указанный выше фактор низкого КПД лазера, соответственно, источник питания должен выдать мощность минимум в десять раз большую (в лучшем случае). Именно масса источников энергии для накачки, в значительной степени, определит тяжесть подобного оружия. На настоящее время портативных источников энергии с такой плотностью энергии не существует. Следует также отметить, что неизлучённый в лазерном импульсе остаток энергии выделится в виде тепла в конструкции оружия, что потребует весьма эффективной и тяжёлой системы охлаждения для сброса тепла. А потребное время остывания, в свою очередь, чрезвычайно уменьшит скорострельность оружия. Оговоримся, что проблема теплоотвода отчасти решена в лазерах с химической накачкой (в частности, кислородно-йодном и дейтерий-фторном лазерах большой мощности, выдающих мегаватты в секундном импульсе), где отработанные химические компоненты выбрасываются из системы после имульса, унося тепло. В то же время, излучателю требуется большой запас этих, зачастую агрессивных, реагентов и соответствующие ёмкости для хранения.

Остаётся только возможность  использования лазера для ослепления противника, потому что для этой цели нужны лазеры совсем небольшой  мощности, которые можно сделать  портативными. В настоящее время  использование таких устройств  запрещено международными правилами  ведения войн.[источник не указан 1273 дня] Тем не менее, лазеры малой мощности, в том числе лазерные указки, ограниченно используются для ослепления снайперов противника и выявления скрытых огневых точек.

stud24.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.