Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

История возникновения и основные этапы развития биохимии. История биохимии реферат


2. Краткая история развития биохимии

Исторически сложилось два этапа исследований в биохимии: статический и динамический. Статическая, или описательная биохимия изучает состав живой материи, структуру и свойства выделяемых биологических соединений. Динамическая биохимия исследует химические превращения веществ в организме и значение этих превращений для процессов жизнедеятельности. Безусловно, статическая биохимия является более ранним этапом, но впоследствии оба направления развивались параллельно.

Биохимия – сравнительно молодая наука, возникшая на рубеже 19 века. Однако корни ее уходят в глубокую древность. Естественное стремление людей понять причину болезни и найти лекарство против недуга пробудило интерес к процессам, протекающим в живых организмах.

Представляется возможным в истории развития биохимических знаний и биохимии как науки выделить четыре периода.

1 период – с древних времен до эпохи Возрождения (15 век). Этот период практического использования биохимических процессов без знания их теоретических основ и первых, порой очень примитивных биохимических исследований.

В самые отдаленные времена люди уже знали технологию таких производств, основанных на биохимических процессах, как хлебопечение, сыроварение, виноделие, дубление кож. Необходимость лечения болезней заставляла задумываться о превращениях веществ в организме, о причинах целебных свойств лекарственных растений. Использование растений в пищевых целях, для изготовления красок, тканей, дубителей также наталкивало на попытки понять свойства отдельных веществ растительного происхождения.

Берестяные грамоты 11 века, найденные при раскопках Новгорода, свидетельствуют, что в то время на Руси была хорошо развита технология пивоварения, виноделия, хлебопечения. Наши предки уже тогда знали много достаточно сложных рецептов красок и чернил из растений.

Крупнейший ученый и врач средневековья Абу Али-ибн-Сина (Авиценна) (980-1037) приводит в своем труде «Канон врачебной науки» классификацию химических веществ, применяемых в медицине, называет вещества, содержащиеся в «соках организма» и в моче.

Однако развитие биохимии долгое время сдерживалось засильем витализма – идеалистического учения о сущности жизни. По представлениям виталистов, живая природа отличается от неживой присутствием особой нематериальной «жизненной силы», поэтому, считали они, вещества живых организмов не могут быть синтезированы в лабораторных условиях.

2-й период в развитии биохимии, существующей еще как раздел физиологии, характеризуется усилением накопления биохимических знаний. Этот период ведет отсчет от начала эпохи Возрождения и заканчивается во второй половине 19 века, когда биохимия становится самостоятельной наукой.

Эпоха Возрождения характеризуется некоторым ослаблением церковного гнета в науке, освобождением естествознания от пут средневекового религиозного мракобесия. Леонардо да Винчи, интересовавшийся также процессами, в основе которых лежат биохимические реакции, провел интересные опыты и на основании их результатов сделал важный для тех лет вывод, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.

Восемнадцатый век, ознаменованный гениальными трудами М.В. Ломоносова, характеризуется мощным и всесторонним развитием наук в России. Открытие М.В. Ломоносовым закона сохранения массы веществ нанесло сокрушительный удар по идеализму в естествознании. Это великое открытие заложило основы материалистического понимания природы и ее явлений, послужило началом новой эры в химии, биологии и других науках – эры точных количественных измерений. На основе закона сохранения массы веществ и накопившихся к концу 18 века экспериментальных исследований французский ученый А. Лавуазье количественно исследовал и объяснил сущность дыхания, указав на роль кислорода в этом процессе. Немецкий химик Ю. Либих в 30-40 годы 19 века успешно развил методы количественного химического анализа и применил их к исследованию биологических систем.

Мощным толчком к развитию органической химии и биохимии явилась созданная великим русским химиком А. М. Бутлеровым теория строения органических соединений (1861). Он в своей теории утверждал, что атомы и молекулы существуют в определенных реальных взаимоотношениях, количественных и пространственных, которые и выражаются формулами. Он указывал также, что химические свойства веществ обусловлены их строением.

А.М. Бутлеров сделал и другой ценный вклад в биохимию: он впервые синтезировал лабораторным путем сахар. Виталисты утверждали, что органические соединения могут образовываться только в живом организме под влиянием непознаваемых жизненных сил. Синтез сахара А.М. Бутлеровым и мочевины немецким химиком Ф. Велером опроверг лженаучные утверждения виталистов.

В 50-х годах 19-го века известный французский физиолог К. Бернар выделил из печени гликоген и показал, что он превращается в глюкозу, поступающую в кровоток. В 1868 г. Ф. Мишер в лаборатории немецкого физиолога и биохимика Ф. Гоппе-Зейлера открыл ДНК. Однако по достоинству это открытие и, главное, само вещество были оценены лишь почти 100 лет спустя.

3-й период в истории биохимии, начинающийся со второй половины 19 века, ознаменован выделением биохимии как самостоятельной науки из физиологии. Это связано с резким увеличением интенсивности и глубины биохимических исследований, объема получаемой информации, возросшим прикладным значением – использованием биохимии в промышленности, медицине, сельском хозяйстве.

К этому времени относятся работы одного из основоположников отечественной биохимии А. Я. Данилевского (1838-1923). Исследуя строение белков, он сформулировал ряд положений, которые в дальнейшем легли в основу полипептидной теории структуры беков. А.Я. Данилевским впервые высказана идея об обратимости действия ферментов и на основании этого осуществлен ферментативный синтез белковоподобных веществ (пластеины). Он разработал оригинальную методику разделения и очистки ферментов путем адсорбции и элюции (десорбции), которую широко используют и в наши дни. А.Я. Данилевский возглавил в Казанском университете первую в России кафедру биохимии и создал первую русскую школу биохимиков.

Большие заслуги в развитии отечественной биохимии принадлежат М.В. Ненцкому (1847-1901). В 1891 г. он создал первую в России биохимическую лабораторию при Институте экспериментальной медицины в Петербурге. Им был выполнен ряд выдающихся исследований: совместно с сотрудниками впервые были установлены основные этапы биосинтеза мочевины, также впервые подробно исследовано строение гемоглобина и сделано сопоставление в эволюционном плане со структурой хлорофилла.

К концу прошлого столетия относится открытие Н.И. Луниным витаминов (1880), Д.И. Ивановским – вирусов (1892).

На рубеже 19 и 20 веков работал крупнейший немецкий химик-органик и биохимик Э. Фишер (1852-1919). Его исследования составили целую эпоху в развитии биохимии. Им были сформулированы основные положения полипептидной теории белков, начало которой дали исследования А.Я. Данилевского. Э. Фишер установил структуру, предложил формулы и исследовал свойства почти всех аминокислот, входящих в состав белков. Им было проведено подробное и обширное изучение строения и ферментативных превращений углеводов, особенно моносахаридов.

К этому же времени относятся исследования великого русского физиолога растений К. А. Тимирязева (1843-1920), в трудах которого затрагиваются многие биохимические вопросы фотосинтеза и минерального питания растений.

В конце прошлого столетия начал свои исследования и другой великий русский ученый – А.Н. Бах, ставший впоследствии основателем советской биохимической школы. С самого начала своей научной деятельности А.Н. Бах направил внимание на одну из узких проблем биохимии – дыхание. Его не удовлетворяла идея о полной аналогии между дыханием и горением, высказанная А. Лавуазье. Созданная А.Н. Бахом на основании глубоких исследований перекисная теория объяснила механизм участия кислорода воздуха в реакциях дыхания. Многое сделано А.Н. Бахом в области энзимологии, им заложены основы учения о физиологической роли ферментов. Его исследования способствовали развитию технической биохимии в нашей стране.

Ряд замечательных русских ученых, начавших научную деятельность до Октябрьской революции, проявили свой талант уже в годы Советской власти:

В.И. Палладин показал, что дыхание представляет собой систему ферментативных процессов, установил роль кислорода воды и реакций дегидрогенизации – отщепления водорода – при дыхании;

С. П. Костычев исследовал химизм спиртового брожения и анаэробной фазы дыхания, нашел общность между ними;

Д. Н. Прянишников заложил основы учения об азотном обмене растений, раскрыл роль аммиака и аспарагина в этом процессе, создал основы советской агрохимии.

Начало 20 века характеризуется рядом фундаментальных исследований в области химии и за рубежом. В 1905 г. А. Гарден и В. Ионг выделили первый кофермент спиртового брожения -–«озимазу», называемый в наше время НАД. В этом же году Ф. Кнооп открыл и исследовал -окисление жирных кислот. К 20-30-м годам относятся блестящие работы немецкого биохимика О. Варбурга по выделению и изучению дыхательных ферментов (цитохромоксидаза, флавиновые дегидрогеназы и др.), выделению пиридиновых нуклеотидов, изучению их структуры и функции. В 1933 г. Г. Кребс подробно изучил орнитиновый цикл образования мочевины, а 1937 г. датируется открытие им же цикла трикарбоновых кислот.

В 1931 г. В.А. Энгельгардт показал, что фосфорилирование сопряжено в процессе дыхания с окислительными процессами, а в 1942 г. он же совместно с М.Н. Любимовой открыл АТФ-азную активность миозина и других сократительных белков.

В 1938 г. А.Е. Браунштейн и М. Крицман впервые описали реакции трансаминирования.

40-е и особенно 50-е годы характеризуются использованием в биохимических исследованиях физических, физико-химических и математических методов, активным и успешным изучением основных жизненных процессов на молекулярном и надмолекулярном уровнях. 50-е годы, в которые была опубликована статья Д. Уотсона и Ф. Крика о строении двойной спирали ДНК, положившая начало новому научному направлению – молекулярной биологии, считаются одновременно и началом качественно нового – 4-го периода в истории биохимии.

Краткая хронология основных открытий в биохимии этого периода.

1953 – Д. Уотсон и Ф. Крик предложили модель двойной спирали строения ДНК.

1953 – Ф. Сэнгер впервые расшифровал аминокислотную последовательность белка инсулина, состоящего из 51 аминокислотного остатка.

1955-1960 – А.Н. Белозерский и его сотрудники, исследовав нуклеотидный состав ДНК огромного числа представителей животных, растений и бактерий, охарактеризовали таксономическое и эволюционное значение соотношения отдельных азотистых оснований в ДНК.

1959, 1960 – А. С. Спирин и П. Доти установили вторичную и третичную структуру рибосомальной РНК.

1961 – М. Ниренберг расшифровал первую «букву» кода белкового синтеза – триплет ДНК, соответствующий фенилаланину.

1965-1967 – Р. Холли и независимо от него А.А. Баев определили нуклеотидную последовательность транспортных РНК.

1966 – П. Митчелл сформулировал хемиосмотическую теорию сопряжения окисления и фосфорилирования.

1971 – в совместной работе двух лабораторий, руководимых Ю.А. Овчинниковым и А. Е. Браунштейном, установлена первичная структура аспартатаминотрансферазы – белка из 412 аминокислот.

1977 – Ф. Сэнгер и сотрудники впервые полностью расшифровали первичную структуру молекулы ДНК.

В нашей стране в настоящее время продолжают активно развиваться различные направления биохимических исследований. В МГУ многие годы проводятся работы по биохимии дыхания и биоэнергетике. Большие успехи достигнуты коллективом Института биохимии РАН, особенно в области энзимологии, биологической фиксации азота воздуха и азотного обмена растений, технической биохимии, биохимии и биофизики фотосинтеза.

Таким образом, биохимия как самостоятельная наука зародилась в 19 веке. Однако бурное развитие биохимии началось в 20 веке. В настоящее время биохимия представляет собой разветвленную область знания, охватывающую целый ряд разделов, выросших в самостоятельные дисциплины. В зависимости от изучаемого объекта биохимия подразделяется на биохимию растений, биохимию микроорганизмов, биохимию животных и медицинскую биохимию. Исключительно важная роль ферментов – веществ белковой природы, являющихся катализаторами почти всех биохимических процессов, привела к обособлению крупного раздела биохимии – ферментологии, изучающей свойства ферментов, условия их действия и их роль в обмене веществ.

За последние годы бурное развитие биохимии, биофизики, электронной микроскопии и биоорганической химии привело к возникновению особого направления науки – молекулярной биологии, изучающей явления жизни на молекулярном уровне.

studfiles.net

История развитии биохимии — реферат

    История развития биохимии. Можно выделить основные этапы развития биохимической науки: 1. "Протобиохимия". Концепции процессов жизнедеятельности и их природы, развиваемые в древности, античности, в период средневековья. Концепции жизнедеятельности в Эпоху Возрождения, привлечение их для описания и объяснения химических процессов. 2. Экспериментальное изучение процессов жизнедеятельности в 17-18 вв. Первые химические теории и объяснения процессов дыхания, пищеварения, брожения. 3. "Новая химия" и изучение методами химии живых организмов и процесс жизнедеятельности. Первый кризис методологии в области взаимодействия химии и биологии. 4. Формирование биологической химии в рамках редукционистских программ биологии второй половины 19 века. 5. Развитие классической биологической химии. 6. Прогресс биохимии и революция в биологии во второй половине 20 века - формирование физико-химической биологии. Методологические, эмпирические и теоретические основы этого процесса. Интегрирующая роль физико-химической биологии в системе биологических наук.      5.Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям. В 16-17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков, считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии - немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчёркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины. Ятрохимики ввели в медицинскую практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в "соках" живого тела особых начал, так называемых "ферментов", участвующих в разнообразных химических превращениях.       В 17-18 вв. работали такие выдающиеся учёные как М.В. Ломоносов и А. Лавуазье, открывшие и утвердившие в науке закон сохранения материи (массы). Лавуазье внёс важнейший вклад в развитие не только химии, но и в изучение биологических процессов. Развивая более ранние наблюдения Майова, он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 века было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков. Крупными событиями второй половины 18 века стали исследования Р.Реомюра и Л.Спалланцани по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных и птиц на различные виды пищи (главным образом мясо) и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии (учение о ферментах), однако, обычно связывают с именами К.С. Кирхгофа, а также Пейена и Персо, впервые изучивших действие на крахмал фермента амилазы in vitro. Важную роль сыграли работы Пристли и особенно Ингенхауса, открывших явление фотосинтеза (конец 18 века). На рубеже 18 и 19 вв. были проведены и другие фундаментальные исследования в области сравнительной биохимии; тогда же было установлено существование круговорота веществ в природе. Успехи статической биохимии с самого начала были неразрывно связаны с развитием органической химии. Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле (1742-1786 гг.). Он выделил и описал свойства целого ряда природных соединений - молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И.Берцелиуса и Ю.Либиха, закончившиеся разработкой в начале 19 века методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества. Достигнутые успехи - синтез в 1828 году мочевины, уксусной кислоты (1844 г.), жиров (1850 г.), углеводов (1861 г.) - имели особенно большое значение, так как показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Во второй половине 18 - начале 19 века были проведены и другие важные исследования: из мочевых камней была выделена мочевая кислота, из желчи - холестерин, из меда - глюкоза и фруктоза, из листьев зеленых растений - пигмент хлорофилл, в составе мышц был открыт креатин. Было показано существование особой группы органических соединений - растительных алкалоидов, нашедших позднее применение в медицинской практике. Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты: глицин и лейцин.  Во Франции в лаборатории К. Бернара в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление. В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя и других были изучены структура и свойства белков, а также продуктов их гидролиза, в том числе и ферментативного. В связи с описанием дрожжевых клеток (1836-1838гг.) начали активно изучать процесс брожения (Либих, Пастер и др.). Вопреки мнению Либиха, рассматривавшего процесс брожения как чисто химический, протекающий с обязательным участием кислорода, Л. Пастер установил возможность существования анаэробиоза, то есть жизни в отсутствии воздуха, за счет энергии брожения. Бухнеру удалось получить из дрожжевых клеток бесклеточный сок, способный, подобно живым дрожжам, сбраживать сахар с образованием спирта и углекислоты. Накопление большого количества сведений относительно химического состава растительных и животных организмов и химических процессов, протекающих в них, привело к необходимости систематизации и обобщений в области биохимии. Первой работы в этом плане был учебник Зимона (1842). Очевидно, именно с этого времени термин "биологическая (физиологическая) химия" утвердился в науке. В России первый учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 году. Периодическая литература по биологической химии регулярно начала выходить с 1873 года в Германии. Позднее биохимические журналы начали издаваться во многих странах мира на английском, французском, русском и других языках. Во второй половине 19 века на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической химии. Подлинный расцвет биохимии наступил в 20 веке. В самом начале его была сформулирована и экспериментально обоснована полипептидная теория строения белков (Э. Фишер 1901-1902гг.). Позднее был разработан ряд аналитических методов, позволяющих изучить аминокислотный состав белка (хроматография, рентгеноструктурный анализ, метод изотопной индикации, цитоспектрофотометрия, электронная микроскопия). Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков. Синтезируется ряд важных белковых веществ. Выдающееся значение имели работы Л. Полинга, В. Виньо, Ф. Сэнгера, С. Мура, Д. Филлипса, Дж. Нортропа, М. М. Шемякина, Ф. Штрауба и др. Блестящие работы Чаргаффа, Дж. Уотсона и Ф. Крика завершаются выяснением структуры ДНК (дезоксирибонуклеиновой кислоты). Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез ДНК и РНК. Решается (1962 и последующие годы) одна из центральных проблем современной биохимии - расшифровывается РНК - аминокислотный код. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки. Ранее классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. Детальному изучению подвергаются особенности процесса азотистого обмена у растений. Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности. Детально исследуются продукты распада гемоглобина, расшифровываются пути образования гема. Выдающиеся успехи достигнуты в расшифровке структуры важнейших углеводов и механизмов углеводного обмена. Подробно выяснено превращение углеводов в пищеварительном тракте под влиянием пищеварительных ферментов и кишечных микроорганизмов. Выясняются биохимические механизмы нарушения углеводного обмена (диабет, галактоземия, гликогенозы и др.), связанные с наследственными дефектами соответствующих ферментативных систем. Достигнуты успехи в расшифровке структуры липидов: фосфолипидов, цереброзидов, ганглеозидов. Создается теория (-окисления жирных кислот. Разработаны современные представления о путях окисления и синтеза жирных кислот и сложных липидов. Значительный прогресс достигнут при изучении механизма биологического окисления, тканевого дыхания. Разработаны методы количественного определения целого ряда биохимических компонентов крови и тканей. В. А. Энгельгардтом, а также Липманном было введено понятие о "богатых энергией" фосфорных соединениях, в частности АТФ, в макроэргических связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании. 20 век ознаменовался расшифровкой химического строения всех известных в настоящее время витаминов. Вводятся международные единицы витаминов, устанавливаются потребности в витаминах человека и животных, создается витаминная промышленность. Не менее значительные успехи достигнуты в области биохимии гормонов. Получены первые данные о механизме действия гормонов на обмен веществ. Расшифрован механизм регуляции функций эндокринных желёз по принципу обратной связи. Возникает новое направление в биохимии - нейрохимия. Установлены особенности в химическом составе нервной ткани. Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении нервных заболеваний. Широко используются, особенно в сельском хозяйстве ингибиторы холинэстеразы (медиатора, действующего на нервные окончания) для борьбы с насекомыми-вредителями.  Важные результаты получены при изучении состава и свойств крови: изучена дыхательная функция крови в норме и при ряде патологических состояний; выяснен механизм переноса кислорода от лёгких к тканям и углекислоты от тканей к лёгким; уточнены и расшифрованы представления о механизме свёртывания крови, изучены факторы, при врождённом отсутствии которых в крови наблюдаются различные формы гемофилии. В развитии современной биохимии важную роль сыграла разработка ряда специальных методов исследования: изотопной индикации, дифференциального центрифугирования, спектрофотометрии, электронного парамагнитного резонанса и др. 

myunivercity.ru

История развития биохимии, реферат — allRefers.ru

История развития биохимии - Реферат, раздел Химия, - 2000 год - Элементарная биохимия

История развития биохимии. Можно выделить основные этапы развития биохимической науки. 1. Протобиохимия. Концепции процессов жизнедеятельности и их природы, развиваемые в древности, античности, в период средневековья. Концепции жизнедеятельности в Эпоху Возрождения, привлечение их для описания и объяснения химических процессов. 2. Экспериментальное изучение процессов жизнедеятельности в 17-18 вв. Первые химические теории и объяснения процессов дыхания, пищеварения, брожения. 3. Новая химия и изучение методами химии живых организмов и процесс жизнедеятельности. Первый кризис методологии в области взаимодействия химии и биологии. 4. Формирование биологической химии в рамках редукционистских программ биологии второй половины 19 века. 5. Развитие классической биологической химии. 6. Прогресс биохимии и революция в биологии во второй половине 20 века формирование физико-химической биологии.

Методологические, эмпирические и теоретические основы этого процесса. Интегрирующая роль физико-химической биологии в системе биологических наук. Шамин А. Н. История биологической химии Москва.

Наука. 1990г. Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям.

В 16-17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков, считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины.

Ятрохимики ввели в медицинскую практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в соках живого тела особых начал, так называемых ферментов, участвующих в разнообразных химических превращениях. Большая Медицинская Энциклопедия. Москва. Медицина. 1986г. В 17-18 вв. работали такие выдающиеся учные как М.В. Ломоносов и А. Лавуазье, открывшие и утвердившие в науке закон сохранения материи массы.

Лавуазье внс важнейший вклад в развитие не только химии, но и в изучение биологических процессов. Развивая более ранние наблюдения Майова, он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 века было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков.

Крупными событиями второй половины 18 века стали исследования Р.Реомюра и Л.Спалланцани по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных и птиц на различные виды пищи главным образом мясо и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии учение о ферментах, однако, обычно связывают с именами К.С. Кирхгофа, а также Пейена и Персо, впервые изучивших действие на крахмал фермента амилазы in vitro.

Важную роль сыграли работы Пристли и особенно Ингенхауса, открывших явление фотосинтеза конец 18 века. На рубеже 18 и 19 вв. были проведены и другие фундаментальные исследования в области сравнительной биохимии тогда же было установлено существование круговорота веществ в природе. Успехи статической биохимии с самого начала были неразрывно связаны с развитием органической химии.

Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле 1742-1786 гг Он выделил и описал свойства целого ряда природных соединений молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И.Берцелиуса и Ю.Либиха, закончившиеся разработкой в начале 19 века методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества.

Достигнутые успехи синтез в 1828 году мочевины, уксусной кислоты 1844 г жиров 1850 г углеводов 1861 г. имели особенно большое значение, так как показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Во второй половине 18 начале 19 века были проведены и другие важные исследования из мочевых камней была выделена мочевая кислота, из желчи холестерин, из меда глюкоза и фруктоза, из листьев зеленых растений пигмент хлорофилл, в составе мышц был открыт креатин. Было показано существование особой группы органических соединений растительных алкалоидов, нашедших позднее применение в медицинской практике.

Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты глицин и лейцин. Во Франции в лаборатории К. Бернара в составе ткани печени был открыт гликоген 1857, изучены пути его образования и механизмы, регулирующие его расщепление.

В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя и других были изучены структура и свойства белков, а также продуктов их гидролиза, в том числе и ферментативного. В связи с описанием дрожжевых клеток 1836-1838гг. начали активно изучать процесс брожения Либих, Пастер и др Вопреки мнению Либиха, рассматривавшего процесс брожения как чисто химический, протекающий с обязательным участием кислорода, Л. Пастер установил возможность существования анаэробиоза, то есть жизни в отсутствии воздуха, за счет энергии брожения.

Бухнеру удалось получить из дрожжевых клеток бесклеточный сок, способный, подобно живым дрожжам, сбраживать сахар с образованием спирта и углекислоты. Накопление большого количества сведений относительно химического состава растительных и животных организмов и химических процессов, протекающих в них, привело к необходимости систематизации и обобщений в области биохимии. Первой работы в этом плане был учебник Зимона 1842. Очевидно, именно с этого времени термин биологическая физиологическая химия утвердился в науке.

В России первый учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 году. Периодическая литература по биологической химии регулярно начала выходить с 1873 года в Германии. Позднее биохимические журналы начали издаваться во многих странах мира на английском, французском, русском и других языках. Во второй половине 19 века на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической химии.

Подлинный расцвет биохимии наступил в 20 веке. В самом начале его была сформулирована и экспериментально обоснована полипептидная теория строения белков Э. Фишер 1901-1902гг Позднее был разработан ряд аналитических методов, позволяющих изучить аминокислотный состав белка хроматография, рентгеноструктурный анализ, метод изотопной индикации, цитоспектрофотометрия, электронная микроскопия.

Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков. Синтезируется ряд важных белковых веществ. Выдающееся значение имели работы Л. Полинга, В. Виньо, Ф. Сэнгера, С. Мура, Д. Филлипса, Дж. Нортропа, М. М. Шемякина, Ф. Штрауба и др. Блестящие работы Чаргаффа, Дж. Уотсона и Ф. Крика завершаются выяснением структуры ДНК дезоксирибонуклеиновой кислоты. Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез ДНК и РНК. Решается 1962 и последующие годы одна из центральных проблем современной биохимии расшифровывается РНК аминокислотный код. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки.

Ранее классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. Детальному изучению подвергаются особенности процесса азотистого обмена у растений.

Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности. Детально исследуются продукты распада гемоглобина, расшифровываются пути образования гема. Выдающиеся успехи достигнуты в расшифровке структуры важнейших углеводов и механизмов углеводного обмена. Подробно выяснено превращение углеводов в пищеварительном тракте под влиянием пищеварительных ферментов и кишечных микроорганизмов.

Выясняются биохимические механизмы нарушения углеводного обмена диабет, галактоземия, гликогенозы и др связанные с наследственными дефектами соответствующих ферментативных систем. Достигнуты успехи в расшифровке структуры липидов фосфолипидов, цереброзидов, ганглеозидов. Создается теория -окисления жирных кислот. Разработаны современные представления о путях окисления и синтеза жирных кислот и сложных липидов. Значительный прогресс достигнут при изучении механизма биологического окисления, тканевого дыхания.

Разработаны методы количественного определения целого ряда биохимических компонентов крови и тканей. В. А. Энгельгардтом, а также Липманном было введено понятие о богатых энергией фосфорных соединениях, в частности АТФ, в макроэргических связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании. 20 век ознаменовался расшифровкой химического строения всех известных в настоящее время витаминов.

Вводятся международные единицы витаминов, устанавливаются потребности в витаминах человека и животных, создается витаминная промышленность. Не менее значительные успехи достигнуты в области биохимии гормонов. Получены первые данные о механизме действия гормонов на обмен веществ. Расшифрован механизм регуляции функций эндокринных желз по принципу обратной связи. Возникает новое направление в биохимии нейрохимия. Установлены особенности в химическом составе нервной ткани.

Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении нервных заболеваний. Широко используются, особенно в сельском хозяйстве ингибиторы холинэстеразы медиатора, действующего на нервные окончания для борьбы с насекомыми-вредителями. Важные результаты получены при изучении состава и свойств крови изучена дыхательная функция крови в норме и при ряде патологических состояний выяснен механизм переноса кислорода от лгких к тканям и углекислоты от тканей к лгким уточнены и расшифрованы представления о механизме свртывания крови, изучены факторы, при врожднном отсутствии которых в крови наблюдаются различные формы гемофилии.

В развитии современной биохимии важную роль сыграла разработка ряда специальных методов исследования изотопной индикации, дифференциального центрифугирования, спектрофотометрии, электронного парамагнитного резонанса и др. Шамин А. Н. История биологической химии. Москва. Наука. 1990г. Характеристика основных разделов элементарной биохимии.

Белки Анисимов А. А. Основы биохимии. Москва. Высшая школа. 1987г. В настоящее время установлено, что в живой природе не существует небелковых организмов. Белки это высокомолекулярные полимерные соединения, образующие при гидролизе аминокислоты. В организме животных белков содержится до 40-50 и более на сухую массу, у растений до 20-35.Разнообразны и очень важны функции белков. Строительная, структурная функция. Белки образуют основу протоплазмы любой живой клетки, в комплексе с липидами они являются основным структурным материалом всех клеточных мембран, всех органелл.

Каталитическая функция. Практически все биохимические реакции катализируются белками-ферментами. Двигательная функция. Любые формы движения в живой природе работа мышц, движение ресничек и жгутиков у простейших осуществляются белковыми структурами клеток. Транспортная функция. Белок крови гемоглобин транспортирует кислород от легких к тканям и органам.

Есть белки крови, транспортирующие липиды, железо, стероидные гормоны. Перенос многих веществ через клеточные мембраны осуществляют особые белки-переносчики. Защитная функция. Важнейшие факторы иммунитета антитела и система комплемента являются белками. Процесс свертывания крови, защищающий организм от чрезмерной кровопотери происходит с участием белков фибриногена, тромбина и других факторов свертывания, тоже являющихся белками. Внутренние стенки пищевода, желудка выстланы защитным слоем слизистых белков муцинов.

Основу кожи, предохраняющей тело от многих внешних воздействий, составляет белок коллаген. Гормональная функция. Ряд гормонов по своему строению относится к белкам инсулин или пептидам АКТГ, окситоцин, вазопрессин. Опорная функция. Сухожилия, суставные сочленения, кости скелета образованы в значительной степени белками. Запасная функция. Белки способны образовывать запасные отложения овальбумин яиц, казеин молока, многие белки семян. Белки имеют большое народнохозяйственное значение.

Белки являются основными компонентами пищи человека и животных. Многие заболевания связаны с хроническим белковым голоданием. Технология многих производств основана на переработке белков, Изменении их свойств. Структурными элементами белков являются аминокислоты. Аминокислоты можно рассматривать как производные карбоновых кислот, в которых один из водородов углеродной цепи замещен на группу Nh3. Строение белковой молекулы. Аминокислоты соединяются друг с другом ковалентной пептидной или амидной связью.

Образование ее происходит за счет аминогруппы Nh3одной аминокислоты и карбоксильной СООН группы другой с выделением молекулы воды. Структура молекулы белка имеет четыре уровня. Первичная структура белковой молекулы это порядок чередования аминокислот в полипептидной цепи. Вторичная структура это упорядоченное пространственное расположение отдельных участков полипептидной цепи, она образуется за счет замыкания водородных связей между пептидными группами.

Третичная структура описывает пространственную укладку всей молекулы белка. В поддержании третичной структуры белка, ее закреплении принимают участие различные типы связей ковалентные, ионные, водородные и гидрофобные взаимодействия. Под четвертичной структурой понимают способ взаимного расположения в пространстве отдельных полипептидных цепей в молекуле, характер связей между ними. Все белки принято делить на две группы простые, или протеины состоят только из аминокислот, и сложные в их молекуле помимо белковой части содержится и небелковая, простетическая хромопротеины, липопротеины, нуклеопротеины и т. д. Ферменты Диксон М. Уэбб Э. Ферменты.

Москва. 1982г. Том 1. Ферменты, или энзимы это катализаторы белковой природы, образующиеся и функционирующие во всех живых организмах. Являясь катализаторами веществами, ускоряющими реакции, ферменты имеют ряд общих свойств с химическими, небиологическими катализаторами. 1. Ферменты не входят в состав конечных продуктов реакции и выходят из реакции в первоначальном виде. Они не расходуются в процессе катализа. 2. Ферменты не могут возбудить реакций, противоречащих законам термодинамики, они только ускоряют те реакции, которые могут протекать и без них. 3. Ферменты, как правило, не смещают положения равновесия реакции, а лишь ускоряют его достижение. Для ферментов характерны и специфические свойства, отличающие их от химических катализаторов, выражающих их химическую природу. 1. По химическому строению молекулы все ферменты являются белками. 2. Эффективность ферментов выше, чем небиологических катализаторов. 3. Ферменты обладают узкой специфичностью, избирательностью действия на субстраты, т.е. на вещества, превращения, которых они катализируют. 4. Одним из важнейших свойств ферментов является их регулируемость. При ферментативных реакциях в отличие от неферментативных наблюдаются лишь незначительные побочные процессы, для ферментативных реакций характерен почти 100 выход продуктов.

Согласно классификации, все ферменты разделяются на шесть классов в соответствии с характером катализируемых ими реакций. 1. Оксидоредуктазы.

Катализируют окислительно-восстановительные реакции. 2. Трансферазы.

Катализируют реакции переноса группировок с одного соединения на другое. 3. Гидролазы. Ускоряют гидролитическое расщепление веществ. 4. Лиазы. Катализируют реакции негидролитического расщепления с образованием двойных связей или реакции присоединения по двойным связям. 5. Изомеразы.

Катализируют реакции изомерации соединений. 6. Лигазы синтетазы. Ускоряют реакции синтеза с использованием энергии макроэргических соединений. Ферментативные препараты находят широкое применение в различных отраслях промышленности. В хлебопекарном производстве для ускорения гидролиза крахмала и улучшения качества теста используют амилазы. При приготовлении детской пищи с целью облегчения переваривания углеводов и белков исходные продукты обрабатываются амилазой и протеиназами. Специфические протеиназы используют в виноделии, в кожевенной промышленности, при производстве синтетических моющих средств.

Ферменты используют как лекарственные средства пепсин, трипсин, химотрипсин, лидаза, стрептокиназа Нуклеиновые кислоты Анисимов А. А. Основы биохимии Москва. Высшая школа. 1987г. Нуклеиновые кислоты это сложные соединения, состоящие из пуринового или пиримидинового азотистого основания, моносахарида пентозы рибозы или дезоксирибозы и фосфорной кислоты. Нуклеиновые кислоты важнейший компонент всех живых организмов, всех живых клеток.

С участием нуклеиновых кислот происходит образование белков. Каждый живой организм содержит свои специфические белки, которыми он отличается то других организмов. Информация, определяющая особенности структуры белков, записана в ДНК и передается в ряду поколений молекулами ДНК. Все нуклеиновые кислоты делятся на два типа в зависимости от того, какой моносахарид входит в их состав рибонуклеиновая кислота РНК содержит рибозу, дезоксирибонуклеиновая кислота ДНК содержит дезоксирибозу.

Пуриновые и пиримидиновые азотистые основания, входящие в состав нуклеиновых кислот, являются производными ароматических, гетероциклических соединений пурина и пиримидина. Среди пуриновых азотистых оснований главную роль играют аденин А и гуанин Г, а среди пиримидиновых оснований цитозин Ц, урацил У, тимин Т. В состав ДНК входят аденин, цитозин, гуанин, тимин в РНК вместо тимина присутствует урацил. ДНК подобно белкам имеет первичную, вторичную и третичную структуру.

Хромосомы животных, бактерий, вирусов содержат по одной непрерывной ДНК-спирали огромной длины по сравнению с размерами ядра. Более 99 ДНК клетки находится в ее ядре и около 1 в цитоплазме. Наследственная информация передается с помощью уникальной последовательности участков ядерной ДНК. Содержащиеся в клетке РНК различаются размером, составом, функциями и локализацией. В цитоплазме содержится РНК нескольких видов транспортная РНК тРНК, информационная РНК иРНК, рибосомная РНК рРНК. В ядре локализована ядерная РНК яРНК, количество которой составляет от 4 до 10 от суммарной клеточной РНК. Синтез РНК, ДНК и белка очень сложные, взаимосвязанные процессы, которыми вплотную занимается такая наука, как генная инженерия.

Основная задача генной инженерии получение молекул ДНК in vitro, их размножение и введение в организм с целью получения новых наследственных свойств. Углеводы Анисимов А. А. Основы биохимии Москва. Высшая школа. 1987г. Углеводами называют альдегиды и кетоны многоатомных спиртов и полимеры этих соединений.

В биосфере углеводов больше, чем всех других органических соединений вместе взятых. В растительном мире на их долю приходится 80-90 из расчета на сухое вещество. В животном организме углеводов содержится около 2 массы тела, но значение их одинаково велико для всех живых организмов, о чем свидетельствуют те важные функции, которые они выполняют. 1. Энергетическая. Окисляясь в процессе дыхания, углеводы выделяют заключенную в них энергию и обеспечивают значительную часть потребности организма в ней. При окислении 1г углеводов выделяется 16,9 кДж энергии. 2. Пластическая.

Углеводы используются для синтеза многих важных для организма веществ нуклеиновых кислот, органических кислот, а из них аминокислот и далее белков, липидов и т. д. 3. Защитная. Углеводы основные компоненты оболочек растительных тканей, они участвуют в построении наружного скелета насекомых и ракообразных, в образовании клеточных стенок бактерий и клеточных мембран всех живых организмов. 4. Опорная.

Целлюлоза и другие полисахариды оболочек растений не только защищают клетки от внешних воздействий, но и образуют прочный остов растения. В комплексе с белками углеводы входят в состав хрящевых тканей человека и животных. 5. Специфические функции углеводов. Углеводы определяют антигенную специфичность, обусловливают различия групп крови и др. 6. Углеводы выполняют также функцию запасных питательных веществ.

Углеводы подразделяют на моносахариды, олигосахариды и полисахариды. К моносахаридам относятся углеводы и их производные, которые не способны расщепляться без потери основных углеводных свойств. Олигосахариды гидролизуются с образованием небольшого числа моносахаридов от 2 до 10. Полисахариды гликаны представляют собой высокомолекулярные полимеры моносахаридов и их производных. Число остатков моносахаридных единиц в них от 10 до нескольких тысяч. Образование углеводов происходит в растениях в процессе фотосинтеза и в микроорганизмах в процессе хемосинтеза.

Человек и животные не способны к первичному биосинтезу углеводов из неорганических веществ, они могут лишь образовывать их в процессе глюконеогенеза из других органических веществ органических кислот, жиров, аминокислот, но главным источником углеводов является пища. Углеводы составляют существенную часть рациона человека и многих животных. На их долю приходится 60-70 общей суммы калорий пищи человека. Углеводы всасываются через слизистую оболочку кишечника только в виде моносахаридов.

Для расщепления и переваривания крупных полисахаридов в пищеварительном тракте имеются десятки различных ферментных систем. В результате последовательного воздействия ферментов углеводы превращаются в моносахариды, они хорошо всасываются через кишечную стенку в кровь и разносятся по организму для выполнения своих функций. Липиды Северин С. Е. Липиды. Структура, биосинтез и функции Москва. 1987г. Липидами называются неоднородные в химическом отношении вещества, общим свойством которых является хорошая растворимость в неполярных органических растворителях эфире, ацетоне, хлороформе, бензоле и т. п. По своему химизму липиды, в большинстве случаев, представляют собой сложные эфиры высших жирных кислот с глицерином или некоторыми другими спиртами специфического строения.

В составе ряда липидов кроме этих компонентов встречаются фосфорная кислота, азотистые основания, или углеводы. В экстракте, полученном при обработке животных или растительных тканей органическими растворителями, присутствуют обычно высшие и полициклические спирты, жирорастворимые витамины, которые некоторые авторы также относят к классу липидов.

Липиды могут быть классифицированы следующим образом 1. Нейтральные жиры и свободные жирные кислоты 2. Фосфолипиды 3. Гликолипиды 4. Стероиды 5. Воска 6. Терпены Функции этого класса соединений важны и разнообразны. 1. Прежде всего, липиды в виде комплекса с белками являются структурными элементами мембран клеток и клеточных органелл.

В связи с этим они определяют транспорт веществ в клетки и участвуют в ряде других процессов, связанных с функционированием мембран. 2. Липиды служат также энергетическим материалом для организма. При окислении 1 г жира выделяется 39 кДж энергии, т. е. В 2 раза больше, чем при расщеплении 1 г углеводов. Одновременно липиды являются запасными веществами, в форме которых депонируется метаболическое топливо. Определенное исключение в этом отношении составляют бактерии у большинства из них накопление энергии осуществляется в нелипидной форме гликоген и только 9у некоторых видов в форме поли-3-гидроксимасляной кислоты. 3. В связи с хорошо выраженными термоизоляционными свойствами липиды сохраняют тепло в организме, особенно у морских и полярных животных, выполняя тем самым защитную функцию.

В виде жировой прокладки предохраняют тело и органы животных от механического повреждения, служат жировой смазкой для кожи. Восковой налет на листьях и плодах растений защищает от избыточного испарения и проникновения микроорганизмов.

Липидные компоненты бактерий в значительной мере определяют их чувствительность или резистентность к антибиотикам. Некоторые из липидов имеют отношение к иммунитету Гликолипиды. 4. Регуляторной активностью обладают простагландины, полипреноловые коферменты переносчики. От свойств и структуры мембранных липидов во многом зависит активность мембраносвязанных ферментов, особенности протекания процессов окислительного фосфорилирования. 5. Будучи важнейшими компонентами нервных тканей, гликолипиды оказывают существенное влияние на функционирование нервной системы.

Липиды - важная составная часть пищи. Взрослому человеку требуется от 70 до 145 г жира в сутки в зависимости от трудовой деятельности, пола, климатических условий. Причем необходимы как животные, так и растительные жиры. Липиды являются высокоэнергетическими веществами, поэтому за их счет удовлетворяется 25-30 потребности человеческого организма в энергетическом материале.

Кроме того, в составе животных жиров в организм поступают жирорастворимые витамины А, Д, К, Е, растительные жиры богаты непредельными жирными кислотами витамин F, являющимися предшественниками простагландинов, исходным материалом для синтеза организмом фосфолипидов и других веществ. Переваривание жира начинается в желудке, где находится фермент липаза. Основное расщепление липидов происходит в кишечнике, в первую очередь в двенадцатиперстной кишке под воздействием фермента поджелудочной железы липазы и желчи, поступающей из желчного пузыря. В результате ферментативного воздействия образуется очень тонкая жировая эмульсия, диаметр частиц которой не превышает 0,5 мкм. Такие эмульгированные жиры способны самостоятельно проходить через стенку кишечника и попадать в лимфатическую систему.

Витамины Смирнов М. И. Витамины Москва. 1987г. Витамины низкомолекулярные органические соединения, которые, присутствуя в пище в небольших количествах, являются незаменимыми ее компонентами, обеспечивают нормальное протекание биохимических и физиологических процессов путем участия в регуляции метаболизма.

Витамины не включаются в структуру тканей человека и животных и не используются в качестве источника энергии. Многие витамины представляют собой исходный материал для биосинтеза коферментов и простетических групп ферментов. В этом состоит одна из основных причин необходимости витаминов для нормального протекания обменных процессов.

Витамины делят на 1. Растворимые в воде витамины В1, В2, В6, В12, С 2. Растворимые в жирах витамины А, К, Д, Е 3. Витаминоподобные соединения. Для характеристики обеспеченности организма каким-либо витамином принято различать три ее формы авитаминоз, гиповитаминоз, гипервитаминоз. Первый термин применяют в отношении комплекса симптомов, развивающихся в результате достаточно длительного, полного или почти полного отсутствия одного из витаминов. Под гиповитаминозом понимают состояние, характеризующее частичную, но уже проявившуюся специфическим образом недостаточность витамина.

Гипервитаминоз комплекс патофизиологических и биохимических нарушений, возникающих вследствие длительного избыточного введения в организм любого из витаминов. Каждый гиповитаминоз имеет свои характерные симптомы. Например, недостаток витамина А вызывает снижение зрения в темноте гемералопию и сухость роговицы ксерофтальмию. Гиповитаминоз Д вызывает рахит. При авитаминозе К появляются подкожные и внутримышечные кровоизлияния.

Недостаточность витаминов группы В проявляется в нарушении функции нервной системы различного характера, анемии, болезнях кожи, замедлении роста и др. Основные симптомы С-витаминной недостаточности ломкость кровеносных капилляров, общая слабость, утомляемость, цинга. Элементарная биохимия изучает вышеописанные вещества, их взаимные превращения, биосинтез, роль в обмене веществ, регуляции метаболизма, значение для народного хозяйства, возможности их использования в промышленности.

allrefers.ru

История возникновения и основные этапы развития биохимии — реферат

Министерство  здравоохранения и социального  развития Российской Федерации

Государственное образовательное учреждение высшего  профессионального образования

первый    московский   государственный   медицинский университет   имени И.м.Сеченова 

      Кафедра  Биохимии     

      Реферат

      «История  возникновения и основные этапы  развития биохимии»  

      Специальность 03.01.04 Биохимия                                  

2011  

План 

Введение………………….………………………………………………………..3

Основная часть…………………………………………………………………….4

История возникновения и развития биохимии…………………………………4

Протобиохимия……………………………………………………………………4

Биохимия XVII – XVIII веков…………………………………………………... 5

Биохимия XIX века. Развитие классической биологической химии. …………5

История открытия белков ………………………………………………………..7

Биохимия в ХХ веке ……………………………………………………………..9

Век биохимии…………………………………………………………………… 11

Список литературы………………………………………………………………13

  

Введение.

     Биохимия (биологическая химия) - сравнительно молодая наука, возникшая на стыке  биологии и химии в конце XIX века. До этого времени вопросы, рассматриваемые ныне биохимией, изучались с разных сторон органической химией и физиологией. Она отличается от органической химии тем, что исследует только те вещества и химические реакции, которые имеют место в живых организмах, прежде всего в живой клетке. Биологическая химия изучает процессы развития и функционирования организмов на языке молекул, структуру и химические процессы, которые обеспечивают жизнь одно- и многоклеточных существ, населяющих Землю. [2]

     В соответствии с задачами исследования по биохимии, различают несколько направлений, в частности статическую, динамическую и функциональную биохимию. Статическая биохимия изучает: составляющие химические части организмов, их распределение, физико-химические и биологические свойства. Динамическая биохимия изучает всю совокупность химических превращений тех или иных органических соединений в процессе жизнедеятельности (окисление, восстановление, гидролитическое и фосфоролитичне расщепления, этерификации, синтез сложных соединений из более простых и т.п.). Динамическая биохимия, таким образом, стоит ближе к физиологии и медицине, чем к органической химии. Этим и объясняется то, что вначале биохимия называлась физиологической (или медицинской) химией.Функциональная биохимия изучает биохимические процессы, лежащие в основе проявлений жизнедеятельности организмов и отдельных органов (питание, ассимиляцию и диссимиляцию, дыхание, брожение, рост, размножение, наследственность, раздражимость), а также изменения этих процессов под влиянием различных внешних условий и внутренних факторов, связанных с видовой принадлежностью, возрастом и полом организмов. Согласно объектам исследования различают биохимию человека, животных, растений (фитобиохимия) и микроорганизмов (всех доменов жизни).

Выдающиеся  открытия в области учения о ферментах, биохимической генетики, молекулярной биологии и биоэнергетики превратили биохимию в фундаментальную дисциплину, позволяющую решать многие важные проблемы биологии и медицины. [5]

Учёным  удалось проникнуть в глубь живой  материи до уровня составляющих её молекул, надмолекулярных комплексов и их организованных ансамблей. Сформировалась совершенно новая система проблем, в которых фундаментальные познавательные задачи оказались сближенными с практическим приложением необычайно высокой эффективности (идёт ли речь о функционировании ферментов, деятельности мозга, защиты от инфекций и многого другого, включая важнейшую проблему манипулирования с генетическим материалом). Всё это привело к тому, что за последнюю четверть века - срок необычайно короткий, если подходить к нему с установившимися историческими мерками, - структура биологии подверглась значительным переменам. Внедрение методов химии в биологию содействовало тому, что формирующаяся биохимия оказалась среди биологических наук наилучшим образом подготовленной для проникновения в тайны функционирования клетки. Именно благодаря этому она превратилась из «служанки физиологии» в самостоятельную, методологически необычайно важную область биологии. [6 ]

                                                                                                                                                                       

История возникновения и развития  биохимии

Сам термин «биохимия» был впервые предложен в 1882 году, широкое использование он приобрел после работ немецкого химика Карла Нойберг в 1903 году. Однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечение, сыроварение, виноделие, выделка кож. Таким образом можно выделить основные этапы развития биохимии:

 

         1. «Протобиохимия». Концепции процессов жизнедеятельности и их природы, развиваемые в древности, античности, в период средневековья. Концепции жизнедеятельности  в Эпоху Возрождения, привлечение их для описания и объяснения химических процессов.

         2. Экспериментальное изучение процессов жизнедеятельности в 17-18 вв. Первые химические теории и объяснения процессов дыхания, пищеварения, брожения.

         3. «Новая химия» и изучение методами химии живых организмов и процесс жизнедеятельности. Первый кризис методологии в области взаимодействия химии и биологии.

         4. Формирование биологической химии в рамках редукционистских программ биологии второй половины 19 века.

         6.  Прогресс биохимии и революция в биологии во второй половине 20 века – формирование физико-химической биологии. Методологические, эмпирические и теоретические основы этого процесса. Интегрирующая роль физико-химической биологии в системе биологических наук.

Протобиохимия.

 

         Изучение  живой материи с химической стороны  началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным  органическим соединениям. В 16-17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков, считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии – немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчёркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины. Ятрохимики ввели в медицинскую практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в «соках» живого тела особых начал, так называемых «ферментов», участвующих в разнообразных химических превращениях.

Биохимия  XVII – XVIII веков.

 

     В 17-18 вв. работали такие выдающиеся учёные как М.В. Ломоносов и А. Лавуазье, открывшие и утвердившие в  науке закон сохранения материи (массы). Лавуазье внёс важнейший вклад  в развитие не только химии, но и в изучение биологических процессов. Развивая более ранние наблюдения Майова, он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 века было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков.

     Крупными  событиями второй половины 18 века стали  исследования Р.Реомюра и Л. Спалланцани  по физиологии пищеварения. Эти исследователи  впервые изучили действие желудочного  сока животных и птиц на различные  виды пищи (главным образом мясо) и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии (учение о ферментах), однако, обычно связывают с именами К.С. Кирхгофа, а также Пейена и Персо, впервые изучивших действие на крахмал фермента амилазы in vitro.

     Важную роль сыграли работы Пристли и особенно Ингенхауса, открывших явление фотосинтеза (конец 18 века).

Биохимия  XIX века. Развитие классической биологической химии.

 

     На  рубеже 18 и 19 вв. были проведены и  другие фундаментальные исследования в области сравнительной биохимии; тогда же было установлено существование круговорота веществ в природе.

     Успехи  статической биохимии с самого начала были неразрывно связаны с развитием  органической химии.

     Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле (1742-1786 гг.). Он выделил и описал свойства целого ряда природных соединений – молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И.Берцелиуса и Ю.Либиха, закончившиеся разработкой в начале 19 века методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества. Достигнутые успехи – синтез в 1828 году мочевины, уксусной кислоты (1844 г.), жиров (1850 г.), углеводов (1861 г.) – имели особенно большое значение, так как показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Во второй половине 18 – начале 19 века были проведены и другие важные исследования: из мочевых камней была выделена мочевая кислота, из желчи – холестерин, из меда – глюкоза и фруктоза, из листьев зеленых растений – пигмент хлорофилл, в составе мышц был открыт креатин. Было показано существование особой группы органических соединений – растительных алкалоидов, нашедших позднее применение в медицинской практике. Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты: глицин и лейцин.

     Во  Франции в лаборатории К. Бернара  в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление. В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя и других были изучены структура и свойства белков, а также продуктов их гидролиза, в том числе и ферментативного.

     В связи с описанием дрожжевых  клеток (1836-1838гг.) начали активно изучать  процесс брожения (Либих, Пастер и  др.). Ферментативные процессы известны человеку с глубокой древности. В  частности, брожение широко использовалось греками для получения вина, открытие этого способа приписывалось богу Бахусу. Народы многих стран издавна владели искусством приготовления хлеба, сыра, уксуса на основе переработки растительного и животного сырья. Однако современный этап в развитии энзимологии относится к началу прошлого века. В 1814 г. член Петербургской Академии наук К. Кирхгоф установил, что крахмал превращается в сахар под действием некоторых веществ, находящихся в прорастающих зернах ячменя. Дальнейший шаг вперед в этом направлении был сделан французскими химиками А. Пайеном и Ж. Пирсо, которые в 1833 г. показали, что термолабильный фактор, получаемый из солодового экстракта путем осаждения спиртом, обладает способностью гидролизовать крахмал; они назвали его - диастазой. [4]

     Вскоре  разгорелся спор о природе брожения, в котором участвовали крупнейшие представители естествознания того времени. В частности, Л. Пастер придерживался  мнения, что брожение вызывается живыми микроорганизмами и, следовательно, связано исключительно с их жизнедеятельностью. С другой стороны, Ю. Либих и К. Бернар отстаивали химическую природу брожения, считая, что оно связано с особыми веществами, подобными диастазе (амилазе). И. Берцелиус в 1837 г. показал, что ферменты - это катализаторы, поставляемые живыми клетками. Именно тогда появились термины «фермент» (от лат. fermentatio - брожение) и «энзим» (от греч. - в дрожжах). Спор был окончательно разрешен лишь в 1897 г., когда немецкие ученые братья Ганс и Эдвард Бухнеры показали, что дрожжевой бесклеточный сок (полученный при растирании дрожжей с инфузорной землей) способен сбраживать сахар с образованием спирта и СО2. Стало ясным, что дрожжевой сок содержит сложную смесь ферментов (названную зимазой) и эти ферменты способны функционировать как внутри, так и вне клеток. По словам одного из историков, появление пузырьков углекислого газа в опыте Бухнеров означало рождение современных биохимии и энзимологии. Попытки выделить ферменты в индивидуальном состоянии предпринимали многие исследователи, среди которых следует упомянуть А. Я. Данилевского, Р. Вильштеттера и др. Белковая природа ферментов была однозначно доказана в 1926 г. американским биохимиком Дж. Самнером, выделившим в кристаллическом виде фермент уреазу из семян канавалии. В 1930 г. Дж. Нортроп получил  кристаллический пепсин, а затем трипсин и химотрипсин. С этого периода стало общепринятым утверждение, что все ферменты являются белками.

turboreferat.ru

История возникновения и основные этапы развития биохимии — реферат

     В конце XIX в. на базе достижений в области  исследования структуры органических соединений биологического происхождения появилась возможность изучения специфичности ферментов. В это время Э. Фишером было выдвинуто знаменитое положение о необходимости стерического соответствия между ферментом и субстратом; по его образному выражению, «субстрат подходит к ферменту, как ключ к замку». В начале нашего века были заложены основы исследования кинетики действия ферментов. 

     История открытия белков 

     Важной  вехой в истории биохимической науки было открытие и изучение состава белков.

Свое  название белки получили от яичного  белка, который с незапамятных времен использовался человеком как  составная часть пищи. Согласно описаниям  Плиния Старшего, уже в Древнем  Риме яичный белок применялся и как лечебное средство. Однако подлинная история белковых веществ начинается тогда, когда появляются первые сведения о свойствах белков как химических соединений (свертываемость при нагревании, разложение кислотами и крепкими щелочами и т. п.). Среди белков животного происхождения, вслед за яичным белком, были охарактеризованы белки крови. Образование сгустков крови при ее свертывании описано еще основателем учения о кровообращении У. Гарвеем; позднее на этот факт обратил внимание и Р. Бойль. Среди растительных белков пальма первенства принадлежит нерастворимой в воде клейковине из пшеничной муки, которую впервые получил Я. Беккари. В своих работах, опубликованных в «Комментариях Болонского института наук и искусств» в 1728 г., он отметил сходство клейковины с веществами животной природы, почему и называл ее Gluten vegetabile. [3]

    Впервые термин белковый (albumineise) применительно  ко всем жидкостям животного организма  использовал, по аналогии с яичным белком, французский физиолог Ф. Кене в 1747 г., и именно в таком толковании термин вошел в 1751 г. в «Энциклопедию» Д. Дидро и Ж. Д'Аламбера.

    С этого периода исследования, связанные  с получением белков, приобретают  систематический характер. В 1759 г. А. Кессель-Майер, а несколько позднее  И. Руэль описали выделение клейковины из различных растений и охарактеризовали ее свойства. В 1762 г. А. Халлер исследовал процесс образования и свертывания казеина, а в 1777 г. А. Тувенель, работавший тогда в Петербурге, называет творог белковой частью молока (partie glutineuse). Важнейший этап в изучении белков связан с работами французского химика А. Фуркруа, который рассматривал белки как индивидуальные вещества и доказал единую природу белковых веществ, выделенных из растительных и животных источников. Для трех главных белковых компонентов крови он предложил названия альбумин, желатин и фибрин. В 1780 г. Ф. Вассерберг относит к телам белковой природы хрусталик глаза.

    К началу XIX столетия появляются первые работы по химическому изучению белков. Уже в 1803 г. Дж. Дальтон дает первые формулы белков - альбумина и желатина - как веществ, содержащих азот. В 1810 г. Ж. Гей-Люссак проводит химические анализы белков - фибрина крови, казеина и отмечает сходство их элементного состава. Решающее значение для понимания химической природы белков имело выделение при их гидролизе аминокислот. Вероятно, первым это сделал А. Браконно в 1820 г., когда, действуя на белки серной кислотой, при кипячении он получил «клеевой сахар», или гликокол (глицин), при гидролизе фибрина из мяса - лейцин и при разложении шерсти - также лейцин и смесь других продуктов гидролиза. Первой открытой аминокислотой был, видимо, аспарагин, выделенный Л. Вокленом из сока спаржи Asparagus (1806). В это же время Ж. Пруст получил лейцин при разложении сыра и творога. Затем из продуктов гидролиза белка были выделены многие другие аминокислоты .

     Первая  концепция строения белков принадлежит  голландскому химику Г. Мульдеру (1836). Основываясь  на теории радикалов, он сформулировал  понятие о минимальной структурной единице, входящей в состав всех белков. Эту единицу, которой приписывался состав 2C8h22N2, Г. Мульдер назвал протеином (Рг), а свою концепцию - теорией протеина. Позднее состав протеина был уточнен - C40H62N10O12; дополнительно к протеинным единицам некоторые белки содержали серу и фосфор.

     Г. Мульдер пользовался структурными формулами и для обозначения  ряда физиологических процессов. В  своем учебнике физиологической  химии (1844) он рассматривал дыхание  как окисление протеина, пищеварение - как перестройку белка с изменением содержания S, Р, Са и т. п.

     Работы  Г. Мульдера способствовали широкому распространению  взглядов о единстве всех белков, их фундаментальном значении в мире живой природы.

     В ходе проверки «теории протеина»  были резко расширены химические исследования белков, и в этом приняли участие выдающиеся химики того времени Ю. Либих и Ж. Дюма. Ю. Либих, поддерживавший в принципе идею протеиновой единицы, уточнил формулу протеина C48H72N12O14, Ж. Дюма предложил свой вариант C48H74N12О15, однако Г. Мульдер отстаивал правильность составленной им формулы. Его поддерживал И. Берцелиус, изложивший теорию протеина в качестве единственной теории строения белка в знаменитом учебнике химии (1840), что означало полное признание и торжество концепции Г. Мульдера.

     Однако  вскоре наступают трудные времена  для теории протеина. В 1846 г. Н. Э. Лясковский, работавший в лаборатории Ю. Либиха, доказал неточность многих приведенных  Г. Мульдером анализов. Свои сомнения в правильности теории публично высказал Ю. Либих, он планировал начать широкие исследования структуры белков и даже изучил продукты распада белковых веществ. Понимая весомость аргументов оппонентов, Г. Мульдер пытался корректировать формулу протеина (C36H50N8O10), но, в конце концов, уступил под натиском новых фактов и открытий. Теория протеина стала достоянием истории, однако ее значение непреходяще, ибо она стимулировала химические исследования белков, сделала белки одним из главных объектов бурно развивающейся химии природных веществ.

     Для формирования современных представлений о структуре белка существенное значение имели работы по расщеплению белковых веществ протеолитическими ферментами. Одним из первых их использует Г. Мейснер. В 1850 г. К. Леман предлагает называть пептонами продукты разложения белков пепсином. Изучая этот процесс, Ф. Хоппе-Зайлер и Ш. Вюрц в 70-х годах прошлого столетия пришли к важному выводу, что пептоны образуются в результате гидролиза белков ферментом. Они были весьма близки к правильному толкованию таких экспериментов с позиций структурной химии, но, к сожалению, последнего шага на пути к теории строения белка сделать не сумели. Очень близок к истине был и А. Я. Данилевский, который справедливо утверждал, что белки построены из аминокислот и имеют полимерную природу; главной же структурной единицей он ошибочно считал биуретовую группировку RNHCONHCOR'.

     Дальнейшие  структурные исследования белка, а  также основополагающие работы Т. Курциуса по синтезу пептидов привели в  конце концов к формулированию (1902) пептидной гипотезы, согласно которой белки построены из аминокислот, соединенных пептидными связями -СО-NH-. Пептидная теория (Э. Фишер и В. Гофмейстер) получила полное подтверждение в дальнейших исследованиях. Изучение строения белков было поставлено на прочную научную основу. [1]     

Биохимия  в ХХ веке 

Классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. В это время детальному изучению подвергаются особенности процесса азотистого обмена у растений. Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности. Детально исследуются продукты распада гемоглобина, расшифровываются пути образования гема.

     Выдающиеся  успехи достигнуты в расшифровке  структуры важнейших углеводов  и механизмов углеводного обмена. Подробно выяснено превращение углеводов  в пищеварительном тракте под  влиянием пищеварительных ферментов и кишечных микроорганизмов. Выясняются биохимические механизмы нарушения углеводного обмена (диабет, галактоземия, гликогенозы и др.), связанные с наследственными дефектами соответствующих ферментативных систем.

     Важным историческим событием в развитии биохимии стало открытие генов и их роль в передаче информации в клетке. Это открытие заложило возможность возникновения на только генетики, но и ее междисциплинарной отрасли с биохимией, молекулярной биологии.

Блестящие работы Чаргаффа, Дж. Уотсона и Ф. Крика завершаются выяснением структуры ДНК (дезоксирибонуклеиновой кислоты). Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез ДНК и РНК. Решается одна из центральных проблем современной биохимии – расшифровывается РНК – аминокислотный код. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки. Также в 1950-х годах Джордж отлей и Эдвард Татум доказали, что один ген отвечает за синтез одного белка. С разработкой методов анализа ДНК, таких как генетический фингерпринтинг, в 1988 году Колин Питчфорк стал первым человеком, обвиненной в убийстве с помощью свидетельства на основе ДНК, что стало первым крупным успехом биохимической судмедэкспертизы. В 2000-х годах Андрю Файр и Крег Мелло показали роль РНК-интерференции (RNAi), в подавлении экспрессии генов.

     Достигнуты  успехи в расшифровке структуры  липидов: фосфолипидов, цереброзидов, ганглеозидов. Создается теория β-окисления жирных кислот. Разработаны современные представления о путях окисления и синтеза жирных кислот и сложных липидов. Значительный прогресс достигнут при изучении механизма биологического окисления, тканевого дыхания.  Разработаны методы количественного определения целого ряда биохимических компонентов крови и тканей.

     В. А. Энгельгардтом, а также Липманном  было введено понятие о «богатых энергией» фосфорных соединениях, в частности АТФ, в макроэргических  связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании.

     20 век ознаменовался расшифровкой  химического строения всех известных  в настоящее время витаминов.  Вводятся международные единицы  витаминов, устанавливаются потребности  в витаминах человека и животных, создается витаминная промышленность.

     Не  менее значительные успехи достигнуты в области биохимии гормонов. Получены первые данные о механизме действия гормонов на обмен веществ. Расшифрован  механизм регуляции функций эндокринных  желёз по принципу обратной связи.

     Возникает новое направление в биохимии – нейрохимия. Установлены особенности в химическом составе нервной ткани. Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении нервных   заболеваний. Широко используются, особенно в сельском хозяйстве ингибиторы холинэстеразы (медиатора, действующего на нервные окончания) для борьбы с насекомыми-вредителями.

     Важные  результаты получены при изучении состава  и свойств крови: изучена дыхательная  функция крови в норме и  при ряде патологических состояний; выяснен механизм переноса кислорода от лёгких к тканям и углекислоты от тканей к лёгким; уточнены и расшифрованы представления о механизме свёртывания крови, изучены факторы,  при врождённом отсутствии которых в крови наблюдаются различные формы гемофилии.

     В развитии  современной биохимии важную роль сыграла разработка ряда специальных методов исследования: изотопной индикации, дифференциального центрифугирования, спектрофотометрии, электронного парамагнитного резонанса и др.

Век биохимии.

 

     Успехи  биохимии менее впечатляют, по сравнению  с успехами квантовой механики и теории относительности — не было эффектов, похожих на взрывы атомных бомб. Но значение этих успехов не меньше. Ученые выяснили молекулярную природу основных физиологических процессов, узнали, из чего состоят живые существа, описали назначение всех основных химических процессов, установили как преобразуется энергия в биологических процессах, как синтезируются все основные вещества в организме, изучили молекулярные механизмы наследственности и изменчивости, исследовали химические основы эмоций и нервной деятельности. И это все биохимия. Это XX век.

     Биохимия, в сущности, принадлежит лишь XX веку. К концу века, биохимия разделилась на дочерние науки — молекулярную биологию, биоэнергетику, иммунологию, энзимологию, молекулярную биофизику.

     Развитие  биохимии крайне драматично. Накал  страстей был здесь не меньше, чем в эти же годы в физике

     Сейчас, направление биохимических исследований протекают в трех направлениях, сформулированных Майклом Шугар. Биохимия растений исследует биохимию преимущественно автотрофных организмов и исследует такие процессы как фотосинтез и другие. Общая биохимия включает исследование как растений, так и животных и человека, тогда как медицинская биохимия фокусируется преимущественно на биохимии человека и отклонениях биохимических процессов от нормы, в частности в результате болезней.                                 

Список  литературы.

 
  1. Анисимов А. А. «Основы биохимии». М. Высшая школа. 1997 г.
  2. Большая медицинская энциклопедия. М. Медицина. 1986 г.
  3. Диксон М., Уэбб Э. «Ферменты». М. 19 92г. Том 1.
  4. Кольман Я., Рем К.-Г., Вирт Ю. «Наглядная биохимия» М. 2006 г.
  5. Северин Е. С. «Биохимия». М. 2003 г.
  6. Шамин А. Н. «История биологической химии». Москва. Наука.1993 г.

turboreferat.ru

Реферат на тему Элементарная биохимия

Министерство образования Российской Федерации.

Санкт-Петербургский Государственный Институт Сервиса

и Экономики.

Элементарная биохимия.

Реферат студентки группы № 017    1 курса  факультета Экономики и Управления   Сферой Сервиса Лизуновой Светланы Юрьевны Преподаватель Перевозников    Евгений Николаевич

Санкт-Петербург.

2000 год.

Содержание

Определение биохимии, предмет изучения

 3

История развития биохимии

 7

Характеристика основных разделов биохимии

13

          Белки

13

          Ферменты

15

          Нуклеиновые кислоты

16

          Углеводы

18

          Липиды

19

          Витамины

22

Актуальность биохимии как науки

23

Некоторые перспективы развития биохимии

24

Список литературы

26

БИОХИМИЯ (биологическая химия) – биологическая наука, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения и связь этих превращений с деятельностью органов и тканей. Совокупность процессов, неразрывно связанных с жизнедеятельностью, принято называть обменом веществ.[1]

За последние десятилетия из всех биологических наук наибольшее воздействие на развитие не только биологии, но и всего естествознания в целом оказала биохимия. Достижения биологии и в познавательном, и в практическом плане превзошли самые смелые прогнозы первой половины нашего века. Многое из того, что доступно современным биологам, ещё несколько лет назад представлялось фантастичным.

Учёным удалось проникнуть в глубь живой материи до уровня составляющих её молекул, надмолекулярных комплексов и их организованных ансамблей.  Изучение материальных носителей жизнедеятельности – нуклеиновых кислот и белков – приобрело качественно новый характер. Совершенно заново стали осмысливать и экспериментально исследовать механизмы хранения, передачи и реализации наследственной информации, преобразования материи и энергии в клетке, иммунитета, передачи нервных импульсов и восприятия клеткой сигналов и воздействий внешней среды, принципы гуморальной регуляции и многое другое.

Совершенно новым стало и изучение разнообразных регуляторов процессов, протекающих в клетках и тканях, гормонов, нейропептидов, простагландинов и т. п. Сформировалась совершенно новая система проблем, в которых фундаментальные познавательные задачи оказались сближенными с практическим приложением необычайно высокой эффективности (идёт ли речь о функционировании ферментов, раскрытии механизмов фотосинтеза, зрения, нервной регуляции, деятельности мозга, защиты от инфекций и многого другого, включая важнейшую проблему манипулирования с генетическим материалом).

Всё это привело к тому, что за последнюю четверть века – срок необычайно короткий, если подходить к нему с установившимися историческими мерками, - структура биологии подверглась значительным переменам.

Внедрение методов химии в биологию содействовало тому, что формирующаяся биохимия оказалась среди биологических наук наилучшим образом подготовленной для проникновения в тайны функционирования клетки. Именно благодаря этому она превратилась из «служанки физиологии» в самостоятельную, методологически необычайно важную область биологии. В поисках ответа на вопрос, как функционирует клетка, биохимия определила цитологию и первой проникла в мир субклеточных образований. Прогресс генетики также на определённом этапе зависел от развития биохимических методик и концепций.[2]

Изучение состава живых организмов издавна привлекало внимание учёных, поскольку к числу веществ, входящих в состав живых организмов, помимо воды, минеральных элементов, липидов, углеводов и т. д., относится  ряд наиболее сложных органических соединений: белки и их комплексы с рядом других биополимеров, в первую очередь с нуклеиновыми кислотами.

Установлена возможность спонтанного объединения  (при определённых условиях) большого числа белковых молекул с образованием сложных надмолекулярных структур, например, белкового чехла хвоста фага, некоторых клеточных органоидов и т. д. Это позволило ввести понятие о само собирающихся системах. Такого рода исследования создают предпосылки для решения проблемы образования сложнейших надмолекулярных структур, обладающих признаками и свойствами живой материи, из высокомолекулярных органических соединений, возникших некогда в природе абиогенным путём.

Современная биохимия как самостоятельная наука сложилась на рубеже 19 и 20 вв. До этого времени вопросы, рассматриваемые ныне биохимией, изучались с разных сторон органической химией и физиологией. Органическая химия, изучающая углеродистые соединения вообще, занимается, в частности, анализом и синтезом тех химических соединений, которые входят в состав живой ткани. Физиология же наряду с изучением жизненных функций изучает и химические процессы, лежащие в основе жизнедеятельности. Таким образом, биохимия является продуктом развития этих наук и её можно подразделить на две части: статическую (или структурную) и динамическую. Статическая биохимия занимается изучением природных органических веществ, их анализом и синтезом, тогда как динамическая биохимия изучает всю совокупность химических превращений тех или иных органических соединений в процессе жизнедеятельности. Динамическая биохимия, таким образом, стоит ближе к физиологии и медицине, чем к органической химии. Этим и объясняется то, что вначале биохимия называлась физиологической (или медицинской) химией.[3]

Как всякая быстро развивающаяся наука, биохимия вскоре после своего возникновения начала делится на ряд обособленных дисциплин: биохимия человека и животных, биохимия растений, биохимия микробов (микроорганизмов) и ряд других, поскольку, несмотря на биохимическое единство всего живого, в животных и растительных организмах существуют и коренные различия в характере обмена веществ. В первую очередь это касается процессов ассимиляции. Растения, в отличие от животных организмов, обладают способностью использовать для построения своего тела такие простые химические вещества, как углекислый газ, вода, соли азотной и азотистой кислот, аммиак и др. При  этом процесс построения клеток растений требует для своего осуществления притока энергии извне в форме солнечного света. Использование этой энергии первично осуществляют зелёные аутотрофные организмы (растения, простейшие, ряд бактерий), которые в свою очередь сами служат пищей для всех остальных так называемых гетеротрофных организмов (в том числе и человека), населяющих биосферу. Таким образом, выделение биохимии растений в особую дисциплину является обоснованным как с теоретической, так и с практической сторон.

 Развитие ряда отраслей промышленности и сельского хозяйства (переработка сырья растительного и животного происхождения, приготовление пищевых продуктов, изготовление витаминных и гормональных препаратов, антибиотиков и т.д.) привело к выделению в особый раздел технической биохимии.

При изучении химизма различных микроорганизмов исследователи столкнулись с целым рядом специфических веществ и процессов, представляющих большой научно-практический интерес (антибиотики микробного и грибкового происхождения, различные виды брожений, имеющие промышленное значение, образование белковых веществ из углеводов и простейших азотистых соединений и т. д.). Все эти вопросы рассматривают в биохимии микроорганизмов.

В 20 веке возникла как особая дисциплина биохимия вирусов.

Потребностями клинической медицины было вызвано появление клинической биохимии.

Из других разделов биохимии, которые обычно рассматриваются как достаточно обособленные дисциплины, имеющие свои задачи и специфические методы исследования, следует назвать: эволюционную и сравнительную биохимию (биохимические процессы и химический состав организмов на различных стадиях их эволюционного развития), энзимология (структура и функции ферментов, кинетика ферментативных реакций), биохимию витаминов, гормонов, радиационную биохимию, квантовую биохимию (сопоставление свойств, функций и путей превращения биологически важных соединений с их электронными характеристиками, полученными с помощью квантово-химических расчётов).

Особенно перспективным оказалось изучение структуры и функции белков и нуклеиновых кислот на молекулярном уровне. Этот круг вопросов изучается науками, возникшими на стыках биохимии с  биологией и генетикой.[4]

                         История развития биохимии.

Можно выделить основные этапы развития биохимической науки.

1. «Протобиохимия». Концепции процессов жизнедеятельности и их природы, развиваемые в древности, античности, в период средневековья. Концепции жизнедеятельности  в Эпоху Возрождения, привлечение их для описания и объяснения химических процессов.

2. Экспериментальное изучение процессов жизнедеятельности в 17-18 вв. Первые химические теории и объяснения процессов дыхания, пищеварения, брожения.

3. «Новая химия» и изучение методами химии живых организмов и процесс жизнедеятельности. Первый кризис методологии в области взаимодействия химии и биологии.

4. Формирование биологической химии в рамках редукционистских программ биологии второй половины 19 века.

5. Развитие классической биологической химии.

6. Прогресс биохимии и революция в биологии во второй половине 20 века – формирование физико-химической биологии. Методологические, эмпирические и теоретические основы этого процесса. Интегрирующая роль физико-химической биологии в системе биологических наук.[5]

Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным  органическим соединениям. В 16-17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков, считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии – немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчёркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины. Ятрохимики ввели в медицинскую практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в «соках» живого тела особых начал, так называемых «ферментов», участвующих в разнообразных химических превращениях.[6]

В 17-18 вв. работали такие выдающиеся учёные как М.В. Ломоносов и А. Лавуазье, открывшие и утвердившие в науке закон сохранения материи (массы). Лавуазье внёс важнейший вклад в развитие не только химии, но и в изучение биологических процессов. Развивая более ранние наблюдения Майова, он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 века было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков.

Крупными событиями второй половины 18 века стали исследования Р.Реомюра и Л.Спалланцани по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных и птиц на различные виды пищи (главным образом мясо) и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии (учение о ферментах), однако, обычно связывают с именами К.С. Кирхгофа, а также Пейена и Персо, впервые изучивших действие на крахмал фермента амилазы in vitro.

Важную роль сыграли работы Пристли и особенно Ингенхауса, открывших явление фотосинтеза (конец 18 века).

На рубеже 18 и 19 вв. были проведены и другие фундаментальные исследования в области сравнительной биохимии; тогда же было установлено существование круговорота веществ в природе.

Успехи статической биохимии с самого начала были неразрывно связаны с развитием органической химии.

Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле (1742-1786 гг.). Он выделил и описал свойства целого ряда природных соединений – молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И.Берцелиуса и Ю.Либиха, закончившиеся разработкой в начале 19 века методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества. Достигнутые успехи – синтез в 1828 году мочевины, уксусной кислоты (1844 г.), жиров (1850 г.), углеводов (1861 г.) – имели особенно большое значение, так как показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Во второй половине 18 – начале 19 века были проведены и другие важные исследования: из мочевых камней была выделена мочевая кислота, из желчи – холестерин, из меда – глюкоза и фруктоза, из листьев зеленых растений – пигмент хлорофилл, в составе мышц был открыт креатин. Было показано существование особой группы органических соединений – растительных алкалоидов, нашедших позднее применение в медицинской практике. Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты: глицин и лейцин.

Во Франции в лаборатории К. Бернара  в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление. В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя и других были изучены структура и свойства белков, а также продуктов их гидролиза, в том числе и ферментативного.

В связи с описанием дрожжевых клеток (1836-1838гг.) начали активно изучать процесс брожения (Либих, Пастер и др.). Вопреки мнению Либиха, рассматривавшего процесс брожения как чисто химический, протекающий с обязательным участием кислорода, Л. Пастер установил возможность существования анаэробиоза, то есть жизни в отсутствии воздуха, за счет энергии брожения. Бухнеру удалось получить из дрожжевых клеток бесклеточный сок, способный, подобно живым дрожжам, сбраживать сахар с образованием спирта и углекислоты.

Накопление большого количества сведений относительно химического состава растительных и животных организмов и химических процессов, протекающих в них, привело к необходимости систематизации и обобщений в области биохимии. Первой работы в этом плане был учебник Зимона (1842).  Очевидно, именно с этого времени термин «биологическая (физиологическая) химия» утвердился в науке. В России первый учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 году. Периодическая литература по биологической химии регулярно начала выходить с 1873 года в Германии. Позднее биохимические журналы начали издаваться во многих странах мира на английском, французском, русском и других языках. Во второй половине 19 века на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической химии.

Подлинный расцвет биохимии наступил в 20 веке. В самом начале его была сформулирована и экспериментально обоснована полипептидная теория строения белков (Э. Фишер 1901-1902гг.). Позднее был разработан ряд аналитических методов, позволяющих изучить аминокислотный состав белка (хроматография, рентгеноструктурный анализ, метод изотопной индикации, цитоспектрофотометрия, электронная микроскопия). Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков. Синтезируется ряд важных белковых веществ.

Выдающееся значение имели работы Л. Полинга, В. Виньо, Ф. Сэнгера, С. Мура, Д. Филлипса, Дж. Нортропа, М. М. Шемякина, Ф. Штрауба и др.

Блестящие работы Чаргаффа, Дж. Уотсона и Ф. Крика завершаются выяснением структуры ДНК (дезоксирибонуклеиновой кислоты). Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез ДНК и РНК. Решается (1962 и последующие годы) одна из центральных проблем современной биохимии – расшифровывается РНК – аминокислотный код. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки.

Ранее классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. Детальному изучению подвергаются особенности процесса азотистого обмена у растений. Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности. Детально исследуются продукты распада гемоглобина, расшифровываются пути образования гема.

Выдающиеся успехи достигнуты в расшифровке структуры важнейших углеводов и механизмов углеводного обмена. Подробно выяснено превращение углеводов в пищеварительном тракте под влиянием пищеварительных ферментов и кишечных микроорганизмов. Выясняются биохимические механизмы нарушения углеводного обмена (диабет, галактоземия, гликогенозы и др.), связанные с наследственными дефектами соответствующих ферментативных систем.

Достигнуты успехи в расшифровке структуры липидов: фосфолипидов, цереброзидов, ганглеозидов. Создается теория b-окисления жирных кислот. Разработаны современные представления о путях окисления и синтеза жирных кислот и сложных липидов. Значительный прогресс достигнут при изучении механизма биологического окисления, тканевого дыхания.  Разработаны методы количественного определения целого ряда биохимических компонентов крови и тканей.

В. А. Энгельгардтом, а также Липманном было введено понятие о «богатых энергией» фосфорных соединениях, в частности АТФ, в макроэргических связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании.

20 век ознаменовался расшифровкой химического строения всех известных в настоящее время витаминов. Вводятся международные единицы витаминов, устанавливаются потребности в витаминах человека и животных, создается витаминная промышленность.

Не менее значительные успехи достигнуты в области биохимии гормонов. Получены первые данные о механизме действия гормонов на обмен веществ. Расшифрован механизм регуляции функций эндокринных желёз по принципу обратной связи.

Возникает новое направление в биохимии – нейрохимия. Установлены особенности в химическом составе нервной ткани. Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении нервных   заболеваний. Широко используются, особенно в сельском хозяйстве ингибиторы холинэстеразы (медиатора, действующего на нервные окончания) для борьбы с насекомыми-вредителями.

Важные результаты получены при изучении состава и свойств крови: изучена дыхательная функция крови в норме и при ряде патологических состояний; выяснен механизм переноса кислорода от лёгких к тканям и углекислоты от тканей к лёгким; уточнены и расшифрованы представления о механизме свёртывания крови, изучены факторы,  при врождённом отсутствии которых в крови наблюдаются различные формы гемофилии.

В развитии  современной биохимии важную роль сыграла разработка ряда специальных методов исследования: изотопной индикации, дифференциального центрифугирования, спектрофотометрии, электронного парамагнитного резонанса и др.[7]

Характеристика основных разделов элементарной биохимии.

Белки[8]

В настоящее время установлено, что в живой природе не существует небелковых организмов.

Белки – это высокомолекулярные полимерные соединения, образующие при гидролизе аминокислоты. В организме животных белков содержится до 40-50 % и более на сухую массу, у растений до 20-35%.Разнообразны и очень важны функции белков.

Строительная, структурная функция. Белки образуют основу протоплазмы любой живой клетки, в комплексе с липидами они являются основным структурным материалом всех клеточных мембран, всех органелл.

Каталитическая функция. Практически все биохимические реакции катализируются белками-ферментами.

Двигательная функция. Любые формы движения в живой природе (работа мышц, движение ресничек и жгутиков у простейших) осуществляются белковыми структурами клеток.

Транспортная функция.  Белок крови гемоглобин транспортирует кислород от легких к тканям и органам. Есть белки крови, транспортирующие липиды, железо, стероидные гормоны. Перенос многих веществ через клеточные мембраны осуществляют особые белки-переносчики.

Защитная функция. Важнейшие факторы иммунитета – антитела и система комплемента являются белками. Процесс свертывания крови, защищающий организм от чрезмерной кровопотери происходит с участием белков фибриногена, тромбина и других факторов свертывания, тоже являющихся белками. Внутренние стенки пищевода, желудка выстланы защитным слоем слизистых белков – муцинов. Основу кожи, предохраняющей тело от многих внешних воздействий, составляет белок коллаген.

Гормональная функция. Ряд гормонов по своему строению относится к белкам (инсулин) или пептидам (АКТГ, окситоцин, вазопрессин).

Опорная функция. Сухожилия, суставные сочленения, кости скелета образованы в значительной степени белками.

Запасная функция. Белки способны образовывать запасные отложения (овальбумин яиц, казеин молока, многие белки семян).

Белки имеют большое народнохозяйственное значение. Белки являются основными компонентами пищи человека и животных. Многие заболевания связаны с хроническим белковым голоданием. Технология многих производств основана на переработке белков, Изменении их свойств.

Структурными элементами белков являются аминокислоты.

Аминокислоты можно рассматривать как производные карбоновых кислот, в которых один из водородов углеродной цепи замещен на группу Nh3.

Строение белковой молекулы. Аминокислоты соединяются друг с другом ковалентной пептидной или амидной связью. Образование ее происходит за счет аминогруппы (Nh3)одной аминокислоты и карбоксильной (СООН) группы другой с выделением молекулы воды.

Структура молекулы белка имеет четыре уровня. Первичная структура белковой молекулы это порядок чередования аминокислот в полипептидной цепи. Вторичная структура – это упорядоченное пространственное расположение отдельных участков полипептидной цепи, она образуется за счет замыкания водородных связей между пептидными группами. Третичная структура описывает пространственную укладку всей молекулы белка. В поддержании третичной структуры белка, ее закреплении принимают участие различные типы связей (ковалентные, ионные, водородные и гидрофобные взаимодействия). Под четвертичной структурой понимают способ взаимного расположения в пространстве отдельных полипептидных цепей в молекуле, характер  связей между ними.

Все белки принято делить на две группы: простые, или протеины (состоят только из аминокислот), и сложные (в их молекуле помимо белковой части содержится и небелковая, простетическая): хромопротеины, липопротеины, нуклеопротеины и т. д.

Ферменты[9]

Ферменты, или энзимы, - это катализаторы белковой природы, образующиеся и функционирующие во всех живых организмах.

Являясь катализаторами – веществами, ускоряющими реакции, ферменты имеют ряд общих свойств с химическими, небиологическими катализаторами.

1. Ферменты не входят в состав конечных продуктов реакции и выходят из реакции в первоначальном виде. Они не расходуются в процессе катализа.

2. Ферменты не могут возбудить реакций, противоречащих законам термодинамики, они только ускоряют те реакции, которые могут протекать и без них.

3. Ферменты, как правило, не смещают положения равновесия реакции, а лишь ускоряют его достижение.

Для ферментов характерны и специфические свойства, отличающие их от химических катализаторов, выражающих их химическую природу.

1. По химическому строению молекулы все ферменты являются белками.

2. Эффективность ферментов выше, чем небиологических катализаторов.

3. Ферменты обладают узкой специфичностью, избирательностью действия на субстраты, т.е. на вещества, превращения, которых они катализируют.

4. Одним из важнейших свойств ферментов является их регулируемость.

При ферментативных реакциях в отличие от неферментативных наблюдаются лишь незначительные побочные процессы, для ферментативных реакций характерен почти 100% выход продуктов.

Согласно классификации, все ферменты разделяются на шесть классов в соответствии с характером катализируемых ими реакций.

1. Оксидоредуктазы. Катализируют окислительно-восстановительные реакции.

2. Трансферазы. Катализируют реакции переноса группировок с одного соединения на другое.

3. Гидролазы. Ускоряют гидролитическое расщепление веществ.

4. Лиазы. Катализируют реакции негидролитического расщепления с образованием двойных связей или реакции присоединения по двойным связям.

5. Изомеразы. Катализируют реакции изомерации соединений.

6. Лигазы (синтетазы). Ускоряют реакции синтеза с использованием энергии макроэргических соединений.

Ферментативные препараты находят широкое применение в различных отраслях промышленности. В хлебопекарном производстве для ускорения гидролиза крахмала и улучшения качества теста используют амилазы. При приготовлении детской пищи с целью облегчения переваривания углеводов и белков исходные продукты обрабатываются амилазой и протеиназами. Специфические протеиназы  используют в виноделии, в кожевенной промышленности, при производстве синтетических моющих средств. Ферменты используют как лекарственные средства: пепсин, трипсин, химотрипсин, лидаза, стрептокиназа…

Нуклеиновые кислоты[10]

Нуклеиновые кислоты – это сложные соединения, состоящие из пуринового или пиримидинового азотистого основания, моносахарида пентозы (рибозы или дезоксирибозы) и фосфорной кислоты.

Нуклеиновые кислоты – важнейший компонент всех живых организмов, всех живых клеток. С участием  нуклеиновых кислот происходит образование белков. Каждый живой организм содержит свои специфические белки, которыми он отличается то других организмов. Информация, определяющая особенности структуры белков, «записана» в ДНК и передается в ряду поколений молекулами ДНК. Все нуклеиновые кислоты делятся на два типа в зависимости от того, какой моносахарид входит в их состав; рибонуклеиновая кислота (РНК) содержит рибозу, дезоксирибонуклеиновая кислота (ДНК) содержит дезоксирибозу.

Пуриновые и пиримидиновые азотистые основания, входящие в состав нуклеиновых кислот, являются производными ароматических, гетероциклических соединений – пурина и пиримидина. Среди пуриновых азотистых оснований главную роль играют аденин (А) и гуанин (Г), а среди пиримидиновых оснований – цитозин (Ц), урацил (У), тимин (Т). В состав ДНК входят аденин, цитозин, гуанин, тимин; в РНК  вместо тимина присутствует урацил.

ДНК  подобно белкам имеет первичную, вторичную и третичную структуру. Хромосомы животных, бактерий, вирусов содержат по одной непрерывной ДНК-спирали огромной длины по сравнению с размерами ядра. Более 99% ДНК клетки находится в ее ядре и около 1% в цитоплазме. Наследственная информация передается с помощью уникальной последовательности участков ядерной ДНК.

Содержащиеся в клетке РНК различаются размером, составом, функциями и локализацией. В цитоплазме содержится РНК нескольких видов: транспортная РНК (тРНК), информационная РНК (иРНК), рибосомная РНК (рРНК). В ядре локализована ядерная РНК (яРНК), количество которой составляет от 4 до 10% от суммарной клеточной РНК.

Синтез РНК, ДНК и белка очень сложные, взаимосвязанные процессы, которыми вплотную занимается такая наука, как генная инженерия. Основная задача генной инженерии – получение молекул ДНК in vitro, их размножение и введение в организм с целью получения новых наследственных свойств.

Углеводы[11]

Углеводами называют альдегиды и кетоны многоатомных спиртов и полимеры этих соединений. В биосфере углеводов больше, чем всех других органических соединений вместе взятых. В растительном мире на их долю приходится 80-90% из расчета на сухое вещество. В животном организме углеводов содержится около 2% массы тела, но значение их одинаково велико для всех  живых организмов, о чем свидетельствуют те важные функции, которые они выполняют.

1. Энергетическая. Окисляясь в процессе дыхания, углеводы выделяют заключенную в них энергию и обеспечивают значительную часть потребности организма в ней. При окислении 1г углеводов выделяется 16,9 кДж энергии.

2. Пластическая. Углеводы используются для синтеза многих важных для организма веществ: нуклеиновых кислот, органических кислот, а из них – аминокислот и далее белков, липидов и т. д.

3. Защитная. Углеводы – основные компоненты оболочек растительных тканей, они участвуют в построении наружного скелета насекомых и ракообразных, в образовании клеточных стенок бактерий и клеточных мембран всех живых организмов.

4. Опорная. Целлюлоза и другие полисахариды оболочек растений не только защищают клетки от внешних воздействий, но и образуют прочный остов растения. В комплексе с белками углеводы входят в состав хрящевых тканей человека и животных.

5. Специфические функции углеводов. Углеводы определяют антигенную специфичность, обусловливают различия групп крови и др.

6. Углеводы выполняют также функцию запасных питательных веществ.

Углеводы подразделяют на моносахариды, олигосахариды и полисахариды.

К моносахаридам относятся углеводы и их производные, которые не способны расщепляться без потери основных углеводных свойств.

Олигосахариды гидролизуются с образованием небольшого числа моносахаридов (от 2 до 10).

Полисахариды (гликаны) представляют собой высокомолекулярные полимеры моносахаридов и их производных. Число остатков моносахаридных единиц в них  от 10 до нескольких тысяч.

            Образование углеводов происходит в растениях в процессе фотосинтеза и в микроорганизмах в процессе хемосинтеза.

            Человек и животные не способны к первичному биосинтезу углеводов из неорганических веществ, они могут лишь образовывать их в процессе глюконеогенеза из других органических веществ (органических кислот, жиров, аминокислот), но главным источником углеводов является пища. Углеводы составляют существенную часть рациона человека и многих животных. На их долю приходится 60-70% общей  суммы калорий пищи человека. Углеводы всасываются через слизистую оболочку кишечника только в виде моносахаридов. Для расщепления и переваривания крупных полисахаридов в пищеварительном тракте имеются десятки различных ферментных систем. В результате последовательного воздействия ферментов углеводы превращаются в моносахариды, они хорошо всасываются через кишечную стенку в кровь и разносятся по организму для выполнения своих функций.

Липиды[12]

Липидами называются неоднородные в химическом отношении вещества, общим свойством которых является хорошая растворимость в неполярных органических растворителях: эфире, ацетоне, хлороформе, бензоле и т. п. По своему химизму липиды, в большинстве случаев, представляют собой сложные эфиры высших жирных кислот с глицерином или некоторыми другими спиртами специфического строения. В составе ряда липидов кроме этих компонентов встречаются фосфорная кислота, азотистые основания, или углеводы. В экстракте, полученном при обработке животных или растительных тканей органическими  растворителями, присутствуют обычно высшие и полициклические спирты, жирорастворимые витамины, которые некоторые авторы также относят к классу липидов.

Липиды могут быть классифицированы следующим образом:

1. Нейтральные жиры и свободные жирные кислоты

2. Фосфолипиды

3. Гликолипиды

4. Стероиды

5. Воска

6. Терпены

Функции этого класса соединений важны и разнообразны.

1. Прежде всего, липиды в виде комплекса с белками являются структурными элементами мембран клеток и клеточных органелл. В связи с этим они определяют транспорт веществ в клетки и участвуют в ряде других процессов, связанных с функционированием мембран.

2. Липиды служат также энергетическим материалом для организма. При окислении 1 г жира выделяется 39 кДж энергии, т. е. В 2 раза больше, чем при расщеплении 1 г углеводов. Одновременно липиды являются запасными веществами, в форме которых депонируется метаболическое топливо. Определенное исключение в этом отношении составляют бактерии: у большинства из них накопление энергии осуществляется в нелипидной форме (гликоген) и только 9у некоторых видов – в форме поли-3-гидроксимасляной кислоты.

3. В связи с хорошо выраженными термоизоляционными свойствами липиды сохраняют тепло в организме, особенно у морских и полярных животных, выполняя тем самым защитную функцию. В виде жировой прокладки предохраняют тело и органы животных от механического повреждения, служат жировой смазкой для кожи. Восковой налет на листьях и плодах растений защищает от избыточного испарения и проникновения микроорганизмов. Липидные компоненты бактерий в значительной мере определяют их чувствительность или резистентность к антибиотикам. Некоторые из липидов имеют отношение к иммунитету (Гликолипиды).

4. Регуляторной активностью обладают простагландины, полипреноловые коферменты – переносчики. От свойств и структуры мембранных липидов во многом зависит активность мембраносвязанных ферментов, особенности протекания процессов окислительного фосфорилирования.

5. Будучи важнейшими компонентами нервных тканей, гликолипиды оказывают существенное влияние на функционирование нервной системы.

Липиды  - важная составная часть пищи. Взрослому человеку требуется от 70 до 145 г жира в сутки в зависимости от трудовой деятельности, пола, климатических условий. Причем необходимы как животные, так и растительные жиры. Липиды являются высокоэнергетическими веществами, поэтому за их счет удовлетворяется 25-30% потребности человеческого организма в энергетическом материале. Кроме того, в составе животных жиров в организм поступают жирорастворимые витамины А, Д, К, Е, растительные жиры богаты непредельными жирными кислотами (витамин F), являющимися предшественниками простагландинов, исходным материалом для синтеза организмом фосфолипидов и других веществ.

Переваривание жира начинается в желудке, где находится фермент липаза. Основное расщепление липидов происходит в кишечнике, в первую очередь в двенадцатиперстной кишке под воздействием фермента поджелудочной железы липазы и желчи, поступающей из желчного пузыря. В результате ферментативного воздействия образуется очень тонкая жировая эмульсия, диаметр частиц которой не превышает 0,5 мкм. Такие эмульгированные жиры способны самостоятельно проходить через стенку кишечника и попадать в лимфатическую систему.

Витамины[13]

Витамины – низкомолекулярные органические соединения, которые, присутствуя в пище в небольших количествах, являются незаменимыми ее компонентами, обеспечивают нормальное протекание биохимических и физиологических процессов путем участия в регуляции метаболизма. Витамины не включаются в структуру тканей человека и животных и не используются в качестве источника энергии.

Многие витамины представляют собой исходный материал для биосинтеза коферментов и простетических групп ферментов. В этом состоит одна из основных причин необходимости витаминов для нормального протекания обменных процессов.

Витамины делят на:

1. Растворимые в воде (витамины В1, В2, В6, В12, С)

2. Растворимые в жирах (витамины А, К, Д, Е)

3. Витаминоподобные соединения.

Для характеристики обеспеченности организма каким-либо витамином принято различать три ее формы: авитаминоз, гиповитаминоз, гипервитаминоз. Первый термин применяют в отношении комплекса симптомов, развивающихся в результате достаточно длительного, полного или почти полного отсутствия одного из витаминов. Под гиповитаминозом понимают состояние, характеризующее частичную, но уже проявившуюся специфическим образом недостаточность витамина. Гипервитаминоз – комплекс патофизиологических и биохимических нарушений, возникающих вследствие длительного избыточного введения в организм любого из витаминов.

Каждый  гиповитаминоз имеет свои характерные симптомы. Например, недостаток витамина А вызывает снижение зрения в темноте (гемералопию) и сухость роговицы (ксерофтальмию). Гиповитаминоз Д вызывает рахит. При авитаминозе К появляются подкожные и внутримышечные кровоизлияния. Недостаточность витаминов группы В проявляется в нарушении функции нервной системы различного характера, анемии, болезнях кожи, замедлении роста и др. Основные симптомы С-витаминной недостаточности: ломкость кровеносных капилляров, общая слабость, утомляемость, цинга.

 

Элементарная биохимия изучает вышеописанные вещества, их взаимные превращения, биосинтез, роль в обмене веществ, регуляции метаболизма, значение для народного хозяйства, возможности их использования в промышленности.

Актуальность биохимии как науки.

Невозможно представить в настоящее время практически ни одной естественной науки, которая не использовала бы достижения биохимии. Биологическая химия имеет и чисто научное (теоретическое) и, что наиболее важно, практическое (прикладное) значение.

Сельскохозяйственная наука использует биохимию для борьбы с насекомыми-вредителями, для создания удобрений, для селекции сортов растений и пород животных.

Пищевая промышленность использует достижения биохимии для производства легко усваиваемого детского питания, для обработки продуктов, подлежащих консервированию, для производства кисломолочных продуктов (ферменты в производстве сыра).

Генетика очень тесно взаимодействует с биохимией. Только благодаря использованию биохимических процессов и реакций возможно выделение генов, расшифровка генетического кода, воздействие на патологические гены с целью борьбы с генетическими заболеваниями.

Фармацевтическая промышленность использует результаты биохимических исследований для производства различных препаратов: Витаминов, ферментов, кровоостанавливающих лекарств, антибиотиков и т. д.

Радиология и биохимия также имеют точки соприкосновения. Существует отдельная наука – радиационная биохимия, которая изучает изменения обмена веществ, возникающие в организме при действии на него ионизирующего излучения. Воздействие радиации на организм может инициировать биохимические процессы, которые приводят к развитию лучевой болезни, рака, лейкозов, врождённых пороков развития у детей, бесплодия и других заболеваний.

Исходя из этого, конечно, наиболее прикладной характер имеет биохимия в медицине. Современные врачи проводят биохимические исследования крови, мочи, желудочного сока, спинномозговой жидкости и др. Имея результаты только биохимических исследований можно поставить диагнозы множества заболеваний (гепатита, почечной недостаточности, анемии, мочекаменной болезни, сахарного диабета и многих других). Ориентируясь на динамику изменения биохимических показателей, врачи назначают и корректируют дозы лекарственных средств и добиваются выздоровления.

Некоторые перспективы развития биохимии.

Успехи Биохимии в значительной мере определяют не только современный уровень медицины, но и ее возможный дальнейший прогресс. Одной из основных проблем биохимии и молекулярной биологии становится исправление дефектов генетического аппарата. Радикальная терапия наследственных болезней, связанных с мутационными изменениями тех или иных генов, ответственных за синтез определенных белков и ферментов, в принципе возможна лишь путем трансплантации синтезированных in vitro или выделенных из клеток аналогичных «здоровых» генов. Весьма заманчивой задачей является также овладение механизмом регуляции считки генетической информации, закодированной в ДНК, и расшифровки на молекулярном уровне механизма клеточной дифференцировки в онтогенезе. Проблема терапии ряда вирусных заболеваний, особенно лейкозов, вероятно, не будет решена до тех пор, пока не будет полностью ясен механизм взаимодействия вирусов (в частности, онкогенных) с инфицируемой клеткой. В этом направлении интенсивно ведутся работы во многих лабораториях мира. Выяснение картины жизни на молекулярном уровне позволит не только полностью понять происходящие в организме процессы, но и откроет новые возможности в создании эффективных лекарственных средств, в борьбе с преждевременным старением, развитием сердечно-сосудистых заболеваний, продлении жизни.

Список литературы.

1. Большая медицинская энциклопедия. Москва. Медицина. 1986г.

2. Шамин А. Н. «История биологической химии». Москва. Наука.1990г.

3. Анисимов А. А. «Основы биохимии». Москва. Высшая школа. 1987г.

4. Диксон М., Уэбб Э. «Ферменты». Москва. 1982г. Том 1.

5. Северин С. Е. «Липиды. Структура, биосинтез и функции». М. 1987г.

6. Смирнов М. И. А «Витамины». Москва. 1987г.

[1] Большая Медицинская Энциклопедия . Москва. Медицина. 1986г.

[2] Шамин А. Н. «История биологической химии» Москва. Наука. 1990г.

[3] Большая Медицинская Энциклопедия. Москва. Медицина. 1986г.

[4] Шамин А. Н. «История биологической химии» Москва. Наука. 1990г.

[5] Шамин А. Н. «История биологической химии» Москва. Наука. 1990г.

[6] Большая Медицинская Энциклопедия. Москва. Медицина. 1986г.

[7] Шамин А. Н. «История биологической химии». Москва. Наука.  1990г.

[8] Анисимов А. А. «Основы биохимии». Москва. Высшая школа. 1987г.

[9] Диксон М. Уэбб Э. «Ферменты». Москва. 1982г. Том 1.

[10] Анисимов А. А. «Основы биохимии» Москва. Высшая школа. 1987г.

[11] Анисимов А. А. «Основы биохимии» Москва. Высшая школа. 1987г.

[12] Северин С. Е. «Липиды. Структура, биосинтез и функции» Москва. 1987г.

[13] Смирнов М. И. «Витамины» Москва. 1987г.

bukvasha.ru

История развития биохимии

Количество просмотров публикации История развития биохимии - 56

Биохимия растений в России зародилась в 1814 году, когда академик К. С. Кирхгоф в Петербурге описал гидролиз крахмала под действием солодового экстракта͵ полученного из ячменя.

Андрей Сергеевич Фаминцын (1838-1918) создал крупный труд ʼʼОбмен веществ и превращение энергии в растенияхʼʼ. А.М. Бутлеров способствовал его опубликованию. Выдающимися учениками Фамицына А.С. была профессор Дмитрий Иосифович Ивановский (1864-1920) и Иван Парфеньевич Бородин (1847-1930). Ивановский Д.И. открыл фильтрующиеся вирусы. И.П. Бородин работал в области дыхания растений и участия белков в данном процессе.

Академик Алексей Николаевич Бах в 1921 году организует в Москве исследовательский институт здравоохранения (впоследствии НИИбиохимии) и очень много работал в области ферментологии. Он создал отрасль технической биохимии. Академики Владимир Иванович Палладин и Сергей Павлович Костычев исследовали дыхание и брожение.

Климент Аркадьевич Тимирязев прославился классическими исследованиями в области изучения процесса усвоения углекислого газа зелœеными растениями на свету (фотосинтез) и работами в области физики и химии хлорофилла. Академик Дмитрий Николаевич Прянишников изучал превращения азота в почве и в растениях. Сергей Павлович Костычев и Владимир Степанович Буткевич организовали микробиологическое получение лимонной кислоты. А.Л. Курсанов создал в России производство чая, основанное на знании биохимических превращений, происходящих в чайном листе. Академик Александр Иванович Опарин организовал школу биохимиков в области превращения растительного сырья. Он первый создал рационально обоснованное виноделие. Научное обоснование хлебопечению дал Вацлав Леонович Кретович, ферментации табака – Александр Иванович Смирнов. Витамины были открыты Николаем Ивановичем Луниным в 1881 году. В Ленинграде Н.Н. Иванов изучал биохимию культурных растений, там же в области биохимии растительного сырья работал М.И. Княгиничев. В.В. Виноградский изучал обмен веществ у микроорганизмов. М.В. Ненцкий – один из основоположников отечественной биохимии, занимался превращением веществ в зелœеных растениях. Михаил Семенович Цвет (1872-1919) разделил пигмент хлорофилл на отдельные компоненты.

Значительный вклад в развитие биохимии внесли и зарубежные ученые.

В 1828 году Ф. Велœер впервые синтезировал органическое вещество – мочевину из неорганических соединœений. Во второй половинœе XIX века была определœена структура аминокислот, углеводов и жиров и установлена природа пептидной связи в белках. Исследованиями Ю. Либиха, Л. Пастера, Э. Бухнера были получены первые сведения о химических превращениях белков, жиров и углеводов в живых организмах, также было положено начало изучению химизма брожения.

В результате работ О. Варбурга, Г. Эмдена, О. Мейергофа и Х. Кребса были установлены механизмы базовых этапов процессов брожения и биологического окисления – был описан цикл Кребса. Д. Самнер в 1926 году экспериментально доказал белковую природу ферментов.

В 1943 году Ф. Липман открыл кофермент А и выявил его важную роль в синтезе жиров. А. Ленинджер в 1949 году показал, что окислительное фосфорилирование, обеспечивающее живые организмы энергией, идет в митохондриях. В 1953 году Д. Уотсон и Ф. Крик доказали, что дезоксирибонуклеиновая кислота (ДНК) состоит из двух нитей, а К. Ниренберг в 1963 году расшифровал первый генетический код ДНК и показал взаимосвязь между структурой ДНК организма и составом слагающих данный организм белков.

Биохимию разделяют на:

1. Статическую, изучающую химический состав живой материи;

2. Динамическую, изучающую процессы обмена веществ в организме;

3. Функциональную, изучающую процессы, лежащие в базе определœенных проявлений жизнедеятельности.

Первая часть обычно именуется органической химией и излагается в специальном курсе, вторая и третья части являются собственно биохимией.

Различают биохимию: растений, животных, биохимию микроорганизмов, биохимию человека (медицинская биохимия).

Биохимия растений изучает состав и превращение веществ в растениях и растительном сырье. Существуют также отраслевые биохимии: биохимия масличных растений и масличного сырья, биохимия молока, зерна, мяса, хлебных продуктов и т.д.

В отдельную отрасль вылилась ферментология – крупный раздел, изучающий свойства биологически активных веществ – ферментов.

Биохимия играет важную роль в пищевой технологии.

Организация объединœенных наций (ООН) предложила ряд международных программ. Первая из них – программа снабжения человечества пищей. Это должна быть достигнуто прежде всœего интенсивным путем. По этой причине основными задачами биохимии являются:

1. Повышение качества исходного сырья, изучение его химического состава и влияние его на технологию хранения и переработки.

2. Снижение потерь сырья в процессе хранения и технологической переработки.

3. Создание новых высокоэффективных технологий с целью повышения качества готовой продукции.

4. Комплексная безотходная технология переработки сырья и утилизация отходов.

referatwork.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.