Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Learning Through Computer Interaction Essay Research Paper. Human computer interaction реферат


Реферат Человеко-компьютерное взаимодействие

скачать

Реферат на тему:

План:

    Введение
  • 1 История
  • 2 Введение
  • 3 Цели
  • 4 Различия в родственных областях
  • 5 Принципы разработки
  • 6 Методологии разработки
  • 7 Разработка дисплея
    • 7.1 13 принципов разработки дисплея
      • 7.1.1 Принципы, относящиеся к восприятию
      • 7.1.2 Принципы умозрительной модели
      • 7.1.3 Принципы, основанные на внимании
      • 7.1.4 Принципы памяти
  • 8 Человеко-компьютерный интерфейс
  • ПримечанияЛитература

Введение

Типичная современная мышь — оптическая, с двумя кнопками и колесом прокрутки

Человеко-компьютерное взаимодействие (HCI [human-computer interaction]) — полидисциплинарное научное направление, существующее и развивающееся в целях совершенствования методов разработки, оценки и внедрения интерактивных компьютерных систем, предназначенных для использования человеком, а также в целях исследования различных аспектов этого использования[1](недоступная ссылка) .

1. История

Человеко-кампьютерное взаимодействие получило развитие в контексте разнонаправленных научных векторов (компьютерная графика, инженерная психология, эргономика, теория организации, когнитивная наука, информатика и многие др.)

Началом эргономической фазы человеко-компьютерного взаимодействия можно считать диссертацию Сазерленда (Sutherland, 1963), которая определила развитие компьютерной графики как науки. При этом компьютерная графика нуждалась в эргономических проектах с целью эффективного управления сложными моделями CAD/CAM систем. Исследования в этой области были продолжены в работах «Man-machine symbiosis» (Licklider, 1960), «Augmentation of human intellect» (Engelbart, 1963) и «Dynabook» (Кей и Голдберг, 1977). В результате научных исследований получили развитие те инструменты, без которых трудно представить сейчас работу с компьютером: «мышь», поэлементно-адресуемое (bitmap) отображение, «окно», метафора рабочего стола, point-and-click редакторы.

Так же проблематика производимых человеком операций за компьютером была естественным продолжением классических целей инженерной психологии, за исключением того, что новые проблемы имели существенный когнитивный, коммуникационный и интерактивный характер, ранее не рассматриваемый в инженерной психологии и способствовали продвижению, таким образом, инженерной психологии в этом направлении.

Эргономические исследования также подчёркивали связь условий работы с явлениями, вызывающими напряжение (стресс), такими, как: рутинная работа, сидячее положение, зрительное восприятие визуальных образов на дисплеях и многими другими, до этого не рассматриваемые как взаимосвязанные.

Наконец, вопрос: «как использование компьютерной техники вписывается в проектирование технологии производства?» вывел взаимодействие с компьютерами на уровень эффективной организации труда и включил даже в проблематику социального управления.

В СССР институционализация этого научного направления началась с 1958 года с обзоров американских работ в журнале «Вопросы психологии».

2. Введение

Человеко-компьютерное взаимодействие (HCI) - это изучение, планирование и разработка взаимодействия между людьми (пользователями) и компьютерами. Зачастую его рассматривают как совокупность науки о компьютерах, бихевиоризма, проектирования и других областей исследования. Взаимодействие между пользователями и компьютерами происходит на уровне пользовательского интерфейса (или просто интерфейса), который включает в себя программное и аппаратное обеспечение; например, образы или объекты, отображаемые на экране монитора, данные, полученные от пользователя посредством аппаратных периферийных устройств ввода, таких как клавиатуры и мыши, и другие взаимодействия пользователя с крупными автоматизированными системами, такими как воздушное судно и электростанция. Ассоциация вычислительной техники рассматривает взаимодействие человека и компьютера как «дисциплину, занимающуюся проектированием, оценкой и осуществлением работы интерактивных вычислительных систем для использования человеком, а также изучением происходящих процессов." Важным аспектом человеко-компьютерного взаимодействия является обеспечение удовлетворения пользователей (см. Computer user satisfaction).

В связи с тем, что человеко-компьютерное взаимодействие изучается как с человеческой стороны, так и с компьютерной, то знания, полученные в ходе исследования, опираются как на человеческий фактор, так и на компьютерный. С компьютерной стороны важны технологии компьютерной графики, операционных систем, языков программирования и среды разработки. С человеческой стороны, теория коммуникации, графическое и производственное проектирование, лингвистика, социология, когнитивная психология и такие человеческие факторы как удовлетворение пользователей. Также имеет значение инженерия и проектирование. Благодаря междисциплинарному характеру человеко-компьютерного взаимодействия, люди с разным уровнем подготовки вносят вклад в его успех. Иногда человеко-компьютерное взаимодействие называют как человеко- машинное взаимодействие, так и компьютерно-человеческое взаимодействие.

Важным критерием является внимание к человеко-компьютерному взаимодействию, т.к. плохо разработанные интерфейсы могут стать причиной многих непредвиденных проблем. Классическим примером этого является авария на АЭС Три-Майл-Айленд, где в ходе расследования было выявлено, что, по крайне мере, частичную ответственность за катастрофу несёт на себе проектирование интерфейса. Подобным образом, аварии в авиации возникали вследствие решения производителей использовать нестандартные воздушные приборы и/или расположение штурвала. Хотя предполагалось, что новые конструкции более совершенны касательно основного человеко-компьютерного взаимодействия, пилотам было присуще «стандартное» расположение и, таким образом, концептуально хорошая идея, не повлекла желаемые результаты.

3. Цели

Основной задачей человеко-компьютерного взаимодействия является улучшение взаимодействия между человеком и компьютером, делая компьютеры более удобными и восприимчивыми к потребностям пользователей. В особенности человеко-компьютерное взаимодействие занимается:

  • методологией и развитием проектирования интерфейсов (т.е. исходя из требований и класса пользователей, проектирование наилучшего интерфейса в заданных рамках, оптимизация под требуемые свойства, такие как обучаемость и эффективность использования)
  • методами реализации интерфейсов (например, программные инструментарии, библиотеки и рациональные алгоритмы)
  • методами для оценки и сравнения интерфейсов
  • разработкой новых интерфейсов и технологий взаимодействия
  • развитием описательных и прогнозируемых моделей, и теорией взаимодействия

Долгосрочной задачей человеко-компьютерного взаимодействия является разработка системы, которая снизит барьер между человеческой когнитивной моделью того, чего они хотят достичь и пониманием компьютера поставленных перед ним задач.

Специалисты человеко-компьютерного взаимодействия -- это, как правило, разработчики, занимающиеся практическим применением методик разработки к реальным всемирным проблемам. Их работа, зачастую, вращается вокруг разработки графических- и веб-интерфейсов.

Исследователи человеко-компьютерного взаимодействия занимаются развитием новых методик проектирования, проведением экспериментов с новыми аппаратными устройствами, созданием прототипов новых систем программного обеспечения, изучением новых парадигм для взаимодействия и развитием теорий и моделей взаимодействия.

4. Различия в родственных областях

Человеко-компьютерное взаимодействие имеет различия с человеческим фактором (или эргономикой) в том, что человеко-компьютерное взаимодействие акцентирует своё внимание больше на пользователях, работающих предпочтительнее с компьютерами, чем с другими видами техники или артефактами. Также человеко-компьютерное взаимодействие акцентирует своё внимание на реализации программного обеспечения и оборудования для поддержки человеко-компьютерного взаимодействия. Таким образом, человеческий фактор является более широким понятием; и человеко-компьютерное взаимодействие может быть охарактеризовано как человеческий фактор – хотя некоторые специалисты пытаются разделить данные области. Также человеко-компьютерное взаимодействие отличается от человеческого фактора меньшим акцентированием внимания на задачах и процедурах и гораздо меньшим акцентированием на физическую нагрузку и форму или на производственные разработки интерфейса, такие как клавиатура и мышь. В изучении персонального информационного менеджера (ПИМ), взаимодействие человека с компьютером находится в обширной информационной среде – люди могут работать с различными формами информации, некоторые из которых компьютерные, многие – нет (к примеру доски, блокноты, стикеры, магниты на холодильник), чтобы понять и эффективно воздейстовать на желаемые изменения своего мира. В области совместной работы акцент делается на использование вычислительных систем в поддержку совместной работы группы людей. Принципы управления командной работой расширяют сферу компьютерно-поддерживаемой совместной работы на организационном уровне и могут быть реализованы без использования компьютерных систем.

5. Принципы разработки

При оценке текущего пользовательского интерфейса или разработке нового интерфейса следует иметь ввиду следующие принципы разработки:

  • С самого начала необходимо акцентировать своё внимание на пользователях и задачах: установить количество пользователей, требуемых для выполнения задачи и определить подходящих пользователей; кто-либо никогда не использовавший интерфейс, либо тот, кто никогда не будет его использовать в будущем является неподходящим пользователем. Кроме того, необходимо определить какие задачи и как часто будут выполнять пользователи.
  • Эмпирические измерения: На ранней стадии провести тест интерфейса с реальными пользователями, которые используют интерфейс каждый день. Имейте ввиду, что результаты могут измениться, если уровень производительности пользователя не является точным отображением реального человеко-компьютерного взаимодействия. Установить количественные особенности практичности, такие как: количество пользователей, выполняющих задачи, время выполнения задачи, и количество ошибок, сделанных в ходе выполнения задачи.
  • Итеративное проектирование: после определения количества пользователей, поставленных задач, эмпирических измерений, выполните следующие шаги итеративной разработки:

1. Разработайте пользовательский интерфейс

2. Проведите тестирование

3. Проанализируйте результаты

4. Повторите предыдущие шаги

Повторяйте итеративную разработку до тех пор, пока не создадите практичный, удобный для пользователя интерфейс.

6. Методологии разработки

Разнообразные методики, излагающие техники проектирования человеко-компьютерного взаимодействия, начали появляться во времена развития данной области в 1980-х годах. Большинство методик разработки произошли от модели взаимодействия пользователей, разработчиков и технических систем. Ранние методики, например, трактовали когнитивные процессы пользователей как предсказуемые и поддающиеся количественному определению, и предлагали разработчикам при проектировании пользовательских интерфейсов рассматривать результаты когнитивных исследований в таких областях как память и внимание. Современные модели имеют тенденцию акцентировать внимание на постоянной обратной связи и диалоге между пользователями, разработчиками и инженерами, и прилагать усилия к тому, что технические системы крутятся вокруг желаний пользователей, нежели желания пользователей вокруг уже готовой системы.

  • Разработка, ориентированная на пользователя: разработка, ориентированная на пользователя в данный момент является современной, широко практикующейся философией, суть которой заключается в том, что пользователи должны занимать центральное место в разработке любой компьютерной системы. Пользователи, разработчики и технические специалисты работают вместе чтобы чётко выразить желания, потребности и границы, и создать систему, отвечающую этим требованиям. Ориентированные на пользователя проекты часто пользуются исследованиями этнографической среды, в которой пользователи будут работать с системой. Эта практика является аналогичной, но не является совместной разработкой, которая подчёркивает возможность для пользователей активно сотрудничать посредством сессий и семинаров.
  • Принципы разработки пользовательского интерфейса: эти семь принципов могут рассматриваться в любое время, в любом порядке в течение всего времени разработки, это: привычность, простота, очевидность, допустимость, последовательность, структура и обратная связь.

7. Разработка дисплея

Дисплей предназначен для восприятия системных переменных и для облегчения дальнейшей обработки данной информации. Перед проектированием дисплея должны быть определены задачи, выполняемые данным дисплеем(например, навигация, управление, обучение, развлечение). Пользователь или оператор должен иметь возможность обработать любую информацию, которую генерирует и отображает система, поэтому информация должна отображаться в соотвествии с принципами, которые обеспечивают восприятие и понимание.

7.1. 13 принципов разработки дисплея

Кристофер Викенс выделил 13 принципов разработки дисплея в своей книге "An Introduction to Human Factors Engineering".

Эти принципы восприятия и обработки информации могут быть использованы для создания эффективного проекта дисплея. Сокращение количества ошибок, требуемого времени, повышение результативности и увеличение уровня удовлетворённости пользователей – это те из многих потенциальных выгод, которые могут быть достигнуты путём применения данных принципов. Некоторые принципы не могут быть применимы к некоторым дисплеям или ситуациям.

Некоторые принципы могут показаться противоречащими друг другу, и не существует доказательства, что один принцип является более важным, чем другой. Принципы могут быть адаптированы к конкретной разработке или ситуации. Функционального баланс между принципами имеет важное значение для эффективной разработки.

7.1.1. Принципы, относящиеся к восприятию

1. Сделайте дисплей чётким. Читаемость дисплея является важным критерием в проектировании дисплея. Если символы или объекты отображаются нечётко, то пользователь не может эффективно их использовать.

2. Избегайте абсолютно строгих границ. Не просите пользователя определить уровень переменной на основе лишь одной сенсорной переменной (например цвет, размер, громкость). Эти сенсорные переменные могут содержать множество различных уровней.

3. Обработка сверху-вниз. Сигналы воспринимаются и толкуются в соответствии с ожиданиями, сформированными на основе более раннего опыта пользователя. Если сигнал представлен вопреки ожиданиям пользователя, то потребуется больше его представления, чтобы доказать, что сигнал был понят верно.

4. Чрезмерная выгода. Если сигнал представлен более одного раза, больше шансов, что он будет понят верно. Это возможно сделать с помощью представления его в альтернативных физических формах (например, цвета, форма, голос и т.д.), т.к. избыточность не подразумевает повторения. Светофор является прекрасным примером избыточности, так цвет и положение являются избыточными.

5. Сходства приводят к путанице. Используйте отличающиеся элементы. Похожие сигналы будут приводить к путанице. Соотношение схожих признаков к различным признакам является причиной схожести сигналов. Например, А423В9 больше похоже на А423В8, чем 92 на 93. Ненужные похожие признаки должны быть удалены, а непохожие признаки должны быть выделены.

7.1.2. Принципы умозрительной модели

6. Принцип изобразительного реализма. Экран должен выглядеть как переменная, которую он представляет (например, высокая температура на термометре показана высшим вертикальным уровнем). Если есть множество составляющих, то они могут быть настроены так, как они будут выглядеть в среде, где они будут представлены.

7. Принцип движущейся части. Движущиеся элементы должны двигаться по той схеме и в том направлении в каком это происходит в мысленном представлении пользователя, как оно движется в системе. Например, движущийся элемент на высотометре должен двигаться вверх с набиранием высоты.

7.1.3. Принципы, основанные на внимании

8. Минимизация времени доступа к информации. Когда внимание пользователя перемещается из одного места в другое в целях доступа к необходимой информации, то затрачивается много времени и усилий. Конструкция дисплея должна уменьшить данные затраты, так часто используемый источник должен находиться в ближайшей позиции. Однако не должна быть утеряна понятность.

9. Принцип совместимости. Разделенное внимание между двумя источниками может быть необходимо для выполнения одной задачи. Эти источники должны быть мысленно взаимосвязаны и иметь мысленную близость. Время доступа к информации должно быть небольшим и это может быть достигнуто различными способами (например, близкое расположение, одинаковый цвет, узоры, формы и т.д.). Однако, близость отображения может привести к путанице.

10. Принцип большого количества ресурсов. Пользователь может более просто обрабатывать информацию с разных ресурсов. Например, зрительная и слуховая информация может быть представлена одновременно, чем представлять всю зрительную и всю аудио информацию.

7.1.4. Принципы памяти

11. Замените память наглядной информацией: мировое знание. Пользователь не должен сохранять важную информацию исключительно в рабочей памяти или извлекать её из долговременной памяти. Меню/перечень могут помочь пользователю упростить использование памяти. Однако, использование памяти иногда может помочь пользователю, т.к. избавляет от необходимости ссылаться на некоторые типы знаний в мире (например, компьютерный специалист скорее использовал бы прямые команды из памяти, чем обращался к руководству). Для эффективной разработки должны быть сбалансированы знания в голове пользователя и знания в мире.

12. Принцип предиктивной помощи. Проактивные действия, как правило, более эффективны, чем реактивные действия. Дисплей должен исключать ресурсоёмкие когнитивные задачи и заменить их более простыми задачами, чтобы сократить использование умственных ресурсов пользователя. Это позволит пользователю сконцентрироваться не только на текущей ситуации , но и также подумать о возможных ситуациях в будущем. Пример предиктивной помощи – дорожный знак, который информирует о расстоянии до пункта назначения.

13. Принцип совместимости. Старые особенности других дисплеев легко перенести в разработку новых дисплеев, если их разработки совместимы. Долговременная память пользователя будет срабатывать на выполнение уместных действий. В ходе разработки должен быть принят во внимание данный факт и учитывать совместимость между разными дисплеями.

8. Человеко-компьютерный интерфейс

Человеко-компьютерный интерфейс можно назвать точкой связи между человеком и компьютером. Обмен информацией между человеком и компьютером можно определить как узел взаимодействия. Узел взаимодействия включает в себя несколько аспектов:

  • Область задач: условия и цели, ориентированные на пользователя
  • Область машины: среда с которой взаимодействует компьютер, т.е. ноутбук студента в комнате в общежитии колледжа
  • Области интерфейса: непересекающиеся области, касающиеся процессов человека и компьютера, не относящиеся к сфере взаимодействия
  • Входящий поток: поток информации, который начинается в области задач, когда пользователь имеет несколько задач, которые требуют использования компьютера
  • Выходной поток: поток информации, который возникает в машине
  • Обратная связь: узлы взаимодействия, проходящие через интерфейс, оцениваются, модерируются и подтверждаются, т.к. они проходят от человека через интерфейс к компьютеру и обратно.

Примечания

  1. CHAPTER 2.1 Definition of HCI from a Curricula for Human-Computer Interaction by ACM Special Interest Group on Computer-Human Interaction Curriculum Development Group - sigchi.org/cdg/cdg2.html#2_1

Литература

  • Special Interest Group on Computer-Human Interaction. ACM SIGCHI Curricula for Human-Computer Interaction. New York: Association for Computing Machinery, 1992—162. ISBN 0-89791-474-0 (Last updated: 2004-06-03) - sigchi.org/cdg/
  • Shackel B. Ergonomics for a computer // Design 120. — 1959. — P.36 — 39.
  • Пископпель А. А., Щедровицкий А. П. Инженерная психология и эргономика. Справочник-обзор. 1958—1991. — М.: Путь, 1996—207 с — ISBN 5-89260-001-7
  • Островский А.М. Социально-философские основания гуманизации человеко-компьютерного взаимодействия (Опыт междисциплинарного исследования): Монография / А.М. Островский. — М., 2010. — 583 с. — ISBN 978-5-9902417-1-8 (Last updated: 2010-26-12) - stat-all.com/lib/9785990241718ostrovsky.pdf

wreferat.baza-referat.ru

Реферат на тему Learning Through Computer Interaction Essay Research Paper

Learning Through Computer Interaction Essay, Research Paper

Learning Through Computer Interaction

Learning and Memory

We are one the brink of a major revolution in means of learning. Very few people understand what is about to happen. Even most professional educators are still unaware of the implications that human-computer interaction has on learning. The revolution will occur within the next 10 years and will affect out educational system at all

levels.

This revolution in the way people learn will be based on the technology of the digital computer. Learning media from other aspects of modern technology will also figure significantly.

A brief review of the history of learning will help explain the situation. The earliest humans learned primarily through experience and interaction with other humans. Until recently in human history, and even now in early childhood, this has been the principal learning

mode.

In classical Greece, several new learning modes became prominent. One of these was based on the technology of writing, which was already well developed in Greece. The Greeks realized that written documents could serve as the basis for learning.

The lecture, or group discussion, also seems to have originated in ancient Greece. Perhaps the mode for which Greece is best known is the dialog, exemplified in the works of Plato. Teacher and student worked on a one-to-one basis. The teacher avoided directly lecturing the student, but (by a careful set of questions) led the student to

discoveries.

The lecture was a solution to a problem that continues to be of great concern in education which is how to accommodate very large numbers of people who need to learn. The development of print provided another such mass mode which the advent the textbook. Almost 200 years elapsed from the invention of the printing press until the widespread use of textbooks in school environments.

Why will the computer lead to another major change in education? There are a variety of reasons, some concerning the advantages of the computer as a learning and teaching device, and some concerning today s very rapidly decreasing cost of computer technology, a decrease that will continue for many years.

A major advance of computer is that they make learning an active process, where students play a constant thinking role. This contrasts with large lecture classes where many students struggle to take notes. In a lecture, few students participate actively in the learning process. Most psychologists agree that active learning is far superior to passive learning.

A closely related issue is individualization. Each student at a computer display has a unique interactive experience based on the student s past performance or other information. Students can control the pace of learning, which is impossible in the lecture situation. They can review material at their discretion and can be given remedial or more advanced material as appropriate. Students can choose both content and learning sequences.

The fact that the cost of computers is diminishing rapidly is well known. Yet the speed of this decline is startling. The figure often seen in the computer industry is that for equivalent power, computers decrease in cost by about 30% each year.

Not all parts of the computer are equally affected by this decrease, however. In recent years, the most dramatic decreases occurred in computer memory and hard drive capacity, the section of the computer that stores information and instructions. The reasons for this decrease are twofold. First, we are just beginning to explore a new and exciting technology. We are rapidly becoming more skillful in using the technology. New techniques are appearing frequently and many of these are successful. The second factor that reduces costs is mass production of components.

We can already begin to see the results of lower costs in the appearance of computers for the home market, computers that cost about the same as color television sets. While these machines lack some capabilities desirable for educational purposes, they are close to providing what we need. Given the rapid pace of development, we can expect their descendants tin a few tears to offer good environments for learning.

Computers help people learn in other ways, too. For example, there are a few methods of teaching that are just now emerging because of computers. One of these methods is distance learning. The students can view the lectures at their own pace, during a time that is good for them, at home on their computer systems. This has been proven to be highly effective for learning disabled, blind/deaf, and mobility impaired students. In addition to viewing lectures on the computer, the students can discuss what they learned with other students in the same course, and even the teacher, through live video conferencing using a program called CU-SeeMe.

Not only are the computers becoming less costly, but the telecommunications media used in distance learning are falling in price and rising in quality every day. Ten years ago, the only way to make a video conference call was to make a long distance phone call from one person s costly black-and-white video phone to another s. Now, all one need is a connection to the Internet (approximately $20 per month for unlimited use) and he or she can talk to and see multiple users at the same time (on a large color

monitor).

One place you can see this new technology in action is England s Open University. When it was established in 1969, it was radical innovation in many ways. Specifically, the teaching system was based on a combination of broadcasting (computer, television, and radio) and specially written printed texts. This concept of a “University of the Air” was a major factor in bringing the Open University to the forefront of public attention, ensuring widespread publicity and the heavy enrollment essential for political survival in the early years.

Thus, the combinations of increasing educational effectiveness plus decreasing cost of computers will be the primary generator of the educational revolution based on computer and other technologies. It appears likely that computers will soon be more important in our educational process than books, and may entirely replace the book medium for many purposes. These changes will have profound effects on our institutions, our teachers, and even our way of

life.

Bates, A. W. The Role of Technology in Distance Learning.

New York, New York: St. Martin s Press, 1984.

Gayeski, Diane M. Multimedia for Learning. Englewood

Cliffs, New Jersey: Educational Technology

Publications, 1993.

Hawkridge, David. New Information Technology in Education.

Baltimore, Maryland: Johns Hopkins University Press,

1983.

Percival, Fred, and Ellington, Henry. A Handbook of

Educational Technology. New York, New York: Nichols

Publishing Company, 1984.

Solomon, Cynthia. Computer Environments for Children.

Cambridge, Massachusetts: The MIT Press, 1987.

bukvasha.ru

Реферат - Learning Through Computer Interaction Essay Research Paper

Learning Through Computer Interaction Essay, Research Paper

Learning Through Computer Interaction

Learning and Memory

We are one the brink of a major revolution in means of learning. Very few people understand what is about to happen. Even most professional educators are still unaware of the implications that human-computer interaction has on learning. The revolution will occur within the next 10 years and will affect out educational system at all

levels.

This revolution in the way people learn will be based on the technology of the digital computer. Learning media from other aspects of modern technology will also figure significantly.

A brief review of the history of learning will help explain the situation. The earliest humans learned primarily through experience and interaction with other humans. Until recently in human history, and even now in early childhood, this has been the principal learning

mode.

In classical Greece, several new learning modes became prominent. One of these was based on the technology of writing, which was already well developed in Greece. The Greeks realized that written documents could serve as the basis for learning.

The lecture, or group discussion, also seems to have originated in ancient Greece. Perhaps the mode for which Greece is best known is the dialog, exemplified in the works of Plato. Teacher and student worked on a one-to-one basis. The teacher avoided directly lecturing the student, but (by a careful set of questions) led the student to

discoveries.

The lecture was a solution to a problem that continues to be of great concern in education which is how to accommodate very large numbers of people who need to learn. The development of print provided another such mass mode which the advent the textbook. Almost 200 years elapsed from the invention of the printing press until the widespread use of textbooks in school environments.

Why will the computer lead to another major change in education? There are a variety of reasons, some concerning the advantages of the computer as a learning and teaching device, and some concerning today s very rapidly decreasing cost of computer technology, a decrease that will continue for many years.

A major advance of computer is that they make learning an active process, where students play a constant thinking role. This contrasts with large lecture classes where many students struggle to take notes. In a lecture, few students participate actively in the learning process. Most psychologists agree that active learning is far superior to passive learning.

A closely related issue is individualization. Each student at a computer display has a unique interactive experience based on the student s past performance or other information. Students can control the pace of learning, which is impossible in the lecture situation. They can review material at their discretion and can be given remedial or more advanced material as appropriate. Students can choose both content and learning sequences.

The fact that the cost of computers is diminishing rapidly is well known. Yet the speed of this decline is startling. The figure often seen in the computer industry is that for equivalent power, computers decrease in cost by about 30% each year.

Not all parts of the computer are equally affected by this decrease, however. In recent years, the most dramatic decreases occurred in computer memory and hard drive capacity, the section of the computer that stores information and instructions. The reasons for this decrease are twofold. First, we are just beginning to explore a new and exciting technology. We are rapidly becoming more skillful in using the technology. New techniques are appearing frequently and many of these are successful. The second factor that reduces costs is mass production of components.

We can already begin to see the results of lower costs in the appearance of computers for the home market, computers that cost about the same as color television sets. While these machines lack some capabilities desirable for educational purposes, they are close to providing what we need. Given the rapid pace of development, we can expect their descendants tin a few tears to offer good environments for learning.

Computers help people learn in other ways, too. For example, there are a few methods of teaching that are just now emerging because of computers. One of these methods is distance learning. The students can view the lectures at their own pace, during a time that is good for them, at home on their computer systems. This has been proven to be highly effective for learning disabled, blind/deaf, and mobility impaired students. In addition to viewing lectures on the computer, the students can discuss what they learned with other students in the same course, and even the teacher, through live video conferencing using a program called CU-SeeMe.

Not only are the computers becoming less costly, but the telecommunications media used in distance learning are falling in price and rising in quality every day. Ten years ago, the only way to make a video conference call was to make a long distance phone call from one person s costly black-and-white video phone to another s. Now, all one need is a connection to the Internet (approximately $20 per month for unlimited use) and he or she can talk to and see multiple users at the same time (on a large color

monitor).

One place you can see this new technology in action is England s Open University. When it was established in 1969, it was radical innovation in many ways. Specifically, the teaching system was based on a combination of broadcasting (computer, television, and radio) and specially written printed texts. This concept of a “University of the Air” was a major factor in bringing the Open University to the forefront of public attention, ensuring widespread publicity and the heavy enrollment essential for political survival in the early years.

Thus, the combinations of increasing educational effectiveness plus decreasing cost of computers will be the primary generator of the educational revolution based on computer and other technologies. It appears likely that computers will soon be more important in our educational process than books, and may entirely replace the book medium for many purposes. These changes will have profound effects on our institutions, our teachers, and even our way of

life.

Bates, A. W. The Role of Technology in Distance Learning.

New York, New York: St. Martin s Press, 1984.

Gayeski, Diane M. Multimedia for Learning. Englewood

Cliffs, New Jersey: Educational Technology

Publications, 1993.

Hawkridge, David. New Information Technology in Education.

Baltimore, Maryland: Johns Hopkins University Press,

1983.

Percival, Fred, and Ellington, Henry. A Handbook of

Educational Technology. New York, New York: Nichols

Publishing Company, 1984.

Solomon, Cynthia. Computer Environments for Children.

Cambridge, Massachusetts: The MIT Press, 1987.

www.ronl.ru

Human-computer interaction

[http://sigchi.org/cdg/cdg2.html#2_1 ACM SIGCHI Curricula for Human-Computer Interaction] ] ::"Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them."Because human-computer interaction studies a human and a machine in conjunction, it draws from supporting knowledge on both the machine and the human side. On the machine side, techniques in computer graphics, operating systems, programming languages, and development environments are relevant. On the human side, communication theory, graphic and industrial design disciplines, linguistics, social sciences, cognitive psychology, and human performance are relevant. Engineering and design methods are also relevant. Due to the multidisciplinary nature of HCI, people with different backgrounds contribute to its success. However, due to the different value systems of its diverse members, the collaboration can be challenging [Bartneck, C., & Rauterberg, M. (2007). HCI Reality – An ‘Unreal Tournament’? International Journal of Human Computer Studies, 65(8), 737–743 | DOI: [http://dx.doi.org/10.1016/j.ijhcs.2007.03.003 10.1016/j.ijhcs.2007.03.003] | [http://www.bartneck.de/publications/2007/hciReality/index.html view html version] ] . HCI is also sometimes referred to as man–machine interaction (MMI) or computer–human interaction (CHI).

Goals

A basic goal of HCI is to improve the interactions between users and computers by making computers more usable and receptive to the user's needs. Specifically, HCI is concerned with:

* methodologies and processes for designing interfaces (i.e., given a task and a class of users, design the best possible interface within given constraints, optimizing for a desired property such as learnability or efficiency of use)* methods for implementing interfaces (e.g. software toolkits and libraries; efficient algorithms)* techniques for evaluating and comparing interfaces* developing new interfaces and interaction techniques* developing descriptive and predictive models and theories of interaction

A long term goal of HCI is to design systems that minimize the barrier between the human's cognitive model of what they want to accomplish and the computer's understanding of the user's task.

Professional practitioners in HCI are usually designers concerned with the practical application of design methodologies to real-world problems. Their work often revolves around designing graphical user interfaces and web interfaces.

Researchers in HCI are interested in developing new design methodologies, experimenting with new hardware devices, prototyping new software systems, exploring new paradigms for interaction, and developing models and theories of interaction.

Differences with related fields

HCI differs with human factors in that there is more of a focus on users working with "computers" rather than other kinds of machines or designed artifacts, and an additional focus on how to implement the (software and hardware) mechanisms behind computers to support human-computer interaction. HCI also differs with ergonomics in that there is less of a focus on repetitive work-oriented tasks and procedures, and much less emphasis on physical stress and the physical form or industrial design of physical aspects of the user interface, such as the physical form of keyboards and mice. More discussion of the nuances between these fields is at [http://sigchi.org/cdg/cdg2.html]

Two areas of study have substantial overlap with HCI even as the focus of inquiry shifts. In computer supported cooperative work (CSCW) emphasis is placed on the use of computing systems in support of the collaborative work of a group of people. In the study of personal information management (PIM) human interactions with the computer are placed in a larger informational context. People may work with many forms of information, some computer-based, many not (e.g., whiteboards, notebooks, sticky notes, refrigerator magnets) in order understand and effect desired changes in their world.

Design principles

When evaluating a current user interface, or designing a new user interface, it is important to keep in mind the following experimental design principles:* Early focus on user(s) and task(s): Establish how many users are needed to perform the task(s) and determine who the appropriate users should be; someone that has never used the interface, and will not use the interface in the future, is most likely not a valid user. In addition, define the task(s) the users will be performing and how often the task(s) need to be performed.* Empirical measurement: Test the interface early on with real users who come in contact with the interface on an everyday basis, respectively. Keep in mind that results may be altered if the performance level of the user is not an accurate depiction of the real human-computer interaction. Establish quantitative usability specifics such as: the number of users performing the task(s), the time to complete the task(s), and the number of errors made during the task(s).* Iterative design: After determining the users, tasks, and empirical measurements to include, perform the following iterative design steps:# Design the user interface# Test # Analyze results# RepeatRepeat the iterative design process until a sensible, user-friendly interface is created. [Green, Paul (2008). Iterative Design. Lecture presented in Industrial and Operations Engineering 436 (Human Factors in Computer Systems, University of Michigan, Ann Arbor, MI, February 42008.]

Design methodologies

A number of diverse methodologies outlining techniques for human–computer interaction design have emerged since the rise of the field in the 1980s. Most design methodologies stem from a model for how users, designers, and technical systems interact. Early methodologies, for example, treated users' cognitive processes as predictable and quantifiable and encouraged design practitioners to look to cognitive science results in areas such as memory and attention when designing user interfaces. Modern models tend to focus on a constant feedback and conversation between users, designers, and engineers and push for technical systems to be wrapped around the types of experiences users want to have, rather than wrapping user experience around a completed system.

* User-centered design: user-centered design (UCD) is a modern, widely practiced design philosophy rooted in the idea that users must take center-stage in the design of any computer system. Users, designers and technical practitioners work together to articulate the wants, needs and limitations of the user and create a system that addresses these elements. Often, user-centered design projects are informed by ethnographic studies of the environments in which users will be interacting with the system. This practice is similar, but not identical to Participatory Design, which emphasizes the possibility for end-users to contribute actively through shared design sessions and workshops.

* Principles of User Interface Design: these are seven principles that may be considered at any time during the design of a user interface in any order, namely Tolerance, Simplicity, Visibility, Affordance, Consistency, Structure and Feedback. [ [http://www.mit.edu/~jtidwell/common_ground_onefile.html Pattern Language] ]

* See List of human-computer interaction topics#Interface design methods for more

Display design

Displays are human-made artifacts designed to support the perception of relevant system variables and to facilitate further processing of that information. Before a display is designed, the task that the display is intended to support must be defined (e.g. navigating, controlling, decision making, learning, entertaining, etc.). A user or operator must be able to process whatever information that a system generates and displays; therefore, the information must be displayed according to principles in a manner that will support perception, situation awareness, and understanding.

THIRTEEN PRINCIPLES OF DISPLAY DESIGN [Wickens, Christopher D., John D. Lee, Yili Liu, and Sallie E. Gordon Becker. An Introduction to Human Factors Engineering. Second ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2004. 185–193.]

These principles of human perception and information processing can be utilized to create an effective display design. A reduction in errors, a reduction in required training time, an increase in efficiency, and an increase in user satisfaction are a few of the many potential benefits that can be achieved through utilization of these principles.

Certain principles may not be applicable to different displays or situations. Some principles may seem to be conflicting, and there is no simple solution to say that one principle is more important than another. The principles may be tailored to a specific design or situation. Striking a functional balance among the principles is critical for an effective design. [Brown, C. Marlin. Human-Computer Interface Design Guidelines. Intellect Books, 1998. 2–3.]

Perceptual Principles

"1. Make displays legible (or audible)"

A display’s legibility is critical and necessary for designing a usable display. If the characters or objects being displayed cannot be discernible, then the operator cannot effectively make use of them.

"2. Avoid absolute judgment limits"

Do not ask the user to determine the level of a variable on the basis of a single sensory variable (e.g. color, size, loudness). These sensory variables can contain many possible levels.

"3. Top-down processing"

Signals are likely perceived and interpreted in accordance with what is expected based on a user’s past experience. If a signal is presented contrary to the user’s expectation, more physical evidence of that signal may need to be presented to assure that it is understood correctly.

"4. Redundancy gain"

If a signal is presented more than once, it is more likely that it will be understood correctly. This can be done by presenting the signal in alternative physical forms (e.g. color and shape, voice and print, etc.), as redundancy does not imply repetition. A traffic light is a good example of redundancy, as color and position are redundant.

"5. Similarity causes confusion: Use discriminable elements"

Signals that appear to be similar will likely be confused. The ratio of similar features to different features causes signals to be similar. For example, A423B9 is more similar to A423B8 than 92 is to 93. Unnecessary similar features should be removed and dissimilar features should be highlighted.

Mental Model Principles

"6. Principle of pictorial realism"

A display should look like the variable that it represents (e.g. high temperature on a thermometer shown as a higher vertical level). If there are multiple elements, they can be configured in a manner that looks like it would in the represented environment.

"7. Principle of the moving part"

Moving elements should move in a pattern and direction compatible with the user’s mental model of how it actually moves in the system. For example, the moving element on an altimeter should move upward with increasing altitude.

Principles Based on Attention

"8. Minimizing information access cost"

When the user’s attention is averted from one location to another to access necessary information, there is an associated cost in time or effort. A display design should minimize this cost by allowing for frequently accessed sources to be located at the nearest possible position. However, adequate legibility should not be sacrificed to reduce this cost.

"9. Proximity compatibility principle"

Divided attention between two information sources may be necessary for the completion of one task. These sources must be mentally integrated and are defined to have close mental proximity. Information access costs should be low, which can be achieved in many ways (e.g. close proximity, linkage by common colors, patterns, shapes, etc.). However, close display proximity can be harmful by causing too much clutter.

"10. Principle of multiple resources"

A user can more easily process information across different resources. For example, visual and auditory information can be presented simultaneously rather than presenting all visual or all auditory information.

Memory Principles

"11. Replace memory with visual information: knowledge in the world"

A user should not need to retain important information solely in working memory or to retrieve it from long-term memory. A menu, checklist, or another display can aid the user by easing the use of their memory. However, the use of memory may sometimes benefit the user rather than the need for reference to some type of knowledge in the world (e.g. a expert computer operator would rather use direct commands from their memory rather than referring to a manual). The use of knowledge in a user’s head and knowledge in the world must be balanced for an effective design.

"12. Principle of predictive aiding"

Proactive actions are usually more effective than reactive actions. A display should attempt to eliminate resource-demanding cognitive tasks and replace them with simpler perceptual tasks to reduce the use of the user’s mental resources. This will allow the user to not only focus on current conditions, but also think about possible future conditions. An example of a predictive aid is a road sign displaying the distance from a certain destination.

"13. Principle of consistency"

Old habits from other displays will easily transfer to support processing of new displays if they are designed in a consistent manner. A user’s long-term memory will trigger actions that are expected to be appropriate. A design must accept this fact and utilize consistency among different displays.

=Future developments in HCI=

The means by which humans interact with computers continues to evolve rapidly. Human-computer interaction is affected by the forces shaping the nature of future computing. These forces include: * Decreasing hardware costs leading to larger memories and faster systems* Miniaturization of hardware leading to portability* Reduction in power requirements leading to portability * New display technologies leading to the packaging of computational devices in new forms * Specialized hardware leading to new functions * Increased development of network communication and distributed computing* Increasingly widespread use of computers, especially by people who are outside of the computing profession * Increasing innovation in input techniques (i.e., voice, gesture, pen), combined with lowering cost, leading to rapid computerization by people previously left out of the "computer revolution." * Wider social concerns leading to improved access to computers by currently disadvantaged groups

The future for HCI is expected to include the following characteristics:

Ubiquitous communicationComputers will communicate through high speed local networks, nationally over wide-area networks, and portably via infrared, ultrasonic, cellular, and other technologies. Data and computational services will be portably accessible from many if not most locations to which a user travels.

High functionality systemsSystems will have large numbers of functions associated with them. There will be so many systems that most users, technical or non-technical, will not have time to learn them in the traditional way (e.g., through thick manuals).

Mass availability of computer graphicsComputer graphics capabilities such as image processing, graphics transformations, rendering, and interactive animation will become widespread as inexpensive chips become available for inclusion in general workstations.

Mixed mediaSystems will handle images, voice, sounds, video, text, formatted data. These will be exchangeable over communication links among users. The separate worlds of consumer electronics (e.g., stereo sets, VCRs, televisions) and computers will partially merge. Computer and print worlds will continue to cross assimilate each other.

High-bandwidth interactionThe rate at which humans and machines interact will increase substantially due to the changes in speed, computer graphics, new media, and new input/output devices. This will lead to some qualitatively different interfaces, such as virtual reality or computational video.

Large and thin displaysNew display technologies will finally mature enabling very large displays and also displays that are thin, light weight, and have low power consumption. This will have large effects on portability and will enable the development of paper-like, pen-based computer interaction systems very different in feel from desktop workstations of the present.

Embedded computationComputation will pass beyond desktop computers into every object for which uses can be found. The environment will be alive with little computations from computerized cooking appliances to lighting and plumbing fixtures to window blinds to automobile braking systems to greeting cards. To some extent, this development is already taking place. The difference in the future is the addition of networked communications that will allow many of these embedded computations to coordinate with each other and with the user. Human interfaces to these embedded devices will in many cases be very different from those appropriate to workstations.

Augmented realityA common staple of science fiction, augmented reality refers to the notion of layering relevant information into our vision of the world. Existing projects show real-time statistics to users performing difficult tasks, such as manufacturing. Future work might include augmenting our social interactions by providing additional information about those we converse with.

Group interfacesInterfaces to allow groups of people to coordinate will be common (e.g., for meetings, for engineering projects, for authoring joint documents). These will have major impacts on the nature of organizations and on the division of labor. Models of the group design process will be embedded in systems and will cause increased rationalization of design.

User TailorabilityOrdinary users will routinely tailor applications to their own use and will use this power to invent new applications based on their understanding of their own domains. Users, with their deeper knowledge of their own knowledge domains, will increasingly be important sources of new applications at the expense of generic systems programmers (with systems expertise but low domain expertise).

Information UtilitiesPublic information utilities (such as home banking and shopping) and specialized industry services (e.g., weather for pilots) will continue to proliferate. The rate of proliferation will accelerate with the introduction of high-bandwidth interaction and the improvement in quality of interfaces.

ome notes on terminology

* HCI vs MMI. MMI has been used to refer to any man–machine interaction, including, but not exclusively computers. The term was used early on in control room design for anything operated on or observed by an operator, e.g. dials, switches, knobs and gauges.

* HCI vs CHI. The acronym CHI (pronounced "kai"), for computer–human interaction, has been used to refer to this field, perhaps more frequently in the past than now. However, researchers and practitioners now refer to their field of study as HCI (pronounced as an initialism), which perhaps rose in popularity partly because of the notion that the human, and the human's needs and time, should be considered first, and are more important than the machine's. This notion became increasingly relevant towards the end of the 20th century as computers became increasingly inexpensive (as did CPU time), small, and powerful. Since the turn of the millennium, the field of human-centered computing has emerged with an even more pronounced focus on understanding human beings as actors within socio–technical systems.

* Usability vs Usefulness. Design methodologies in HCI aim to create user interfaces that are usable, i.e. that can be operated with ease and efficiency. However, an even more basic requirement is that the user interface be "useful", i.e. that it allows the user to complete relevant tasks.

* Intuitive and Natural. Software products are often touted by marketers as being "intuitive" and "natural" to use, often simply because they have a graphical user interface. Many researchers in HCI view such claims as unfounded (e.g. a poorly designed GUI may be very unusable), and some object to the use of the words "intuitive" and "natural" as vague and/or misleading, since these are very context-dependent terms. See [Jef Raskin: Intuitive Equals Familiar. In: Communications of the ACM, vol 37, no 9, September 1994, pp. 17–18, [http://doi.acm.org/10.1145/182987.584629] ] for more discussion.

Human–computer interface

The human–computer interface can be described as the point of communication between the human user and the computer. The flow of information between the human and computer is defined as the loop of interaction. The loop of interaction has several aspects to it including:

*Task Environment: The conditions and goals set upon the user.* Machine Environment: The environment that the computer is connected to, i.e a laptop in a college student's dorm room. *Areas of the Interface: Non-overlapping areas involve processes of the human and computer not pertaining to their interaction. Meanwhile, the overlapping areas only concern themselves with the processes pertaining to their interaction.*Input Flow: Begins in the task environment as the user has some task that requires using their computer.*Output: The flow of information that originates in the machine environment. *Feedback: Loops through the interface that evaluate, moderate, and confirm processes as they pass from the human through the interface to the computer and back.

Academic conferences

One of the top academic conferences for new research in human-computer interaction, especially within computer science, is the annually held ACM's Conference on Human Factors in Computing Systems, usually referred to by its short name CHI (pronounced "kai", or "khai"). CHI is organized by [http://www.acm.org/sigchi/ ACM SIGCHI] Special Interest Group on Computer–Human Interaction. CHI is a large, highly competitive conference, with thousands of attendants, and is quite broad in scope. The publication venues and the conference policies are being continuously improved due to the vivid feedback [Bartneck, C. (2008). What Is Good? – A Comparison Between The Quality Criteria Used In Design And Science. Proceedings of the Conference on Human Factors in Computing Systems (CHI2008), Florence pp. 2485–2492. DOI: [http://dx.doi.org/10.1145/1358628.1358705 10.1145/1358628.1358705] ] from its visitors and contributing authors.* [http://sigchi.org/chi95/ CHI '95] , [http://acm.org/sigchi/chi96/ CHI '96] , [http://acm.org/sigchi/chi97/ CHI '97] , [http://acm.org/sigchi/chi98/ CHI '98] , [http://acm.org/sigchi/chi99/ CHI '99] , [http://acm.org/sigchi/chi2000/ CHI 2000] , [http://acm.org/sigchi/chi2001/ CHI 2001] , [http://sigchi.org/chi2002/ CHI 2002] , [http://www.chi2003.org/ CHI 2003] , [http://www.chi2004.org/ CHI 2004] , [http://www.chi2005.org/ CHI 2005] , [http://www.chi2006.org/ CHI 2006] , [http://www.chi2007.org/ CHI 2007] , [http://www.chi2008.org/ CHI 2008]

There are also dozens of other smaller, regional or specialized HCI-related conferences held around the world each year, the most important of which include:

Special purpose

* [http://www.acm.org/uist/ UIST] : ACM Symposium on User Interface Software and Technology.* [http://www.cscw2008.org/ CSCW] : ACM conference on Computer Supported Cooperative Work.* [http://www.ecscw.org/ ECSCW] : European Conference on Computer-Supported Cooperative Work. Alternates yearly with CSCW.* [http://www.acm.org/icmi/2007/ ICMI] : International Conference on Multimodal Interfaces.* MobileHCI: International Conference on Human-Computer Interaction with Mobile Devices and Services.* [http://sigchi.org/dis2008/ DIS] : ACM conference on Designing Interactive Systems.* NIME: International Conference on New Interfaces for Musical Expression.* [http://hri2008.org/ HRI] : ACM/IEEE International Conference on Human-Robot Interaction.* [http://www.iuiconf.org/ IUI] : International Conference on Intelligent User Interfaces.* [http://ubicomp.org/ Ubicomp] : International Conference on Ubiquitous Computing

Regional and general HCI

* [http://tuim.inf.puc-rio.br/interact2007/home.php INTERACT] : IFIP TC13 International Conference on Human-Computer Interaction. Biennial, alternating years with AVI.* [http://hci.uniroma1.it/avi2008/ AVI] : International Working Conference on Advanced Visual Interfaces. Held biennially in Italy, alternating years with INTERACT. * [http://www.hci-international.org/ HCI International] : International Conference on Human-Computer Interaction.* [http://www.bcs-hci.org.uk/hci2008/ HCI] : British HCI Conference.* [http://www.ozchi.org/ OZCHI] : Australasian HCI Conference.* [http://www.afihm.org IHM] : Annual French-speaking HCI Conference.* [http://www.graphicsinterface.org/ Graphics Interface] : Annual Canadian computer graphics and HCI conference. The oldest regularly scheduled conference for graphics and human-computer interaction.* [http://www.nordichi.org/ NordiCHI] : Nordic Conference on Human-Computer Interaction. Biennial.

ee also

* Usability* Human factors / Ergonomics* Interaction design* Full list of HCI-related topics

Footnotes

Further reading

* Academic overview of the field by many authors:** Andrew Sears and Julie A. Jacko (Eds.). (2007). Handbook for Human Computer Interaction (2nd Edition). CRC Press. ISBN 0-8058-5870-9** Julie A. Jacko and Andrew Sears (Eds.). (2003). Handbook for Human Computer Interaction. Mahwah: Lawrence Erlbaum & Associates. ISBN 0-8058-4468-6* Historically important classic:** Stuart K. Card, Thomas P. Moran, Allen Newell (1983): "The Psychology of Human–Computer Interaction". Erlbaum, Hillsdale 1983 ISBN 0-89859-243-7* Overview of history of the field:** Brad A. Myers: "A brief history of human–computer interaction technology." Interactions 5(2):44–54, 1998, ISSN 1072–5520 ACM Press. http://doi.acm.org/10.1145/274430.274436* Academic journals:** "Behaviour & Information Technology" [http://www.informaworld.com/bit] ** "International Journal of Human-Computer Interaction" ** "Human-Computer Interaction" [http://hci-journal.com/] [http://www.tandf.co.uk/journals/titles/07370024.asp] * Collection of key papers:** Ronald M. Baecker, Jonathan Grudin, William A. S. Buxton, Saul Greenberg (Eds.) (1995): "Readings in human–computer interaction. Toward the Year 2000". 2. ed. Morgan Kaufmann, San Francisco 1995 ISBN 1-558-60246-1* Treatments by one or few authors, often aimed at a more general audience:** Jakob Nielsen: "Usability Engineering". Academic Press, Boston 1993 ISBN 0-12-518405-0** Donald A. Norman: "The Psychology of Everyday Things". Basic Books, New York 1988 ISBN 0-465-06709-3** Jef Raskin: "The humane interface. New directions for designing interactive systems". Addison-Wesley, Boston 2000 ISBN 0-201-37937-6** Ben Shneiderman and Catherine Plaisant: "Designing the User Interface: Strategies for Effective Human–Computer Interaction". 4th ed. Addison Wesley, 2004 ISBN 0-321-19786-0** Bruce Tognazzini: "Tog on Interface". Addison-Wesley, Reading 1991 ISBN 0-201-60842-1* Textbooks that could be used in a classroom:** Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale (2003): "Human–Computer Interaction". 3rd Edition. Prentice Hall, 2003. http://hcibook.com/e3/ ISBN 0-13046-109-1** Helen Sharp, Yvonne Rogers & Jenny Preece: "Interaction Design: Beyond Human–Computer Interaction, 2nd ed. John Wiley & Sons Ltd., 2007 ISBN 0-470-01866-6* See also List of user interface literature* See also [http://www.hcibib.org/readings.html readings on hcibib.org]

External links

* [http://www.baddesigns.com Bad Human Factors Designs] * [http://www.hcibib.org/ The HCI Bibliography] Over 34,000 publications about HCI.* [http://hcc.cc.gatech.edu/ Human-Centered Computing Education Digital Library] * [http://www.usabilityviews.com/ Usability Views] * [http://www.hcibib.org/hci-sites/ORGANIZATIONS.html HCI Webliography] with a list of about 100 HCI Organizations worldwide

en.academic.ru

Human-Computer Interaction - презентация онлайн

Human-Computer Interaction Lecture 4Outline Introduction What is HCI? Types of interfaces Existing technologies Advances in HCI Architecture Interaction design User Experience TasksHuman •a person who tries to accomplish a goal •the end-user •the member of an organization Computer runs applications (software)Computer runs applications (software) locally versus remotelyInterface •A point where two objects meet •A point where human can tell the computer what to do •A point where the computer displays the requested information Interaction “dialogue” between humans and computersWhat is HCI? Human Computer Interaction The interaction between user(s) and application(s) is achieved via an interface – user interface•A process of information transfer ◦User to Machine ◦Machine to User •HCI is also referred to as Man Machine Interaction. •HCI is what the user sees and includes: ◦The physical controls ◦What the system looks like? ◦How the system accepts input from the user? ◦How the system responds to user input? ◦How the system outputs the results of processing?Types of Interfaces •Command Line Interface (CLI) A CLI displays a prompt, the user types a command on the keyboard, the computer executes the command and provides textual output. •Menu Driven Interface The user has a list of items to choose from, and can make selections by highlighting one. •Graphical User Interface (GUI) Uses windows, icons, menus and pointers (WIMP) which can be manipulated by a mouse (and often to an extent by a keyboard as well). •Natural Language Interface Can range from simple command systems to voice activated text processing. Commands are spoken in “normal” language.Command Line Interface ● Advantages ◦ Very flexible with the use of “switches” (options) ◦ Good for “expert” users - can quickly access commands ◦ Uses the fewest system resources ● Disadvantages ◦ Requires the user to learn “complex” commands or language ◦ “Hidden” features i.e. if the command is unknown we cannot make use of that feature ◦ Not very good for novice usersCommand Line InterfaceMenu Driven Interface Advantages ◦ No need to learn complex commands/language ◦ Easier for a novice to learn/use ◦ Ideal when there are a limited number of options (efficient) Disadvantages ◦ Can be frustrating for experienced users i.e. the command they want to use is buried 5 levels deep. ◦ User interface may be limited by screen space and number of options available.Menu Driven InterfaceGraphical User Interface Advantages ◦ Most suitable interface for inexperienced or novice users ◦ Many generic packages for a GUI will share common features Disadvantages ◦ GUIs use more system resources than other types of interfaceGraphical User InterfaceNatural Language Interface ● Advantages ◦ No training required ◦ Can be quicker than keyboard entry ◦ Hands-free ◦ Can be used by the disabled ● Disadvantages ◦ Emerging technology – still contains “bugs” ◦ Difficulty in dealing with homonyms ◦ Difficult to recognize all the different ways of saying things (and regional dialects) ◦ Artificial languages are often more preciseNatural Language InterfaceArchitecture • Architecture of any HCI systems is identified by: ◦ Number of inputs and outputs in the system ◦ Diversity of inputs and outputs in terms of modality ◦ Workings of these diverse input and output for interactionpurpose • Based on different configuration and design of interface, HCI systems can be divided into: ◦ Unimodal HCI system ◦ Multimodal HCI systemUnimodal HCI System • An interface mainly relies on number and diversity of its inputs and outputs which are communication channels that enable users to interact with computer via this interface. • A system that is based on only one modality is called unimodal. • Based on the nature of different modalities, they can be divided into three categories: ◦ Audio-Based ◦ Sensor-Based ◦ Visual-BasedAudio Based HCI It deals with information acquired by different audio signals. The information gathered from audio signals can be more trustable, helpful and in some cases unique providers of information. ● Key components: ◦ Microphone ◦ ASR(automated speech recognition) and NLU(natural language understanding) software ● The main research areas of Audio based HCI are divided into: ◦ Speech Recognition ◦ Speaker Recognition ◦ Auditory Emotion Analysis ◦ Human-Made Noise/Sign Detections ◦ Musical InteractionSensor Based HCI It has the wide range of applications in our day-to-day life. ● The common feature in every application is that at least one physical sensor is used between machine and human to provide interaction. ● Some of the sensors range from being very sophisticated to primitive : ◦ Pen-Based Interaction ◦ Motion Tracking Sensors/Digitizers ◦ Haptic Sensors ◦ Pressure Sensors ◦ Keyboard, Mouse, JoysticksVisual Based HCI It is also called as machine vision which is the observation of an environment using cameras. ● In this, different aspects of human responses can be recognised visual signals. ● Detection, identification and tracking of a real life entity and its translation into meaningful machine/computer input. ● The main research areas of visual based HCI are: ◦ Facial Expression Analysis ◦ Body Movement tracking and Gesture recognition ◦ Gaze Detection ● Sixth Sense is one of the Visual based HCI technologies which is a wearable “Gesture Based” device.Multimodal HCI System Combination of multiple modalities, or usage of more than one independent channel signals for the interaction between a user and a machine is termed as multimodal human computer interaction system (MMHCI). A multimodal interface acts as a facilitator of humancomputer interaction via two or more modes of input. It is easy to use by disabled, illiterate people. A classic example of a multimodal system is the “Put That There” demonstration system.Multimodal HCI System/ ...... nCll a 0 N 0 0 00Interaction design “Designing interactive products to support the way people communicate and interact in their everyday and working lives.” Sharp, Rogers & Preece, 2007User Experience Design I / / I Indust rial Design Human-Computer Interaction img: Dan SafferNeuroscienceUser Experience UX User experience is the totality of the effect or effects felt by a user as a result of interaction with, and the usage context of, a system, device, or product, including the influence of usability, usefulness, and emotional impact during interaction, and savoring the memory after interaction.Usability is the pragmatic component of user experience, including effectiveness, efficiency, productivity, ease-of-use, learnability, retainability, and the pragmatic aspects of user satisfaction. Usefulness Usefulness is the component of the UX to which system functionally gives the ability to use the system or product to accomplish the goals of work (or play).Functionality Functionality is power to do work (to play) seated in the non-user-interface computational features and capabilities. Emotional Impact Emotional impact is the affective component of UX that influences user feelings. Emotional impact includes such effects as pleasure, fun, joy of use, aesthetics, desirability, pleasure, novelty, originality, sensations, coolness, engagement, appeal and can involve deeper emotional factors such self-identity, a feeling of contribution to theKeep t h e i pe 1 1 ·e most engaging in erface of a game? • (t[J1 Make Blog Make a personal blog • Wordpress • Tumblr • Blogger • Medium 2 Upload personal statement Your Blog Post #1 • Lenght: 1000 words or less • Who I am, and what I have been through • What I like to learn • Things that I like • My dreams 3 Upload Your Images Your Blog Post #2 • Upload images of yourself or about yourself • Pick your 3 favorites • Tell us why the pic is your favorite

ppt-online.org


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.