Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат на тему Электричество 2. Электричество реферат


Реферат: Электричество

РЕФЕРАТ

ТЕМА:

ЭЛЕКТРИЧЕСТВО

2008 г.

Много веков назад люди открыли особые свойства янтаря: при трении в нем возникает электрический заряд. В наши дни с помощью электричества мы имеем возможность смотреть телевизор, переговариваться с людьми на другом конце света, а также получать свет и тепло, лишь повернув для этого выключатель. Опыты с янтарем, то есть смолой хвой­ных деревьев, окаменевшей естествен­ным образом, проводились еще древними греками. Они обнаружили, что если янтарь потереть, то он притягивает ворсинки шер­сти, перья и пыль. Если сильно потереть, к примеру, пластмассовую расческу о волосы, то к ней начнут прилипать кусочки бумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. При трении янта­ря, пластмассы и ряда других материалов в них возникает электрический заряд. Само слово "электрический" происходит от ла­тинского слова electrum, означающего "янтарь".

Вспышка молнии - одно из самых зре­лищных проявлении электрического заряда, Молния возникает и результате большого скопления электрических зарядов и облаках, В середине XVIII века один из первых иссле­дователей атмосферного электричества аме­риканский ученый Бенджамин Франклин провел очень опасный эксперимент, запустив в грозовое небо воздушного змея. Он хотел доказать, что молния - результат того же электрического заряда, что возникает при тре­нии предметов друг о друга,

Если имеющие электрический заряд объ­екты притягивают и удерживают только очень легкие предметы, то магнит может удержать довольно тяжелые куски железа. По-этому издревле магниты применялись с поль­зой, например, в компасах.

Откуда берется электрический заряд?

Все атомы окружены облакомэлектронов, которые несут отрицательный (-)электрическийзаряд. Электроны движутся вокруг ядра. Ядро обладает таким же суммарным заря­дом, как и все его электроны, но это заряд по­ложительный (+) . Обычно положительный и отрицательный заряды уравновешивают друг друга, и атом является электрически нейтраль­ным. Но у некоторых веществ часть внешних электронов имеет довольно непрочные связи с ихатомами.Иесли потереть два предмета друг о друга, то такие электроны могут освободить­ся и перекочевать на другой предмет. В результате этого перемещения у одного предмета электронов становится больше, чем должно быть, и он приобретает отрица­тельный (-) заряд. У второго предмета элек­тронов становится меньше, так что он при­обретает положительный (+) заряд. Заряды, формирующиеся подобным образом, назы­вают иногда «электричеством трения», Какой из предметов приобретет положительный или отрицательный заряд, зависит от отно­сительной легкости, с какой электроны передвигаются в поверхностных слоях двух предметов.

Если натереть шерстяной тряпкой поли­этиленовую леску, то она получит отрица­тельный заряд, а если натереть органическое стекло, то оно получит положительный заряд. В любом случае тряпка получит заряд, проти­воположный заряду натертого материала.

Электрические заряды влияют друг на друга. Положительный и отрицательный за­ряды притягиваются друг к другу, а два отри­цательных или два положительных заряда от­талкиваются друг от друга. Если поднести к предмету отрицательно заряженную леску, отрицательные заряды предмета переместят­ся на другой его конец, а положительные за­ряды, наоборот, переместятся поближе к леске. Положительные и отрицательные заряды лески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процесс на­зывается электростатической индукцией, и о предмете говорят, что он попадает в электро­статическое поле лески.

Майкл Фарадей доказал, что, электричест­во трения и электрический ток - одно и то же. Он также доказал, что электрическое поле не может существовать внутри металлической клетки (теперь называемой клеткой Фарадея).

Гром и молния

Грозы обычно бывают летом в жаркую погоду; когда с поверхности земли горячие потоки воздуха насыщенные влагой, поднимаются вверх. Пока капли воды и кристаллы льда кру­жатся в воздушных потоках грозовых облаков, они заряжаются электричеством. Крошечные, положительно заряженные кристаллы льда движутся вверх, а отрицательно заряженные градинки собираются внизу облака.

Точно так же, как из-за электростатичес­кой индукции к заряженной леске притяги­ваются маленькие предметы, по той же при­чине и заряженное облако притягивается к земле. Отрицательный заряд на нижней сто­роне облака притягивается положительным зарядом на земле, и между ними возникает мощная искра (молния). Разряд молнии на­гревает воздух и заставляет его расширяться, что сопровождается грохотом грома. Звук переносится по воздуху гораздо медленнее, чем свет, поэтому вначале мы видим вспыш­ку, а потом слышим гром.

При трении металлы не только легко эле­ктризуются, но и очень хорошо проводят электричество. Поэтому если металлический предмет находится в руках человека, то заряд проходит и через тело человека. Электриче­ство, возникающее при трении, чаще встре­чается у материалов, являющихся плохими проводниками, таких как стекло, резина, пластмасса, смола, Эти материалы называют­ся изоляторами. Так как электричество по ним не передается, его называют статичес­ким электричеством. Фарадей называл его также «обыкновенным» электричеством, од­нако в наши дни мы повсеместно используем электрический (движущийся) ток. Так что теперь скорее он стал «обыкновенным».

Электрический заряд

Если у вас подошва из резины или синтетиче­ского материала, и вы прошлись по ковру, то,прикоснувшись к металлической ручке двери, вы почувствуете легкий удар током. Эта означает, что ваше тело при трении подошв о ковер успело зарядиться электричеством,

Иногда человек испытывает удар током, выходя из машины и закрывая дверь. Вероят­ней всего, на нем шерстяная или хлопчатобу­мажная одежда, которая наэлектризовалась от синтетического сиденья машины. Если к тому же у него подошвы из резины или син­тетики, которые являются изоляторами, то заряд может выйти только в момент прикос­новения к металлической ручке. Чтобы избе­жать этого, можно попробовать дотронуться до чего-нибудь металлического еще внутри машины перед выходом. Тогда заряд умень­шится и неприятного удара не последует,

Настоящий удар током

Хотя описанные выше удары электричес­ким током и неприятны, они, тем не менее безопасны для человека. Но электрические заряды, возникающие в результате трения, в ряде случаев могут вызвать чрезвычайные ситуации. Были случаи, когда огромные су­пертанкеры взрывались в то время, когда их топливные цистерны промывались мощны­ми водометами.Электрический заряд возникает при тре­нии капель воды в струе водомета. Этот эф­фект сходен с эффектом от восходящего в грозовое облако воздушного потока с капель­ками воды. В подобных условиях, несмотря на влажную среду; могут вспыхнуть искры, что грозит возгоранием паров бензина, ос­тавшихся в цистерне.

Самолеты тоже могут получить электричес­кий заряд, если попадут в грозовое облако или при трении шасси о землю вовремя посадки.Раньше искры от скопившихся на по­верхности самолёта электрических зарядов создавали угрозу взрыва. Однако теперь предпринимаются необходимые меры пре­досторожности. Например, покрышки шасси делают из электропроводящего материала. На концах крыльев самолета монтируются коронирующие (разрядные) электроды, и все электричество скапливается на концах крыльев и «распыляется».

Меры безопасности необходимы и при заправке топливом, потому что трение, воз­никающее в потоке бензина, вполне может вызвать сильный заряд. Поэтому бензонасо­сы делаются из железа.

Применение

Электричество, возникающее в результате трения, или статическое электричество, ис­пользуется человеком самым разным обра­зом. Частицы сажи, пепла и им подобных твердых веществ вместе с дымом выбрасыва­ются многочисленными предприятиями в воздух, а затем возвращаются в виде осадков. Благодаря применению электростатических фильтров, устанавливаемых в трубах, при­близительно 98% твердых веществ можно за­держать и удалить, пока они не попали в воз­дух. Этот процесс называется электростати­ческим пылеулавливанием. Ежегодно в США подобным образом предупреждается выброс в воздух 20 миллионов тонн сажи.При покраске автомобилей и воздушного транспортапользуются специальной систе­мой распыления. Однако при этом каждый раз испаряется до 25% краски. Этого можно избежать, сообщив распыляемым частицам электрический потенциал. Наэлектризован­ные частицы краски начинают притягиваться к поверхности машины или самолета и луч­ше держатся. Экономия при эффективном использовании системы распыления превы­шает затраты на зарядное оборудование.

Та же самая техника используется и при нанесении порошковых покрытий. Наэлектризованное покрытие словно прилипает к металлу, а при нагревании поверхности по­рошковое покрытие образует тонкий нераз­рывный слой.

Электрический заряд и порошок исполь­зуются также в ксероксах. На линзу отражает­ся изображение текста или рисунка, которое надо скопировать. Этот черно-белый рису­нок переносится на бумагу как рисунок из за­ряженных и нейтральных участков. Когда по бумаге рассеивается черный порошок, он притягивается исключительно к заряженным участкам. Затем под действием горячего воз­духа порошок закрепляется на бумаге. Такая техника копирования называется ксерографией. Она также используется в факсимиль­ных аппаратах.

Движущиеся заряды

При вспышке молнии образуется огромное количество энергии. Затем следует пауза, по­ка снова не накопится такой же сильный за­ряд и не вспыхнет новая молния. Представьте теперь, что можно накапливать и разряжать заряды без пауз. Получится постоянный по­ток зарядов, Таков, собственно, эффект бата­рейки - хотя при ее работе количество энер­гии несравнимо с молнией. На этом же прин­ципе построена работа генераторов на элек­тростанциях.

Если заряды движутся, их поток называ­ют электрическим током. Для производства электрического тока необходим приток энергии. Обычно энергию получают в ре­зультате химических реакций (как в бата­рейках) или движения (генераторы). Кроме того, энергию можно получать непосредст­венно от солнечного света или теплового излучения. Это делается с помощью солнеч­ных батарей, которые снабжают электро­энергией спутники и другое космическое оборудование.

Животное электричество

У животных и человека все процессы жизне­деятельности регулирует мозг, который полу­чает и отсылает сигналы (нервные импульсы) по нервам. И для этого тоже требуется опре­деленный заряд, хотя и очень небольшой. Однако некоторые животные накапливают такое количество электричества, которое способно парализовать или даже убить свою добычу. Например, электрический угорь ге­нерирует разряд в 600 вольт, и этого вполне достаточно, чтобы убить рыбу или очень сильно ударить током человека,

Напряжение и ток

Приведенное ниже описание поможет вам лучше понять, что такое ток и электрическое напряжение.

Итак, есть две емкости, соединенные труб­кой, и в одну емкость наливается вода. Вода наливается до тех пор, пока ее уровень не станет одинаковым в обеих емкостях. Если одну емкость приподнять над другой, то вода из одной емкости будет перетекать в другую, пока уровни опять не станут одинаковыми.

Чем больше разница в уровнях воды в двух емкостях, тем быстрее будет литься вода. Скорость, с какой переливается вода, анало­гична скорости движения тока. С такой ско­ростью свободные электроны передвигаются в металлической проволоке.Разница в уровне воды сравнима с элект­рическим напряжением. Чем выше напряжение, тем сильнее поток электрического тока.

У батареек в фонариках и в портативных радиоприемниках напряжение колеблется от 1,5 до 9 вольт. Точная величина зависит от со­става и количества элементов в батарейке. В бытовой электросети напряжение составляет от 100 до 240 вольт, в зависимости от место­нахождения.

Источник тока

Первый химический источник тока был со­здан итальянским ученым Алессандро Вольта приблизительно в 1800 году. Во время одного из экспериментов он смочил лист промока­тельной бумаги в соленом растворе и помес­тил его между пластинами меди и цинка. Oн обнаружил, что при взаимодействии меди и цинка в соединяющей их проволоке образо­вывался электрический заряд. Это означало, что в ходе химической реакции электроны перемещались с пластинки меди на цинк. Единица электрического напряжения, спо­собствовавшего появлению тока, была назва­но в честь ученого вольтом.

Для получения электрического тока боль­шей силы необходимо большее напряжение. Вольта сделал конструкцию из чередующихся медных и цинковых пластин. При этом каж­дая их пара отделялась от следующей влаж­ным кружком из картона. Эта конструкция получила название «вольтов столб».

Строго говоря, источником тока является конструкция из одной пластины каждого ме­талла. Вольтов столб, по сути, был первой электрической батареей, сделанной руками человека. Однако в повседневной жизни мы называем "батарейками" все химические ис­точники тока, независимо от того, состоят ли они из одного элемента или нескольких. Например, аккумулятор (12 вольт) составлен из 6 элементов по 2 вольта каждый. Батарейка в фонарике (1,5 вольта) является единым элементом.

Батареи

Существует огромное количество разных электрических батареи, но в их устройстве всегда присутствуют два фактора. Они обяза­тельно состоят из двух разных химических элементов (например, цинка медь, уголь и медь, цинк и ртуть) и жидкости, их разделяю­щей (в элементе Вольты это был соляной раствор). Жидкость называется электроли­том. Иногда электролит присутствует в виде пасты, чтобы избежать протечек.

Наличие разных химических элементов необходимо по той же причине, по какой при получении статического электричества путем трения используются разные материалы. В одном материале электроны движутся с большей свободой и поэтому имеют тенден­цию перемещаться на другой материал. В электрическом элементе две пластины и жид­кость между ними являются проводниками электричества. Электроны, «освобожденные» во время химической реакции, могут без конца перемещаться, было бы только пространство. Таким пространством становится элект­рическая цепь. Поток электронов может быть остановлен при разрыве цепи. В быту эту роль выполняет выключатель.

В батарейках, калькуляторах, портатив­ных приемниках и слуховых аппаратах роль электролита выполняет влажная паста. Бата­рейки вырабатывают электричество, пока в них идет химическая реакция.

В недорогих батарейках один химический элемент представляет собой цинковую емкость, второй - угольный электрод. Со временем цинковая емкость расплавляется, поэтому наружная оболочка таких батареек плотно за­печатывается, чтобы содержимое не вытекло и не испортило другие вещи, В долговечных щелочных батарейках те же химические эле­менты, но другой электролит. В маленьких круглых батарейках, используемых в часах, химические пластины сделаны из цинка и ртути или цинка и оксида серебра.

Некоторые батарейки можно перезаря­жать, пропуская ток в обратном направле­нии. Обычно такие батарейки работают на никеле и кадмии. Элементы должны заря­жаться только в специальном зарядном устройстве с правильным напряжением. Никогда не стоит пытаться зарядить обыкно­венную батарейку. В аккумуляторах автомобилей и электри­ческого транспорта содержится жидкость, по­этому они должны находиться только в вер­тикальном положении. Обычно они работают на свинце и свинцовом сурике и могут пере­заряжаться много раз. Электролит чаще всею представляет собой разбавленную серную кислоту; поэтому они обычно запечатаны.

Электрические автомобили бесшумны и не загрязняют воздух (тем не менее, воздух загрязняют электростанции, снабжающие электричеством зарядные устройства). В на­стоящее время проводятся эксперименты по производству перезаряжаемых автомобиль­ных аккумуляторов, которые по весу были бы легче существующих. Есть вероятность, что однажды появятся аккумуляторы с пластико­выми элементами.

Электричество и магнетизм

Заряженный предмет окружен электричес­ким полем, которое действует на окружаю­щие предметы, - вспомним расческу и притя­гивающиеся к ней кусочки бумаги и пылинки. Магнит тоже окружен магнитным полем, ко­торое можно увидеть, если поблизости есть металлические опилки. Некоторые характе­ристики электрического и магнитного полей похожи, другие отличаются. Вот несколько примеров.

Магнитные силы гораздо сильнее элект­рических. В то же время электрический заряд может перейти с одного тела или предмета на другой - явление, называемое индукцией, - и магнит распространяет свое действие на другой магнитный материал. Но зарядиться электричеством может все, маг­нитные же свойства передаются только телам, способным намагничиваться, таким как железо, сталь и некоторые сплавы.

Электрические заряды делятся па поло­жительные и отрицательные, магнитные полюсы делятся на южный и северный. Однородные заряды отталкиваются, противоположные притягиваются: одина­ковые магнитные полюсы тоже отталкива­ются, а противоположные притягиваются. Однако северный и южный полюсы никог­да не смогут существовать отдельно друг от друга. Если магнит сломать, то из слома образуется новый южный или новый север­ный полюс.

О ВЗАИМОДЕЙСТВИИ

Электричество и магнетизм тесно связаны друг с другом. Если пропустить электричес­кий ток через скрученную проволоку, она приобретет свойства магнита. А если прово­локу обернуть вокруг магнитного материала, то он также намагнитится. Но этому принци­пу устроен электромагнит.

Если магнитное поле проходит через витки проволоки и при этом как-то меняется (становится сильнее или слабее или сдвига­ется), то в них возникает ток. В свою очередь, ток возвращает магнитное поле в прежнее состояние за счет создания своего магнитно­го поля.

В устройстве электромоторов и генерато­ров используется описанное выше явление - ток создаст магнитное поле, а изменения в магнитном поле производят ток.

Это явление, открытое Фарадеем, исполь­зуется также и в трансформаторах, которые служат для преобразования напряжения в энергоснабжающих системах и в электронном оборудовании - например, телевизо­рах и радиоприемниках. Трансформаторы работают на переменном токе, текущем в бы­товой электросети, В отличие от тока в бата­рее переменный ток движется в двух направ­лениях - вперед-назад, вперед-назад, меняя направление со скоростью 50 раз и секунду,(В США, соответственно, 60).

Железный сердечник трансформатора имеет две обмотки медного провода, бегу­щий по одной из них переменный ток созда­ет в сердечнике быстро меняющееся магнит­ное поле. Эго вызывает переменный ток во второй обмотке. Таким образом, энергия передается из одной обмотки в другую, хотя между ними и нет непосредственного кон­такта. Их связь исключительно магнитная.

Напряжение на выходе зависит от количе­ства витком в каждой обмотке. Оно может быть больше входного напряжения или меньше. Хотя увеличение напряжения «подталкивает» заряды, их поток сокращается, то есть умень­шается сила тока. Когда электричество переда­ется по высоковольтным проводам, трансфор­матор усиливает напряжение как раз, для того, чтобы уменьшить ток. Когда же электричество подводитьсяк домам, трансформатор снижает напряжение.

Моторы и генераторы

В простом электрическом моторе ток намаг­ничивает обмотку, и ее витки притягиваются к полюсам магнита. Кроме того, в моторе ус­тановлен вращающийся переключатель, ко­торый автоматически меняет направление тока каждыепол-оборота.

Этот процесс действует и в обратном на­правлении: поворачивается проволока - и возникает напряжение. То есть мотор стано­вится генератором.

superbotanik.net

Реферат на тему Электричество 2

РЕФЕРАТ ТЕМА: ЭЛЕКТРИЧЕСТВО                                                   2008 г.   

  Много веков назад люди открыли особые свойства янтаря: при трении в нем возникает электрический заряд. В наши дни с помощью электричества мы имеем возможность смотреть телевизор, переговариваться с людьми на другом конце света, а также получать свет и тепло, лишь повернув для этого выключатель. Опыты с янтарем, то есть смолой хвой­ных деревьев, окаменевшей естествен­ным образом, проводились еще древними греками.   Они обнаружили, что если янтарь потереть, то он притягивает ворсинки шер­сти, перья и пыль. Если сильно потереть, к примеру, пластмассовую расческу о волосы, то к ней начнут прилипать кусочки бумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. При трении янта­ря, пластмассы и ряда других материалов в них возникает электрический заряд. Само слово "электрический" происходит от ла­тинского слова electrum, означающего "янтарь". Вспышка молнии - одно из самых зре­лищных проявлении электрического заряда, Молния возникает и результате большого скопления электрических зарядов и облаках, В середине XVIII века один из первых иссле­дователей атмосферного электричества аме­риканский ученый Бенджамин  Франклин провел очень опасный эксперимент, запустив в грозовое небо воздушного змея. Он хотел доказать, что молния - результат того же электрического заряда, что возникает при тре­нии предметов друг о друга, Если имеющие электрический заряд объ­екты притягивают и удерживают только очень легкие предметы, то магнит может удержать довольно тяжелые куски железа. По-этому издревле магниты применялись с поль­зой, например, в компасах.

                         Откуда берется электрический заряд?   Все атомы окружены облаком электронов, которые несут отрицательный  (-) электрический заряд. Электроны движутся вокруг ядра. Ядро обладает таким же суммарным заря­дом, как и все его электроны, но это заряд по­ложительный (+) . Обычно положительный и отрицательный заряды уравновешивают друг друга, и атом является электрически нейтраль­ным.  Но у некоторых веществ часть внешних электронов имеет довольно непрочные связи с их атомами. И если потереть два предмета друг о друга, то такие электроны могут освободить­ся и перекочевать на  другой предмет. В результате этого перемещения у одного предмета электронов становится больше, чем должно быть, и он приобретает отрица­тельный  (-) заряд. У второго предмета элек­тронов становится меньше, так что он при­обретает положительный  (+) заряд. Заряды, формирующиеся подобным образом, назы­вают иногда «электричеством трения», Какой из предметов приобретет положительный или отрицательный заряд, зависит от отно­сительной легкости, с какой электроны передвигаются в поверхностных слоях двух предметов. Если натереть шерстяной тряпкой поли­этиленовую леску, то она получит отрица­тельный заряд, а если натереть органическое стекло, то оно получит положительный заряд. В любом случае тряпка получит заряд, проти­воположный  заряду натертого материала. Электрические заряды влияют друг на друга. Положительный и отрицательный за­ряды притягиваются друг к другу, а два отри­цательных или два положительных заряда от­талкиваются друг от друга. Если поднести к предмету отрицательно  заряженную леску, отрицательные заряды предмета переместят­ся на другой его конец, а положительные за­ряды, наоборот, переместятся поближе к леске. Положительные и отрицательные заряды лески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процесс на­зывается электростатической индукцией, и о предмете говорят, что он попадает в электро­статическое поле лески. Майкл  Фарадей доказал, что, электричест­во трения и электрический ток - одно и то же. Он также доказал, что электрическое поле не может существовать внутри металлической клетки (теперь называемой клеткой Фарадея).                                                Гром и молния     Грозы обычно бывают летом в жаркую погоду; когда с поверхности земли горячие потоки воздуха  насыщенные влагой, поднимаются вверх. Пока капли  воды  и кристаллы льда кру­жатся в воздушных потоках грозовых облаков, они  заряжаются электричеством. Крошечные, положительно заряженные  кристаллы льда движутся вверх, а отрицательно заряженные градинки собираются внизу облака. Точно так же, как из-за электростатичес­кой индукции к заряженной леске притяги­ваются маленькие  предметы, по той же при­чине и заряженное облако притягивается к земле. Отрицательный заряд на нижней сто­роне облака притягивается положительным зарядом на земле, и между ними возникает мощная искра (молния). Разряд молнии на­гревает воздух и  заставляет его расширяться, что сопровождается грохотом грома. Звук   переносится по воздуху гораздо медленнее, чем свет, поэтому вначале мы видим вспыш­ку, а потом слышим гром.   При трении металлы не только легко эле­ктризуются, но и очень хорошо проводят электричество. Поэтому если металлический предмет находится в  руках человека, то заряд проходит и через тело человека. Электриче­ство, возникающее при трении, чаще встре­чается у материалов, являющихся плохими проводниками, таких как стекло, резина, пластмасса, смола, Эти материалы называют­ся изоляторами. Так как электричество по ним не передается, его называют статичес­ким электричеством. Фарадей называл его также «обыкновенным» электричеством, од­нако в наши дни мы повсеместно используем электрический (движущийся) ток. Так что теперь скорее он стал «обыкновенным».                                           Электрический заряд     Если у вас подошва из резины или синтетиче­ского материала, и вы прошлись по ковру, то, прикоснувшись к металлической ручке двери, вы почувствуете  легкий удар током. Эта означает,  что ваше тело при трении подошв о ковер успело зарядиться электричеством,   Иногда человек испытывает удар током, выходя из машины и закрывая дверь. Вероят­ней всего, на нем шерстяная или хлопчатобу­мажная одежда, которая наэлектризовалась от синтетического сиденья машины. Если к тому же у него подошвы из резины или син­тетики, которые являются изоляторами, то заряд может  выйти только в момент прикос­новения к металлической ручке. Чтобы избе­жать этого, можно попробовать дотронуться до чего-нибудь металлического еще внутри машины перед выходом. Тогда заряд умень­шится и неприятного удара не последует,                                                                                                         Настоящий удар током     Хотя описанные выше удары электричес­ким током и неприятны, они, тем не менее  безопасны для человека. Но электрические заряды, возникающие в результате трения, в ряде случаев могут вызвать чрезвычайные ситуации. Были случаи, когда огромные су­пертанкеры взрывались в то время, когда их топливные цистерны промывались мощны­ми водометами.  Электрический заряд возникает при тре­нии капель воды в струе водомета.   Этот эф­фект сходен с эффектом от восходящего в грозовое облако воздушного потока с капель­ками воды. В подобных условиях, несмотря на влажную среду; могут вспыхнуть искры, что грозит возгоранием паров бензина, ос­тавшихся в цистерне.   Самолеты тоже могут получить электричес­кий заряд, если попадут в грозовое облако или при трении шасси о землю вовремя посадки. Раньше  искры от скопившихся на по­верхности самолёта  электрических зарядов создавали угрозу взрыва. Однако теперь предпринимаются необходимые меры пре­досторожности. Например, покрышки шасси делают из электропроводящего материала. На концах крыльев самолета монтируются коронирующие (разрядные) электроды, и все электричество скапливается на концах крыльев и «распыляется».   Меры безопасности необходимы и при заправке топливом, потому что трение, воз­никающее в потоке бензина, вполне может вызвать сильный заряд. Поэтому бензонасо­сы делаются из железа.                                                 Применение     Электричество, возникающее в результате трения, или статическое электричество, ис­пользуется человеком самым разным обра­зом. Частицы сажи, пепла и им подобных твердых веществ вместе с дымом выбрасыва­ются многочисленными предприятиями в воздух, а затем возвращаются в виде осадков. Благодаря применению электростатических фильтров, устанавливаемых в трубах, при­близительно 98% твердых веществ можно за­держать и удалить, пока они не попали в воз­дух. Этот процесс называется электростати­ческим пылеулавливанием. Ежегодно в США подобным  образом предупреждается выброс в воздух 20 миллионов тонн  сажи. При покраске  автомобилей и воздушного транспорта пользуются специальной систе­мой  распыления. Однако при этом каждый раз испаряется до 25% краски. Этого можно избежать, сообщив распыляемым частицам электрический потенциал. Наэлектризован­ные частицы краски начинают притягиваться к поверхности машины или самолета и луч­ше держатся. Экономия при эффективном использовании системы распыления превы­шает затраты на зарядное оборудование.    Та же самая техника используется и при нанесении порошковых покрытий. Наэлектризованное  покрытие словно прилипает к металлу, а при нагревании поверхности по­рошковое покрытие образует тонкий нераз­рывный слой.   Электрический заряд и порошок исполь­зуются также в ксероксах. На линзу отражает­ся изображение текста или рисунка, которое надо скопировать. Этот черно-белый рису­нок переносится на бумагу как рисунок  из за­ряженных и нейтральных участков. Когда по бумаге рассеивается черный порошок, он притягивается исключительно к заряженным участкам. Затем под действием горячего воз­духа порошок закрепляется на бумаге. Такая техника копирования называется  ксерографией. Она также используется в факсимиль­ных аппаратах.                                          Движущиеся заряды    При вспышке молнии образуется огромное количество энергии. Затем следует пауза, по­ка снова не накопится такой же сильный за­ряд и не вспыхнет новая молния. Представьте теперь, что можно накапливать и разряжать заряды без пауз. Получится постоянный по­ток зарядов, Таков, собственно, эффект бата­рейки - хотя при ее работе количество энер­гии несравнимо с молнией. На этом же прин­ципе построена работа генераторов на элек­тростанциях.   Если заряды движутся, их поток называ­ют  электрическим током. Для производства электрического тока необходим приток энергии. Обычно энергию получают в ре­зультате химических реакций (как в бата­рейках) или движения (генераторы). Кроме того, энергию можно  получать непосредст­венно от солнечного  света или теплового излучения. Это делается с помощью солнеч­ных батарей, которые снабжают электро­энергией спутники и другое космическое оборудование.                                             Животное электричество   У животных и человека все процессы жизне­деятельности регулирует мозг, который полу­чает и отсылает сигналы (нервные импульсы) по нервам. И для этого тоже требуется опре­деленный заряд, хотя и очень небольшой. Однако некоторые животные накапливают такое количество электричества, которое способно парализовать или даже убить свою добычу. Например, электрический угорь ге­нерирует разряд в 600 вольт, и этого вполне достаточно, чтобы убить рыбу или очень сильно ударить током человека,                                               Напряжение и ток Приведенное ниже описание поможет вам лучше понять, что такое ток и электрическое напряжение. Итак, есть две емкости, соединенные труб­кой, и в одну емкость наливается вода. Вода наливается до тех пор, пока ее уровень не станет одинаковым в обеих емкостях. Если одну емкость приподнять над другой, то вода из одной емкости будет перетекать в другую, пока уровни опять не станут одинаковыми. Чем больше разница в уровнях воды в двух емкостях, тем быстрее будет литься вода. Скорость, с какой переливается вода, анало­гична скорости движения тока. С такой ско­ростью свободные электроны передвигаются в металлической проволоке. Разница в уровне воды сравнима с элект­рическим напряжением. Чем выше  напряжение,  тем сильнее поток электрического тока. У батареек в фонариках и в портативных радиоприемниках  напряжение колеблется от 1,5 до 9 вольт. Точная величина зависит от со­става и количества элементов в батарейке. В бытовой электросети напряжение составляет от 100 до 240 вольт, в зависимости от место­нахождения.                                        Источник  тока   Первый химический источник тока был со­здан итальянским ученым Алессандро Вольта приблизительно в 1800 году. Во время одного из экспериментов он смочил лист промока­тельной бумаги в соленом растворе и помес­тил его между пластинами меди и цинка.  Oн обнаружил, что при взаимодействии  меди и цинка в соединяющей их проволоке образо­вывался электрический заряд. Это означало, что в ходе химической реакции электроны перемещались с пластинки меди на цинк. Единица электрического напряжения, спо­собствовавшего появлению тока, была назва­но в честь ученого вольтом.   Для получения электрического тока боль­шей силы необходимо большее напряжение.  Вольта сделал конструкцию из чередующихся  медных и цинковых пластин.  При этом каж­дая их пара отделялась от следующей  влаж­ным кружком из картона.  Эта конструкция получила название «вольтов столб».   Строго говоря, источником тока является конструкция из одной пластины каждого ме­талла. Вольтов столб, по сути, был первой электрической батареей, сделанной руками человека. Однако в повседневной жизни мы называем "батарейками" все химические ис­точники тока, независимо от того, состоят ли они из одного элемента или нескольких. Например, аккумулятор (12 вольт) составлен из 6 элементов по 2 вольта каждый. Батарейка в фонарике (1,5 вольта) является единым элементом.

                                                          Батареи Существует огромное количество разных электрических батареи, но в их устройстве всегда присутствуют два фактора. Они обяза­тельно состоят из двух разных химических элементов (например, цинка медь, уголь и медь, цинк и ртуть) и жидкости, их разделяю­щей (в элементе Вольты это был соляной раствор). Жидкость называется электроли­том. Иногда электролит присутствует в виде пасты, чтобы избежать протечек.   Наличие разных химических элементов необходимо по той же причине, по какой при получении статического электричества путем трения используются разные  материалы. В одном материале электроны движутся с большей свободой и поэтому имеют тенден­цию перемещаться на другой материал. В электрическом элементе две пластины  и жид­кость между ними являются проводниками электричества. Электроны,  «освобожденные» во время химической реакции, могут без  конца перемещаться, было бы только пространство. Таким пространством становится элект­рическая цепь. Поток электронов может быть остановлен  при разрыве цепи. В быту эту роль выполняет выключатель.   В батарейках, калькуляторах, портатив­ных приемниках и слуховых аппаратах роль электролита выполняет влажная паста. Бата­рейки вырабатывают электричество, пока в них идет химическая реакция.   В недорогих батарейках один химический элемент представляет собой цинковую емкость, второй - угольный электрод. Со временем цинковая емкость расплавляется, поэтому наружная оболочка таких батареек плотно за­печатывается, чтобы содержимое не вытекло и не испортило другие вещи, В долговечных щелочных  батарейках те же химические эле­менты, но другой электролит. В маленьких круглых батарейках, используемых в часах, химические пластины сделаны из  цинка и ртути или цинка и оксида серебра.   Некоторые батарейки можно перезаря­жать, пропуская ток в обратном направле­нии. Обычно такие батарейки работают на никеле и кадмии.  Элементы должны заря­жаться только в специальном зарядном устройстве с правильным напряжением. Никогда не стоит пытаться зарядить обыкно­венную батарейку. В аккумуляторах автомобилей и электри­ческого транспорта содержится жидкость, по­этому они должны находиться только в вер­тикальном положении. Обычно они работают на свинце и свинцовом сурике и могут пере­заряжаться много раз. Электролит чаще всею представляет собой разбавленную серную кислоту; поэтому они обычно запечатаны.   Электрические автомобили бесшумны и не загрязняют воздух (тем не менее, воздух загрязняют электростанции, снабжающие электричеством зарядные устройства). В на­стоящее время проводятся эксперименты по производству перезаряжаемых автомобиль­ных аккумуляторов, которые по весу были бы легче существующих. Есть вероятность, что однажды появятся  аккумуляторы с пластико­выми элементами.                                        Электричество и магнетизм Заряженный предмет окружен электричес­ким  полем, которое действует на окружаю­щие предметы, - вспомним расческу и притя­гивающиеся к ней кусочки бумаги и пылинки. Магнит тоже окружен магнитным полем, ко­торое можно увидеть, если поблизости есть металлические опилки.  Некоторые характе­ристики электрического и магнитного полей похожи, другие отличаются. Вот несколько примеров.   Магнитные силы гораздо сильнее  элект­рических. В то же время электрический заряд может перейти с одного тела или предмета на другой - явление, называемое индукцией, - и магнит  распространяет  свое действие на другой магнитный материал. Но зарядиться электричеством может все,  маг­нитные же свойства передаются только телам, способным намагничиваться, таким как железо, сталь и некоторые сплавы.   Электрические заряды делятся па поло­жительные и отрицательные, магнитные полюсы делятся на южный и северный.  Однородные заряды отталкиваются, противоположные притягиваются: одина­ковые магнитные полюсы тоже отталкива­ются, а противоположные притягиваются. Однако северный и южный полюсы  никог­да не смогут существовать отдельно друг от друга. Если магнит сломать, то из слома образуется новый южный или новый север­ный полюс.                                   О ВЗАИМОДЕЙСТВИИ     Электричество и магнетизм тесно связаны  друг с другом. Если пропустить электричес­кий ток через скрученную проволоку, она приобретет свойства магнита. А если прово­локу обернуть вокруг магнитного материала, то он также намагнитится. Но этому принци­пу устроен электромагнит.   Если магнитное поле проходит через витки проволоки и при этом как-то меняется (становится сильнее или слабее или сдвига­ется), то в них возникает ток. В свою очередь, ток возвращает магнитное поле в прежнее состояние за счет создания своего магнитно­го поля.   В устройстве электромоторов и генерато­ров используется описанное выше явление - ток создаст магнитное поле, а изменения в магнитном поле производят ток.   Это явление, открытое Фарадеем, исполь­зуется также и в трансформаторах, которые служат для преобразования напряжения в  энергоснабжающих  системах и в электронном оборудовании - например, телевизо­рах и радиоприемниках. Трансформаторы работают  на переменном токе, текущем в бы­товой электросети, В отличие от тока в бата­рее переменный ток движется в двух направ­лениях - вперед-назад, вперед-назад, меняя направление со скоростью 50 раз и секунду, (В США, соответственно, 60).   Железный сердечник трансформатора имеет две обмотки медного провода, бегу­щий по одной из них переменный ток созда­ет в сердечнике быстро меняющееся магнит­ное поле. Эго вызывает переменный ток во второй обмотке. Таким образом, энергия передается из одной обмотки в другую, хотя между ними и нет непосредственного кон­такта. Их связь исключительно магнитная.   Напряжение на выходе зависит от количе­ства витком в каждой обмотке. Оно может быть больше входного напряжения или меньше. Хотя увеличение напряжения «подталкивает» заряды, их поток сокращается, то есть умень­шается сила тока. Когда электричество переда­ется по высоковольтным проводам, трансфор­матор усиливает напряжение как раз, для того, чтобы уменьшить ток. Когда же электричество подводиться к домам, трансформатор снижает напряжение.                                            Моторы и генераторы     В простом электрическом моторе ток намаг­ничивает обмотку, и ее витки притягиваются к полюсам магнита. Кроме того, в моторе ус­тановлен вращающийся переключатель, ко­торый автоматически меняет направление тока каждые пол-оборота.   Этот процесс действует и в обратном на­правлении: поворачивается проволока - и возникает напряжение. То есть мотор стано­вится генератором.

bukvasha.ru

Реферат: Реферат: Электричество

РЕФЕРАТ

ТЕМА:

ЭЛЕКТРИЧЕСТВО

                                                  2008 г.

  

  Много веков назад люди открыли особые свойства янтаря: при трении в нем возникает электрический заряд. В наши дни с помощью электричества мы имеем возможность смотреть телевизор, переговариваться с людьми на другом конце света, а также получать свет и тепло, лишь повернув для этого выключатель. Опыты с янтарем, то есть смолой хвой­ных деревьев, окаменевшей естествен­ным образом, проводились еще древними греками.   Они обнаружили, что если янтарь потереть, то он притягивает ворсинки шер­сти, перья и пыль. Если сильно потереть, к примеру, пластмассовую расческу о волосы, то к ней начнут прилипать кусочки бумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. При трении янта­ря, пластмассы и ряда других материалов в них возникает электрический заряд. Само слово "электрический" происходит от ла­тинского слова electrum, означающего "янтарь".

Вспышка молнии - одно из самых зре­лищных проявлении электрического заряда, Молния возникает и результате большого скопления электрических зарядов и облаках, В середине XVIII века один из первых иссле­дователей атмосферного электричества аме­риканский ученый Бенджамин  Франклин провел очень опасный эксперимент, запустив в грозовое небо воздушного змея. Он хотел доказать, что молния - результат того же электрического заряда, что возникает при тре­нии предметов друг о друга,

Если имеющие электрический заряд объ­екты притягивают и удерживают только очень легкие предметы, то магнит может удержать довольно тяжелые куски железа. По-этому издревле магниты применялись с поль­зой, например, в компасах.

                         Откуда берется электрический заряд?

 

Все атомы окружены облаком электронов, которые несут отрицательный  (-) электрический заряд. Электроны движутся вокруг ядра. Ядро обладает таким же суммарным заря­дом, как и все его электроны, но это заряд по­ложительный (+) . Обычно положительный и отрицательный заряды уравновешивают друг друга, и атом является электрически нейтраль­ным.  Но у некоторых веществ часть внешних электронов имеет довольно непрочные связи с их атомами. И если потереть два предмета друг о друга, то такие электроны могут освободить­ся и перекочевать на  другой предмет. В результате этого перемещения у одного предмета электронов становится больше, чем должно быть, и он приобретает отрица­тельный  (-) заряд. У второго предмета элек­тронов становится меньше, так что он при­обретает положительный  (+) заряд. Заряды, формирующиеся подобным образом, назы­вают иногда «электричеством трения», Какой из предметов приобретет положительный или отрицательный заряд, зависит от отно­сительной легкости, с какой электроны передвигаются в поверхностных слоях двух предметов.

Если натереть шерстяной тряпкой поли­этиленовую леску, то она получит отрица­тельный заряд, а если натереть органическое стекло, то оно получит положительный заряд. В любом случае тряпка получит заряд, проти­воположный  заряду натертого материала.

Электрические заряды влияют друг на друга. Положительный и отрицательный за­ряды притягиваются друг к другу, а два отри­цательных или два положительных заряда от­талкиваются друг от друга. Если поднести к предмету отрицательно  заряженную леску, отрицательные заряды предмета переместят­ся на другой его конец, а положительные за­ряды, наоборот, переместятся поближе к леске. Положительные и отрицательные заряды лески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процесс на­зывается электростатической индукцией, и о предмете говорят, что он попадает в электро­статическое поле лески.

Майкл  Фарадей доказал, что, электричест­во трения и электрический ток - одно и то же. Он также доказал, что электрическое поле не может существовать внутри металлической клетки (теперь называемой клеткой Фарадея).

                                               Гром и молния

 

  Грозы обычно бывают летом в жаркую погоду; когда с поверхности земли горячие потоки воздуха  насыщенные влагой, поднимаются вверх. Пока капли  воды  и кристаллы льда кру­жатся в воздушных потоках грозовых облаков, они  заряжаются электричеством. Крошечные, положительно заряженные  кристаллы льда движутся вверх, а отрицательно заряженные градинки собираются внизу облака.

Точно так же, как из-за электростатичес­кой индукции к заряженной леске притяги­ваются маленькие  предметы, по той же при­чине и заряженное облако притягивается к земле. Отрицательный заряд на нижней сто­роне облака притягивается положительным зарядом на земле, и между ними возникает мощная искра (молния). Разряд молнии на­гревает воздух и  заставляет его расширяться, что сопровождается грохотом грома. Звук   переносится по воздуху гораздо медленнее, чем свет, поэтому вначале мы видим вспыш­ку, а потом слышим гром.

  При трении металлы не только легко эле­ктризуются, но и очень хорошо проводят электричество. Поэтому если металлический предмет находится в  руках человека, то заряд проходит и через тело человека. Электриче­ство, возникающее при трении, чаще встре­чается у материалов, являющихся плохими проводниками, таких как стекло, резина, пластмасса, смола, Эти материалы называют­ся изоляторами. Так как электричество по ним не передается, его называют статичес­ким электричеством. Фарадей называл его также «обыкновенным» электричеством, од­нако в наши дни мы повсеместно используем электрический (движущийся) ток. Так что теперь скорее он стал «обыкновенным».

                                          Электрический заряд

 

  Если у вас подошва из резины или синтетиче­ского материала, и вы прошлись по ковру, то, прикоснувшись к металлической ручке двери, вы почувствуете  легкий удар током. Эта означает,  что ваше тело при трении подошв о ковер успело зарядиться электричеством,

  Иногда человек испытывает удар током, выходя из машины и закрывая дверь. Вероят­ней всего, на нем шерстяная или хлопчатобу­мажная одежда, которая наэлектризовалась от синтетического сиденья машины. Если к тому же у него подошвы из резины или син­тетики, которые являются изоляторами, то заряд может  выйти только в момент прикос­новения к металлической ручке. Чтобы избе­жать этого, можно попробовать дотронуться до чего-нибудь металлического еще внутри машины перед выходом. Тогда заряд умень­шится и неприятного удара не последует,

                                                        

                                               Настоящий удар током

 

  Хотя описанные выше удары электричес­ким током и неприятны, они, тем не менее  безопасны для человека. Но электрические заряды, возникающие в результате трения, в ряде случаев могут вызвать чрезвычайные ситуации. Были случаи, когда огромные су­пертанкеры взрывались в то время, когда их топливные цистерны промывались мощны­ми водометами.  Электрический заряд возникает при тре­нии капель воды в струе водомета.   Этот эф­фект сходен с эффектом от восходящего в грозовое облако воздушного потока с капель­ками воды. В подобных условиях, несмотря на влажную среду; могут вспыхнуть искры, что грозит возгоранием паров бензина, ос­тавшихся в цистерне.

  Самолеты тоже могут получить электричес­кий заряд, если попадут в грозовое облако или при трении шасси о землю вовремя посадки. Раньше  искры от скопившихся на по­верхности самолёта  электрических зарядов создавали угрозу взрыва. Однако теперь предпринимаются необходимые меры пре­досторожности. Например, покрышки шасси делают из электропроводящего материала. На концах крыльев самолета монтируются коронирующие (разрядные) электроды, и все электричество скапливается на концах крыльев и «распыляется».

  Меры безопасности необходимы и при заправке топливом, потому что трение, воз­никающее в потоке бензина, вполне может вызвать сильный заряд. Поэтому бензонасо­сы делаются из железа.

                                                Применение

 

  Электричество, возникающее в результате трения, или статическое электричество, ис­пользуется человеком самым разным обра­зом. Частицы сажи, пепла и им подобных твердых веществ вместе с дымом выбрасыва­ются многочисленными предприятиями в воздух, а затем возвращаются в виде осадков. Благодаря применению электростатических фильтров, устанавливаемых в трубах, при­близительно 98% твердых веществ можно за­держать и удалить, пока они не попали в воз­дух. Этот процесс называется электростати­ческим пылеулавливанием. Ежегодно в США подобным  образом предупреждается выброс в воздух 20 миллионов тонн  сажи. При покраске  автомобилей и воздушного транспорта пользуются специальной систе­мой  распыления. Однако при этом каждый раз испаряется до 25% краски. Этого можно избежать, сообщив распыляемым частицам электрический потенциал. Наэлектризован­ные частицы краски начинают притягиваться к поверхности машины или самолета и луч­ше держатся. Экономия при эффективном использовании системы распыления превы­шает затраты на зарядное оборудование.

   Та же самая техника используется и при нанесении порошковых покрытий. Наэлектризованное  покрытие словно прилипает к металлу, а при нагревании поверхности по­рошковое покрытие образует тонкий нераз­рывный слой.

  Электрический заряд и порошок исполь­зуются также в ксероксах. На линзу отражает­ся изображение текста или рисунка, которое надо скопировать. Этот черно-белый рису­нок переносится на бумагу как рисунок  из за­ряженных и нейтральных участков. Когда по бумаге рассеивается черный порошок, он притягивается исключительно к заряженным участкам. Затем под действием горячего воз­духа порошок закрепляется на бумаге. Такая техника копирования называется  ксерографией. Она также используется в факсимиль­ных аппаратах.

                                         Движущиеся заряды

   При вспышке молнии образуется огромное количество энергии. Затем следует пауза, по­ка снова не накопится такой же сильный за­ряд и не вспыхнет новая молния. Представьте теперь, что можно накапливать и разряжать заряды без пауз. Получится постоянный по­ток зарядов, Таков, собственно, эффект бата­рейки - хотя при ее работе количество энер­гии несравнимо с молнией. На этом же прин­ципе построена работа генераторов на элек­тростанциях.

  Если заряды движутся, их поток называ­ют  электрическим током. Для производства электрического тока необходим приток энергии. Обычно энергию получают в ре­зультате химических реакций (как в бата­рейках) или движения (генераторы). Кроме того, энергию можно  получать непосредст­венно от солнечного  света или теплового излучения. Это делается с помощью солнеч­ных батарей, которые снабжают электро­энергией спутники и другое космическое оборудование.

                                            Животное электричество

 

У животных и человека все процессы жизне­деятельности регулирует мозг, который полу­чает и отсылает сигналы (нервные импульсы) по нервам. И для этого тоже требуется опре­деленный заряд, хотя и очень небольшой. Однако некоторые животные накапливают такое количество электричества, которое способно парализовать или даже убить свою добычу. Например, электрический угорь ге­нерирует разряд в 600 вольт, и этого вполне достаточно, чтобы убить рыбу или очень сильно ударить током человека,

 

                                            Напряжение и ток

Приведенное ниже описание поможет вам лучше понять, что такое ток и электрическое напряжение.

Итак, есть две емкости, соединенные труб­кой, и в одну емкость наливается вода. Вода наливается до тех пор, пока ее уровень не станет одинаковым в обеих емкостях. Если одну емкость приподнять над другой, то вода из одной емкости будет перетекать в другую, пока уровни опять не станут одинаковыми.

Чем больше разница в уровнях воды в двух емкостях, тем быстрее будет литься вода. Скорость, с какой переливается вода, анало­гична скорости движения тока. С такой ско­ростью свободные электроны передвигаются в металлической проволоке. Разница в уровне воды сравнима с элект­рическим напряжением. Чем выше  напряжение,  тем сильнее поток электрического тока.

У батареек в фонариках и в портативных радиоприемниках  напряжение колеблется от 1,5 до 9 вольт. Точная величина зависит от со­става и количества элементов в батарейке. В бытовой электросети напряжение составляет от 100 до 240 вольт, в зависимости от место­нахождения.

                                       Источник  тока

  Первый химический источник тока был со­здан итальянским ученым Алессандро Вольта приблизительно в 1800 году. Во время одного из экспериментов он смочил лист промока­тельной бумаги в соленом растворе и помес­тил его между пластинами меди и цинка.  Oн обнаружил, что при взаимодействии  меди и цинка в соединяющей их проволоке образо­вывался электрический заряд. Это означало, что в ходе химической реакции электроны перемещались с пластинки меди на цинк. Единица электрического напряжения, спо­собствовавшего появлению тока, была назва­но в честь ученого вольтом.

  Для получения электрического тока боль­шей силы необходимо большее напряжение.  Вольта сделал конструкцию из чередующихся  медных и цинковых пластин.  При этом каж­дая их пара отделялась от следующей  влаж­ным кружком из картона.  Эта конструкция получила название «вольтов столб».

  Строго говоря, источником тока является конструкция из одной пластины каждого ме­талла. Вольтов столб, по сути, был первой электрической батареей, сделанной руками человека. Однако в повседневной жизни мы называем "батарейками" все химические ис­точники тока, независимо от того, состоят ли они из одного элемента или нескольких. Например, аккумулятор (12 вольт) составлен из 6 элементов по 2 вольта каждый. Батарейка в фонарике (1,5 вольта) является единым элементом.

                                                          Батареи

Существует огромное количество разных электрических батареи, но в их устройстве всегда присутствуют два фактора. Они обяза­тельно состоят из двух разных химических элементов (например, цинка медь, уголь и медь, цинк и ртуть) и жидкости, их разделяю­щей (в элементе Вольты это был соляной раствор). Жидкость называется электроли­том. Иногда электролит присутствует в виде пасты, чтобы избежать протечек.

  Наличие разных химических элементов необходимо по той же причине, по какой при получении статического электричества путем трения используются разные  материалы. В одном материале электроны движутся с большей свободой и поэтому имеют тенден­цию перемещаться на другой материал. В электрическом элементе две пластины  и жид­кость между ними являются проводниками электричества. Электроны,  «освобожденные» во время химической реакции, могут без  конца перемещаться, было бы только пространство. Таким пространством становится элект­рическая цепь. Поток электронов может быть остановлен  при разрыве цепи. В быту эту роль выполняет выключатель.

  В батарейках, калькуляторах, портатив­ных приемниках и слуховых аппаратах роль электролита выполняет влажная паста. Бата­рейки вырабатывают электричество, пока в них идет химическая реакция.

  В недорогих батарейках один химический элемент представляет собой цинковую емкость, второй - угольный электрод. Со временем цинковая емкость расплавляется, поэтому наружная оболочка таких батареек плотно за­печатывается, чтобы содержимое не вытекло и не испортило другие вещи, В долговечных щелочных  батарейках те же химические эле­менты, но другой электролит. В маленьких круглых батарейках, используемых в часах, химические пластины сделаны из  цинка и ртути или цинка и оксида серебра.

  Некоторые батарейки можно перезаря­жать, пропуская ток в обратном направле­нии. Обычно такие батарейки работают на никеле и кадмии.  Элементы должны заря­жаться только в специальном зарядном устройстве с правильным напряжением. Никогда не стоит пытаться зарядить обыкно­венную батарейку. В аккумуляторах автомобилей и электри­ческого транспорта содержится жидкость, по­этому они должны находиться только в вер­тикальном положении. Обычно они работают на свинце и свинцовом сурике и могут пере­заряжаться много раз. Электролит чаще всею представляет собой разбавленную серную кислоту; поэтому они обычно запечатаны.

  Электрические автомобили бесшумны и не загрязняют воздух (тем не менее, воздух загрязняют электростанции, снабжающие электричеством зарядные устройства). В на­стоящее время проводятся эксперименты по производству перезаряжаемых автомобиль­ных аккумуляторов, которые по весу были бы легче существующих. Есть вероятность, что однажды появятся  аккумуляторы с пластико­выми элементами.

                                       Электричество и магнетизм

Заряженный предмет окружен электричес­ким  полем, которое действует на окружаю­щие предметы, - вспомним расческу и притя­гивающиеся к ней кусочки бумаги и пылинки. Магнит тоже окружен магнитным полем, ко­торое можно увидеть, если поблизости есть металлические опилки.  Некоторые характе­ристики электрического и магнитного полей похожи, другие отличаются. Вот несколько примеров.

  Магнитные силы гораздо сильнее  элект­рических. В то же время электрический заряд может перейти с одного тела или предмета на другой - явление, называемое индукцией, - и магнит  распространяет  свое действие на другой магнитный материал. Но зарядиться электричеством может все,  маг­нитные же свойства передаются только телам, способным намагничиваться, таким как железо, сталь и некоторые сплавы.

  Электрические заряды делятся па поло­жительные и отрицательные, магнитные полюсы делятся на южный и северный.  Однородные заряды отталкиваются, противоположные притягиваются: одина­ковые магнитные полюсы тоже отталкива­ются, а противоположные притягиваются. Однако северный и южный полюсы  никог­да не смогут существовать отдельно друг от друга. Если магнит сломать, то из слома образуется новый южный или новый север­ный полюс.

                                  О ВЗАИМОДЕЙСТВИИ

 

  Электричество и магнетизм тесно связаны  друг с другом. Если пропустить электричес­кий ток через скрученную проволоку, она приобретет свойства магнита. А если прово­локу обернуть вокруг магнитного материала, то он также намагнитится. Но этому принци­пу устроен электромагнит.

  Если магнитное поле проходит через витки проволоки и при этом как-то меняется (становится сильнее или слабее или сдвига­ется), то в них возникает ток. В свою очередь, ток возвращает магнитное поле в прежнее состояние за счет создания своего магнитно­го поля.

  В устройстве электромоторов и генерато­ров используется описанное выше явление - ток создаст магнитное поле, а изменения в магнитном поле производят ток.

  Это явление, открытое Фарадеем, исполь­зуется также и в трансформаторах, которые служат для преобразования напряжения в  энергоснабжающих  системах и в электронном оборудовании - например, телевизо­рах и радиоприемниках. Трансформаторы работают  на переменном токе, текущем в бы­товой электросети, В отличие от тока в бата­рее переменный ток движется в двух направ­лениях - вперед-назад, вперед-назад, меняя направление со скоростью 50 раз и секунду, (В США, соответственно, 60).

  Железный сердечник трансформатора имеет две обмотки медного провода, бегу­щий по одной из них переменный ток созда­ет в сердечнике быстро меняющееся магнит­ное поле. Эго вызывает переменный ток во второй обмотке. Таким образом, энергия передается из одной обмотки в другую, хотя между ними и нет непосредственного кон­такта. Их связь исключительно магнитная.

  Напряжение на выходе зависит от количе­ства витком в каждой обмотке. Оно может быть больше входного напряжения или меньше. Хотя увеличение напряжения «подталкивает» заряды, их поток сокращается, то есть умень­шается сила тока. Когда электричество переда­ется по высоковольтным проводам, трансфор­матор усиливает напряжение как раз, для того, чтобы уменьшить ток. Когда же электричество подводиться к домам, трансформатор снижает напряжение.

                                           Моторы и генераторы

 

  В простом электрическом моторе ток намаг­ничивает обмотку, и ее витки притягиваются к полюсам магнита. Кроме того, в моторе ус­тановлен вращающийся переключатель, ко­торый автоматически меняет направление тока каждые пол-оборота.

  Этот процесс действует и в обратном на­правлении: поворачивается проволока - и возникает напряжение. То есть мотор стано­вится генератором.

www.neuch.ru

Реферат - Что такое электричество

Реферат по физике

На тему:

Что такое электричество?

Содержание

1. Получение электроэнергии. Типы электростанций

1.1 Тепловые (ТЭС)

1.2 Атомная электростанция (АЭС)

1.3 Гидроэлектростанции (ГЭС)

1.4 Приливная электростанция (ПЭС)

1.5 Ветряная электростанция

1.6 Геотермическая электростанция

2. Применение электроэнергии

2.1 Трансформа́тор (от лат. transformo — преобразовывать)

2.2 Компоненты трансформатора

2.2.1 Клеммы

2.2.2 Охладители

2.2.3 Газовое реле

2.2.4 Встроенные трансформаторы тока

2.2.5 Системы защиты масла

2.2.6 Устройства сброса давления

2.2.7 Устройства защиты от внезапного повышения давления

2.2.8 Устройства защиты от перенапряжений

2.2.9 Устройства транспортировки

2.2.10 Детектор горючих газов

2.2.11 Расходомер

2.3 Автотрансформа́тор

2.5 Трансформатор тока

2.5.1 Схемы соединения трансформаторов тока

2.6 Трансформатор напряжения

2.6.1 Виды трансформаторов напряжения

Список литературы

Введение

Начнем с того, что электричество изучается в течение многих тысяч лет, но до сих пор точно не известно, что это такое! Сегодня считают, что оно состоит из крошечных заряженных частиц. Согласно этой теории, электричество — это движущийся поток электронов или других заряженных частиц. Первым ученым, который изучал свойства электричества, был придворный врач королевы Елизаветы 1 Вильям Жильбер. Но, несмотря на его интересные открытия, все же нельзя сказать, что он или кто-то другой из ученых действительно открыл электричество, ибо с древнейших времен и до наших дней множество ученых изучают свойства электричества, анализируют новые формы его применения. Поэтому скажем только о самых важных открытиях в этой области.

/>

/>

Так, в Голландии в 1745 году изобрели особые лейденские банки, в которых мог накапливаться огромный по тем временам электрический заряд (порядка 1 микрокулона). Английский ученый Уотсон усовершенствовал это изобретение, и открыл, что скорость распространения электричества огромна и действует оно, следовательно, почти мгновенно.

Пожалуй, наука об электричестве начала бурно развиваться с того момента, как в 1800 году Алессандро Вольта изобрел батарею. Это изобретение дало людям первый постоянный и надежный источник энергии и повлекло за собой все важные открытия в этой области. Динамо-машина Фарадея, электромагнитная теория Максвелла, наука Электродинамика, созданная с подачи Ампера — все это произошло в течение каких-то 20 лет. А затем, в 1871 году, американский ученый Эдисон подарил миру первую лампу накаливания, и лишь через 40 лет француз Жорж Клод изобрел лампу неоновую.

Кстати, электричество — не искусственное явление, в природе оно тоже встречается в виде… молнии! Что и доказал Бенджамин Франклин в 1752 году.

В наши дни практически все отрасли производства используют электричество. Но ведь не от молнии же работают заводы и освещаются города. Для преобразования различных видов энергии в электрическую были созданы электростанции.

1. Получение электроэнергии. Типы электростанций

В зависимости от источника энергии различают:

Тепловые электростанции (ТЭС), использующие природное топливо.

Атомные электростанции (АЭС), использующие ядерную энергию.

Гидроэлектростанции (ГЭС), использующие энергию падающей воды рек.

Иные электростанции, использующие ветровую, солнечную, геотермальную и другие виды энергий.

1.1 Тепловые (ТЭС)

Основной тип электростанций в России. Эти установки вырабатывают примерно 67% электроэнергии России. Тепловые электростанции используют широко распространенные топливные ресурсы, способны вырабатывать электроэнергию без сезонных колебаний и относительно свободно размещаются. На их размещение влияют топливный и потребительский факторы: наиболее мощные электростанции располагаются в местах добычи топлива; ТЭС же, использующие калорийное, транспортабельное топливо, ориентированы на потребителей. Строительство ТЭС ведется быстро и связано с меньшими затратами труда и материальных средств. Но у них есть существенные недостатки. Они используют невозобновимые ресурсы, обладают низким КПД (30-35%), оказывают крайне негативное влияние на экологическую обстановку. ТЭС всего мира ежегодно выбрасывают в атмосферу 200-250 млн. т золы и около 60 млн. т сернистого ангидрида, а также поглощают огромное количество кислорода.

Среди ТЭС преобладают тепловые паротурбинные (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). В качестве топлива на таких ТЭС используют уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы. Отметим, что в любой электростанции предусмотрена система охлаждения отработавшего теплоносителя, чтобы довести температуру теплоносителя до необходимого для повторного цикла значения. Если поблизости от электростанции есть населенный пункт, то это достигается путем использования тепла отработавшего теплоносителя для нагрева воды для отопления домов или горячего водоснабжения (такие ТПЭС называются теплоэлектроцентралями (ТЭЦ)), а если нет, то излишнее тепло отработавшего теплоносителя просто сбрасывается в атмосферу в градирнях, которые представляют собой широкие конусообразные трубы. Конденсатором отработавшего пара на неатомных электростанциях чаще всего служат именно градирни.

ТЭС с приводом электрогенератора от газовой турбины называются газотурбинными электростанциями (ГТЭС). В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с температурой 750-900 °С поступают в газовую турбину, вращающую электрогенератор. Кпд таких ТЭС обычно составляет 26-28%, мощность — до нескольких сотен МВт (!). ГТЭС обычно применяются для покрытия пиков электрической нагрузки.

ТЭС с парогазотурбинной установкой, состоящей из паротурбинного и газотурбинного агрегатов, называется парогазовой электростанцией (ПГЭС), кпд которых может достигать 42 — 43%. ГТЭС и ПГЭС также могут отпускать тепло внешним потребителям, то есть работать как ТЭЦ.

1.2 Атомная электростанция (АЭС)

Электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является ядерный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основном 233U, 235U.239Pu). При делении 1г изотопов урана или плутония высвобождается 22 500 кВт/ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива (!). Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе.

Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах:

1) водяные — с обычной водой в качестве замедлителя и теплоносителя

2) графитоводные — с водяным теплоносителем и графитовым замедлителем

3) тяжеловодные — с водяным теплоносителем и тяжёлой водой в качестве замедлителя

4) графитогазовые — с газовым теплоносителем и графитовым замедлителем.

В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т.е. ТВЭЛ выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛ переносят в бассейн выдержки, а затем направляют на переработку. Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в нее снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%).

Из-за аварии в Чернобыле в 1986 году программа развития атомной энергетики была сокращена. После значительного увеличения производства электроэнергии в 80-е годы темпы роста замедлились, а в 1992-1993 гг. начался спад. При правильной эксплуатации, АЭС — наиболее экологически чистый источник энергии. Их функционирование не приводит к возникновению “парникового” эффекта, выбросам в атмосферу в условиях безаварийной работы, и они не поглощают кислород.

К недостаткам АЭС можно отнести трудности, связанные с захоронением ядерных отходов, катастрофические последствия аварий и тепловое загрязнение используемых водоемов.

1.3 Гидроэлектростанции (ГЭС)

Весьма эффективные источники энергии. Они используют возобновимые ресурсы — механическую энергию падающей воды. Необходимый для этого подпор воды создается плотинами, которые воздвигают на реках и каналах. Гидравлические установки позволяют сокращать перевозки и экономить минеральное топливо (на 1 кВт-ч расходуется примерно 0,4 т угля). Они достаточно просты в управлении и обладают очень высоким коэффициентом полезного действия (более 80%). Себестоимость этого типа установок в 5-6 раз ниже, чем ТЭС, и они требуют намного меньше обслуживающего персонала.

ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию. Напор ГЭС создаётся концентрацией падения реки на используемом участке плотиной, либо деривацией (отводом воды из русла реки по каналу), либо плотиной и деривацией совместно.

По установленной мощности (в МВт) различают ГЭС мощные (свыше 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора воды, ее расхода (м3/сек), используемого в гидротурбинах, и КПД гидроагрегата. По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т.п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС. Поэтому различают годичный, недельный и суточный циклы режима работы ГЭС.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

Самые мощные ГЭС сооружены на Волге, Каме, Ангаре, Енисее, Оби и Иртыше. Каскад гидроэлектростанций представляет собой группу ГЭС, расположенных ступенями по течению водного потока с целью полного последовательного использования его энергии. Установки в каскаде обычно связаны общностью режима, при котором водохранилища верхних ступеней регулируют водохранилища нижних ступеней. На основе ГЭС восточных районов формируются промышленные комплексы, специализирующиеся на энергоемких производствах.

--PAGE_BREAK--

В Сибири сосредоточены наиболее эффективные по технико-экономическим показателям ресурсы. Одним из примеров этого может служить Ангаро-Енисейский каскад, в состав которого входят самые крупные гидроэлектростанции страны: Саяно-Шушенская (6,4 млн. кВт), Красноярская (6 млн. кВт), Братская (4,6 млн. кВт), Усть-Илимская (4,3 млн. кВт). Строится Богучановская ГЭС (4 млн. кВт). Общая мощность каскада в настоящее время — более 20 млн. кВт.

1.4 Приливная электростанция (ПЭС)

Электростанция, преобразующая энергию морских приливов в электрическую. ПЭС использует перепад уровней «полной» и «малой» воды во время прилива и отлива. Перекрыв плотиной залив или устье впадающей с море (океан) реки (образовав водоём, называют бассейном ПЭС), можно при достаточно высокой амплитуде прилива (более 4м) создать напор, достаточный для вращения гидротурбин и соединённых с ними гидрогенераторов, размещенных в теле плотины.

При одном бассейне и правильном полусуточном цикле приливов ПЭС может вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами соответственно 2-1 ч четырежды за сутки (такая ПЭС называется однобассейновой двустороннего действия). Для устранения неравномерности выработки электроэнергии бассейн ПЭС можно разделить плотиной на два или три меньших бассейна, в одном из которых поддерживается уровень «малой», а в другом — «полной» воды; третий бассейн — резервный; гидроагрегаты устанавливаются в теле разделительной плотины. Но и эта мера полностью не исключает пульсации энергии, обусловленной цикличностью приливов в течение полумесячного периода. При совместной работе в одной энергосистеме с мощными тепловыми (в том числе и атомными) электростанциями энергия, вырабатываемая ПЭС, может быть использована для участия в покрытии пиков нагрузки энергосистемы, а входящие в эту же систему ГЭС, имеющие водохранилища сезонного регулирования, могут компенсировать внутримесячные колебания энергии приливов.

На ПЭС устанавливают капсульные гидроагрегаты, которые могут использоваться с относительно высоким КПД в генераторном (прямом и обратном) и насосном (прямом и обратном) режимах, а также в качестве водопропускного отверстия. В часы, когда малая нагрузка энергосистемы совпадает по времени с «малой» или «полной» водой в море, гидроагрегаты ПЭС либо отключены, либо работают в насосном режиме — подкачивают воду в бассейн выше уровня прилива (или откачивают ниже уровня отлива) и Т.о. аккумулируют энергию до того момента, когда в энергосистеме наступит пик нагрузки. В случае, если прилив или отлив совпадает по времени с максимумом нагрузки энергосистемы, ПЭС работает в генераторном режиме.

Использование приливной энергии ограничено главным образом высокой стоимостью сооружения ПЭС (стоимость сооружения ПЭС почти в 2,5 раза больше, чем обычной речной ГЭС такой же мощности). В целях её снижения в СССР впервые в мировой практике строительства ГЭС при возведении ПЭС был предложен и успешно осуществлен т. н. наплавной способ, применяющийся в морском гидротехническом строительстве (тоннели, доки, дамбы и т.п. сооружения). Сущность способа состоит в том, что строительство и монтаж объекта производятся в благоприятных условиях приморского промышленного центра, а затем в собранном виде объект буксируется по воде к месту его установки. Таким способом в 1963-1968 на побережье Баренцева моря в губе Кислой (Шалимской) была сооружена первая в СССР опытно-промышленная ПЭС. Создание ПЭС Ране и Кислогубской ПЭС и их опытная эксплуатация позволили приступить к составлению проектов Мезенской ПЭС (6-14 ГВт) в Белом море, Пенжинской (35 ГВт) и Тугурской (10 ГВт) в Охотском море.

1.5 Ветряная электростанция

Вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции — ветродвигатель и электрический генератор. Сооружают преимущественно в районах с устойчивым ветровым режимом.

1.6 Геотермическая электростанция

Паротурбинная электростанция, использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических электростанциях пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. В России подобные электростанции сооружены на Камчатке: Паужетская (11 тыс. кВт).

В наши дни больше всего электроэнергии выделяют гидроэлектростанции и атомные электростанции. Но функционирование тепловых, атомных и гидроэнергетических электростанций негативно влияет на состояние окружающей среды. Поэтому в настоящее время большое внимание уделяется изучению возможностей использования нетрадиционных, альтернативных источников энергии. Практическое применение уже получили энергия приливов и отливов и внутреннее тепло Земли. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера. Ведутся работы по изучению возможности использования биомассы в качестве источника энергии. В будущем, возможно, огромную роль будет играть гелиоэнергетика. В США и Франции построены установки, которые работают на энергии Солнца (правда, малой мощности).

2. Применение электроэнергии

/>/>

2.1 Трансформа́тор (от лат. transformo — преобразовывать)

Статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности. Трансформатор состоит из одной (автотрансформатор) или нескольких изолированных проволочных обмоток, охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

2.2 Компоненты трансформатора

2.2.1 Клеммы

Клеммы в сухих трансформаторах могут быть выведены на клеммную колодку в виде болтовых контактов или соединителей с плоскими контактами. Клеммы могут размещаться внутри корпуса. В герметичных масляных или жидкостных трансформаторах обеспечивается перемещение электрических соединений с внутренней стороны бака наружу:

Проходные изоляторы — клеммный блок в форме проходного изолятора переносит соединения из внутренней изоляционной среды трансформатора во внешнюю изоляционную среду, бывают:

Низковольтные проходные изоляторы

Конденсаторные проходные изоляторы

Сильноточные проходные изоляторы.

2.2.2 Охладители

Для измерения температуры масла в верхнем слое и для индикации точек опасного перегрева в обмотке обычно устанавливают термометры. Если произошел перегрев, охлаждающее оборудование забирает горячее масло в верхней части бака и возвращает охлажденное масло в нижнюю боковую часть. Холодильный агрегат имеет вид двух масляных контуров с непрямым взаимодействием, один внутренний и один внешний контур. Внутренний контур переносит энергию от нагревающих поверхностей к маслу. Во внешнем контуре масло переносит тепло к вторичной охлаждающей среде. Трансформаторы обычно охлаждаются атмосферным воздухом.

Виды охладителей:

Радиаторы — бывают разных типов. В основном они представляют собой множество плоских каналов в пластинах с торцевым сварным швом, которые соединяют верхний и нижний коллекторы.

Гофрированный бак - является одновременно и баком и охлаждающей поверхностью для распределительных трансформаторов малой и средней мощности. Такой бак имеет крышку, гофрированные стенки бака и нижнюю коробку.

Вентиляторы. Для больших узлов возможно использование подвесных вентиляторов под радиаторами или сбоку от них для обеспечения принудительного движения воздуха и естественного масляного и принудительного воздушного (ONAF) охлаждения. Это может увеличить нагрузочную способность трансформаторов примерно на 25%.

Теплообменники с принудительной циркуляцией масла, воздуха. В больших трансформаторах отведение тепла при помощи естественной циркуляции через радиаторы требует много места. Потребность в пространстве для компактных охладителей намного ниже, чем для простых радиаторных батарей. С точки зрения экономии места может оказаться выгодным использовать компактные охладители со значительным аэродинамическим сопротивлением, что требует применения принудительной циркуляции масла с помощью насоса и мощных вентиляторов для нагнетания воздуха.

Масляно-водяные охладители, как правило, представляют собой цилиндрические трубчатые теплообменники со съёмными трубками. Такие теплообменники очень распространены и представляют собой классическую технологию. Они имеют разнообразное применение в промышленности. Более современные конструкции, например, плоские теплообменники мембранного типа, еще не вошли в практику.

Масляные насосы. Циркуляционные насосы для масляного охлаждающего оборудования — это специальные компактные, полностью герметичные конструкции. Двигатель погружён в трансформаторное масло; сальниковые коробки отсутствуют.

2.2.3 Газовое реле

Газовое реле обычно находится в соединительной трубке между баком и расширительным баком. Газовое реле выполняет две функции: функцию датчика, когда поток масла между баком и расширительным баком превышает заданную величину, а также накапливает свободные пузырьки газа, которые движутся в направлении расширительного бака из бака трансформатора

2.2.4 Встроенные трансформаторы тока

Трансформаторы тока могут располагаться внутри трансформатора, часто вблизи заземленного рукава на стороне масла проходных изоляторов, а также на низковольтных шинах. В данном вопросе роль играют цена, компактность и безопасность. При таком решении отпадает необходимость иметь несколько отдельных трансформаторов тока на сортировочной станции с внешней и внутренней изоляцией, рассчитанной на высокое напряжение.

2.2.5 Системы защиты масла

Самой обычной системой защиты масла является открытый расширительный бак, в котором воздух над уровнем масла вентилируется через влагопоглотительное устройство. Необходимо удалить влагу из воздушного пространства над уровнем масла в расширительном баке, чтобы обеспечить отсутствие воды в масле трансформатора.

Расширительный бак трансформатора может быть снабжён надувной подушкой. Надувная подушка из синтетического каучука располагается над маслом. Внутренне пространство подушки соединено с атмосферой, поэтому она может вдыхать воздух, когда трансформатор охлаждается и объем масла сжимается, и выдыхать воздух, когда трансформатор нагревается.

Другим решением является расширительный бак, который разделён в горизонтальной плоскости мембраной или диафрагмой, которая позволяет маслу расширяться или сжиматься без прямого контакта с наружным воздухом. Пространство над маслом в расширительном баке можно заполнить азотом из баллона со сжатым газом через редукторный клапан. Когда трансформатор вдыхает, редукторный клапан выпускает азот из баллона. Когда объём увеличивается, азот уходит в атмосферу через вентиляционный клапан. Для того, чтобы сэкономить потребление азота, можно задать некий шаг давления между наполнением азотом и выпусканием азота.

Трансформаторы могут иметь герметическое исполнение. В маленьких маслонаполненных распределительных трансформаторах упругий гофрированный бак может компенсировать расширение масла. В ином случае необходимо обеспечить пространство над маслом внутри трансформаторного бака, заполненное сухим воздухом или азотом, чтобы они выполняли роль подушки при расширении или сжатии масла. Можно использовать сочетание различных решений. Трансформаторный бак может быть полностью заполнен маслом, и при этом иметь большой расширительный бак достаточного объёма для расширения масла и необходимой газовой подушки. Эта газовая подушка может иметь продолжение в следующем дополнительном баке, возможно на уровне земли. Для ограничения объёма газовой подушки можно открыть сообщение с наружной атмосферой при заданных верхнем и нижнем пределах внутреннего давления.

2.2.6 Устройства сброса давления

Дуговой разряд или короткое замыкание, которые возникают в маслонаполненном трансформаторе, обычно сопровождаются возникновением сверхдавления в баке из-за газа, образующегося при разложении и испарении масла. Устройство сброса давления предназначено для снижения уровня сверхдавления вследствие внутреннего короткого замыкания и, таким образом, уменьшения риск разрыва бака и неконтролируемой утечки масла, которое может также осложниться возгоранием вследствие короткого замыкания. Малый вес тарелки клапана и низкая пружинная жёсткость закрывающих пружин обеспечивает быстрое и широкое открывание. Клапан вновь возвращается в нормальное закрытое состояние, когда сверхдавление спущено.

2.2.7 Устройства защиты от внезапного повышения давления

Реле внезапного повышения давления предназначено для срабатывания при возникновении упругой масляной волны в баке трансформатора при серьёзных замыканиях. Это устройство способно различать быстрое и медленное нарастание давления и автоматически отключает выключатель, если давление растёт быстрее, чем задано.

    продолжение --PAGE_BREAK--

2.2.8 Устройства защиты от перенапряжений

Устройствами защиты силовых трансформаторов являются. Элементы РЗиА, на трансформаторах 6/10кВ чаще используются плавкие предохранители.

2.2.9 Устройства транспортировки

Крупные агрегаты на практике редко доставляются с помощью крана на своё место установки на фундаменте. Их необходимо каким-то способом перемещать от транспортного средства до основания. Если от места разгрузки с транспортного средства до места конечного монтажа агрегата проложены литые рельсы, то агрегат может быть оборудован колёсами для качения. Поворот на 90 градусов в транспортных целях обеспечивают колёса, работающие в двух направлениях. Агрегат поднимают подъёмником и поворачивают колёса. Когда агрегат установлен на месте, то застопоренные колёса могут быть на нем или сняты и заменены опорными блоками. Можно также опустить агрегат прямо на фундамент. Если такая рельсовая система не предусмотрена, то используют обычные плоские направляющие. Агрегат толкают по смазанным направляющим прямо на место установки, или используют гусеничную цепь. Агрегат можно приварить к фундаменту, на котором он установлен. Агрегат можно также поставить на вибрационное основание для уменьшения передачи шума через фундамент.

2.2.10 Детектор горючих газов

Детектор горючих газов указывает на присутствие водорода в масле. Водород отлавливается через диалитическую мембрану. Эта система дает раннюю индикацию медленного процесса газогенерации еще до того, как свободный газ начнёт барботировать в направлении газонакопительного реле.

/>

/>

2.2.11 Расходомер

Для контроля вытекания масла из насосов в трансформаторах с принудительным охлаждением устанавливаются масляные расходомеры. Работа расходомера обычно основана на измерении разницы давления по обе стороны от препятствия в потоке масла. Расходомеры также применяются для измерения расхода воды в водоохлаждаемых трансформаторах. Обычно расходомеры оборудованы аварийной сигнализацией. Они также могут иметь циферблатный индикатор.

Итак, компоненты трансформатора мы рассмотрели. Переходим к видам.

2.3 Автотрансформа́тор

Вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет. Зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость. Лабораторный автотрансформатор регулируемый (ЛАТР), в отличие от простого автотрансформатора имеет подвижный токосъёмный контакт к обмотке, что позволяет плавно изменять число витков, включенных во вторичную цепь, и, следовательно, выходное напряжение, практически от нуля до максимального значения для данной модели ЛАТРа. Применяются ЛАТРы для питания лабораторных установок, для стабилизации напряжения в электросети и других нужд.

2.4 Силовой трансформатор

/>

/>

Стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему напряжения и тока, как правило, различных значений при той же частоте в целях передачи электроэнергии.

2.5 Трансформатор тока

/>

/>

Трансформатор, предназначенный для измерения больших токов. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке. Трансформаторы тока широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.

К трансформаторам тока применяются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя группами обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков). Вторичные обмотки трансформатора тока обязательно замыкаются (через нагрузку или напрямую) и заземляются. На вторичной обмотке возникает высокое напряжение, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создает угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровод трансформатора начинает перегреваться, что так же может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. По этим причинам во время эксплуатации трансформатора тока вторичную его обмотку нельзя держать разомкнутой.

2.5.1 Схемы соединения трансформаторов тока

/>

В трехфазных сетях с напряжением 6-10 кВ устанавливаются трансформаторы как во всех трех фазах, так и только в двух (A и C). В сетях с напряжением 35 кВ и выше трансформаторы тока в обязательном порядке устанавливаются во всех трех фазах.

В случае установки в три фазы вторичные обмотки трансформаторов тока соединяются в «звезду» (рис.1), в случае двух фаз — «неполную звезду» (рис.2). Для дифференциальных защит трансформаторов с электромеханическими реле трансформаторы подключают по схеме «треугольника»

2.6 Трансформатор напряжения

/>

/>

Трансформатор, предназначенный для преобразования высокого напряжения в низкое в измерительных цепях. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

2.6.1 Виды трансформаторов напряжения

Заземляемый — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлен, или трехфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена.

Незаземляемый — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.

Каскадный — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединенных секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.

Емкостный — трансформатор напряжения, содержащий емкостный делитель.

Двухобмоточный — трансформатор напряжения, имеющий одну вторичную обмотку напряжения

Трехобмоточный — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

Список литературы

Основы теории цепей, Г.И. Атабеков, Лань, С-Пб., — М., — Краснодар, 2006.

Электрические машины, Л.М. Пиотровский, Л., «Энергия», 1972.

Кислицын А.Л. Трансформаторы: Учебное пособие по курсу «Электромеханика». — Ульяновск: УлГТУ, 2001. — 76 с.

Силовые трансформаторы. Справочная книга / Под ред. С.Д. Лизунова, А.К. Лоханина. М.: Энергоиздат 2004. — 616 с.

Электрические машины: Трансформаторы: Учебное пособие для электромех. спец. вузов / Б.Н. Сергеенков, В.М. Киселёв, Н.А. Акимова; Под ред. И.П. Копылова. — М.: Высш. шк., 1989 — 352 с.

Электрические машины, А.И. Вольдек, Л., «Энергия», 1974.

Электромагнитные расчеты трансформаторов и реакторов. — М.: Энергия, 1981 — 392 с.

Конструирование трансформаторов. А.В. Сапожников. М.: Госэнергоиздат. 1959.

Расчёт трансформаторов. Учебное пособие для вузов. П.М. Тихомиров. М.: Энергия, 1976. — 544 с.

Шабад М.А. «Трансформаторы тока в схемах релейной защиты» Учебное издание. 1998 г.

Родштейн Л.А. «Электрические аппараты: Учебник для техникумов» — 3-е изд., Л.: Энергоиздат. Ленингр. отд-ние, 1981.

ГОСТ 18685-73 Трансформаторы тока и напряжения. Термины и определения.

ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.