Изучение процесса дымообразования во фрикционном дымогенераторе и решение обратной задачи теплопроводности. Дымообразование реферат


Дымообразование.

В процессе пожара в помещении принято выделять три стадии:

– начальная стадия – от потери контроля над отдельным очагом горения до полного охвата помещения пламенем;

– стадия полного развития пожара – горят все горючие вещества и материалы в помещении; интенсивность тепловыделения максимальна; характерен стремительный рост температуры в помещении;

– стадия затухания пожара – интенсивность процесса горения идет на спад, вследствие исчерпания всех горючих материалов или воздействия средств тушения пожара.

Факторы дымообразования

Дымообразование – сложный физико-химический процесс, состоящий из нескольких этапов, процесс протекания которых зависит от условий пиролиза и горения строительных отделочных материалов. На основе многочисленных исследований разработана модель, показывающая особенности разрушения строительных отделочных материалов. Согласно этой модели начальная стадия характеризуется процессами пиролиза, протекающими при высокой температуре. Объём продуктов дымообразования строительных отделочных материалов на начальной фазе вследствие недостатка кислорода должен соответствовать объёму продуктов пиролиза. С увеличением температуры горючих материалов процесс дымообразования сопровождается сложными химическими процессами и выбросом в газовую фазу ряда различных веществ. Вторая фаза дымообразования, характерной температурой которой является 700 – 1000 °С, сопровождается тем и же процессами, что и в первой стадии, а также процессами вторичного дымообразования продуктов термодеструкции материала, уже находящихся в газовой фазе. Рассмотрим конкретный пример влияния температуры на процесс дымообразования. До температуры 170-250 °С для древесины не характерны тепловые эффекты. Экзотермические реакции достигают пика своей интенсивности при температуре около 340°С и около 470°С. Активное физическое разрушение древесины начинается при температуре 300°С. Этот процесс начинается на поверхности, сопровождается появлением маленьких трещинок поперёк и обугливанием самой древесины. Впоследствии из трещинок наружу попадают летучие продукты. Со временем степень обугливания, частота трещин, их глубина и ширина увеличиваются, количество выделяемых горючих газов возрастает, а деревянные конструкции расщепляются, теряя несущую способность.

Для борьбы с этими процессами и снижения скорости распада древесины применяются антипирены. Эти вещества уменьшают горючую составляющую смолы, снижая тем самым выход летучих продуктов. Кроме того, постепенно увеличивающийся слой угля будет служить естественной защитой для внутренних слоев древесины. У разных материалов процесс дымообразования имеет разные особенности. Так у целлюлозных материалов и огнезащищенных полиуретанов коэффициент дымообразования возрастает при тлении, у поливинилхлорида, полиэфиров, полистирола — при пламенном горении. В процессе тления поливинилхлорида в основном образуется плотный туман из соляной кислоты. При пламенном же горении характерно образование дыма, из твердых частиц сажи и с примесью конденсированных капель хлористого водорода. Наиболее существенное значение в дымообразовании, а, соответственно, и прямо влияющих на организм человека, имеют процессы образования в пламени конденсированных частиц углерода (сажи). Характерным индикатором для процесса образования сажи является светящееся желтое пламя, обусловленное рассеянным излучением твердых частиц углерода. Если сажевые частицы не успевают выгорать в реакционной высокотемпературной зоне пламени, можно наблюдать выделение дыма из вершины пламени. Для диффузионного горения полимеров характерны такие же закономерности сажеобразования и выделения дыма, как и при горении низкомолекулярных органических соединений. Способность к образованию сажи при горении органических углеродных соединений зависит от соотношения окислитель - топливо. Поэтому образование сажи наблюдается лишь тогда, когда соотношение содержания кислорода и топлива меньше критического значения, определяемого природой горючего. Кислородсодержащие соединения характеризуются более низким критическим значением состава окислитель - горючее, чем насыщенные и ненасыщенные углеводороды.

Состав газовой фазы при дымообразовании

Кроме потери видимости в результате образования дыма при пожаре наблюдается также выделение ряда высокотоксичных газов. Кроме того, в состав частиц дыма, представляющего собой аэрозоль, входит ряд химических соединений, влияние которых на организм человека ограничено санитарными нормами. Учитывая то, что одной из основных причин гибели людей на пожаре является отравление токсичными продуктами горения и то, что токсичность продуктов горения является одним из основных параметров пожарной опасности веществ и материалов, было проведено изучение сопровождающей процесс дымообразования газовой фазы. Проведенные исследования показали, что в газовой фазе дыма при горении ряда строительных отделочных материалов, присутствуют такие токсичные соединения, как хлористый водород и оксид серы (IV), причем процентное содержание этих газов в древесине в два-три раза меньше чем в других исследованных материалах: изопилене, линолеумах, поливинилхлоридных профилях. Из полученных экспериментальных данных следует, что кроме СО, СО2, оксидов азота, хлороводорода и паров воды, состав газовой фазы продуктов термической деструкции различных материалов характеризуется для поливинилхлоридных материалов, отделочных панелей, профилей для окон и дверей, поливинилхлоридных линолеумов и покрытий для пола присутствием таких токсичных газов, как: бензол, относящийся ко второму классу опасности; 1,3-циклопентадиен, 2-метил-1, 3-бутадиен и пентан, относящиеся к четвёртому классу опасности. Таким образом, в результате исследований состава газовой фазы дыма различных строительных отделочных материалов установлено, что при термодеструкции изученных строительных материалов, наряду с выделением из них дыма, в газовую фазу переходят токсичные органические вещества, относящиеся ко второму и четвёртому классам опасности.

spravka-01.net

"Изучение процесса дымообразования во фрикционном дымогенераторе и решение обратной задачи теплопроводности"

Выдержка из работы

Бражная И. Э. и др. Изучение процесса дымообразования во фрикционном…

УДК 664. 951. 32

И. Э. Бражная, Ю. Т. Глазунов, А. М. Ершов

Изучение процесса дымообразования во фрикционном дымогенераторе и решение обратной задачи теплопроводности

I. E. Brazhnaya, Yu. T. Glazunov, A. M. Ershov

Studying the process of smoke generation in the friction smoke generator and solution of the inverse problem of heat conduction

Аннотация. Представлены результаты анализа оптимального диапазона влажности древесины для производства дыма во фрикционном дымогенераторе, влияния начальной массовой доли воды в древесине на ицетообразование готовой продукции, зависимости температурного распределения в полубесконечной среде от времени нагревания- приведено решение обратной задачи теплопроводности.

Abstract. The paper contains the analysis of the optimal range of wood humidity for smoke production in the friction smoke generator, the impact of the initial mass fraction of water in the wood on color formation on the finished product, the dependence of temperature distribution in a semi-infinite medium on the heating time. The results of solving the inverse heat conduction problem have been shown.

Ключевые слова: фрикционный дымогенератор, влажность древесины для производства дыма, распределение температурного фронта в полубесконечной среде, коэффициент температуропроводности.

Key words: friction smoke generator, wood moisture content for smoke production, temperature distribution in semi-infinite medium, thermal diffusivity.

Введение

Развитие рыбной промышленности предполагает комплексное решение задач вылова, технологической переработки и воспроизводства гидробионтов. Рыбные продукты являются источником белков животного происхождения, полиненасыщенных жирных кислот, витаминов, макро- и микроэлементов. При реконструкции существующего и организации нового производства в современных экономических условиях необходимо расширять ассортимент и улучшать качество пищевой продукции. Особое внимание уделяется канцерогенной безопасности продукции и экологии промышленного производства, а также совершенствованию конструкций дымогенераторов* [1]. Коптильный дым, полученный с помощью фрикционных дымогенераторов, отличается повышенным содержанием карбонильных соединений, кислот, фенолов и практически не содержит канцерогенных веществ [2], [3]. Однако опытным путем установлено, что рыбное сырье, выкопченное таким дымом, практически не изменяет цвет поверхности и в результате не соответствует требованиям нормативной документации по органолептическим показателям. Интенсифицировать процесс цветообразования можно за счет увеличения паровой фазы дыма [4, с. 2].

Материалы и методы

В связи с особенностями конструкции фрикционного дымогенератора распределение температурных полей внутри образцов изучали в статическом режиме на лабораторной установке с электроподогревом. Для экспериментальных исследований были изготовлены образцы с просверленными на разных уровнях от поверхности нагрева отверстиями для размещения в них термопар. Изучение скорости пиролиза и распределение температурных полей в древесине в динамичном режиме проводили на промышленном фрикционном дымогенераторе конструкции Мурманского высшего инженерного морского училища имени Ленинского комсомола (разработчик А. М. Ершов) с использованием образцов древесного сырья размером 80*80*400 мм с различной начальной влажностью. В образцах отверстия для термопар были просверлены на расстоянии 50 мм от поверхности вращающегося барабана дымогенератора. Для измерения температуры пиролиза использовали цифровой потенциометр ХК (L) с интервалом измеряемых температур от 0 до 800 °C (0,15/0,05) и тарированные хромель-копелевые термопары. Тарирование термопар проводили в термостате типа ТС-24. Время контролировали секундомером. Массовую долю воды в древесном сырье определяли по стандартным методикам. Все измерения проводили в трехкратной повторности. Экспериментальные результаты обрабатывали общеизвестными методами математической статистики. При определении зависимости скорости прогревания древесины от ее влажности необходимо решить обратную задачу теплопроводности по известным из эксперимента температурным полям, с учетом

Устройство для генерации коптильного дыма: пат. 2 363 163 Российская Федерация. № 2 008 109 680/13 — заявл. 11. 03. 08 — опубл. 10. 08. 09, Бюл. № 22. 6 с. Устройство для генерации дыма: пат. 2 468 587 Российская Федерация. № 2 011 118 048/10 — заявл. 04. 05. 12 — опубл. 10. 12. 12, Бюл. № 34. 6 с.

620

Вестник МГТУ, том 18, № 4, 2015 г.

стр. 620−625

начальных и граничных условий определить коэффициент температуропроводности среды. B решении этой задачи был применен метод интегральных балансов, предложенный в 1958 г. М. Гудманом и развитый позднее в работах Ю. А. Михайлова и Ю. Т. Глазунова [5].

Результаты исследований и их обсуждение

Исследования на базе экспериментального цеха МГТУ при производстве рыбы холодного копчения, показали, что предварительное увлажнение древесины для ее использования во фрикционном дымогенераторе позволяет получить готовый продукт, удовлетворяющий требованиям действующей нормативной документации по всем органолептическим показателям. Для определения оптимального диапазона влажности древесины изучено влияние начальной массовой доли воды в древесине на процесс цветообразования в копченой продукции. Установлено, что при использовании древесного топлива с массовой долей воды менее 50% процесс цветообразования замедляется- при влажности больше 50% - возрастает. При увеличении влажности наблюдается снижение времени копчения при одинаковых цветовых характеристиках готовой продукции. C другой стороны, при увеличении влажности древесины выше 70% отмечено замедление начала процесса дымообразования, интенсивное конденсирование паровой фазы дыма внутри дымогенератора, в результате увеличивается расход электроэнергии для интенсификации процесса дымообразования. Таким образом, для исследования процесса дымообразования фрикционным способом было принято решение применять древесину с начальной влажностью от 50 до 70% [4, с. 3−6]. В процессе работы были проведены экспериментальные исследования по установлению зависимости скорости прогревания от начальной влажности древесины (рис. 1).

Рис. 1. Изменение температуры древесины на поверхности бруска: 1 — сухая древесина (W = 3,0%) —

2 — с начальной массовой долей воды W = 56,3%- ^ - точка начала устойчивого дымообразования [4, с. 3−6]

Из рис. 1 видно, что начальная температура дымообразования не зависит от влажности древесины и составляет (230 + 2) °С. Приведенные результаты не противоречат известным литературным сведениям, описывающим ''дымовой термометр", где нижний температурный предел дымообразования равен 210 °C [3], [6]. Результаты измерений температурных полей внутри образцов приведены на рис. 2−5.

Рис. 2. Изменение температуры воздушно-сухой древесины (W = 3,0%) на различном удалении от греющей поверхности [4, с. 3−6], [8, с. 12]

621

Бражная И. Э. и др. Изучение процесса дымообразования во фрикционном…

Анализ результатов экспериментов (рис. 3−5) показывает, что влажность древесины влияет на скорость ее прогревания. При обезвоживании древесины изменяются ее теплофизические характеристики. Воздушносухая древесина прогревается быстрее увлажненной. Представленные экспериментальные графики имеют участок с близкой к нулевой скоростью прогрева при температуре около 100 °C. При нагревании увеличение влажности древесины за счет активного отвода тепла при изменении фазового состояния содержащейся в ней воды приводит к заметному снижению скорости прогрева [4], [9, с. 102−103], влияет на теплофизические характеристики древесины и определяет значение коэффициента температуропроводности а.

Рис. 3. Изменение температуры древесины при влажности W = 56,3% на различном удалении от греющей поверхности [4, с. 3−6], [8, с. 12]

Рис. 4. Изменение температуры древесины при влажности W = 70,8% на различном удалении от греющей поверхности [4, с. 3−6], [8, с. 12]

Рис. 5. Изменение древесины при влажности W = 70,2% на различном удалении от греющей поверхности [4, с. 3−6]

622

Вестник МГТУ, том 18, № 4, 2015 г.

стр. 620−625

Для установления указанной зависимости необходимо решить обратную задачу теплопроводности с учетом экспериментальных температурных полей, начальных и граничных условий, т. е. определить коэффициент температуропроводности среды.

Задача сводилась к решению простого уравнения теплопроводности для полубесконечной среды при граничных условиях T (x = 0, т) = ТП, T (x = & lt-ю, т) = 0 и начальных условиях T (x, т = 0) = 0:

д1 _

дт дх2

B процессе определения коэффициента применен метод интегральных балансов [5]. Для решения дифференциального уравнения было введено понятие глубины проникания q (x), или глубины среды, до которой проник температурный фронт (рис. 6).

Рис. 6. Зависимость температурного фронта в полубесконечной среде от времени нагревания

Используя экспериментальные результаты (рис. 2−5), можно рассчитать значение коэффициента температуропроводности по формуле

-|2

a = -

12т

1 —

t (x, т) — to

1

x

К — t0

(1)

Этот коэффициент изменяется от 1,7 до 10,5 мм2/мин при изменении влажности древесины от 3 до 70% и аппроксимируется прямой вида

a (W) = 10,27 — 0,12 W, (2)

где W — влажность древесины, %- а — коэффициент, мм2/мин [4], [7, с. 13].

В ходе пиролиза нагревание древесины характеризуется следующими процессами: теплопередачей от греющей поверхности- массопереносом воды и пара- дополнительным выделением тепла при тлении древесины. Поэтому в выражениях (1) и (2) коэффициент, а даже для сухой древесины корректнее назвать & quot-коэффициентом теплового рассеивания& quot-. Коэффициент теплового рассеивания по физическому смыслу приближен к коэффициенту теплопроводности, при этом он учитывает также влияние массопереноса воды и пара на перенос тепла. Эмпирическая формула (2) позволяет находить коэффициент теплового рассеивания a (W) [4, с. 3−6], [7, с. 13], [5].

Заключение

В ходе работы определен оптимальный диапазон влажности древесины для производства дыма фрикционным способом. Изучена зависимость качества готовой продукции от начальной массовой доли влаги в древесине. Установлено, что процесс цветообразования копченой продукции замедляется при массовой

623

Бражная И. Э. и др. Изучение процесса дымообразования во фрикционном…

доле воды в древесине менее 50%- при влажности более 50% - возрастает. Время копчения сокращается с ростом влажности древесины при достижении равной степени цветообразования копченой продукции. На основе экспериментальных данных была решена обратная задача теплопроводности и рассчитано значение коэффициента температуропроводности. При изменении влажности древесины от 3 до 70% этот коэффициент изменяется от 1,7 до 10,5 мм2/мин [7, с. 13], [9, с. 101−102].

Библиографический список

1. Ивашов В. И. Технологическое оборудование предприятий мясной промышленности. В 2 ч. Ч. 2. Оборудование для переработки мяса. СПб.: ГИОРД, 2007. 457 с.

2. Хван Е. А., Гудович А. В. Копченая, вяленая и сушеная рыба. М.: Пищевая промышленность, 1978.

206 с.

3. Мезенова О. Я., Ким И. Н., Бредихин С. А. Производство копченых пищевых продуктов. М.: Колос, 2001. 207 с.

4. Бражная И. Э. Исследование процесса дымообразования во фрикционном дымогенераторе. Мурманск: МГТУ, 1997. 11 с. Деп. во ВНИЭРХ 21. 11. 97, № 1317-рх97.

5. Михайлов Ю. А., Глазунов Ю. Т. Вариационные методы в теории нелинейного тепло- и массопереноса. Рига: Зинатне, 1985. 220 с.

6. Леванидов И. П., Ионас Г. П., Слуцкая Т. Н. Технология соленых, копченых и вяленых рыбных продуктов. М.: Агропромиздат, 1987. 160 с.

7. Бражная И. Э. Разработка ароматизаторов для пресервов на основе совершенствования процесса генерации дыма фрикционным способом: автореф. … канд. техн. наук. Мурманск, 1998. 25 с.

8. Бражная И. Э., Ершов А. М. Результаты исследований процесса генерации дыма во фрикционном дымогенераторе // Сб. тезисов 6-й науч. -техн. конф. МГТУ. Мурманск: МГТУ, 1995. Ч. 1. С. 102−103.

9. Бражная И. Э., Глазунов Ю. Т. О решении одной обратной задачи теплопроводности // Сб. тезисов 7-й науч. -техн. конф. МГТУ. Мурманск: МГТУ, 1996. Ч. 1. С. 101−102.

References

1. Ivashov V. I. Tehnologicheskoe oborudovanie predpriyatiy myasnoy promyshlennosti [Process equipment of meat industry enterprises]. V 2 ch. Ch. 2. Oborudovanie dlya pererabotki myasa. SPb.: GIORD, 2007. 457 p.

2. Hvan E. A., Gudovich A. V. Kopchenaya, vyalenaya i sushenaya ryba [Smoked, semi-dried, and dried fish]. M.: Pischevaya promyishlennost, 1978. 206 p.

3. Mezenova O. Ya., Kim I. N., Bredihin S. A. Proizvodstvo kopchenyh pischevyh produktov [Production of smoked food products]. M.: Kolos, 2001. 207 p.

4. Brazhnaya I. E. Issledovanie protsessa dymoobrazovaniya vo fTiktsionnom dymogeneratore [Investigation of smoke in the friction smoke generator]. Murmansk: MGTU, 1997. 11 p. Dep. vo VNIERH 21. 11. 97, N 1317-rh97.

5. Mihaylov Yu. A., Glazunov Yu. T. Variatsionnyie metody v teorii nelineynogo teplo- i massoperenosa [Variational methods in the theory of nonlinear heat- and mass transfer]. Riga: Zinatne, 1985. 220 p.

6. Levanidov I. P., Ionas G. P., Slutskaya T. N. Tehnologiya solenyh, kopchenyh i vyalenyh rybnyh produktov [Technology of salted, smoked and dried fish products]. M.: Agropromizdat, 1987. 160 p.

7. Brazhnaya I. E. Razrabotka aromatizatorov dlya preservov na osnove sovershenstvovaniya protsessa generatsii dyma fTiktsionnym sposobom [Development of preserve flavors on the basis of improving generation of smoke friction manner]: avtoref. … kand. tehn. nauk. Murmansk, 1998. 25 p.

8. Brazhnaya I. E., Ershov A. M. Rezultaty issledovaniy protsessa generatsii dyma vo friktsionnom dymogeneratore [The results of research of smoke generation in the friction smoke generator] // Sb. tezisov 6-y nauch. -tehn. konf. MGTU. Murmansk: MGTU, 1995. Ch. 1. P. 102−103.

9. Brazhnaya I. E., Glazunov Yu. T. O reshenii odnoy obratnoy zadachi teploprovodnosti [On solution of inverse heat conduction problem] // Sb. tezisov 7-y nauch. -tehn. konf. MGTU. Murmansk: MGTU, 1996. Ch. 1. P. 101−102.

Сведения об авторах

Бражная Инна Эдуардовна — ФГБОУ ВПО & quot-Мурманский государственный технический университет& quot-, Естественно-технологический институт, кафедра технологий пищевых производств, канд. техн. наук, доцент- e-mail: brain67@mail. ru

624

Вестник МГТУ, том 18, № 4, 2015 г.

стр. 620−625

Brazhnaya I. E. — FSEI HPE & quot-Murmansk State Technical University& quot-, Institute of Natural Science and Technology, Department of Food Production Technology, Cand. of Tech. Sci., Associate Professor- e-mail: brain67@mail. ru

Глазунов Юрий Трофимович — ФГБОУ ВПО & quot-Мурманский государственный технический университет& quot-, Естественно-технологический институт, кафедра технологий пищевых производств, д-р техн. наук, профессор- e-mail: glazunoyjut@mstu. edu. ru

Glazunov Yu. Т. — FSEI HPE & quot-Murmansk State Technical University& quot-, Institute of Natural Science and Technology, Department of Food Production Technology, Dr of Tech. Sci., Professor- e-mail: glazunoyjut@mstu. edu. ru

Ершов Александр Михайлович — ФГБОУ ВПО & quot-Мурманский государственный технический университет& quot-, Естественно-технологический институт, кафедра технологий пищевых производств, д-р техн. наук, профессор- e-mail: ershovam@mstu. edu. ru

Ershov A. М. — FSEI HPE & quot-Murmansk State Technical University& quot-, Institute of Natural Science and Technology, Department of Food Production Technology, Dr of Tech. Sci., Professor- e-mail: yershovam@mstu. edu. ru

625

Показать Свернуть

gugn.ru

Реферат - Воздействие строительных материалов на человека

Содержание

Введение

1 Характеристика пожароопасности строительного материала

2 Воздействие строительных материалов

3 Химический состав строительных материалов

Заключение

Список литературы

Введение

Стремительное развитие всех отраслей промышленности, энергетики, транспорта, увеличение численности населения, урбанизация и химизация всех сред деятельности человека приводят к нарушению и загрязнению биосферы, её отдельных компонентов. Экологическая ситуация, сложившаяся в ряде промышленных центров, в районах добычи и переработки минерального сырья, строительства и эксплуатации промышленных объектов часто близка к критической.

Основная проблема, которая характерная для строительного комплекса – это образование строительного мусора и отходов.

Строительные отходы — отходы, образующиеся в процессе сноса, разборки, реконструкции, ремонта (в том числе капитального) или строительства зданий, сооружений, промышленных объектов, дорог, инженерных коммуникаций.

Не менее важны и материалы, которые используются при строительстве. Большое количество разнообразных материалов имеют различное влияние на человека.

Цель данной работы – рассмотреть воздействие строительных материалов на человека в зависимости от их характеристик.

Задачи:

— рассмотреть характеристику пожароопасности строительного материала;

— выявить воздействие на человека;

— изучить химический состав строительных материалов.

1 Характеристика пожароопасности строительного материала

Многие из предлагаемых на строительном рынке материалов наряду с долговечностью, практичностью, недорогой ценой обладают высокой пожарной опасностью и существенно влияют на динамику развития пожара.

Нормирование показателей пожарной опасности строительных материалов и конструкций по ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования» является одним из способов обеспечения пожарной безопасности системы противопожарной защиты.

Показатели пожаровзрывоопасности веществ и материалов определяются с целью получения исходных данных для разработки систем обеспечения пожарной безопасности и взрывобезопасности по ГОСТ 12.1.004 и ГОСТ 12.1.010, выполнения требований нормативных документов системы противопожарного нормирования и стандартизации, правил устройства электроустановок, классификации опасных грузов по ГОСТ 19443, выполнения расчетов по определению категории помещений в соответствии с требованиями норм технологического проектирования, а также технического надзора за изготовлением материалов и изделий и выполнения других противопожарных мероприятий.

ГОСТ 12.1.044-89 «Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы определения» было установлено 10 показателей, характеризующих пожарную опасность твердых веществ и материалов (а именно к ним относится подавляющее большинство строительных материалов).

Имеются в виду группа горючести, температура воспламенения, температура самовоспламенения, температура тления, условия теплового самовозгорания, кислородный индекс, способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами, коэффициент дымообразования, индекс распространения пламени, а также показатель токсичности продуктов горения полимерных материалов.

Результаты испытаний по определению показателей всегда использовались при разработке мероприятий по обеспечению пожарной безопасности, определении категорий помещений по взрывопожарной и пожарной опасности в соответствии с нормами технологического проектирования, выборе и классификации веществ и материалов, оценке пожарной опасности оборудования и технологических процессов, связанных с переработкой горючих веществ, выборе типа взрывозащищенного электрооборудования. Полученные данные включались в стандарты и технические условия на вещества и материалы.

Вместе с тем реальное использование в нормативных документах применительно к строительным материалам (имеется в виду нормирование конкретных показателей материалов) нашли только три из указанных показателей — горючесть, дымообразующая способность и токсичность продуктов горения. Это требования изложены в СНиП 2.01.02, СНиП 2.08.02 и еще ряде норм и пособий, регламентирующих характеристики материалов для внутренней и наружной отделки зданий и помещений, ковровых покрытий в коридорах общественных зданий, материалов сидений, теплоизоляции (в том числе противопожарного занавеса). При этом отделка из древесины и высокотоксичных полимеров классифицируется одинаково — как горючая.

В этой связи не совсем прослеживается связь норм с основными опасными факторами пожара, реальной динамикой его развития. Применяемые строительные материалы с неизвестными или ненормируемыми показателями пожарной опасности нередко становятся причиной быстрого развития пожара, травмирования и гибели людей[1] .

Вот краткие характеристики тех материалов, которые все шире находят применение при строительстве, реконструкции и ремонте.

1. Полимерные материалы.

В отличие от древесины полимерные материалы содержат меньше углерода и кислорода. Поэтому для их горения требуется в 1,5-2 раза больший объем воздуха. Так как процесс горения обеспечен недостаточным количеством кислорода, то происходит неполное сгорание, что сопровождается большим дымовыделением. Параметры дымообразования изменяются в широком диапазоне, при этом общее время достижения максимального дымообразования колеблется от 1 до 20 мин. Наполнители и другие компоненты делают процесс горения неоднородным. Отличительными особенностями горения полимеров в сравнении с древесиной являются повышенное потребление кислорода, высокие температуры (1400°С) и выделение большого количества тепла, дыма и токсинов.

Многие полимеры характеризуются высокой скоростью распространения пламени, которая в 5-6 раз выше, чем у древесины (от 1,5 до 3,9 см/мин). Полистирольные пенопласты по распространению пламени наиболее пожароопасны (4-5 см/мин).

Полихлорвинил (ПХВ) при температуре выше 230°С разлагается с выделением газообразных продуктов, которые при 300°С воспламеняются, и пламя достаточно быстро распространяется по поверхности материала, самовоспламенение которого происходит при 450-600°С. При 600°С ПХВ выделяет хлористый водород (55 мг/л) — наиболее токсичный продукт, который через 5-10 мин вызывает смерть при концентрации 4,5 мг/л воздуха. Горение сопровождается интенсивным выделением дыма.

Полистиролы также воспламеняются от малозначительных источников зажигания, горят с большим выделением дыма и сажи. Температура воспламенения 210-310, самовоспламенения — 440°С. Продукты горения токсичны.

1. Тепло- и звукоизоляционные материалы.

Тепло- и звукоизоляционные материалы бывают горючими и негорючими. Горючие материалы имеют низкую теплостойкость (колеблется от 70 до 200°С). Пенопласт уже при 80°С начинает выделять соединения перекисного типа, а при 180°С в газовой смеси появляется фосген.

Строительный войлок имеет температуру воспламенения 287°С, самовоспламенения — 370 °С и обладает способностью к самовозгоранию; при горении выделяет много едкого дыма.

С введением в действие СНБ 2.02.01-98 «Пожарно-техническая классификация зданий, строительных конструкций и материалов» номенклатура основных пожарно-технических показателей строительных материалов несколько расширена и изменена, что позволит более детально подойти к оценке пожарной безопасности строительных материалов и конструкций при определении области их применения.

В соответствии с указанным документом устанавливаются следующие пожарно-технические показатели строительных материалов — горючесть, воспламеняемость, распространение пламени по поверхности, токсичность продуктов горения и дымообразующая способность.

По горючести строительные материалы подразделяются на негорючие (НГ) и горючие (Г).

Для негорючих строительных материалов другие показатели пожарной опасности не определяются и не нормируются.

Горючие строительные материалы подразделяются на группы Г1 (слабогорючие), Г2 (умеренно горючие), Г3 (нормально горючие) и Г4 (сильногорючие).

По воспламеняемости стройматериалы подразделяются на три группы — В1 (трудновоспламеняемые), В2 (умеренно воспламеняемые) и В3 (легковоспламеняемые).

По строительным материалам, относящимся к легковоспламеняющимся, а также горючим жидкостям дополнительно устанавливаются такие показатели пожаровзрывоопасности по ГОСТ 12.1.044, как температура вспышки, температура самовоспламенения, концентрационные пределы распространения пламени (воспламенения), а также способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами.

Для классификации материалов по группам воспламеняемости используют показатель критической поверхностной плотности теплового потока, при котором возникает устойчивое пламенное горение.

По распространению пламени по поверхности материалы делятся на четыре группы — РП1 (не распространяющие), РП2 (слабо распространяющие), РП3 (умеренно распространяющие) и РП4 (сильно распространяющие).

По токсичности продуктов горения материалы делятся на четыре группы — Т1 (малоопасные), Т2 (умеренно опасные), ТЗ (высокоопасные) и Т4 (чрезвычайно опасные).

Группы строительных материалов по токсичности продуктов горения определяются в соответствии с ГОСТ 12.1.044. Показатель токсичности — это отношение количества материала к единице объема замкнутого пространства, в котором образующиеся при горении материала газообразные продукты вызвали гибель 50% подопытных животных[2] .

По дымообразующей способности материалы делятся на три группы — Д1 (с малой дымообразующей способностью), Д2 (с умеренной дымообразующей способностью) и ДЗ (с высокой дымообразующей способностью).

Обязательность определения данных показателей обусловлена введением в разрабатываемые нормативные документы системы противопожарного нормирования и стандартизации ограничений к применению строительных материалов, имеющих худшие показатели.

2 Воздействие строительных материалов

Техногенное загрязнение природы, появление на рынке новых, плохо изученных с точки зрения воздействия на человека, строительных материалов, нарушение технологических процессов при строительстве, использование в быту и для промышленных целей мощного электротехнического и электронного оборудования могут существенно ухудшить качество окружающей среды.

Если каждый отдельно взятый человек не в состоянии изменить к лучшему макросреду своего обитания (города, поселка, района или отдельной улицы), то свою квартиру, загородный дом, участок земли необходимо изучить на предмет отсутствия загрязнений и, при их выявлении, устранить вредное воздействие.

Среди вредных для человека химических и физических факторов следующие:

1. Вредные летучие вещества, растворенные в воздухе – пары растворителей красок, грунтовок, шпатлевок, строительных мастик, клеев, герметиков, компаундов, наполнителей, связующих веществ. Всего 42 химических соединения.

2. Вредные пылеобразные вещества, содержащиеся в воздухе помещений и улицы, внесенные в помещения извне, а также в результате производства строительных работ. Всего 100 веществ – пылевидных загрязнителей.

3. Акустическое (шумовое) загрязнение в слышимом человеком диапазоне, а также ультразвуковом и инфразвуковом.

4. Все параметры микроклимата, включая интенсивность теплового излучения.

5. Излучения ионизирующие и не ионизирующие, поля электромагнитные, электростатические.

6. Световая среда.

7. Наличие и концентрация Радона в помещениях[3].

Приведенный список факторов практически всесторонне учитывает современные потребности в изучении комплекса возможных вредных воздействий техногенного характера на человека.

3 Химический состав строительных материалов

В строительстве применяют разнообразные строительные материалы и изделия, отличающиеся внешним видом, строением, химическим составом, показателями свойств и качеств.

В зависимости от происхождения, назначения, условий эксплуатации, вида сырья, технологии получения, свойств все строительные материалы разделяют на отдельные группы, т. е. их классифицируют.

По происхождению различают строительные материалы природные и искусственные. Природными материалами являются древесина, горные породы (природные камни), природные битумы и асфальты. К искусственным материалам и изделиям относят цемент, керамзитовый гравий и песок, керамический кирпич, железобетонные конструкции, стекло и др.

Химические свойства выражают степень активности материала к химическому взаимодействию с реагентами внешней среды и способность сохранять постоянными состав и структуру материала в условиях инертной окружающей среды. Некоторые материалы склонны к самопроизвольным внутренним химическим изменениям в обычной среде. Ряд материалов проявляет активность при взаимодействии с кислотами, водой, щелочами, растворами, агрессивными газами и т. д. Химические превращения протекают также при технологических процессах производства и применения материалов.

Рассмотрим более подробно химический состав некоторых материалов.

1. Гипсовые вяжущие вещества.

В строительстве и промышленности издавна применяют гипсовые вяжущие материалы — строительный гипс, формовочный и высокопрочный, эстрих-гипс, ангидритовый цемент и др. Это минеральные вяжущие воздушного твердения, состоящие из полуводного гипса СаSО4 · 0,5Н2 О или ангидрита СаSО4, и образуются путем тепловой обработки и помола сырья, содержащего двуводный или безводный сульфат кальция. СаSО4 · 2Н2 О — двуводный гипс — минерал, входящий в состав различных горных пород, гипсового камня, глиногипса, а также в состав промышленных отходов — фосфогипса (отход от переработки природных фосфатов в суперфосфат), борогипса и др. В зависимости от температуры тепловой обработки гипсовые вяжущие подразделяют на низкообжиговые и высокообжиговые.

2. Строительная воздушная известь.

Воздушная известь — одно из древнейших вяжущих, широко применяемых в строительстве и промышленности. Известь — продукт умеренного обжига кальциевых и кальциево-магниевых карбонатных пород до возможно полного удаления углекислого газа.

Сырьем для получения извести является распространенные осадочные горные породы — известняки, доломиты, мел, доломитизированные известняки, содержащие не более 6...8 % глины. Преобладает в сырье карбонат кальция СаСО3, в небольшом количестве содержатся карбонат магния МgСО3 и некоторые примеси. Сырье обжигают при температуре 900...1200°С:

СаСО3 = СаО + СО2 ↑

МgСО3 = МgО + СО2 ↑

Куски сырья размером 10...20 см обжигают в шахтных печах; обжиг мелких кусков ведут во вращающихся печах; порошок обжигают в установках — реакторах — в «кипящем слое»[4] .

3. Портландцемент.

Выпускают портландцемент без добавок и с активными минеральными добавками в количестве до 15% от массы цемента. Свойства и качество портландцемента зависят от качества цементного клинкера, а вводимые в цемент добавки лишь регулируют его свойства. Качество клинкера зависит от тщательности подготовки сырья, условий обжига, режима охлаждения, от его химического и минерального состава.

Химический состав клинкера характеризуется содержанием главных оксидов (% по массе): СаО — 62...68; SiO2 — 21...24; Al2 O3 — 4...8; Fe2 O3 — 2...5; их суммарное количество составляет 95...98%. В незначительных количествах в клинкере также присутствуют МgО, Na2 O, К2 О, SО3, TiО2, Cr2 O3, Р2 О5. В процессе обжига до спекания главные оксиды образуют клинкерные минералы кристаллической структуры, а некоторые из них входят в стекловидную фазу.

Минеральный состав клинкера определяется содержанием искусственных минералов — алита, белита, трехкальциевого алюмината и четырехкальциевого алюмоферрита.

Алит — трехкальциевый силикат ЗСаО · SiO2 (или сокращенно — С3 S) — содержится в количестве 45...65 %. Это самый важный минерал клинкера, определяющий время твердения, прочность и другие свойства портландцемента. Он твердеет быстро, выделяя большое количество теплоты, обладает самой высокой прочностью по сравнению с другими минералами клинкера.

Белит — двухкальциевый силикат 2СаО · SiO2 (или С2 S) — содержится в количестве 20...35%. Он медленно твердеет, но неуклонно наращивает прочность при длительном твердении цемента.

Трехкальциевый алюминат ЗСаО • Al2 O3 (или С3 А) содержится в количестве 4...12%. Он очень быстро гидратируется и твердеет, выделяя большое количество теплоты, но имеет небольшую прочность; является причиной сульфатной коррозии бетона.

Четырехкальциевый алюмоферрит 4СаО • Al2 O3 • Fe2 O3 (или С4 АF) содержится в количестве 10...20%, по времени гидратации занимает промежуточное положение между алитом и белитом, обладает средней прочностью[5] .

4. Лакокрасочные и малярные материалы.

К основным относят краски (суспензии пигментов в связующем), лаки (растворы пленкообразующих веществ в растворителях), эмали (суспензии пигментов в лаке), грунтовки (жидкие суспензии пигментов в связующем), шпатлевки (густые смеси пигментов и наполнителей в связующем), связующие (олифы, полимеры, эмульсии, клеи). К вспомогательным материалам относят пасты, мастики, замазки, разбавители, растворители, смывки, сиккативы (сушки) и др.

Лакокрасочные материалы, как правило, состоят из сухого и жидкого компонентов. В первую группу входят пигменты и наполнители, во вторую — связующие и растворители, а также добавки. Важнейшей и непременной составной частью окрасочного состава и других малярных материалов являются пигменты.

Пигменты (сухие краски) — тонко измельченные цветные неорганические или органические вещества, нерастворимые в воде и дисперсных средах и способные образовывать с пленкообразующим защитное, декоративное или декоративно-защитное покрытие. Пигменты применяют для изготовления малярных и других красок, а также для окрашивания цветных строительных растворов, пластмасс, бумаги, резины и других материалов. Они отличаются от растворимых красителей нерастворимостью в воде и в окрашиваемых материалах. Пигменты служат для поверхностного окрашивания, в то время как красители, окрашивая поверхность, проникают внутрь материала. В малярных работах красители из-за их растворимости почти не применяют.

Пигменты бывают природные (неорганические), искусственные или синтетические (неорганические и органические) и металлические. Природные неорганические пигменты получают путем измельчения, обогащения, термической обработки минералов и горных пород. Синтетические неорганические пигменты получают в результате химических реакций. Синтетические органические пигменты — красящие вещества различного химического строения. Металлические пигменты — тонкие порошки металла или сплава металлов.

Токсичность (ядовитость) — свойство, которое необходимо учитывать при работе с лакокрасочными материалами. Многие пигменты безвредны, но некоторые ядовиты, поражают дыхательные пути и при неумелом обращении могут вызвать отравление. Ядовитыми являются пигменты, содержащие соединения свинца, меди, мышьяка и некоторые соединения цинка. Применение ядовитых красок при работе кистью не вызывает никакой опасности для рабочего, соблюдающего правила личной гигиены и охраны труда. Отравляющее действие пигментов проявляется при нанесении окраски распыляющими аппаратами — распылителем или краскопультом. В этих случаях, чтобы ядовитая пыль не попала в организм человека, работать необходимо в защитной маске или респираторе.

По происхождению пигменты делят на природные (неорганические), искусственные или синтетические (органические и неорганические) и металлические.

Природные пигменты получают в результате различной несложной обработки природных материалов. Например, железный сурик получают измельчением железной руды, содержащей 75...95 % оксида железа.

К природным пигментам относятся следующие: аурипигмент, графит, известь, каолин, диоксид марганца, мел, коричневая мумия, охра, жженая охра, сиена, жженая сиена, железный сурик, коричневая умбра.

Синтетические, или искусственные, пигменты получают путем термической или химической обработки материалов. Например, для создания синего пигмента лазури нужно смешать желтый раствор хлорида железа и бледно-желтый раствор желтой кровяной соли; при этом выпадает белый осадок, который после окисления хромпиком становится лазурью.

Неорганические пигменты — это окрашенные оксиды или соли металлов: белила свинцовые и цинковые, свинцовая и цинковая зелень, киноварь, цинковый крон, свинцовые крона, синий кобальт, железная лазурь, сухой литопон, коричневый марс, медянка, красная мумия, желтый железооксидный пигмент, редоксайд, сажа, свинцовый сурик, диоксид титана, синий ультрамарин, оксид хрома, пыль цинковая, чернь.

Органические пигменты — цветные органические соединения, в состав которых, как правило, входит углерод. К ним относятся следующие пигменты: красочные лаки, лак основной синий К, алый концентрированный, голубой фталоцианиновый, желтый, желтый светопрочный, зеленый, красный Ж, красный С, оранжевый.

Металлические пигменты представляют собой тонкоизмельченные цветные металлы и сплавы металлов; к ним относят алюминиевую пигментную пудру и золотистую бронзу.

Самая многочисленная группа — неорганические синтетические пигменты. Однако на практике наиболее широко применяют природные пигменты, получить которые проще, чем синтетические. Исключение составляют различного рода белила, без которых не обходится почти ни один из неводных окрасочных составов.

Органические синтетические пигменты — смесь синтетических органических красителей с инертными органическими веществами (субстратами — основами). Для этого используют нерастворимые в воде свето- и щелочестойкие красители, дающие укрывистые пигменты. К органическим синтетическим пигментам относятся также красочные лаки (фарблаки).

Красочные лаки — нерастворимые в воде соединения в виде осажденных и адсорбированных (поглощенных) на неорганическом субстрате органических красителей. Субстратом служат гидрат алюминия, баритовый концентрат, тяжелый шпат, каолин, белила. Красочные лаки обладают хорошей красящей способностью, яркостью, разнообразием цветов и оттенков[6] .

5. Сухие строительные смеси «Геркулес».

Известково-цементная штукатурка «Геркулес» представляет собой смесь извести, цемента, фракционированного кварцевого песка и специальных добавок. Сухая смесь взрыво- и пожаробезопасна, не токсична, не содержит асбестовых волокон.

Цементно-песчаная штукатурка «Геркулес» представляет собой сухую строительную смесь на основе цемента, фракционированного кварцевого песка и полимерных добавок, повышающих прочность, пластичность, удобоперерабатываемость раствора. Раствор содержит цемент, имеет щелочную реакцию и может вызвать раздражение, поэтому следует защищать кожу и глаза от попадания раствора.

Гипсовая штукатурка «Геркулес» представляет собой смесь гипса с природными наполнителями и модифицированными добавками водорастворимых полимеров. Сухая смесь взрыво- и пожаробезопасна, не токсична, не содержит асбестовых волокон.

Кладочная смесь «Геркулес» состоит из цемента, кварцевого песка определенного фракционного состава и специальных добавок. Сухая смесь взрыво- и пожаробезопасна, не токсична, не содержит асбестовых волокон. Кладочные работы вести в защитных перчатках или рукавицах. Экологически безопасна.

Составы бетонов для производства шлакоблоков и строительных блоков.

№ п/п

Наименование компонентов

Кол-во компонентов

ТЯЖЕЛЫЕ БЕТОНЫ

1

Цемент, кг

Песок кварц м3 (кг)

Вода, л.

240

1,15 (1950)

90...130

2

Цемент, кг

Песок кварц. м3 (кг)

Щебень доломитовый или известняковый, м3 (кг)

Вода, л

200

0,54 (920)

0,65 (980)

90...130

3

Цемент, кг

Отсев доломитовый или известняковый, м3 (кг)

Щебень доломитовый или известняковый, м3 (кг)

Вода, л

200

0,3 (450)

0,8 (1200)

90...130

4

Цемент, кг

Отсев доломитовый или известняковый, м3 (кг)

Вода, л

200

1,1 (1650)

90...130

5

Цемент, кг

Песок кварц., м3 (кг)

Щебень гранитный, м3 (кг)

Вода, л

Или вместо песка и щебня — отсев щебня фракции до 20 мм

170-220

0,54 (920)

0,65 (1100)

90...130

ЛЕГКИЕ БЕТОНЫ

Керамзитобетон

6

Цемент, кг

Керамзит, м3 (кг)

Вода, л

250

1,2 (720)

100...150

7

Цемент, кг

Керамзит фракц. 0...5 мм, м3 (кг)

Керамзит фракц. 5...15 мм, м3 (кг)

Вода, л

220

0,65 (390)

0,6 (330)

90...130

Золобетон

8

Цемент, кг

Зола угольн. или сланц. м3(кг)

Песок кварц., м3 (кг)

Вода, л

220

0,9 (720)

0,32 (540)

90...130

9

Цемент, кг

Щебень доломитовый или известняковый, м3(кг)

Зола угольн. или сланц., м3 (кг)

Вода, л

9О...13О

200

0,5 (750)

0,53 (420)

90...130

Шлакобетон

10

Цемент, кг

Шлак гранулиров., м3 (кг)

Вода, л

200

1,3 (720)

90...130

11

Цемент, кг

Шлак гранулиров., м3 (кг)

Песок кварц., м3 (кг)

Вода, л

200

0,9 (500)

0,32 (540)

90...130

12

Цемент, кг

Шлак котельный, м3 (кг)

Вода, л

200

1,2 (1080)

90...130

13

Цемент, кг Шлак котельный, м3 (кг) Песок кварц., м3 (кг) Вода, л

200 0,8 (720) 0,32 (540) 90...130

Заключение

Свойства строительных материалов предопределяют их качество и области применения.

Под свойством принято понимать способность материала определенным образом реагировать на отдельный или действующий в совокупности с другими внешний или внутренний фактор. Свойства материалов в большой мере связаны с особенностями их строения и со свойствами тех веществ, из которых состоит данный материал. В свою очередь, строение и состав материала зависят: для природных материалов — от их происхождения и условий образования, для искусственных — от технологии производства и обработки.

Чтобы рационально использовать строительные материалы, необходимо знать их свойства, способы получения, правила хранения и транспортирования, а также условия их работы в конструкциях и сооружениях.

Все свойства строительных материалов по совокупности признаков подразделяют на физические, механические, химические и технологические.

Свойства материалов оценивают количественно, т. е. по числовым показателям, определяемым путем испытаний по определенным методикам, предусмотренным государственными стандартами или техническими условиями.

В настоящее время в Российской Федерации действует единая система нормативных документов по строительству, которая обеспечивает единую техническую политику в проектных и строительно-монтажных организациях, на предприятиях строительной индустрии и промышленности строительных материалов и конструкций.

Список литературы

1. Александровский А.В., Попов К.Н. материалы для декоративных, штукатурных, плиточных и мозаичных работ. – М.: Высшая школа, 2004.

2. Белогуров В.П., Чмырь В.Д. Материаловедение для малярных и штукатурных работ. – М.: Высшая школа, 2002.

3. Берлин А.А. Горение полимеров и полимерные материалы пониженной горючести // СОЖ. — М., 1996.

4. Горчаков Г.И., Баженов Ю.М. Строительные материалы. – М.: Высшая школа, 1997.

5. Золотов С. Насколько пожароопасен новый материал. // Строительство и недвижимость, 2005.

6. Чмырь В.Д. Материаловедение для строителей. – М.: Высшая школа, 1994.

[1] Берлин А.А. Горение полимеров и полимерные материалы пониженной горючести // СОЖ. — М., 1996.

[2] Золотов С. Насколько пожароопасен новый материал. // Строительство и недвижимость, 2005.

[3] Горчаков Г.И., Баженов Ю.М. Строительные материалы. – М.: Высшая школа, 1997.

[4] Чмырь В.Д. Материаловедение для строителей. – М.: Высшая школа, 1994.

[5] Александровский А.В., Попов К.Н. материалы для декоративных, штукатурных, плиточных и мозаичных работ. – М.: Высшая школа, 2004.

[6] Белогуров В.П., Чмырь В.Д. Материаловедение для малярных и штукатурных работ. – М.: Высшая школа, 2002.

www.ronl.ru

Реферат - Густой дым как поток продуктов горения

Густые дымы как поток продуктов горения

1. Горение и его виды

Горение – мощный процесс окисления, сопровождающийся значительным выделением энергии в форме тепла и света. При чем окислителем может являться не только привычный в этом деле – кислород. Вещества могут гореть в галогенах: во фторе, хлоре и некоторых смесях. В роли окислителя могут выступать и богатые кислородом соединения. Например, в некоторых взрывных устройствах в качестве окислителя используют даже NO2 – весьма вредный газ, оказывающий, однако увеселяющее воздействие на человека.

Горение – процесс более сложный, чем кажется. В общем случае, зажигание требует подогрева горючей поверхности до температуры, при которой данное вещество начинает разлагаться, испуская горючие газы. И лишь разогрев этих газов до температуры их воспламенения при доступе окислителя – приводит к собственно воспламенению вещества. Горящие газы еще сильнее разогревают поверхность, ускоряя процесс газообразования с поверхности и окисления этих газов. Поэтому пламя со временем достигает определенного размера и постепенно распространяется по поверхности тела (жидкости), как бы «ползет» по нему. Если же температура недостаточна для воспламенения образующихся газов, то продолжается разложение приповерхностных слоев и частичное окисление материала. Проявляется это в виде обугливания поверхности. В случае если температура достаточна для горения, но отсутствует окислитель, происходит полное разложение телесного вещества (термический распад или пиролиз) и выделяется масса горючих газов и паров летучих компонентов. Может образовываться и жидкость, в зависимости от материала. Пламени при этом не наблюдается. Примером подобного процесса может служить коксование.

Одно и то же вещество, находясь в различном состоянии горит с различными скоростями. Так как за горючесть отвечает способность материала выделять горючие газы, меньшее значение отношения площади поверхности к объему тела приводит к большему выходу газов, а результат – к большей горючести. Поэтому, измельченные вещества воспламеняются и горят лучше, чем монолиты. Пары бензина – горят со взрывом. Пламя по бензину, если концентрация паров над его поверхностью не велика – распространяется со значительной скоростью, но сам бензин – не взрывается. Процесс горения отличается наличием горячего очага, обычно обладающего свечением, в котором и происходят окислительные реакции. Под действием высоких температур в очаге горения или вблизи и внутри пламени идут как процессы окисления, так и термического распада, которые в свою очередь, отвечают за попадание в атмосферу компонентов, изначально не содержащихся в горючем веществе.

Важной особенностью, характеризующей тему горения конкретного вещества, часто является вопрос о том, как его потушить. Спирт легко можно залить водой, так как первый в воде хорошо растворяется и температура его горения не столь высока. Однако, бензин, керосин, ацетон и многие другие продукты нефтеперерабатывающей промышленности обычным заливанием водой не потушить. Эти жидкости имеют температуры горения, близкие к 1000°С малорастворимы в воде, и их плотность в среднем на 10% меньше, чем у воды. Поэтому, при поливании водой, просто пропускают ее сквозь свою толщу, не разбавляясь. Пламя при этом не сбивается. В результате вода накапливается под поверхностью горючих веществ, приподнимая их надо дном, что может привести к растеканию горючих жидкостей и дальнейшему распространению огня. При этом, температура пламени и приповерхностных слоев горючей жидкости может незначительно понижаться, но на интенсивность горения это влияет мало. Если удастся зажечь металл, то потушить его фактически невозможно. Например, если зажечь титан (а металл просто так не зажжешь), то он горит даже в воде, поглощая кислород из ее молекул.

1.1 Тление

Горение можно условно разделить на 2 типа: тление и горение с пламенем. Тление – медленный процесс окисления, сопровождающийся сравнительно низкими температурами. Характерен своей локальностью. Тление можно объяснить или слабым выделением горючих газов и малой температурой в области, либо недостатком окислителя. При тлении температура недостаточна, чтобы воспламенить выделяющиеся из поверхности горючие газы. Поэтому происходит интенсивное разложение вещества в приповерхностных слоях без интенсивного окисления самих молекул. В результате при тлении происходит выделение в воздух испарений углеводородов (в том числе смол) и несколько меньшее, чем при горении с пламенем образование оксидов.

Наиболее изучаемым благодаря своему вредному воздействию на организм примером тления, – является курение сигарет. Факторами, оказывающими влияние на температуру горящей сигареты, являются ее диаметр, вещество наполнителя, тип табака или смеси, плотность упаковки, величина частиц табака, качество сигаретной бумаги и фильтра и др. Температура тлеющего табака составляет около 300°С, а во время затяжки она достигает 900–1100°С. Температура табачного дыма примерно 40–60°С. Написанное показывает, на сколько влияет содержание кислорода и общая площадь зоны окисления на температуру тлеющей зоны. Увеличение притока кислорода при затяжке приводит к скачку температуры на 600 и более градусов! Курение демонстрирует и общий процент компонентов, избежавших полного окисления при тлении. Во время курения сгорает лишь около 60% смолы, остальное испаряется и переносится с дымом из очага тления.

Нехватка кислорода приводит к тлению, то его избыток или соприкосновение с другой поверхностью могут приводить к воспламенению. Так, после того, как очаг окисления угля соприкасается с легко воспламеняемым объектом (например, куском бумаги), происходит его воспламенение, а пламя способно увеличить общую температуру очага, и вызвать воспламенение тлеющего предмета. Мало того, тление может длиться часами, и быть при этом малозаметным для окружающих. Наверняка его выдаст только запах жженного, а сам очаг может быть скрытым от посторонних глаз. При длительном тлении в воздухе накапливаются угарный газ, оксиды и испарения. Об этом так же нужно помнить. Попадание уголька на кучу опилков приведет к растянутому во времени тлению всей кучи. От частички к частичке, горячая зона будет распространяться по поверхности всей кучи. Толщина тлеющего слоя составит от 2 до 5 мм. В случае, если в это время в данном помещении находится спящий человек, он рискует отравиться или задохнуться. В 1970-ых годах в Куйбышевской области такой случай убил и поджарил жителя частного дома. О трагедии догадались по запаху. Снаружи видимых признаков пожара не наблюдалось. Внутри же обуглились опилки у печи, тряпки и диван, на котором и лежал несчастный. Этим и опасны тлеющие пожары.

Как уже говорилось, тление – процесс замедленный, и потому способен долго не затухать, потребляя мало кислорода. По одной из версий, гибели легендарного «Титаника» поспособствовал и пожар. По легенде, во время испытаний в одном из отсеков корабля начался пожар. Его пытались потушить своими силами несколько кочегаров. Капитан предложил задраить отделение, решив, что огонь погаснет сам собой из-за нехватки кислорода, а судно было отправлено в рейс. Не тут-то было! Пожар продолжался, по видимому, на уровне тления более недели! Предполагается, что при этом в отсеке накопилось значительное количество угарного газа. Столкновение с айсбергом нанесло повреждения, задев и горящий отсек. При этом, в помещение попал свежий воздух, накопившиеся газы мгновенно воспламенились, что привело к мощнейшему взрыву. Сторонники считают, что именно благодаря нему корабль получил достаточно повреждений, чтобы пойти на дно.

1.2 Горение с пламенем

В любом случае, горение – это более (с пламенем) или менее (без пламени, тление) активный локализованный процесс окисления, сопровождающийся испарением некоторых летучих веществ без горения, мощным выделением энергии. И если зоны горения мы видим в форме пламени или светящегося участка на угольке, то поток разогретых продуктов горения, имеющий меньшую плотность, чем окружающая среда, наблюдаем в виде струек дыма, поднимающихся над пламенем. Как процесс, горение характеризуется температурой, высотой пламени, устойчивостью пламени, скоростью распространения и скоростью горения. Скорость горения зависит от свойств горящего вещества, средней концентрации кислорода (или другого окислителя) в очаге горения, состояния (цельности) горючего тела и наличия условий препятствующих или способствующих горению. Под состоянием (целостностью) горючего тела в данном случае следует понимать то, является ли тело цельным, или, например, порошком или жидкостью. Это оказывает значительное влияние на скорость и интенсивность газообмена в зоне горения. Если тело цельное, то процесс долгое время осуществляется только на его поверхности, и лишь потом, по мере разрушения, затрагивает ее внутренние слои. Если тело той же массы и того же объема, сделанное из этого же материала превратить в порошок и поджечь, скорость горения будет на много выше. Чем мельче средний размер зерна, тем больше соотношение его площади к объему. А стало быть, чем меньше объем (правда, следует помнить и о форме частицы), тем быстрее и глубже разогреваются внутренние слои. Чем больше площадь, тем интенсивнее прогрев и большая скорость образования и выхода горючих газов. А стало быть – на полное сгорание такой частицы требуется меньше времени. И между прочим, это правило имеет свой частный случай – взрыв! Об этом ниже.

1.3 Взрывы

Взрыв – это частный случай горения, протекающего мгновенно с кратковременным выделением значительного количества тепла и света. В реальных условиях вследствие протекания внутренних процессов и при внешних осложняющих факторах происходит искривление фронта пламени, что приводит к росту скорости горения. При достижении скоростей распространения пламени до десятков и сотен метров в секунду, но не превышающих скорости звука в данной среде (300 – 320 м/сек) происходит взрывное (дефлеграционное) горение.

При взрывном горении продукты горения нагреваются до 1,5–3 тысячи °С, а давление в закрытых системах увеличивается до 0,5–0,9 МПа. Продолжительность реакции горения до взрывного режима составляет примерно для газов ~0,1 сек, паров ~0,2–0,3 сек, пыли ~0,5 сек. Применительно к случайным промышленным взрывам под дефлебрацией обычно понимают горение облака с видимой скоростью порядка 100 – 300 м/сек, при которой генерируются ударные волны с максимальным давлением 20–100 кПа.

В определенных условиях взрывное горение может перейти в детонационный процесс, при котором скорость распространения пламени превышает скорость распространения звука и достигает 1–5 км/сек. Это происходит при сильной турбулизации материальных потоков, вызывающей значительное искривление фронта пламени большое увеличение его поверхности.

При этом возникает ударная волна, во фронте которой резко повышается плотность, давление температура смеси. При возрастании этих параметров смеси до самовоспламенения горячих веществ возникает детонационная волна, являющаяся результатом сложения ударной волны и образующейся зоны сжатой быстрореагирующей (самовоспламеняющейся) смеси. Избыточное давление в пределах детонирующего облака смеси может достигать 2 МПа или 20 атмосфер.

Процесс химического превращения горючих веществ, который вводится ударной волной и сопровождается быстрым выделением энергии, называется детонацией. При детонационном режиме горения облака ГВ большая часть энергии взрыва переходит в воздушную ударную волну, при дефлеграционном горении со скоростью распространения пламени ~200 м/сек переход энергии в волну составляет от 30 до 40%.

2. Секреты пламени

2.1 Цвет пламени

По цвету пламени можно кое-что сказать об элементах, попадающих очаг горения. Для того, чтобы пламя изменило свой цвет, необходимо, чтобы атомы вещества отделялись от поверхности предмета и уносились с пламенем. У некоторых (особенно щелочных металлов), отделение атомов от основного материала происходит самостоятельно, что приводит к заметному окрасу. У некоторых элементов отделение атомов происходит с трудом, и для катализации процесса, требуется воздействие различных кислот. Цвета окраса пламени, характерные для различных элементов приведены в таблице.

Цвет пламени

Эле-мент

Название элемента

Примечание

--PAGE_BREAK--

Светло-зеленый

Sb

Сурьма

Зеленый

Tl

Таллий

Зеленый

Cu

Медь

(после смачивания в HNO3)

Фосфор

P

Густо-зеленый

сине-зеленый

B

Бор

сине-зеленый

Te

Теллур

желто-зеленый

Ba

Барий

желто-зеленый

Mo

Молибден

Интенсивно-желтая

Na

Натрий

Оранжевый

Ca

Кальций

От оранжевого до кирпично-красного

Оранжевый

СО

Угарный газ!!!

Какую бы железяку или вообще не металл вы не поместите в пламя, прыгающий оранжевый цвет свидетельствует о недостатке кислорода и образовании угарного газа!

Карминово-красный

Li

Литий

Карминово-красный

Sr

Стронций

Синий

As

Мышьяк

Голубой

Cu

медь

После смачивания в HCl

Фиолетовый

K

Калий

При наблюдении через фиолетовое стекло

Проблемы с идентификацией вещества возникают тогда, когда в пламя попадает сразу несколько элементов. В этом случае или разные стороны пламени неравномерно окрашиваются в различные цвета, или окраска пламени определяется лишь доминирующим компонентом. По этому, для определения в пламени отдельных цветов используют светофильтры. Для калия этим фильтром является фиолетовое стекло.

Таблица спектральных линий некоторых элементов. Длина волны нейтральных атомов и их ионов указаны в нанометрах.

Элемент

Нейтральный атом

Ион

Al

396.1

266.9

Ba

553.5

455.4

Bi

306.7

282.0

Ca

422.6

393.3

Co

345.3

228.6

Cu

324.7

213.6

Fe

371.9

238.2

K

766.4

Na

589.0

Sm

442.4

Sr

460.7

407.7

2.2 Электрические свойства пламени

Наглядно иллюстрирует общую сложность процессов тот факт, что пламя обладает значительными электрическими свойствами. Экспериментально установлено, что в пламени существует разделение зарядов, причём положительный объёмный заряд сосредоточен в реакционной зоне (во фронте пламени), а отрицательный – в предпламенной зоне. Предполагается, что разделение зарядов обусловлено амбиполярной диффузией. Носителями отрицательного заряда в пламени являются электроны и отрицательные ионы.

По имеющимся данным, образование ионов происходит как при термическом распаде веществ, так и в результате химических реакций. Предполагается так же, что незначительный вклад (доли процентов) в образование ионов могут вносить мелкие углеродистые частицы, обладающие работой выхода 4,35 кВ.

Так, ещё в 1909 г. Ф. Габер предположил, что ионы в пламени образуются в результате химической ионизации в реакции с участием радикалов С2, СН, ОН. В зависимости от условий горения и вида топлива, концентрация ионов в пламени составляет около 1010-1012 см-3, т.е. на 4–6 порядков превышает концентрацию, которая должна была бы наблюдаться при чисто термическом механизме ионизации.

Максимум ионизации соответствует фронту пламени, где протекают химические процессы, причём концентрация заряженных частиц резко падает по выходе в зону продуктов сгорания, хотя в этой зоне и наблюдается максимальная температура. Соотношение концентрации ионов в этих зонах оценивают как 1000:1.

При механизме хемиоионизации частицы претерпевают химическую перегруппировку, при которой освобождается количество энергии, достаточное для ионизации одного из продуктов реакции. Предполагается, что в случае пламени такой процесс идёт как побочная реакция между частицами, участвующими в основной реакции горения. Имеется довольно большое число возможных с энергетической точки зрения реакций, в которых участвуют две частицы в основном состоянии или одна в основном, а другая – в возбуждённом состоянии. Поэтому предполагается, что хемоионизация, независимо от того, сопровождается она образованием возбуждённых частиц или нет, является наиболее вероятным источником ионизации пламени.

    продолжение --PAGE_BREAK--

Энгель и Козенс считали, что при столкновении с колебательно-возбуждёнными частицами электроны свободно могут получить дополнительную энергию. Было рассчитано, что в результате баланса между энергией, полученной от возбуждённых частиц, и энергий, потерянных при упругих столкновениях, средние энергии электронов в пламенях могут лежать в интервале 0,2-1,2 эВ (температура 2320–11600 К).

Многие эксперименты с электростатическими зондами показывают, что в некоторых пламенях существуют повышенные электронные температуры. Так, например, в недавней работе Брэдли и Меттьюса, в которой использовались двойные зонды при пониженных давлениях, были обнаружены температуры до 30000 К. Электроны, обладающие энергией, немного превышающей потенциал ионизации, способны легко ионизировать атомы и молекулы. Именно эти электроны являются источником ионизации в пламенях, где обнаружены повышенные электронные температуры.

Логично предположить, что электроны при температурах порядка 30000 К вызовут ионизацию с большими скоростями. Недавняя работа показала, что в пламенях происходит не только хемоионизация, но и образует значительное количество ионов О2+, которые могут возникать в присутствии электронов при повышенных температурах. Предполагается, что последние появляются в результате взаимодействия с возбуждёнными молекулами СО2, которые в свою очередь образуют при рекомбинации молекул окиси углерода с атомарным кислородом.

Однако повышенные электронные температуры были обнаружены не во всех пламенях с повышенной степенью ионизации. Более того, при изменении скорости ионообразования были получены плоские плато, соответствующие току насыщения, при атмосферном давлении в широком интервале приложенных напряжений. При этом напряжённость поля в зоне горения имела порядок кВ/см и, таким образом, была достаточна для значительного повышения электронной температуры. Это приводит к выводу, что в различных пламенях могут играть важную роль различные механизмы ионообразования. Выяснение роли электронов повышенной энергии как одного из возможных источников ионизации требуется дальнейшего излучения.

Были предложены два механизма, благоприятные с термохимической точки зрения:

СН+О/>СНО++е-,

и

СН (А2Δ) +С2Н2/> С3Н3++е-.

Таким образом, представленный выше текст показывает, что в процессе горения происходит относительно неоднородный распад молекул, образование ионов и свободных радикалов. Потому, многие молекулы, избежавшие полного окисления, могут быть трансформированы при столкновении со свободными радикалами, в результате в ничтожных дозах образуются множества веществ, изначально не входящие в состав горючего.

3. Конвекция над пламенем

/>

Рисунок 1. 1 – окислительное пламя; 2 – восстановительное; 3 – снова окислительное; 4 – наиболее близкий к пламени горячий (100–150°С и более) поток воздуха; 5 – вторичный воздушный поток с относительно малыми (50–100°С) температурами

Стрелками указано направление движение восходящих воздушных потоков. Зеленой линией примерно показано распределение температур по высоте пламени.

При нагреве около пламени воздух расширяется, за счет чего происходит уменьшение его плотности. Как известно, среда, имеющая меньшую плотность начинает подниматься по закону Архимеда, если попадает в объем среды с большей плотностью. Таким образом, теплый воздух поднимается наверх вдоль пламени, участвуя в попутно протекающих реакциях горения. При подъеме, происходит перемешивание нагретого воздуха с окружающим. В результате протекающего при этом процесса теплообмена, общий объем разогретого воздуха увеличивается за счет поступления дополнительного количества частиц извне (разбавление), но одновременно происходит охлаждение. Как уже говорилось, при прохождении вблизи пламени, воздух участвует в процессах окисления, в следствие чего обогащается продуктами горения, молекулярные массы которых, как правило, выше, чем среднее значение молярных масс веществ, составляющих воздух. Поэтому, хотя продукты горения, будучи разогретыми, и поднимаются, плотность воздуха, загрязненного ими значительно выше, чем у чистого при той же температуре. В результате разбавления, сопровождающегося остыванием, скорость восходящего потока над пламенем снижается по мере подъема. Изначально увлекаемые с потоком теплого воздуха, перемещающиеся за счет диффузии и разбавления все далее от наиболее горячего центра потока, все менее подталкиваемые вверх за счет конвекции, твердые частицы, начинают опускаться. В зависимости от формы и массы, а так же силы ветра, частоты и скорости встречающихся конвекционных потоков, частицы оседают на определенном удалении от источника.

Однако не только газы подвергаются конвекционному подъему. На аналогичных явлениях, имеющих место в жидкостях возможно го

Принцип работы фитильковых осветительных устройств, рассмотрим на примере действия свечи. На рисунке выше показано пламя свечи и указаны основные его области. Пламя свечи разогревает воск (или парафин), который начинает плавиться. Расплавленный воск поднимается по волокнам фитиля, и на определенном его участке испаряется под действием высоких температур, а уже непосредственно пары – воспламеняются. Еще Майкл Фарадей думал о законах природы, не позволяющих пламени прогореть до конца фитиля (опускаться до жидкой фазы). И действительно: пламя свечи зависает на некотором расстоянии от «котла» с воском. Что мешает пламени, опуститься до поверхности расплавленного воска? Ответ: пламя не может распространиться вниз по фитилю, так как его сдерживает жидкий воск, которым пропитана часть фитиля, находящаяся между жидкостью и пламенем. Дело в том, что парафин (и масло), в отличие от бензина и спирта, имеет крупные молекулы, которые обладают малой подвижностью. Поэтому парафин при температуре ниже 70–84°С находится в твердой фазе. Большое количество звеньев в молекуле парафина так же препятствует его быстрому испарению. Температура кипения парафина многократно превышает температуру его плавления. Поэтому, парафин, не разогретый до достаточной температуры, не способен интенсивно испаряться, а значит и гореть. Таким образом, растопившийся, но не испаряющийся парафин блокирует распространение пламени вниз.

4. Экология и горение

С точки зрения экологии, горение отвечает сразу за 3 негативных фактора. Во-первых, чаще всего в качестве окислителя используется кислород воздуха. А в настоящее время, из-за значительного сокращения площадей леса, и чрезмерного расхода воздуха транспортом и промышленностью, есть некоторый риск развития кислородной недостаточности в будущем не столько в глобальном, сколько в локальном масштабе. То есть, в масштабах планеты его достаточно. Но например, недостаточность содержания кислорода, спровоцированное массовым расходом воздуха в металлургических цехах ощущается его рабочими. Известно, что падение концентрации кислорода с 22 до 17% уже сильно сказывается на самочувствии человека и его способности решать те или иные задачи. Очевидно, что если такое падение произойдет в цехе с опасными и ответственными процедурами, неспособность персонала справиться с ситуацией может привести к катастрофическим последствиям.

Во-вторых, помимо золы и углей, все остальные продукты горения – газообразные. Копоть является взвесью мелкодисперсных частиц. В зависимости от источника и мощности секундного выброса копоти, она может оседать в виде мелких гранул сажи в течении нескольких часов. Либо, если мощность копытевыделения значительна, – странствовать и оседать в виде нитевидных образований, иногда хлопьев. Сама по себе копоть не является ядовитым веществом. Это микрогранулы, состоящие из фактически чистого углерода.

Отделение газообразных продуктов горения от остальных компонентов атмосферы – используется редко из-за сложности реализации. То есть, обычно, пройдя очистку от твердых частиц, разогретые газы выходят в атмосферу в виде дыма, накапливаясь в ней.

В-третьих, помимо веществ, непосредственно участвовавших в процессе горения, из-за действия высоких температур, образуется масса побочных продуктов, при чем даже вне пламени. К примеру, при высоких температурах (более 1000°С) происходит окисление азота, а его оксиды – весьма токсичны. В процессе горения сложных веществ, особенно органики, для полного окисления многоатомных молекул, кислорода может попросту не хватать. В результате неполного сгорания молекул жиров, полимеров, углеводородов, происходит образование веществ, не содержавшихся изначально в топливе. В том числе, весьма токсичных. Если молекулы даже горючего вещества не успевают встретиться и провзаимодействовать с молекулами кислорода и других окислителей в зоне высоких температур, то в воздух попадают еще и пары самых разных соединений. В том числе смолы. Вдыхание таких компонентов приводит к тому, что смолы, жиры и их производные оседают в легких, препятствуя попаданию кислорода в кровь. И это самый безобидный случай. Взаимодействуя с влагой в легких, вредные вещества разрушающе влияют на их ткани на локальном уровне. Разумеется, чем больше стаж работы в таких условиях, тем выше шанс подхватить какой-нибудь легочный недуг, вроде бронхиальной астмы. К счастью, легкие имеют механизмы самоочищения, однако некоторые компоненты табачного дыма блокируют их работу.

И все бы было ничего, но жжем и дымим мы уже слишком много, и Матушке-Земле не хватает ресурсов и времени, чтобы справиться с общим потоком вырабатываемых загрязнений. То есть, в настоящее время происходит накопление (повышение концентрации в глобальном масштабе) многих продуктов горения в атмосфере. А значит, сама атмосфера постепенно начинает «вреднеть». И не вулканы в этом виноваты, а именно мы – обнаглевшие «цари природы».

4.1 Дым и его свойства

Дым представляет собой концентрированную смесь продуктов горения, состоящих, главным образом из достаточно тяжелых молекул углеводородов, оксидов присутствующих в горючем элементов и паров воды. Если допустить, что в очаге горения все углеводороды разлагаются полностью на воду и углекислоту, то такое пламя не должно создавать большого количества дыма. И весь видимый дым в этом случае будет представлять собой почти чистый водяной пар. Дым будет иметь сравнительно малую плотность, по цвету будет светлым и будет быстро рассеиваться. Разумеется, и привычного запаха гари чувствоваться так же не будет. К примеру, чистый метан, горя на воздухе вообще не коптит и не дымит. Реальный дым является многокомпонентной смесью, и кроме оксидов содержит массу примесей, включая твердые частицы. Поэтому видимые потоки дыма можно смело рассматривать, как поток недогоревших органических масс в совокупности с парами воды и смол. Дым является одним из опасных факторов при пожаре. Его компоненты, раздражают слизистые оболочки и глаза, он содержит мало воздуха, а присутствующий угарный газ блокирует способность красных кровяных телец усваивать кислород. В результате человек или сначала травится, а потом задыхается, или задыхается, а если откачают, испытывает симптомы отравления. Кроме того – дым является фактором, ограничивающим видимость и ориентацию в пространстве. Это таит не меньшую опасность, чем его токсические свойства. Поэтому, существует специальная классификация веществ (преимущественно, используемых в быту и строительстве), по которым горючие вещества делятся в зависимости от способности дымообразования.

К основным свойствам дыма можно отнести следующие: массовая доля примесей в дыму по сравнению с воздухом. То есть то, насколько изменился состав потока воздуха после прохождение через язык пламени. Далее – концентрация вредных веществ, и густота дыма. А так же – экологический приоритет источника загрязнения. То есть, чем больше веществ было окислено, тем выше эффективность печи, тем меньше побочных примесей в дыму. Стало быть, тем выше экологическая (и экономическая) эффективность печи. В данном случае не учитывается расход кислорода.

Понятное дело, что продуктов окисления не может быть больше, чем это обеспечивает секундный объем окислителя, проходящий через зону горения. То есть, можно предположить, что в процессе горения из окислившего потока воздуха, весь кислород полностью перешел в молекулы оксидов. А это значит, что, по закону сохранения вещества, число атомов кислорода до горения равно числу атомов после горения. Однако, если до горения кислород присутствовал как свободный газ, то после кислород содержится как компонент многочисленных молекул оксидов.

    продолжение --PAGE_BREAK--

Содержание кислорода в воздухе примерно равно 22% по массе. И это означает, что максимум именно эта масса кислорода будет расходоваться на окисление. Так, при сгорании углерода (атомный вес 12) можно считать, что весь кислород перешел в молекулы СО2. Атомный вес кислорода равен 16. Молекулярный вес кислорода составляет 16х2 = 32 г. / Моль. Масса молекулы образовавшегося СО2 равна 32+12 = 44 атомных единицы массы или, что тоже самое, 44 г. / Моль. Масса 1 Моля воздуха примерно равна 100х16/22 = 72 г. Получается, что при 100%-ом расходе кислорода, воздух будет иметь молярную массу 72г / Моль + 12 г. / Моль (от углерода) = 84 г. / Моль. Такой воздух будет содержать 44 х 100% / 84 = 52,38% двуокиси углерода, тогда как ранее он содержал 22% кислорода по массе.

1 Моль кислорода может быть израсходован на окисление

2 Моль водорода Н2

2/3 Моль СН4

1/6 Моль глюкозы C6h22O6

2/100 Моль животного жира.

1 Моль газа при нормальном атмосферном давлении занимает объем, равный 22,4 л и весит 16*2 = 32 г. Значит 1 Моль кислорода содержится в 32 г. * 100/22 = 145,45 г. воздуха. Зона активного окисления может быть представлена в виде цилиндра высота которого равна скорости потока в см/сек и диаметром, равным диаметру пламени. Для пламени свечи (или карманной зажигалки) этот цилиндр имеет параметры 4 см в высоту и диаметр около 0,5 см. Секундный объем сгорания приблизительно равен произведению высоты мнимого цилиндра и площади поперечного сечения пламени, которая равна 3,14 * d2 / 4 = 3,14 * 0,52 / 4 = 0,19625 см2. Тогда секундный объем сгорания равен 4 см * 0,19625 см2 = 0,785 см3/с = 0,785 мл. Так как 1 мл воздуха содержит 0,22 мл кислорода, то в пламени свечи ежесекундно сгорает около 0,22*0,785 = 0,1727 мл кислорода, что составляет 0,001727*32 / 22,4 = 0,002467 г. ≈ 2,5 мг. Надо учитывать, что кроме как непосредственно в пламени, происходит окисление паров в горячей зоне около пламени. Однако оно менее интенсивно и потому учесть его сложнее.

Валентность кислорода = 2, валентность атомов и их систем, входящих в состав органических соединений равна от 1 до 4. Зная атомную массу соединения можно найти объемную плотность вещества и соответствующей ему группы оксидов. Подставляя плотность общей газовой смеси в вышеприведенные выражения можно приблизительно найти температуру горения, процентное содержание оксидов в первичном восходящем потоке. Атомные массы элементов можно найти в любой таблице Менделеева.

4.2 Многообразие продуктов горения как следствие неполного сгорания топлива

Говоря о горении важно учитывать, что фактически вся органика, начиная с простейших углеводородов, и кончая жирами, белками, полимерами – имеет сложное строение молекул. Например, молекула хорошо всем известного парафина состоит из 17 звеньев, причем, каждое звено состоит из 1 атома углерода, и 2–3 связанных с ним атомов водорода. Причем, помимо углерода, водорода, молекулы могут содержать и атомы серы, азота, даже кислорода. Однако даже горение простейших углеводородов показывает некоторые особенности окисления. Уравнение реакции горения алканов в общем виде:

2СnH(2n+2) + (3n+1) О2 = 2nCO2 + 2 (n+1) Н2O + Q

Из этого уравнения следует, что с увеличением числа углеродных атомов (n) в молекуле увеличивается количество кислорода, необходимого для его полного окисления. Алканы с меньшим количеством звеньев горят быстрее, и при смешивании с воздухом могут быть взрывоопасны, тогда как, например, парафин, начинает кипеть лишь при температурах в несколько сот градусов. При горении высших алканов (n >>1) кислорода, содержащегося в воздухе, может оказаться недостаточно для их полного окисления до СО2. Тогда образуются продукты частичного окисления – угарный газ СО (степень окисления углерода +2) и сажа (мелкодисперсный углерод, нулевая степень окисления). Поэтому высшие алканы горят на воздухе коптящим пламенем, а выделяющийся попутно токсичный угарный газ является еще и взрывоопасным.

/>

Рис. 1. Степени окисления атомов углерода

Прежде всего, окисляются звенья цепи с наименьшей по модулю степенью окисления (СТО). Поэтому, при горении органических веществ многие молекулы сгорают не полностью: окисляется не вся цепочка отдельно взятой молекулы, а только ее часть. До полного окисления органическим веществам часто не хватает кислорода. В этом случае в состав дыма начинают попадать и более простые молекулы органических веществ. Это одна из причин, по которой даже при горении «безобидного» парафина в воздух могут попадать молекулы токсичной органики. Обосновывается это достаточно легко.

Те же алканы в зависимости от условий реакции могут окисляться с образованием различных соединений. При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н2Cr2O7, KMnO4и т.п.). При внесении в открытое пламя – горят. Как ранее говорилось, в избытке кислорода происходит их полное окисление до СО2, где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С–С и С–Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

Предположим, что молекула представленная выше при достаточной температуре встречается с одной молекулой кислорода. Предположим, окисляется ветвь – СН3:

/>

или, что аналогично:

/>

Разумеется, вероятность такого превращения очень мала, но возможна. Обычно альдегиды получают с применением менее активных кислородсодержащих окислителей, например, марганцовки (KMnO4). Однако, данный пример показывает, что при горении алканов могут образовываться вещества других классов, на данном примере – альдегид. Многие реакции неполного сгорания широко используются для получения некоторых веществ или газовых смесей. Горение метана при недостатке кислорода происходит по уравнениям:

2Ch5+ 3O2→ 2CO+ 4 h3O

Ch5+ O2→C+ 2h3O

Последняя реакция используется в промышленности для получения сажи из природного газа, содержащего 80–97% метана. Частичное окисление алканов при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–С и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов. Например, при неполном окислении бутана (разрыв связи С2–С3) получают уксусную кислоту:

Ch4– Ch3= Ch3– Ch4+ 3O2→ 2Ch4COOH + 2h3O

Бутан уксусная кислота

Высшие алканы (n>25) под действием кислорода воздуха в жидкой фазе в присутствии солей марганца превращаются в смесь карбоновых кислот со средней длиной цепи С12–С18, которые используются для получения моющих средств и поверхностно-активных веществ. Важное значение имеет реакция взаимодействия метана с водяным паром, в результате которой образуется смесь оксида углерода (II) с водородом – «синтез-газ»:

/>

Эта реакция используется для получения водорода. Синтез-газ служит сырьем для получения различных углеводородов.

/>

Еще более убедительные результаты показывает процесс окисления целлюлозы. Как и в случае других органических соединений, окисление молекул целлюлозы происходит не полностью, и в зависимости от условий, протекает с преобладанием тех или иных факторов, приводящих к образованию тех или иных продуктов. Как и в других случаях, наибольший процент примесей в продуктах горения образуется при тлении. Процессы, происходящие при тлении подобны тем, которые происходят при длительном температурном воздействии на целлюлозу. Данный вопрос изучался при решении проблемы постепенного распада бумаги в трансформаторных катушках. Разумеется, температуры, действующие внутри трансформаторных катушек, значительно меньше температуры горения, однако, они достаточны для протекания как реакций термического разложения, так и окислительных процессов. Механизм разложения труден для понимания, и строгого представления о химии протекающих процессов не существует. Но в общем, его можно рассматривать, как совокупность процессов окисления и разложения.

    продолжение --PAGE_BREAK--

/>

Целлюлоза окисляется, и конечные продукты реакции окисления находятся в зависимости от природы окислителя, концентрации ионов водорода (рН) и температуры. Во всех случаях, направление реакции – это окисление гидроксильных групп до карбонильных (образование альдегидов) и карбонильных – до карбоксильных (образование кислот). В этом химическом процессе образуется вода. Соседство карбоксильных или карбонильных групп ослабляет гликозидную связь и может привести к разрыву цепи и дальнейшему окислению.

Нагревание целлюлозы в отсутствие воды и окислителя в пределах 200°С приводит к разрыву гликозидных связей и раскрытию глюкозидных колец. Продуктами такого термического воздействия являются глюкоза, вода, окислы углерода и органические кислоты. Основными в количественном отношении продуктами разложения при этом являются вода и окислы углерода. Присутствие воды и кислорода определяет и направление дальнейшего химического превращения образующихся из целлюлозы соединений. В присутствии избытка кислорода основным образующимся окислом углерода является двуокись. В случае преобладания гидролитического механизма распада целлюлозы часть образовавшейся глюкозы (или, точнее, её дегидратированной формы 1,6–ангидро-бета-D-глюкопиранозы, левоглюкозана) получает возможность за счёт дегидратации превратиться в соединения фуранового ряда, а другая часть окисляется до двуокиси углерода и воды.

Наиболее распространенные в быту горючие материалы

Парафин С17Н36

Крахмал C6h20O2

Глюкоза C6h22O6

C6h22O6 + 6О2 = 6СО2+6Н2О

C6h20O2 + Н2О = C6h22O6

Натуральный каучук (–СН2 – С = СН – СН2 -)Ch4

Синтетический каучук (–СН2 – СН = СН – СН2 -)

Резина

/>

Твердые жиры (состоят из триглицеридов предельных (твердых) кислот (искусственное сало)

СН2 – O – СO – С15h41

|

СН – O – СO – С17h45

|

СН2 – O – СO – С17h43

Жиры жидкие (масла), состоят из триглицеридов непредельных (жидких) кислот

СН2 – O – СO – (СН2)7 – СН = СН – (СН2)7 – С h4

|

СН – O – СO – (СН2)7 – СН = СН – (СН2)7 – С h4

|

СН2 – O – СO – (СН2)7 – СН = СН – (СН2)7 – С h4

Спирты С2Н5ОН

Целлюлоза [C6H7O2(OH)3] n, n ≈100000

5. Фильтрация дыма через воду

Одним из распространенных способов очищения воздуха, позволяющих извлекать и использовать задержанные вещества, – является фильтрование через жидкую среду. Способ достаточно эффективен как для улавливания значительно концентрированных газов, так и для конденсации паров, поглощения твердых частиц. Механизм очистки воздуха при прохождении через воду не является до конца изученным. Он представляет собой совокупность нескольких процессов, одним из которых является диффузия на границе соприкосновения сред, другим – циркуляция воздуха за счет омывания водой. Кроме того, воздушные загрязнения по признаку «поведения» в атмосфере и при перемешивании с жидкостью, можно разделить на 4 основных группы. Это «газы», пары растворимых в воде веществ, пары нерастворимых веществ и твердые частицы.

Здесь под «газами» подразумеваются соединения, не способные конденсироваться в жидкое состояние (сжижаться) при температурах, близких к комнатной (-5ºС и далее). К ним относятся сероводород, аммиак, азот, кислород, хлор, углекислый, угарный, сернистый и др. газы. Под парами будет подразумеваться взвесь микроскопических капелек или отдельных молекул веществ в воздухе, способных конденсироваться при температурах, близких к комнатной. Это пары воды, спиртов, жиров, карбоновых кислот и т.д. Твердые частицы – пыль, копоть и так далее. Рассмотрим перемешивание с водой каждой из этих групп.

Пузырек, проходя через слои воды, интенсивно омывается жидкостью. В результате слои воздуха, прилегающие к поверхности раздела воздух-вода постоянно двигаются. Находящиеся непосредственно у поверхности раздела слои этих сред интенсивно перемешиваются. Легкие молекулы газов значительно подвижнее многоатомных органических молекул примесей и уж тем более массивных по сравнению с ними твердых частиц. Поэтому при интенсивном движении молекулы, состоящие из малого количества атомов имеют большие шансы изменить направление при встрече с границей раздела и направиться обратно в пузырек. Более массивные же молекулы и частицы, приближаясь к поверхности раздела не могут быстро изменить направление, и в результате – уходят в более плотную и вязкую среду – воду. Пары ведут себя подобно твердым частицам. Находясь в пузыре, часть микроскопических капелек за счет движения слоев воздуха, сливается друг с другом. При столкновении с поверхностью воды происходит слияние с ней и растворение в жидкости капелек растворимых веществ. Для микрокапель нерасворимых в воде веществ, столкновение с поверхностью раздела приводит к конденсации. Конденсировашиеся капельки поднимаются с пузырем и объединяются вблизи поверхности воды, образуя маслянистые пятна и парафиновые «айсберги». Эффективность этой отчистки зависит от отношения объема пузырька к площади его поверхности, а так же времени подъема.

Поднимаясь все ближе к поверхности, пузырек увеличивается в объеме, так как с уменьшением глубины, давление окружающей воды падает. Иными словами, отношение объема пузырька к его площади – увеличивается. Однако, внутренняя энергия сжатого газа при прочих равных условиях, возрастает при увеличении давления. Следовательно, выше и энергия движения частиц газа. Таким образом, вероятность перехода частиц из газа в воду для пузырька под бо́льшим давлением будет выше. Поэтому желательно, чтобы пузырьков образовывалось больше, а вот их начальные объемы были предельно малы, глубина подъема была так же больше. Этого можно добиться, если конец трубки перекрыть, а в нижней ее части сделать множество маленьких дырок, находящихся друг от друга сравнительно далеко. Последнее условие необходимо, чтобы, приближаясь к поверхности, пузырьки не сливались.

Подобный способ очистки давно применяется азиатскими курильщиками в кальяне. Табачный дым через трубку попадает в сосуд, наполненный водой, проходит через воду, при этом частично очищается. Из горлышка сосуда идет еще одна трубка, с помощью которой и затягивается курильщик.

Прохождение дыма через воду сокращает количество смол, дегтя и других веществ потенциально канцерогенного характера. Исследования показали, что фильтрование дыма через воду в кальяне сокращает содержание: никотина, фенолов на 90%, мелких твердых частиц на 50%, бензопирена, ароматических углеводородов полицикликена. Отмечается сокращение канцерогенного потенциала дыма, который пересек воду по сравнению с тем, который не прошел такой фильтрации. Дым от кальяна, лишенный таких веществ как акролеин и альдегиды, в отличие от сигаретного, не раздражает слизистых оболочек горла или носа курильщиков и лиц, находящихся поблизости от кальяна

Однако, установлено, что содержание в крови котонина повышено, по сравнению с курильщиками сигарет. На этом основании исследователи сделали вывод о том, что дым, проходя через воду, теряет концентрацию лишь некоторых из своих компонентов, иные же остаются примерно в том же составе.

По мере насыщения примесями, способность воды растворять новые порции постепенно снижается. При фильтрации дыма в воде концентрируются вещества, являющиеся растворителями для некоторых органических соединений. Например, спирты и кислоты растворяют жиры, некоторые углеводороды растворяются альдегидами и кетонами. Однако, взаимное сочетание всех этих соединений может снижать растворимость соединений других классов. Поэтому, вне зависимости от формирующегося состава, залогом высокой эффективности водной фильтрации является периодическая замена воды.

5.1 Образование пузырьков и их размеры

Средний размер пузырьков зависит от давления (определяющего скорость) входящего потока и диаметра выходного отверстия. При подаче газов под большим давлением скорость выхода через отверстие выше, в результате чего имеет место слияние нескольких последовательно образующихся пузырей. В общем случае, диаметр пузырька, способного отделиться от поверхности примерно равен 1,5–2 диаметрам отверстия. Причем, сколь бы маленьким не был диаметр выходного отверстия, существует некоторый пороговый предел, лишь достигнув которого пузырек способен оторваться от поверхности трубки. Дело в том, что образующийся на плоской поверхности пузырь, прижимается давлением жидкости к поверхности (1–3), фактически исключая подток воды под него. Отсутствие подтока означает, что вода оказывает давление только сверху, не позволяя ему всплывать, а вязкость воды не позволяет ему принимать шарообразную форму.

/>

По мере увеличения своего объема, пузырек приобретает овальную форму (4), что обеспечивает подток воды под пузырек. Теперь уже на пузырек действует 3 силы: давление воды на верхнюю часть />, давление воды снизу/>и сила Архимеда FA. То есть давление воды снизу больше, чем сверху за счет расстояния, равного половине высоты самого пузырька. Сила равна произведению давления на площадь, на которую оно действует: F=/>. С увеличением объема растет и площадь нижней половины пузырька, на которую снизу действует давление />. Однако, существует площадь соприкосновения с поверхностью />, на которую не действует давление воды снизу. Пузырек отрывается от поверхности, когда равнодействующая всех сил больше ноля и направлена вверх: />. Такое наблюдается при закачивании газа под маленьким давлением, например, как в случае кальяна.

    продолжение --PAGE_BREAK--

Если газ, накапливающийся над поверхностью жидкости, находящейся в герметичном сосуде, откачивают с помощью трубки, и контролировать давление поступающего в воду газа, то давление, необходимое для образования пузырька, определяется только высотой столба воды. В таком случае, возможность образования пузырьков создается, как только давление над водой />становится меньшим, чем сумма давления воды />и давления поступающего в воду газа />, то есть: />. В этом случае, изменяя давление поступающего газа />легко контролировать среднее общее количество частиц газовой смеси в объеме образующегося пузырька. Меньше давление – меньше количество вещества в объеме пузыря, следовательно, – больше длина свободного пробега частицы. С другой стороны, уменьшается и среднее значение скоростей, что может привести к снижению процента газов, переходящих в водный раствор. По-видимому, существует некоторая минимальная скорость, обладая которой, частица имеет близкую к нулевой вероятность проникновения из газовой в водную среду.

Как известно из законов термодинамики, давление идеального двухатомного газа />зависит, главным образом, от температуры (/>), концентрации молекул (/>) и среднеквадратичной скорости движения молекул />. Таким образом, падение давления в храз приводит к уменьшению среднеквадратичной скорости в />раз. Если среднеквадратичная скорость не упадет ниже определенного предела, то это мало повлияет на вероятность проникновения частицы в другую среду.

Закачивание газа под большим давлением обеспечивает высокие скорости образования пузырьков. Как правило, начальная скорость подъема пузырька не велика, и вновь образовавшийся пузырек, достигнув минимального радиуса не успевает оторваться от поверхности, – в него попадает добавочный объем газа. Кроме того, высокая скорость образования пузырьков приводит к тому, что по одной оси одновременно поднимается несколько пузырьков.

/>

При этом за счет прибавления добавочного объема, уровень воды в сосуде в целом незначительно увеличивается, а вот по оси подъема пузырьков высота водяного столба как бы «уменьшается» на суммарную величину высот одновременно поднимающихся пузырьков. То есть плотность воды с пузырьками меньше обычной плотности воды. Вследствие этого изменяется давление воды на уровне отверстия подачи газа, что приводит к еще меньшей производительности фильтрации.

5.2 Количественно-временные закономерности

Как было сказано выше, интенсивность очищения водной абсорбцией зависит от средней величины пузырьков (отношения площади Sк объему Vдолжно быть наибольшим), и глубины подъема h, напрямую определяющую время подъема τ. Считая, что пузырек имеет форму шара, отношение его площади (S=π2R2) к объему (/>) определяется выражением:/>. В этом плане наибольшее практическое значение имеет отношение радиуса пузырька (R) к средней длине свободного пробега частиц (Lпч) при данных условиях. Чем больше радиус пузырька при фиксированной длине свободного пробега (при том же давлении), тем меньшее количество частиц имеет возможность достичь границы раздела за время подъема к поверхности. Чем меньше отношение />, тем меньше рядов молекул отделяет конкретную частицу от границы раздела. Частица участвует в хаотическом движении, поэтому, при столкновении с другой частицей (частицами) она имеет примерно одинаковые шансы отскочить в 4 направлениях. Следовательно, вероятность того, что частица при столкновении примерно сохранит свое направление равна />. Поэтому, в дальнейшем будем использовать выражение />

В упрощенном варианте степень очистки пузырька определяется средней вероятностью каждой отдельно взятой частицы достичь поверхности и пересечь границу раздела. Обозначим вероятность символом «η». Она, в свою очередь, складывается из вероятности ее достичь за время подъема />, где />– характерный угол отклонения от вектора перемещения; вероятности перехода в водную среду />, зависящей скорости и частицы />, и вероятности быть удаленной от пузырька />. Как известно, вероятность совпадения нескольких факторов равна произведению вероятностей этих факторов, то есть: />, или:

/>.

С учетом этого, найдем радиальную вероятность (для частиц, удаленных от поверхности раздела на разные расстояния) />

И общую вероятность для всех частиц объема, т.е., возможную степень очистки:

/>,

где />-суммарное количество примесных веществ в пузыре, />– общее количество вещества в объеме этого пузыря.

Приблизительные значения продолжительности и скорости подъема пузырька примерно определяется по следующему алгоритму.

а) По закону Архимеда FA= ρжgV, следовательно, подъемная сила, действующая на тело, погруженное в воду определяется выражением:

ma= ρжgV-mg,

    продолжение --PAGE_BREAK--

б) откуда ускорение подъема равно:

a= g(ρжV-m)/m.

в) Как знает каждый, кто не спал на уроках физики с 7 класса, проделанный путь можно найти из выражения: h= υt + at2/2. Или, заменив t на τ, получим: h= υτ+ aτ2/2. Если отверстие трубки фильтра не направлено вверх, то υ= 0, следовательно, h= aτ2/2, откуда:

/>.

Так как объем увеличивается по мере подъема, рекомендую для подстановки в эту формулу взять среднее его значение. Кроме того, изменение ускорения за счет роста объема и выталкивающей силы будет аннулирован за счет увеличения вязкостного сопротивления. Вязкое сопротивление определяется, как произведение коэффициента вязкости />на половину площади пузырька:

При подъеме с глубины протекают одновременно 4 процесса:

– происходит уменьшение действующего давления;

– уменьшается внутренняя энергия газа, заключенного в пузырьке;

– происходит частичное перемешивание сред на границе раздела;

– меняется состав газа в пузырьке.

Уменьшение действующего давления. Как известно, давление воды на конкретной глубине определяется выражением Pв= ρжgh. Однако, на открытом воздухе действует и атмосферное давление Pатм, поэтому реальное давление на глубине hскладывается из этих двух составляющих Pреал= Pв+ Pатм, или Pреал= ρжgh+ Pатм. Если считать, что при подъеме температура пузырька не меняется, то уменьшающееся давление воды приведет к уменьшению давления внутри пузырька. Пропорционально уменьшению давления пузырька будет возрастать его объем: Pреал= ρжgh+ Pатм, V~1/Pреал; ΔP= ρжgΔh→ ΔV~1/ΔP=1/ρжgΔh, таким образом, ΔV~1/Δh.

Перемешивание сред на границе раздела. Как было написано выше, при подъеме пузырек движется с некоторым ускорением, следовательно, его движение можно охарактеризовать средней скоростью υсрна всем его пути вверх h.

/>

При этом вокруг шарообразного пузырька происходит интенсивное течение по дугам окружности, в результате чего на омывающие слои воды действует центробежная сила, направленная от центра: Fц=ma= υср2/R. Очевидно, именно эта сила и является одним из факторов, обеспечивающих перемешивание воздуха и воды. Верхняя часть пузырька (1) рассекает собой водную среду при подъеме. Ее можно считать фактически плоской, и поэтому, действие на ней центробежной силы пренебрежимо мало. С зоны (1) вода стекает в область (2), которая характеризуется значительным ростом угла (15–75º) на небольшом перепаде высоты. Увеличение угла при этом, приводит к значительному росту площади пузыря в этой области по мере изменения высоты. В результате, к водам, стекающим с зоны (1) примешиваются дополнительные объемы воды, формируя мощные потоки, омывающую всю зону (2). В зоне (2) действует значительная центробежная сила, вызывая интенсивное перемешивание слоев обоих сред в граничной зоне. При этом, водные потоки захватывают частицы из приповерхностных слоев, и их концентрация постепенно увеличивается по мере приближения к зоне (3). Зона (3) характеризуется незначительным действием как разбавляющих потоков, так и центробежной силы. В результате, на уровне этой зоны происходит просто перекачивание находящихся в переходных слоях частиц. При этом, пополнение потоков новыми частицами, попавшими из газовой среды увеличивается незначительно. В зоне (4) вновь усиливается центробежная сила, а уменьшение площади при приближении к зоне (5) приводит к интенсивному высвобождению ранее захваченных водных объемов. В результате, на уровне зоны (4) образуются вихревые и турбулентные потоки, способствующие рассеиванию в окружающий объем захваченных из пузыря частиц. Интенсивно происходит захват частиц из газовой среды. В зоне (5) некоторое снижение центробежной силы компенсируется интенсивным процессом омывания пузыря. Продолжается значительное поглощение частиц водой из хвостовой части, по краям которой образуются мощные вихревые потоки. Таким образом, интенсивное поглощение водой частиц из пузырька происходит во всех областях, исключая 1 и 3.

Использование подогретой или холодной воды для фильтрации. С увеличением температуры воды возрастает энергия движения частиц, а следовательно, растворимость всех веществ, кроме газов, процент диссоциировавших молекул, а так же парциональное давление над поверхностью воды. Вместе с тем увеличивается и процент частиц летучих примесей, удоляющихся с поверхности воды в атмосферу. Поэтому именно прохладная вода (с температурой от 0 до 35 ºС) способна удерживать в себе летучие органические соединения. Это условие позволяет задерживать и накапливать разного рода вещества, и выделять их для дальнейшего применения.

Выше были рассмотрены зависимости степени очистки газов при пропускании через воду в случаях, когда температура газов и воды примерно одинакова. Однако на практике распространены случаи (опять же кальян), когда в воду поступают газы разогретые до температуры ее кипения. В этом случае пузырек воздуха может не только не увеличиваться по мере подъема к поверхности, но и наоборот, уменьшаться! Имеет значение как глубина подъема, так и диаметр пузырька. Чем больше глубина, тем дольше будет подниматься, тем сильнее сможет остыть и отчиститься за время подъема. С другой стороны, чем меньше диаметр пузырька, тем скорее он будет остывать, тем сильнее изменяется его объем за время подъема. Чем больше температура пузыря, тем меньше в нем частиц, и тем сильнее он сожмется за счет охлаждения. Разумеется, кинетическая энергия разогретого газа выше, чем у охлажденного, следовательно, возрастает роль коэффициента диффузии из воздушной в газовую среду. Имеет значение и температура самой воды. Чем ниже температура, тем выше растворимость газов, но ниже растворимость негазообразных веществ. К тому же, с понижением температуры воды, падает и способность диссоциации молекул. Таким образом, может быть существенно снижена растворимость компонентов, растворимых в кислотах и других соединениях. Понижение температуры жидкости способствует конденсации паров, находящихся в пузырьке. Это означает большую степень очистки растворимых жидкостей, но меньшую от газов, так как энергия их молекул и коэффициент диффузии падают при уменьшении температуры.

    продолжение --PAGE_BREAK--

Ранее рассматривались случаи, когда пузырек поднимается вертикально, отделившись от поверхности трубки. И именно высота столба воды считалась путем, пройденным пузырьком, которая и подставлялось во все формулы. Однако, увеличение водяного столба приводит к увеличению давления, что не всегда желательно. Большее давление подразумевает увеличение плотности воздуха в пузырьках, а так же требует более высокой мощности устройства. Как уже отмечалось выше, давление внутри пузырька можно снизить, откачивая газ над поверхностью, то есть, разряжая его и уменьшая давление, оказываемое на жидкость сверху. Есть возможность увеличить путь пузырька не увеличивая давление, – просто заставить пузырек подниматься вдоль наклонной плоскости. Однако в этом случае на скорость подъема влияет сила трения. То есть, двигаться вдоль направляющей плоскости пузырек будет лишь по достижении определенного диаметра. При этом, для начала движения требуется тем больший диаметр пузырька, чем больше угол отличается от 90 º. Кроме того, за счет соприкосновения с плоскостью, частично уменьшается поверхность раздела между водой и газом, изменяется характер перемешивания слоев. В ряде случаев могут образовываться пузырьковые «пробки», приводящие к слиянию пузырьков. Так же проблемой является образование пузырьков изначально растворенных в воде газов, в частности чистого воздуха, на стенках сосуда. Слияние фильтруемого пузыря с обычным приводит к увеличению диаметра и разбавлению примесей. А как было сказано выше, эффективность очистки тем эффективнее, чем больше концентрация примесей. Самый значительный рост пузырька происходит при его подъеме по трубке, загнутой в спираль. В этом случае пузырек не только испытывает силу трения при контакте с поверхностью трубки, но и вынужден изменять направление в горизонтальной плоскости, при этом сильно возрастает сопротивление движению за счет вязкости воды.

5.3 Взаимная растворимость компонентов

Следует отметить, что прогнозирование растворимости тех или иных компонентов дыма в воде ограничивается сложностью протекающих процессов взаимодействия всех веществ, которые уже в ней растворены. Так, кислотные оксиды при попадании в воду подвергаются гидратации и последующей диссоциации. В результате, кислотный остаток и ион водорода находятся в определенном равновесии. Растворение же аммиака в воде приводит к образованию гидроксида аммония («нашатырного спирта»). Как и всякий гидроксид, он взаимодействует с растворами кислот, образуя соли аммония. Однако, все соли аммония так же хорошо растворимы в воде, поэтому тут же диссоциируют, не приводя к какому-либо изменению химического состава. В обычных условиях гидроксид аммония легко разлагается на аммиак и воду. Но в этом случае, кислотные остатки, способствуют накоплению и удерживанию иона аммония в жидкости.

Растворимость твердого вещества в воде всегда ограничена и редко превышает 50% по массе. Многие твердые вещества органического происхождения лишь на сотые доли процента растворимы даже в горячей воде. Растворимость жидких при комнатной температуре веществ (спирты, альдегиды, карбоновые кислоты) обычно определяется смешиваемостью. Для растворения одной жидкости в другой обычно требуется, чтобы их вязкости были примерно одинаковы. Сильно различающиеся по вязкости жидкости обычно плавают одна поверх другой, хотя возможно частичное взаимопроникновение. Жидкости с примерно одинаковой вязкостью фактически неограниченно растворимы друг в друге. В данном случае не идет речи о диссоциации этих жидкостей друг в друге, так как она связана с диэлектрической проницаемостью обоих веществ. Обычно, вязкость связана с молекулярной массой вещества. В частности, для углеводородов вязкость связана с количеством звеньев в цепи и конфигурацией молекул изомеров. Однако, многие нерастворимые в воде вещества растворимы в спиртах, кислотах и других потенциальных растворителях. Поэтому присутствие в воде кислот, спиртов и т.д. обычно способствует растворению некоторых нерастворимых в чистой воде веществ. Обычно, в водном дистилляте продуктов горения присутствуют фактически все классы органических веществ.

Так, древесный дым содержит не менее 100 относительно концентрированных компонентов, сочетая в себе альдегиды, карбоновые и аминокислоты, ароматические углеводороды, кетоны и т.д. Взаимная растворимость всех этих компонентов трудно определима. Тем не менее, есть 2 производственных процесса, проливающих свет на взаимную растворимость компонентов дыма. Это – пиролиз (сухая возгонка) – разложение без доступа кислорода древесины, и производство коптильных препаратов на основе дыма.

Так, коптильный ароматизатор «Жидкий дым», получаемый методом водной абсорбции продуктов горения, представляет собой прозрачную жидкость от светло-желтого до светло-коричневого цвета в зависимости от концентрации и характеризуется следующим составом:

– кислоты 1–40 г./кг

– фенолы 2–10 г./кг,

– карбонильные соединения 4,5–30,0 Моль/100 л,

– метанол 3 г/кг;

содержание токсичных элементов, не более:

– свинец – 1х10-3г/кг,

– мышьяк – 0,2х10-3г/кг,

– кадмий – 0,1х10-3г/кг,

– ртуть – 0,1х10-3г/кг,

– бенз(а) пирен – не более 5х10-8г/кг.

Коптильные препараты получают при горении древесины, то есть, большая часть компонентов окисляется до оксидов углерода, и лишь некоторая доля проходит через воду. Как видно из приведенных данных, данный коптильный препарат не является насыщенным, то есть, можно считать, что концентрация одних компонентов не влияет на растворимость других. Следовательно, растворимость примерно иллюстрирует средний составы проходящего через воду дыма.

При пиролизе же (возгонка без доступа кислорода) ситуация несколько иная. Вещество подвергается термическому разложению окисляясь лишь за счет кислорода, присутствующего в самом веществе. При этом происходит образование воды, которая до предела насыщается растворимыми в ней веществами. Следовательно, данный материал гораздо полнее отражает процессы фильтрации водой дымовых потоков, чем кальян и копчение.

В процессе пиролиза получают компоненты в 3 состояниях: 24–25% древесного угля, 50–55% жидких и 22–23% газообразных продуктов.

Уголь 24 – 25%

Жижка 50 – 55%

Растворимость чистых веществ в воде

Газы 22 – 23%

вода 67 – 81%

100%

СО2(по объему) 43 – 46%

Оставшаяся

смола 7 – 10%

СО 29 – 33%

пористая

растворимая древесная смола 4,5 – 14%

Н21,9 – 2,3%

твердая

уксусная кислота и ее гомологи 6 -9%

неограниченно

Непредельные углеводороды 2,2 – 3,7%

фаза

метанол 2,5 – 4,5%

неограниченно

Предельные углеводороды 17 – 22%

соединений разных классов (альдегидов, кетонов, сложных эфиров и т.д.) 5 – 6%

В данной таблице приведены весьма общие сведения по наиболее часто встречающимся группам компонентов. По всей видимости, растворимость продуктов при пиролизе является наиболее близкой к предельной, и наилучшим способом раскрывает протекающие при фильтрации через воду процессы. Жидкий дистиллят (жижка), при отстаивании разделяется на два слоя: верхний водный слой, называемый подсмольной водой, и смоляной слой, называемый отстойной, или осадочной смолой. Подсмольная вода, или отстоявшаяся жижка, содержит водорастворимые продукты разложения древесины. В составе этой жижки найдены разнообразные органические соединения, в том числе различные кислоты жирного ряда (муравьиная, уксусная, пропионовая, масляная, валериановая и др.), спирты (главным образом метиловый), сложные эфиры (метилацетат, этилацетат и др.), – кетоны (ацетон, метилэтилкетон), альдегиды (муравьиный, уксусный, фурфурол и др.). В отстоявшейся жижке содержатся также нелетучие смолистые вещества, называемые растворимой смолой. При перегонке отстоявшейся жижки эти вещества дают смолистый остаток, поэтому их называют также кубовой смолой.

Растворимая смола, согласно данным Д.В. Тищенко и других исследователей, имеет углеводное происхождение. В ее состав входят в основном вещества углеводного характера и сахара, а также продукты конденсации фенола с альдегидами и некоторые вещества отстойной смолы, которые становятся растворимыми в воде благодаря присутствию уксусной кислоты, метанола и ацетона. Состав этой растворимой смолы значительно колеблется и зависит от породы древесины.

Отстойная смола состоит из летучих продуктов термического разложения древесины, не растворимых в водном дистилляте. Эти вещества при отстаивании жижки собираются в виде смоляного слоя. Частично смола содержит и нелетучие вещества, которые в виде мельчайших капель уносятся с дистиллятом.

5.4 Конденсация разбызгивающихся капель

Стоит заметить, что при использовании метода фильтрования газа через воду имеет место разбрызгивание. При этом в уже отфильтрованный воздух попадают мелкие капельки водного раствора, примерно идентичного по составу фильтрующей жидкости. Таким образом, помимо увлажнения очищаемого воздуха, в него попадают ядовитые мелкодисперсные частицы раствора, токсичность которого невозможно снизить не конденсировав его. Один из элементарных способов поглощения избыточной влажности воздуха – сбор его на поверхность ткани, например, марли. Для этого, в выходной патрубок достаточно установить кусок губки. Это приведет к некоторому повышению давления над водой фильтра, а следовательно, всплывающие с глубины воды пузырьки будут мельче, что означает лучшую фильтрацию. Губчатая поверхность будет поглощать некоторую часть капелек раствора и паров воды. Важной особенностью губчатого поглотителя является то, что способность поглощать капли и «приклеивать» мелкие частицы растет с повышением степени увлажненности волокон. Однако накопление конденсированного раствора на губчатой поверхности предаст ей устойчивый дымный запах.

    продолжение --PAGE_BREAK--

Есть более удобный способ снизить токсичность мелкодисперсной взвеси, позволяющий сохранить эффект увлажнения после фильтрации водной адсорбцией. А именно: выходной патрубок фильтра присоединить к трубе, поперечное сечение которой перекрывает расположенная под определенным углом марлевая проницаемая перегородка. Один конец марлевой ткани выходит в верхнее отверстие, проделанное в корпусе трубы, другой – в нижний. Верхний конец марли опущен в сосуд с чистой водой, нижний – в сосуд собирающий воду. Суть заключается в следующем: вода из верхнего сосуда будет транспортироваться по волокнам, пройдет через фрагмент марли, расположенный в трубе и оттуда будет стекать в нижний. Марля будет постоянно увлажняться. Проходя через увлажняемую марлю, поток из фильтра будет отчищаться от избыточной влаги и различных взвесей, но при этом тут же насыщаться парами чистой воды. Загрязненная вода будет стекать в нижний сосуд, а на смену ей из верхнего сосуда по волокнам будет опускаться свежая вода. Таким образом происходит процесс сбора взвесей на влажную марлю и одновременно попутная «стирка» этой же марли.

К несчастью, фильтрование дымов через влажную марлю фактически не приводит к результатам. Максимум, чего можно добиться таким образом – снижение количества примесей примерно на 5%.

Казалось бы, это противоречит одной из рекомендаций, по спасению от удушья при пожаре. Ведь в случаях пожаров, чтобы не задохнуться от дыма, рекомендуется дышать через сложенный в несколько слоев и предварительно увлажненный носовой платок. Во-первых, ткань платка более плотная, во вторых, сложенная раз в 8 влажная марля так же способна защищать от дыма, пока его компоненты не пройдут насквозь. В-третьих, платок мы плотно прижимаем пальцами к носу, в то время как в трубу при установке автоматически увлажняемой ткани особой герметичности добиться сложно. В-четвертых, задержке дымов при пожаре способствует еще и некоторая методика дыхания. Дыхание должно быть по возможности ровнее и спокойнее, так как малая скорость воздушного потока, проходящего через марлю, так же снижает скорость проникновения вредных примесей сквозь волокна и слои платка. В-пятых, платок используется только до того момента, пока человек не выберется из зоны задымления. А при установке на фильтр, платок будет «коптиться» круглые сутки. К тому же даже те, кто использует влажный платок, чтобы выбраться из задымленной зоны иногда теряют сознание из-за нехватки кислорода и отравляющего действия токсичных компонентов дыма. Так что влажный платок или увлажненная марля далеко не панацея, спасающая от отравляющих веществ.

Сжигание и нарушение круговорота

Огонь – один из старейших способов уничтожения. Органические и неорганические соединения, щелочи и фактически любой мусор (при определенных условиях даже металлы) может уничтожить физически огонь. Поэтому, если нет возможности уничтожить мусор иными способами, прибегают именно к сожжению. От газов и жидкостей после горения остаются только скопления дыма, иногда и сажи. От твердых тел – еще и угли да зола. Объемы и масса залы в десятки раз меньше, чем были объем и масса сгоревших бревен. Поэтому, уничтожение огнем – простой, быстрый и эффективный способ отчистить территорию. Тепло, выделяющееся при горении можно использовать для разогрева каких-либо вещей или получения механической, а в последствии – и электрической энергий. Но на сколько невосполнимый урон наносит биосфере такой огонь?

В природе фактически любой материал восполняется посредством круговорота. А избыток любого природного материала быстро распределяется по площади с помощью потоков воздуха и воды. А иногда и силами животного мира. Сколько было создано этими силами? Как минимум почвенный слой, атмосфера. Всего две составляющих, благодаря которым существует наш мир. «Простейшая утилизация» – сожжение, – выводит часть уже готовых веществ из более простой системы оборота в более сложную. К примеру, как далеко не шагнула наука, а синтез бумаги из простейших углеводородов не распространен уже потому, что обрабатывать древесину и превращать ее в бумагу – гораздо проще. Стало быть, дабы сохранить природу и окружающий мир, восполнять недостаток бумаги нужно с помощью переработки бумажных отходов. Потери такой переработки составляют десятые процента, а затраты на переработку даже меньше, чем на ее производство из древесины. Значительная часть новой информации переправляется электронной почтой, что в несколько снижает необходимость расхода бумаги. Поэтому переработка могла бы способствовать сохранению ресурсов всего мира, а следовательно – сыграла бы роль в деле сохранения экологии уже сегодня.

Список использованных источников

1) Химия древесины и целлюлозы – Никитин В.М., Оболенская А.В., Щеголев В.П – 1978).

2) Энциклопедический Словарь Юного Химика, составители Крицман В.А. и Станцо В.В., главный редактор Прокофьев М.А., М – «Педагогика», 1982, 368 с., ил.

3) Краткий справочник по химии, И.Т. Гороновский, Ю.П. Назаренко, Е.Ф. Некряч, под редакцией члена-корреспондента АН УССР, О.Д. Куриленко, – Киев, издательство Наукова думка, 1974, – 994 с.

4) Верховский В.Н. Техника и методика химического эксперимента в школе, пособие для преподавателей и студентов педагогических вузов, Т 1, издание 5, Москва, УЧПЕДГИЗ, 1953 г., 556 стр., ил.

www.ronl.ru

Дымообразование

Химия Дымообразование

просмотров - 90

План

Лекция № 6,7

Тема «Физико-химические изменения липидов при жарке:

пиролиз, дымообразование. Физико-химические изменения липидов при фритюрной жарке»

1.Физико-химические изменения липидов при жарке: пиролиз, дымообразование.

2. Фритюрная жарка: химические изменения жира, типы реакций.

3. Факторы, влияющие на скорость химических изменений фритюрного жира.

4. Изменения органолептических показателœей жира в процессе его фритюрной жарки.

5. Методы увеличения срока службы фритюрного жира.

6. Адсорбция и впитывание жира при жарке. Влияние жарки на пищевую ценность жира.

1. Физико-химические изменения липидов при жарке: пиролиз,

Наиболее распространенными являются фритюрная жарка (периодическая или непрерывная) и жарка продуктов основным способом.

При основном способе жарки продолжительность нагрева составляет 3-10 мин, что зависит от вида и размеров продукта. При этом глубоких окислительных изменений не происходит, ввиду небольшой продолжительности нагрева и отсутствия повторного использования жира. При этом в случае перегрева жира при жарке может произойти его пиролиз – термическое разложение дыма с выделœением дыма. Температура, при которой начинается выделœение дыма, принято называть температурой дымообразования и является показателœем термостойкости жира. Температура (или точка) дымообразования различная для разных видов жиров (ºС): у свиного жира – 221, хлопкового масла – 223, пищевого саломаса – 230. На температуру дымообразования жира влияют следующие факторы: содержание свободных жирных кислот (снижает температуру дымообразования), отношение нагреваемой поверхности жира к его объему (так, при нагревании одного и того же количества жира на сковородах диаметром 18 и 20 см температура дымообразования оказалась 185 и 169ºС соответственно), материал посуды.

На крупных пищевых предприятиях, осуществляющих фритюрную жарку чипсов, крекеров, рыбных полуфабрикатов и др., применяют аппараты непрерывной фритюрной жарки (соотношение жира и продукта 20:1), что позволяет ускорить процесс жарки, поддерживать более низкие температуры фритюра, следовательно, снижать скорость его термического окисления. При непрерывной жарки жир постоянной удаляется из жарочной ванны с готовым продуктом, а его количество автоматически пополняется путем долива свежего жира. По этой причине при непрерывной фритюрной жарке жир подвергается незначительным окислительным изменениям.

При периодической фритюрной жарке протекают более глубокие изменения, поскольку жир может длительно нагреваться без продукта и периодически использоваться для жарки различных продуктов при низком коэффициенте его сменяемости.

Коэффициент сменяемости жира определяется по формуле

где П – количество жира, поглощаемого и адсорбируемого обжариваемым продуктом за 24 часа, кг;

М – средняя масса жира в жарочном аппарате, кᴦ.

Вместе с тем, при периодической фритюрной жарке жир могут охлаждать, затем вновь нагревать и при таком циклическом нагреве вероятность окисления жиров максимальна.

При фритюрной жарке очень важным является соблюдение соотношения жира и продукта͵ в противном случае при загрузке продукта температура жира значительно снизиться, процесс жарки замедлится, что в свою очередь приведет к чрезмерной ужарке и ухудшению внешнего вида готовых изделий. Немаловажна начальная температура жира, если он нагрет слишком сильно, то румяная корочка образуется быстрее, чем продукт успеет дойти до готовности внутри. Оптимальные температуры и продолжительность жарки некоторых полуфабрикатов:

– котлеты по-киевски – 160-170ºС, 3-4 мин;

– рыба в тесте – 60-170ºС, 2-3 мин;

– картофель брусочками – 175-180ºС, 5-6 мин;

– картофель соломкой – 175-180ºС, 3-4 мин;

– пирожки, пончики, чебуреки – 180-190ºС, 4-6 мин;

При этом начальная температура фритюра может составлять 160-190ºС. Фритюр с меньшей температурой используют для жарки продуктов с большим содержанием влаги (тельное, котлеты фаршированные из кур и др.).

2. Фритюрная жарка: химические изменения жира, типы реакций

Химические изменения жира при фритюрной жарке

1. Термическое окисление. В процессе фритюрной жарки происходит термическое окисление жира: быстрое образование и распад перекисей, о чем свидетельствует скачкообразное изменение перикисного числа жира. Циклические перикиси распадаются с образованием двух соединœений с укороченной цепью (альдегид и альдогидрокислота), которые при дальнейшем окислении образуют одноосновную и двухосновную кислоты:

Циклические перикиси могут превращаться и в другие долее стабильные продукты вторичного окисления с образованием диоксикислот, дикарбонильных соединœений.

2. Гидролиз жира. Вода, попадающая в жир из обжариваемого продукта͵ способствует его гидролизу, происходит накопление свободных жирных кислот и увеличивается кислотное число жира как за счет гидролиза, так и за счет образования низкомолекулярных кислот при расщеплении перикисей.

3. Снижение температуры дымообразования, усиление выделœения дыма по мере увеличения продолжительности нагревания. Вместе с тем, в результате появления оксикислот, моно- и диглицеридов происходит увеличение ацетильного числа.

4. Реакция полимеризации и поликонденсации. Образующиеся дикарбонильные вещества и соединœения с сопряженными двойными связями способны к реакциям полимеризации и поликонденсации, о чем свидетельствует увеличение вязкости фритюрного жира. При этом соединœение между мономерами может осуществляться как посредством прямой связи меду атомами углерода, или через кислородный мостик, причем в одной молекуле могут присутствовать оба типа связей.

Типы реакций, протекающих при фритюрной жарке

Реакция автоокисления протекает при хранении жира между циклами, скорость реакции медленная, образуются СО2, СО, Н2О, альдегидокислоты, спирты и альдегиды, кетоны, прочие компоненты. Автоокисление протекает при холостом нагреве жира между циклами жарки и в процессе самой жарки, в этом случае скорость реакции достаточно быстрая.

Реакция пиролиза, изомеризации, полимеризации протекает как при холостом нагреве, так и при непосредственной жарке.

Реакция гидролиза, причем с достаточно большой скоростью протекает при непосредственной жарке продуктов.

Читайте также

  • - Дымообразование

    План Лекция № 6,7 Тема «Физико-химические изменения липидов при жарке: пиролиз, дымообразование. Физико-химические изменения липидов при фритюрной жарке»1.Физико-химические изменения липидов при жарке: пиролиз, дымообразование. 2. Фритюрная жарка: химические... [читать подробенее]

  • oplib.ru

    Большая Энциклопедия Нефти и Газа, статья, страница 4

    Дымообразование

    Cтраница 4

    Показатели Dm и /) дт характеризуют процесс дымообразования в зависимости от количества материала, его состава и структуры. При оценке дымообразующей способности используют также временные параметры и кинетические характеристики.  [46]

    Скорость горения материала должна рассматриваться совместно с его потенциалом дымообразования. Дымовой потенциал его ( 0 096 змэ / г) лишь в 2 - 3 раза превышает значения этой величины для материалов, в основе которых может быть древесина, теплоизоляционная слоистая плита, мягкая и жесткая ДСП, но если судить по чисто субъективной оценке пожаров, охватывающих эти материалы, то можно прийти к выводу о том, что по своей способности к дымообра-зованию полиуретан представляет собой соединение, совершенноГнесхо - жее с указанными выше материалами, построенными на основе древесины. Это обусловливается быстрым развитием пожара пенистого пластического материала ( разд. Благодаря этой скорости возникнут неприемлемо высокие уровни дыма, причем в более быстром темпе, чем это имеет место у целлюлозосодержащих материалов. В самом деле любой материал или сочетание материалов, которые при энергичном горении могут привести к быстрому развитию пожара представляет угрозу для обеспечения безопасности людей. Предполагается, что необходимо преобразовать результаты стандартного испытания к такой форме [15], чтобы можно было отбраковывать те материалы, которые могут при горении быстро выделять много дыма [348]; таким образом, данные, которые обычно получаются при проведении испытаний по распространению пожара [59] и при проведении других испытаний, связанных с выявлением интенсивности тепловыделения горючих [17], станут рабочим материалом.  [48]

    На рис. 2.24 показана схема установки для определения коэффициента дымообразования.  [49]

    Материалами с малой дымообразующей способностью считаются те, коэффициент дымообразования которых не превышает 50 Нп - м2 / кг; материалы с высокой дымообразующей способностью имеют коэффициент дымообразования более 500 Нп - м2 / кг. При промежуточных значениях коэффициента дымообразования считают, что материалы имеют умеренную дымообразующую способность.  [50]

    На рис. 3.24 показана схема установки для определения коэффициента дымообразования. Камера сгорания вместимостью 3 - JO-3 м3 выполнена из листовой нержавеющей стали толщиной 2 0 0 1 мм. В ней имеются верхнее и нижнее отверстия сечением 30x160 мм, соединяющие ее с дымовой камерой. На боковой поверхности камеры сгорания расположено окно из кварцевого стекла для наблюдения за образцом при испытании. В камере сгорания установлены держатель образца и закрытая электронагревательная панель, смонтированная на верхней стенке камеры под углом 45 к горизонтали. Держатель образца выполнен в виде рамки размером 100x100x10 мм и закреплен на дверце камеры на расстоянии 60 мм от панели параллельно ее поверхности. В держатель устанавливают вкладыш из асбосилита, в центре которого имеется углубление для размещения образца. Над держателем образца установлена газовая горелка. При испытании материалов в режиме горения пламя горелки касается поверхности верхней части образца.  [52]

    Видно, что горение топлив на основе октогена сопровождается значительно меньшим дымообразованием сравнительно с перхлоратными составами. Композиции, связующим которых служат соединения нитратной или азидной природы, в присутствии одного и того же окислителя сгорают, образуя более чистые продукты, чем СРТТ, где в качестве связующих использован углеводородный полимер. Самую высокую прозрачность продуктов сгорания имеет топливо на основе полиэфируретана, пластифицированного азидонитрамином.  [53]

    К числу физических факторов, которые оказывают влияние на йроцесс дымообразования, в первую очередь следует отнести газодинамические, которые влияют не только на скорость химических превращений, но и на процесс образования дыма и на его рассеивание. Газовые потоки, возникшие вследствие разности температур и других причин, увлекают за собой дымовые частицы.  [54]

    Если вместе с Si CLt выпустить и аммиак, то для дымообразования используется также НС1, образующий с МНз дымовые частички хлористого аммония.  [55]

    Для получения пенополиуретанов с повышенной стойкостью к горению и низким уровнем дымообразования Доэрдж и Висмер [45] предложили добавлять в полиуретан твердую дикарбоновую кислоту.  [56]

    Страницы:      1    2    3    4

    www.ngpedia.ru

    "Изучение процесса дымообразования во фрикционном дымогенераторе и решение обратной задачи теплопроводности"

    Выдержка из работы

    Бражная И. Э. и др. Изучение процесса дымообразования во фрикционном…

    УДК 664. 951. 32

    И. Э. Бражная, Ю. Т. Глазунов, А. М. Ершов

    Изучение процесса дымообразования во фрикционном дымогенераторе и решение обратной задачи теплопроводности

    I. E. Brazhnaya, Yu. T. Glazunov, A. M. Ershov

    Studying the process of smoke generation in the friction smoke generator and solution of the inverse problem of heat conduction

    Аннотация. Представлены результаты анализа оптимального диапазона влажности древесины для производства дыма во фрикционном дымогенераторе, влияния начальной массовой доли воды в древесине на ицетообразование готовой продукции, зависимости температурного распределения в полубесконечной среде от времени нагревания- приведено решение обратной задачи теплопроводности.

    Abstract. The paper contains the analysis of the optimal range of wood humidity for smoke production in the friction smoke generator, the impact of the initial mass fraction of water in the wood on color formation on the finished product, the dependence of temperature distribution in a semi-infinite medium on the heating time. The results of solving the inverse heat conduction problem have been shown.

    Ключевые слова: фрикционный дымогенератор, влажность древесины для производства дыма, распределение температурного фронта в полубесконечной среде, коэффициент температуропроводности.

    Key words: friction smoke generator, wood moisture content for smoke production, temperature distribution in semi-infinite medium, thermal diffusivity.

    Введение

    Развитие рыбной промышленности предполагает комплексное решение задач вылова, технологической переработки и воспроизводства гидробионтов. Рыбные продукты являются источником белков животного происхождения, полиненасыщенных жирных кислот, витаминов, макро- и микроэлементов. При реконструкции существующего и организации нового производства в современных экономических условиях необходимо расширять ассортимент и улучшать качество пищевой продукции. Особое внимание уделяется канцерогенной безопасности продукции и экологии промышленного производства, а также совершенствованию конструкций дымогенераторов* [1]. Коптильный дым, полученный с помощью фрикционных дымогенераторов, отличается повышенным содержанием карбонильных соединений, кислот, фенолов и практически не содержит канцерогенных веществ [2], [3]. Однако опытным путем установлено, что рыбное сырье, выкопченное таким дымом, практически не изменяет цвет поверхности и в результате не соответствует требованиям нормативной документации по органолептическим показателям. Интенсифицировать процесс цветообразования можно за счет увеличения паровой фазы дыма [4, с. 2].

    Материалы и методы

    В связи с особенностями конструкции фрикционного дымогенератора распределение температурных полей внутри образцов изучали в статическом режиме на лабораторной установке с электроподогревом. Для экспериментальных исследований были изготовлены образцы с просверленными на разных уровнях от поверхности нагрева отверстиями для размещения в них термопар. Изучение скорости пиролиза и распределение температурных полей в древесине в динамичном режиме проводили на промышленном фрикционном дымогенераторе конструкции Мурманского высшего инженерного морского училища имени Ленинского комсомола (разработчик А. М. Ершов) с использованием образцов древесного сырья размером 80*80*400 мм с различной начальной влажностью. В образцах отверстия для термопар были просверлены на расстоянии 50 мм от поверхности вращающегося барабана дымогенератора. Для измерения температуры пиролиза использовали цифровой потенциометр ХК (L) с интервалом измеряемых температур от 0 до 800 °C (0,15/0,05) и тарированные хромель-копелевые термопары. Тарирование термопар проводили в термостате типа ТС-24. Время контролировали секундомером. Массовую долю воды в древесном сырье определяли по стандартным методикам. Все измерения проводили в трехкратной повторности. Экспериментальные результаты обрабатывали общеизвестными методами математической статистики. При определении зависимости скорости прогревания древесины от ее влажности необходимо решить обратную задачу теплопроводности по известным из эксперимента температурным полям, с учетом

    Устройство для генерации коптильного дыма: пат. 2 363 163 Российская Федерация. № 2 008 109 680/13 — заявл. 11. 03. 08 — опубл. 10. 08. 09, Бюл. № 22. 6 с. Устройство для генерации дыма: пат. 2 468 587 Российская Федерация. № 2 011 118 048/10 — заявл. 04. 05. 12 — опубл. 10. 12. 12, Бюл. № 34. 6 с.

    620

    Вестник МГТУ, том 18, № 4, 2015 г.

    стр. 620−625

    начальных и граничных условий определить коэффициент температуропроводности среды. B решении этой задачи был применен метод интегральных балансов, предложенный в 1958 г. М. Гудманом и развитый позднее в работах Ю. А. Михайлова и Ю. Т. Глазунова [5].

    Результаты исследований и их обсуждение

    Исследования на базе экспериментального цеха МГТУ при производстве рыбы холодного копчения, показали, что предварительное увлажнение древесины для ее использования во фрикционном дымогенераторе позволяет получить готовый продукт, удовлетворяющий требованиям действующей нормативной документации по всем органолептическим показателям. Для определения оптимального диапазона влажности древесины изучено влияние начальной массовой доли воды в древесине на процесс цветообразования в копченой продукции. Установлено, что при использовании древесного топлива с массовой долей воды менее 50% процесс цветообразования замедляется- при влажности больше 50% - возрастает. При увеличении влажности наблюдается снижение времени копчения при одинаковых цветовых характеристиках готовой продукции. C другой стороны, при увеличении влажности древесины выше 70% отмечено замедление начала процесса дымообразования, интенсивное конденсирование паровой фазы дыма внутри дымогенератора, в результате увеличивается расход электроэнергии для интенсификации процесса дымообразования. Таким образом, для исследования процесса дымообразования фрикционным способом было принято решение применять древесину с начальной влажностью от 50 до 70% [4, с. 3−6]. В процессе работы были проведены экспериментальные исследования по установлению зависимости скорости прогревания от начальной влажности древесины (рис. 1).

    Рис. 1. Изменение температуры древесины на поверхности бруска: 1 — сухая древесина (W = 3,0%) —

    2 — с начальной массовой долей воды W = 56,3%- ^ - точка начала устойчивого дымообразования [4, с. 3−6]

    Из рис. 1 видно, что начальная температура дымообразования не зависит от влажности древесины и составляет (230 + 2) °С. Приведенные результаты не противоречат известным литературным сведениям, описывающим ''дымовой термометр", где нижний температурный предел дымообразования равен 210 °C [3], [6]. Результаты измерений температурных полей внутри образцов приведены на рис. 2−5.

    Рис. 2. Изменение температуры воздушно-сухой древесины (W = 3,0%) на различном удалении от греющей поверхности [4, с. 3−6], [8, с. 12]

    621

    Бражная И. Э. и др. Изучение процесса дымообразования во фрикционном…

    Анализ результатов экспериментов (рис. 3−5) показывает, что влажность древесины влияет на скорость ее прогревания. При обезвоживании древесины изменяются ее теплофизические характеристики. Воздушносухая древесина прогревается быстрее увлажненной. Представленные экспериментальные графики имеют участок с близкой к нулевой скоростью прогрева при температуре около 100 °C. При нагревании увеличение влажности древесины за счет активного отвода тепла при изменении фазового состояния содержащейся в ней воды приводит к заметному снижению скорости прогрева [4], [9, с. 102−103], влияет на теплофизические характеристики древесины и определяет значение коэффициента температуропроводности а.

    Рис. 3. Изменение температуры древесины при влажности W = 56,3% на различном удалении от греющей поверхности [4, с. 3−6], [8, с. 12]

    Рис. 4. Изменение температуры древесины при влажности W = 70,8% на различном удалении от греющей поверхности [4, с. 3−6], [8, с. 12]

    Рис. 5. Изменение древесины при влажности W = 70,2% на различном удалении от греющей поверхности [4, с. 3−6]

    622

    Вестник МГТУ, том 18, № 4, 2015 г.

    стр. 620−625

    Для установления указанной зависимости необходимо решить обратную задачу теплопроводности с учетом экспериментальных температурных полей, начальных и граничных условий, т. е. определить коэффициент температуропроводности среды.

    Задача сводилась к решению простого уравнения теплопроводности для полубесконечной среды при граничных условиях T (x = 0, т) = ТП, T (x = & lt-ю, т) = 0 и начальных условиях T (x, т = 0) = 0:

    д1 _

    дт дх2

    B процессе определения коэффициента применен метод интегральных балансов [5]. Для решения дифференциального уравнения было введено понятие глубины проникания q (x), или глубины среды, до которой проник температурный фронт (рис. 6).

    Рис. 6. Зависимость температурного фронта в полубесконечной среде от времени нагревания

    Используя экспериментальные результаты (рис. 2−5), можно рассчитать значение коэффициента температуропроводности по формуле

    -|2

    a = -

    12т

    1 —

    t (x, т) — to

    1

    x

    К — t0

    (1)

    Этот коэффициент изменяется от 1,7 до 10,5 мм2/мин при изменении влажности древесины от 3 до 70% и аппроксимируется прямой вида

    a (W) = 10,27 — 0,12 W, (2)

    где W — влажность древесины, %- а — коэффициент, мм2/мин [4], [7, с. 13].

    В ходе пиролиза нагревание древесины характеризуется следующими процессами: теплопередачей от греющей поверхности- массопереносом воды и пара- дополнительным выделением тепла при тлении древесины. Поэтому в выражениях (1) и (2) коэффициент, а даже для сухой древесины корректнее назвать & quot-коэффициентом теплового рассеивания& quot-. Коэффициент теплового рассеивания по физическому смыслу приближен к коэффициенту теплопроводности, при этом он учитывает также влияние массопереноса воды и пара на перенос тепла. Эмпирическая формула (2) позволяет находить коэффициент теплового рассеивания a (W) [4, с. 3−6], [7, с. 13], [5].

    Заключение

    В ходе работы определен оптимальный диапазон влажности древесины для производства дыма фрикционным способом. Изучена зависимость качества готовой продукции от начальной массовой доли влаги в древесине. Установлено, что процесс цветообразования копченой продукции замедляется при массовой

    623

    Бражная И. Э. и др. Изучение процесса дымообразования во фрикционном…

    доле воды в древесине менее 50%- при влажности более 50% - возрастает. Время копчения сокращается с ростом влажности древесины при достижении равной степени цветообразования копченой продукции. На основе экспериментальных данных была решена обратная задача теплопроводности и рассчитано значение коэффициента температуропроводности. При изменении влажности древесины от 3 до 70% этот коэффициент изменяется от 1,7 до 10,5 мм2/мин [7, с. 13], [9, с. 101−102].

    Библиографический список

    1. Ивашов В. И. Технологическое оборудование предприятий мясной промышленности. В 2 ч. Ч. 2. Оборудование для переработки мяса. СПб.: ГИОРД, 2007. 457 с.

    2. Хван Е. А., Гудович А. В. Копченая, вяленая и сушеная рыба. М.: Пищевая промышленность, 1978.

    206 с.

    3. Мезенова О. Я., Ким И. Н., Бредихин С. А. Производство копченых пищевых продуктов. М.: Колос, 2001. 207 с.

    4. Бражная И. Э. Исследование процесса дымообразования во фрикционном дымогенераторе. Мурманск: МГТУ, 1997. 11 с. Деп. во ВНИЭРХ 21. 11. 97, № 1317-рх97.

    5. Михайлов Ю. А., Глазунов Ю. Т. Вариационные методы в теории нелинейного тепло- и массопереноса. Рига: Зинатне, 1985. 220 с.

    6. Леванидов И. П., Ионас Г. П., Слуцкая Т. Н. Технология соленых, копченых и вяленых рыбных продуктов. М.: Агропромиздат, 1987. 160 с.

    7. Бражная И. Э. Разработка ароматизаторов для пресервов на основе совершенствования процесса генерации дыма фрикционным способом: автореф. … канд. техн. наук. Мурманск, 1998. 25 с.

    8. Бражная И. Э., Ершов А. М. Результаты исследований процесса генерации дыма во фрикционном дымогенераторе // Сб. тезисов 6-й науч. -техн. конф. МГТУ. Мурманск: МГТУ, 1995. Ч. 1. С. 102−103.

    9. Бражная И. Э., Глазунов Ю. Т. О решении одной обратной задачи теплопроводности // Сб. тезисов 7-й науч. -техн. конф. МГТУ. Мурманск: МГТУ, 1996. Ч. 1. С. 101−102.

    References

    1. Ivashov V. I. Tehnologicheskoe oborudovanie predpriyatiy myasnoy promyshlennosti [Process equipment of meat industry enterprises]. V 2 ch. Ch. 2. Oborudovanie dlya pererabotki myasa. SPb.: GIORD, 2007. 457 p.

    2. Hvan E. A., Gudovich A. V. Kopchenaya, vyalenaya i sushenaya ryba [Smoked, semi-dried, and dried fish]. M.: Pischevaya promyishlennost, 1978. 206 p.

    3. Mezenova O. Ya., Kim I. N., Bredihin S. A. Proizvodstvo kopchenyh pischevyh produktov [Production of smoked food products]. M.: Kolos, 2001. 207 p.

    4. Brazhnaya I. E. Issledovanie protsessa dymoobrazovaniya vo fTiktsionnom dymogeneratore [Investigation of smoke in the friction smoke generator]. Murmansk: MGTU, 1997. 11 p. Dep. vo VNIERH 21. 11. 97, N 1317-rh97.

    5. Mihaylov Yu. A., Glazunov Yu. T. Variatsionnyie metody v teorii nelineynogo teplo- i massoperenosa [Variational methods in the theory of nonlinear heat- and mass transfer]. Riga: Zinatne, 1985. 220 p.

    6. Levanidov I. P., Ionas G. P., Slutskaya T. N. Tehnologiya solenyh, kopchenyh i vyalenyh rybnyh produktov [Technology of salted, smoked and dried fish products]. M.: Agropromizdat, 1987. 160 p.

    7. Brazhnaya I. E. Razrabotka aromatizatorov dlya preservov na osnove sovershenstvovaniya protsessa generatsii dyma fTiktsionnym sposobom [Development of preserve flavors on the basis of improving generation of smoke friction manner]: avtoref. … kand. tehn. nauk. Murmansk, 1998. 25 p.

    8. Brazhnaya I. E., Ershov A. M. Rezultaty issledovaniy protsessa generatsii dyma vo friktsionnom dymogeneratore [The results of research of smoke generation in the friction smoke generator] // Sb. tezisov 6-y nauch. -tehn. konf. MGTU. Murmansk: MGTU, 1995. Ch. 1. P. 102−103.

    9. Brazhnaya I. E., Glazunov Yu. T. O reshenii odnoy obratnoy zadachi teploprovodnosti [On solution of inverse heat conduction problem] // Sb. tezisov 7-y nauch. -tehn. konf. MGTU. Murmansk: MGTU, 1996. Ch. 1. P. 101−102.

    Сведения об авторах

    Бражная Инна Эдуардовна — ФГБОУ ВПО & quot-Мурманский государственный технический университет& quot-, Естественно-технологический институт, кафедра технологий пищевых производств, канд. техн. наук, доцент- e-mail: brain67@mail. ru

    624

    Вестник МГТУ, том 18, № 4, 2015 г.

    стр. 620−625

    Brazhnaya I. E. — FSEI HPE & quot-Murmansk State Technical University& quot-, Institute of Natural Science and Technology, Department of Food Production Technology, Cand. of Tech. Sci., Associate Professor- e-mail: brain67@mail. ru

    Глазунов Юрий Трофимович — ФГБОУ ВПО & quot-Мурманский государственный технический университет& quot-, Естественно-технологический институт, кафедра технологий пищевых производств, д-р техн. наук, профессор- e-mail: glazunoyjut@mstu. edu. ru

    Glazunov Yu. Т. — FSEI HPE & quot-Murmansk State Technical University& quot-, Institute of Natural Science and Technology, Department of Food Production Technology, Dr of Tech. Sci., Professor- e-mail: glazunoyjut@mstu. edu. ru

    Ершов Александр Михайлович — ФГБОУ ВПО & quot-Мурманский государственный технический университет& quot-, Естественно-технологический институт, кафедра технологий пищевых производств, д-р техн. наук, профессор- e-mail: ershovam@mstu. edu. ru

    Ershov A. М. — FSEI HPE & quot-Murmansk State Technical University& quot-, Institute of Natural Science and Technology, Department of Food Production Technology, Dr of Tech. Sci., Professor- e-mail: yershovam@mstu. edu. ru

    625

    Показать Свернуть

    xn----8sbemlh7ab4a1m.xn--p1ai


    Смотрите также