Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Общие свойства аминокислот. Аминокислоты реферат по биологии


Реферат - Свободные аминокислоты нервной системы

Свободные аминокислоты нервной системы

Содержание

Введение

1. Содержание, локализация и транспорт аминокислот

2. Метаболизм дикарбоновых аминокислот и глутамина

3. Глутамат и аспартат

4. N-Ацетиласпарагиновая кислота

5. Гамма-аминомасляная кислота

6. Компартментализация метаболизма аминокислот

7. Глицин и пути его обмена

8. Серусодержащие аминокислоты

9. Ароматические аминокислоты нервной ткани и их метаболизм

10. Основные аминокислоты

Выводы

Свободные аминокислоты нервной ткани или так называемый аминокислотный пул на протяжении многих лет были объектом тщательного изучения. Это объясняется не только исключительной ролью аминокислот как источников синтеза большого числа биологически важных соединений, таких, как белки, пептиды, некоторые липиды, ряд гормонов, витаминов, биологически активных аминов и др. Аминокислоты или их дериваты участвуют и в синаптической передаче, в осуществлении межнейрональных сетей в качестве нейротрансмиттеров и нейромодуляторое. Существенной является также их энергетическая значимость, ибо аминокислоты глутаминовой группы непосредственно связаны с циклом трикарбоновых кислот.

Транспорт аминокислот в мозг и из мозга, скорости их метаболических превращений, включения в белки и катаболизма определяют их концентрацию в этом органе. Состав пула свободных аминокислот при нормальных физиологических условиях довольно стабилен и характерен для мозга. Он лишь незначительно варьирует в мозге различных видов позвоночных. Нервная ткань обладает уникальной способностью поддерживать относительное постоянство уровней аминокислот при различных физиологических и даже некоторых патологических состояниях. Аминокислотный фонд мозга человека составляет в среднем 34 мкмоль на 1 г ткани, что значительно превышает их содержание как в плазме крови, так и в спинномозговой жидкости.

Характерны высокая концентрация глутаминовой кислоты, глутамина, аспарапшовой, N-ацетиласпарагиновой и у-аминомасляной кислот, а также их интенсивный метаболизм. Эти пять аминокислот составляют 75% фонда всех свободных аминокислот головного мозга, причем ГАМК и N-ацетиласпарагиновая кислоты локализованы почти исключительно в нервной ткани. Высокие концентрации дикарбоновых аминокислот и глутамина обнаружены в мозге всех изученных видов животных.

Таблица 1

Содержание свободных аминокислот в мозге, плазме крови и спинномозговой жидкости человека

Аминокислоты Мозг Плазма крови СМЖ
Глугаминовая 10,6 75% 0,05 23% 0,225 60%
N-Ацетиласпарагиновая 5,7 -
Глутамин 4,3 0,70 0,030
ГАМ К 2,3 - -
Аспарагиновая 2,2 0,01 0,007
Цистатионин 1,9 25% - 77% - 40%
Таурин 1,9 0,10 -
Глицин 1,3 0,40 0,013
Алании 0,9 0,40 0,017
Глутатион 0J ОДО 0,010
Серин 0,7 0,10 0,010
Треонин 0,2 0,15 0,025
Триптофан 0,05 0,05 0,010
В алии 0,2 0,25 0,013
Лизин 0,1 0,12 0,014
Лейцин 0,1 0,15 0,004
Пролин 0,1 ОДО -
Аспарагин 0,1 0,07 -
Метионин од 0,02 0,003
Изолейцин 0,1 ОДО 0,080
Аргинин 0,1 ОДО 0,060
Цистеин 0,1 ОДО 0,002
Фенил аланин ол ОДО 0,010
Тирозин 0,1 0,10 0,006
Гистидин од ОДО 0,003

Постоянство суммарного аминокислотного пула головного мозга сопровождается региональной неоднородностью их содержания, что отражает морфологическую, физиологическую и функциональную гетерогенность этого органа. Наиболее неравномерно распределены аминокислоты, выполняющие функцию нейротрансмиттеров, такие, как глутаминовая кислота, таурин, ГАМК, глицин и др.

Таблица 2

Содержание аминокислот в различных областях мозга кошки

Аминокислоты Тал a wye Средний мозг Мозолистое тело Кора височной доли Мозжечок
Глутаминовая 12,36 9,71 10,58 12,93 12,63
Аспарагиновая 2,71 4,06 1,41 3,09 2,85
Таурин 1,06 1,62 2,99 1,89 3,12
Глицин 1,72 2,77 0,614 1,25 1,49
Алании 0,591 1,09 0,704 0,863 0,895
ГАМК 3,65 5,81 0,961 1,39 1,49
Тирозин 0,05 0,059 0,049 0,039 0,06
Валин 0,145 0,152 0,096 0,117 0,097
Лизин 0,278 0,379 0,268 0, 194 0,219

Различные органеллы клеток головного мозга контролируют уровень аминокислот, накапливая их часто против концентрационных градиентов.

Постоянство качественного и количественного состава аминокислот в метаболических фондах мозга обеспечивается такими взаимосвязанными процессами, как поступление аминокислот из циркулирующей крови, отток их из мозга в кровь и участие в реакциях внутриклеточного метаболизма. В организме все эти процессы сбалансированы слаженным функционированием гомеостатических механизмов, гематоэнцефалического барьера и мембранным транспортом.

Транспорт аминокислот в мозг — многоступенчатый процесс. Прежде всего происходит транспорт через гематоэнцефалический барьер, локализованный в эндотелии мозговых капилляров, затем осуществляется транспорт из внеклеточной жидкости в клетки мозга, а далее — в субклеточные органеллы. Существуют системы активного транспорта аминокислот не только в мозг, но и из него, — обе они энергозависимы.

Исследование конкурентных отношений в транспорте аминокислот выявило наличие восьми классов транспортных систем, которые существуют для аминокислот с родственной структурой и зависят от ионного заряда и размеров их молекул. В ряде случаев одна аминокислота может транспортироваться с участием нескольких транспортных систем, выбор той или иной системы определяется составом аминокислотного пула. Для мембранного транспорта аминокислот характерен ряд особенностей: а) перенос аминокислот часто происходит против высоких концентрационных градиентов; б) этот процесс энергозависим; в) на него влияют температура и рН среды; г) он ингибируется анаэробиозом и ферментными ядами; д) перенос аминокислот связан с активным мембранным транспортом ионов, в частности, он Na-зависим; е) обнаружено конкурентное торможение мембранного транспорта одних аминокислот другими и др. Такие конкурентные взаимодействия играют важную роль в патологии, когда изменяется уровень индивидуальных аминокислот в крови. Ниже мы приведем примеры таких патологических состояний.

Уровень специфичности транспортных систем для разных аминокислот неодинаков. Особенно велика специфичность и мощность систем для аминокислот, выполняющих роль нейротрансмиттеров. Эти системы не только обеспечивают пластические и энергетические нужды клетки, но служат такие для специфического процесса быстрого снижения концентрации нейротрансмиттера в зоне синоптической щели. Высокоизбирательное поглощение нейротрансмиттера осуществляется как пресинаптической областью, так и клетками окружающей глии.

Еще один своеобразный механизм транспорта аминокислот связан с метаболизмом широко распространенного во всех тканях, в том числе и в нервной, трипептида глутатиона, цикл синтеза и деградации которого известен под названием у-глутамильного цикла. Наиболее интересным и ключевым ферментом этого цикла является у-глуталшлтранспептидаза, прочно связанная с клеточной мембраной. Этот энзим способен переносить у-глутамильную группу глутатиона, находящегося внутри клетки, на аминокислоту, локализованную с наружной стороны мембраны, и переносить образующийся дипептид внутрь клетки. Следующий фермент этого цикла — у-глутамилциклотрансфераза высвобождает аминокислоту. Таким образом, у-глутамил транспептидазная реакция является одним из механизмов транспорта аминокислот внутрь клетки.

При нормальных условиях скорость транспорта аминокислот не лимитирует непосредственно их метаболизм, так как скорости синтеза и деградации ниже скорости транспорта. Поэтому аминокислоты и аккумулируются мозгом, формируя пул свободных аминокислот. Без пополнения извне пул свободных аминокислот довольно быстро истощается. Так, количество аминокислот, которое используется для синтеза белков мозга, нейропептидов и нейромедиаторов в течение 30 мин, равно общему церебральному пулу большинства свободных аминокислот.

Активность систем транспорта аминокислот, так же как и состав их пула, изменяется в процессе развития мозга. Аминокислоты проникают в мозг молодых животных быстрее и достигают более высоких концентраций, чем у взрослых.

В литературе отсутствуют сообщения о болезнях, вызванных нарушением транспорта аминокислот в мозг, вероятно, потому, что они летальны. Даже дефекты транспорта аминокислот в другие ткани ведут к заболеваниям, имеющим неврологические последствия.

Наряду с неопасным для жизни синдромом Хартнупа, вызванным дефектом транспорта триптофана в малый кишечник и почки и схожим клинически с пеллагрой, известен ряд недугов с тяжелыми неврологическими последствиями, также обусловленных дефицитом поступления аминокислот. Среди них — цистиноз — нарушение транспорта цистина в клетки, особенно почек; цисти-ноз сопровождается фотофобией и повреждением глаз. Тяжелым, нередко летальным заболеванием, связанным с транспортом аминокислот в кишечник, является окулоцеребральный синдром. Он сопровождается глаукомой, катарактой, слепотой. Перечень этих болезней, вызванных нарушением транспорта триптофана, метионина, нейтральных и других аминокислот в кишечнике и других органах, довольно велик, причем все они косвенно затрагивают уровень аминокислот в мозге и имеют поэтому неврологические проявления.

Более 2/3 аминоазота аминокислот приходится на долю глутамата и его производных; эти аминокислоты доминируют в количественном отношении в мозге всех изученных видов животных. В спинном мозге наблюдается аналогичная картина, а периферическая нервная система содержит значительно меньше глутамата, глутамина, N-ацетиласпартата, чем головной мозг, а ГАМК почти отсутствует в периферических нервах позвоночных. При высоком уровне этих аминокислот в головном мозге метаболизм их также чрезвычайно быстрый.

Особенностью метаболизма глутамата в нервной ткани является его тесная связь с интенсивно функционирующим в этом органе циклом трикарбоновых кислот, что и позволяет считать его промежуточным продуктом энергетического метаболизма. Так, уже через 30 мин после инъекции меченой глюкозы более 70% радиоактивности растворимой фракции приходится на долю глутамата и его производных. Этому способствует чрезвычайно быстрое взаимопревращение глутамата и а-кетоглутарата в ЦНС. Высокий процент включения радиоактивности из глюкозы в аминокислоты мозга явился основанием для предположения, что утилизация глюкозы в этом органе в значительной степени происходит через биосинтез и окисление аминокислот.

Непосредственным предшественником для синтеза глутамата в мозге является а-кетоглутаровая кислота, которая может превращаться в глутамат или путем прямого восстановительного аминирования с участием глутаматдегидрогеназы, или путем переаминирования.

Энзим менее активен в мозге, чем в печени, присутствует в митохондриях, требует в качестве кофакторов пиридиннуклеотидов и активируется АДФ. Км этого энзима для аммония близок к 8 мМ. Реакция обратима, однако равновесие сильно сдвинуто в сторону прямой реакции, т.е. синтеза глутаминовой кислоты.

Таким образом, в головном мозге глутаматдегидрогеназная реакция участвует не столько в окислении глутамата, сколько в синтезе его из а-кетоглутаровой кислоты, обеспечивая тем самым непрерывное превращение свободного аммиака в аминоазот аминокислот. Основной же путь окисления глутамата в мозге — через переаминирование.

В митохондриях мозга 90% глутамата подвергается переаминированию с образованием аспартата. Фермент, катализирующий переаминирование глутамата с щавелевоуксусной кислотой, — аспартатаминотрансфераза является наиболее мощной трансаминазой головного мозга. Выделены два изоэнзима аспартатаминотрансферазы, локализованных в митохондриях и цитоплазме. Функциональная роль их различна. Митохондриальный фермент связан в основном с функционированием ЦТК, цитоплазматический определяет интенсивность глюконеогенеза.

Как уже отмечалось, путь метаболизма глутамата через переаминирование намного активнее дегидрогеназного. В регуляции соотношения между этими двумя путями, конкурирующими за один субстрат, важная роль принадлежит макроэргическим соединениям. В интактных митохондриях энзим взаимодействует по преимуществу с НАДФ+ и интенсивность реакции пропорциональна отношению НАДФ+ /НАЦФН2. Макроэргические соединения способствуют превращению НДЦФ+ в НАДФН2 и тем самым подавляют дезаминирование глутамата. Наоборот, трансаминазный путь требует расходования макроэргических соединений. Поэтому выбор между этими двумя реакциями определяется энергетическими возможностями митохондрий.

При нормальном функционировании ЦТК дегидрогеназный путь окисления глутамата подавлен, а трансаминазный активно протекает. В результате уменьшения количества макроэргических соединений, например при добавлении к митохондриям разобщителя окислительного фосфорилирования 2,4-динитро-фенола, подавляется трансаминазный путь при одновременном резком усилении дегидрогеназного пути окисления глутамата.

Взаимопревращение а-кетоглутарата и глутамата происходит чрезвычайно быстро. В мозге был идентифицирован метаболический путь такого взаимопревращения, получивший название аспартат-малатного шунта, служащего для транспорта восстановительных эквивалентов из цитозоля в митохондрии.

Уже упоминалось, что различные органеллы клеток мозга могут индивидуально контролировать уровни аминокислот, накапливая их против градиента концентрации. Примером этого могут служить изолированные из ЦНС митохондрии, которые быстро поглощают глутамат и малат, освобождая соответствующие количества аспартата и а-кетоглутарата. Это означает, что ток аспартата через митохондриальную мембрану связан с током глутамата в обратном направлении; также реципрокно связаны ток малата и а-кетоглутарата. Энзимы, катализирующие отдельные реакции малат-аспартатного шунта, превалируют в тканях ЦНС. В нейронах малат-аспартатный шунт является преобладающим механизмом переноса восстановительных эквивалентов в митохондрии.

Таким образом, глутаминовая кислота выполняет чрезвычайно важную функцию в энергетическом обеспечении головного мозга, которая заключается в поддержании метаболитов ЦТК на определенном и довольно высоком уровне, а также в снабжении митохондриальных синтетических процессов восстановительными эквивалентами.

Большое значение имеет образование аммиака из глутамата. В головном мозге обнаружены многочисленные аминотрансферазы основных, кислых, нейтральных и ароматических аминокислот. При участии этих ферментов аминогруппы различных аминокислот переносятся в конечном счете на глутамино-вую кислоту. Последняя переаминируется с ЩУК при участии аспартатами-нотрансферазы с образованием аспартата. Образование аммиака из аспартата происходит различным образом в митохондриях и цитоплазме. В митохондриях этот процесс связан с аминированием дезаминоформ НАД+ и включает в себя три ферментативных реакции.

Вне митохондрий действует другой циклический процесс образования аммиака, в котором аспартат реаминирует инозинмонофосфат.

Для удаления аммиака в ЦНС служит глутаминсинтетазная реакция.

Глутаминсинтетаза катализирует реакцию:

Этот энзим в мозге животных находится в более высокой концентрации, чем в других органах, составляя 0,2% от общего белка мозга. Энзим требует АТФ и Mg+ и подавляется глицином и аланином. Км для аммония — порядка 0,39 мМ, т.е. при нормальной концентрации аммония в мозге фермент работает в режиме полунасыщения. В нормальных физиологических условиях, когда имеется достаточный уровень АТФ, глу-таминсинтетазная реакция направлена в сторону связывания аммиака.

Образование глутамина является важным механизмом детоксикации аммония, к которому мозг чрезвычайно чувствителен и накопление которого губительно для ЦНС. В частности, повышение аммиака в мозге до концентрации 0,6 мМ сопровождается судорогами. Системное введение солей аммония вызывает конвульсии и увеличение содержания глутамина в мозге. В случае серьезных повреждений печени повышается концентрация аммония и глутамина в спинномозговой жидкости — в этих случаях наблюдается кома. Симптомы печеночной комы смягчаются введением глутамата. Основная часть глутаминсинтетазы локализована в глиальных клетках и лишь небольшая часть ее представлена в нервных окончаниях.

Дезаминирование глутамина катализируется глутаминазой, ферментом, наиболее активным в нейронах, где он локализован в митохондриях. Следует отметить, что активность этого фермента в головном мозге невелика; продукты реакции — глутаминовая кислота и аммоний — тормозят активность фермента.

Предполагается участие этого фермента в мембранном транспорте глутамата. Известно, что биологические мембраны более проницаемы для глутамина, чем для глутамата, и глутаминаза может участвовать в превращении глутамина крови во внутриклеточный глутамат. Глутаминаза играет важную роль также в регуляции содержания глутамата в нервных окончаниях. Тот факт, что глутаминсинтетаза локализована в основном в глиальных клетках, а глутаминаза наиболее активна в нейронах, а также то, что глутамин оказался главным предшественником глутамата и ГАМ К, выполняющих трансмиттерную функцию, послужил основанием для концепции о существовании глушаминового цикла, Глутамат, поглощаясь глиальными клетками, превращается в глутамин в синтетазной реакции, последний входит в нейроны, образуя там глутаминовую кислоту. Таким образом, глутамин служит глиально-нейронааьным транспортером глутамата.

Другой важной функцией глутамата является его участие в синтезе белков и биологически активных пептидов. Глутамат и глутамин составляют вместе от 8 до 10% общих аминокислотных остатков в гидролизате белков мозга. В частности, два хорошо изученных мозгоспецифичных белка — S-100 и 14-3-2 — содержат особенно высокую долю глутаминовой кислоты. Глутамат является также составной частью ряда малых и средних регуляторных пептидов мозга. Это прежде всего глутатион и ряд у-глутамильньгх дипептидов. Некоторые нейропептиды содержат циклическое производное глутамата — аироглутамат в качестве N-терминального остатка, который предохраняет эти пептиды от протеолиза. К таким «пептидам относятся люлибе-рин, тиролиберин, нейротензин, бомбезин и др. .

Введение глутамата в различные районы мозга приводит либо к судорожной активности, либо к распространяющейся депрессии, даже если количество его мало по сравнению с нормальной концентрацией глутамата в мозге. Глутамин не вызывает такого эффекта. При внутривенном введении глутамат может вызвать гибель клеток в определенных районах ЦНС, особенно вокруг желудочков мозга, где менее развит гематоэнцефалический барьер. Нейроны незрелых животных, у которых еще отсутствует высокоразвитый гематоэнцефалический барьер, также очень чувствительны к глутамату. Оральное введение больших количеств глутамата не действует на ЦНС большинства людей, а соли глутамата широко используются в качестве пищевой приправы. Однако у некоторых лиц обнаруживается повышенная чувствительность к глутамату натрия, он вызывает сенсорные и моторные нарушения, включая ощущение жжения, напряжение лица, боль в грудной клетке и головную боль. Эти симптомы известны как „синдром китайских ресторанов“, так как глутамат натрия широко используется в китайской кухне. Многие аналоги глутамата токсичны.

Остановимся на некоторых сторонах нейротрансмиттерной функции глутамата. Для того чтобы глутамат эффективно функционировал в качестве нейротрансмиттера, его модальная внеклеточная концентрация должна быть ниже той, которая вызывает деполяризацию мембран. В действительности она колеблется от 1 до 10 мкМ; такая низкая внеклеточная концентрация глутамата поддерживается активным транспортом в нейроны и особенно в глиальные клетки.

В процессе выхода глутамата в синаптическую щель концентрация его там значительно повышается — до 1 мМ.

Последующий обратный захват глутамата нейронами и астроцитами осуществляется с участием Na-зависимых высокоаффинных переносчиков, из синаптической щели глутамат удаляется в основном путем захвата астроцитами. Для функционирования глутамата в качестве нейротрансмиттера необходимо постоянное пополнение его пула в нервных окончаниях.

Предшественниками трансмиттерного пула глутамата могут быть глюкоза и а-кетоглутарат.

Глутамат может также образовываться из орнитина и аргинина. Но основным источником нейротрансмиттерного глутаматного пула, по данным изотопных исследований, оказался глутамин, который синтезируется в основном в астроцитах, где локализована глутаминсинтетаза.

Далее он легко транспортируется через мембрану астроцитов и с помощью активных переносчиков достигает нервных окончаний.

4. N-Ацетиласпарагиновая кислота

Одним из доминирующих компонентов пула свободных аминокислот мозга является N-ацетиласпарагиновая кислота

Ее концентрация у большинства видов животных в два раза превышает таковую аспарагиновой кислоты. В ненейрональной ткани обнаружены только следы АцА. Она находится в более высокой концентрации в сером веществе по сравнению с белим, представлена также в периферической нервной системе, в сетчатке. Ее концентрация низка при рождении и повышается в процессе развития животного.

АцА образуется с участием ацетил-КоА. Энзим, катализирующий эту реакцию, очищен и изучен. Точная функция АцА в мозге еще не ясна, хотя имеются предположения, что она является частью внутриклеточного фиксированного пула анионов или резервуаром ацетильных групп, а также источником N-ацетилированных конечных групп для синтеза определенных бел-

ков и пептидов мозга. Показано, что ацетильные группы экзогенной АцА кислоты служат предпочтительным источником углерода для синтеза жирных кислот в развивающемся мозге. В головном мозге оказалось два пространственно разобщенных фонда АцА: малый, высокоактивный, локализованный в глии, и большой, медленно обменивающийся, — в нейронах.

Одним из главных компонентов пула свободных аминокислот головного мозга различных животных является у-аминомасляная кислота, продукт а-декарбоксилирования глута-миновой кислоты. Цикл превращений ГАМК в мозге включает три сопряженных энзиматические реакции, получившие название ГАМК-шунта.

Он является ответвлением ЦТК на участке от а-кетоглутарата до сукцината. При участии фермента i лугам атдекарбокс ил азы отщепляется первый карбоксил L-глутаминовой кислоты с образованием ГАМК.

Этот энзим присутствует только в ЦНС и главным образом в сером веществе. ГДК синтезируется в нейрональной соме, а затем очень быстро транспортируется вдоль аксона. ГДК нуждается в пиридоксальфосфате в качестве кофактора, как большинство других декарбоксилаз аминокислот. Кофактор прочно связан с энзимом. Молекулярная масса энзима 85 кД, Kw для глутамата около 0,7 мМ, а Км для пиридоксальфосфата 0,05 М. ГДК специфичен для глутамата, слабо взаимодействует с аспарагиновой кислотой. Скорость ГДК-реакции — лимитирующая ступень синтеза ГАМК. Уровень ГАМК в различных областях нервной системы регулируется действием ГДК и при нормальных условиях мало зависит от действия энзимов деградации ГАМК. ГДК является маркером ГАМК-ергических синапсов.

Энзимы катаболизма ГАМК локализованы отдельно от ГДК. ГАМК-трансаминаза находится в сером веществе мозга, но встречается также и в других тканях. Она также требует пиридоксальфосфат в качестве кофактора и связана с ним прочно. ГАМК-Т обнаружена в митохондриях, в то время как ГДК и ГАМК локализованы в синаптосомах. Км ГАМК-Т для всех субстратов очень высока.

Конечный энзим шунта — дегидрогеназа янтарного полуальдегида — превращает янтарный полуальдегид в янтарную кислоту. Он распространен в ЦНС там же, где и ГАМК-Т. Это митохондриальный энзим, который специфичен для янтарного полуальдегида и НАД»", активируется сульфгидрнлъными реагентами и подавляется субстратом при концентрации последнего выше 10~М.

ГАМК является наиболее широко распространенным медиатором торможения в нервной системе. У млекопитающих она локализована в нервных окончаниях тормозных нейронов ЦНС. ГАМК тормозит биоэлектрическую активность не только головного мозга позвоночных, но и нервных цепочек и ганглиев беспозвоночных животных. Соответственно ГАМК и ферменты ее обмена также локализованы в нервных структурах беспозвоночных, совпадающих с расположением тормозных синапсов. Физиологическое действие ГАМК обусловлено взаимодействием со специальными рецепторами.

Компартментализация метаболизма является ключевым фактором взаимоотношений между глутаматом, глутамином и ГАМК, Впервые это явление было открыто в лаборатории Вэлша в конце 50-х — начале 60-х годов и известно под названием эффекта Вэлша. При определенных условиях в опытах с использованием меченых предшественников специфическая радиоактивность продукта, образованного в короткий промежуток времени, превышает специфическую активность предшественника иногда в несколько раз. Эти наблюдения позволяют сделать заключение, что метаболизм имеет место в малом, высокоактивном пуле, а меченый предшественник разбавляется при выделении большим количеством немеченого предшественника из другого, малоактивного пула.

Инъекция меченого глутамата, аммония, бикарбоната, ацетата, бутирата, цитрата и других, как правило, приводила к тому, что специфическая радиоактивность глутамина была выше предшественника, изолированного вскоре после инъекции. Этот эффект не был обнаружен после инъекции меченой глюкозы, пирувата, лактата, глицерина. Данные позволили заключить, что глюкогенные субстраты метаболируют до аминокислот в компартментах, отличных от тех, в которых обмениваются кетогенные субстраты.

Эффект Вэлша — специфическое свойство нервной системы и демонстрируется в опытах как invitro, так и invivo. В дальнейшем кинетическими исследованиями с различными метаболическими предшественниками было показано наличие в головном мозге различных метаболических компартментов цикла трикарбоновых кислот и аминокислот, связанных с этим циклом. Некоторые исследователи ограничивают число компартментов двумя — большим и малым, другие описывают до шести метаболических компартментов. Очевидным является факт, что каждый компартмент является суммой большого числа микрокомпартментов с более или менее сходными метаболическими свойствами.

«Большой» компартмент включает в себя относительно большие пулы промежуточных соединений, которые быстро обменивается с большим пулом глутамата и малым пулом глутамина. Глюкоза используется во всех компартментах, но в большой компартмент включается до 90% гликолитического потока и большая часть общего потока через ЦТК. Глюкогенные предшественники метаболируют преимущественно в этом ком-партменте, и глюкоза может рассматриваться как предпочтительный метаболит большого компартмента. Этот же компартмент содержит основную часть общего глутамата и аспартата. Однако скорость синтеза глутамина в нем относительно низка.

Полагают, что «большой» компартмент расположен главным образом в нейронах и участвует преимущественно в энергетических процессах. Предположение о нейрональной локализации «большого» метаболического компартмента подтверждается, например, исследованиями на животных с различным ти-реоидным статусом. Так, удаление щитовидной железы при рождении животного выливается в недоразвитие нейрональных систем. Одновременно наблюдается недоразвитие «большого» метаболического компартмента. Напротив, обработка тиреоид-ными гормонами ускоряет созревание мозга и развитие метаболической компартментации.

«Малый» метаболический компартмент включает в себя ЦТК, но с малыми пулами его компонентов, которые быстро обмениваются с малым пулом глутамата, находящимся, в свою очередь, в равновесии с большим пулом глутамина. «Малый» компартмент является главным источником глутамина. Окислительная способность «малого» компартмента низка; вероятно, он не богат структурами, вовлекаемыми в синтез белка, и митохондриями. Морфологическая характеристика астроглии соответствует биохимическим свойствам «малого» метаболического компартмента. Пул глутамата, связанный с синтезом глутамина, составляющий малую долю общего пула глутамата, находится в астропи-тах. Последние составляют лишь около четверти от общего объема ткани мозга, причем концентрация глутамата в них ниже, чем в ткани ЦНС в целом. Коммуникация между «малым» и «большими» компартментами осуществляется через транспорт глутамина и ГАМК, а также путем аксонального тока белков из нейронального перикариона к нервным окончаниям.

Значение метаболических компартментов состоит в пространственном отделении биосинтетических процессов от тех метаболических путей, которые строго контролируются энергетическими нуждами. Это явление характерно именно для нервной ткани, которая отличается большой функциональной гетерогенностью составляющих ее элементов, большой долей крупных и средних клеток с разнообразными системами органелл и, наконец, большой протяженностью отростков нервных клеток, что затрудняет возможность смешивания метаболитов.

Метаболическая компартментализация аминокислот, в частности аминокислот глутаминовой группы, особенно ярко проявляется в субклеточной локализации ферментов в ГАМК-ергическом нейроне и в астроцитах. Так, пируваткар-боксилаза локализована преимущественно в астроцитах, в то время как пируватдегидрогеназный комплекс более активен в нейронах, чем в астроцитах. Преимущественная локализация пируватдегидрогеназы в нейронах ответственна в конечном счете за низкое включение углерода глюкозы, лактата и глицерина в глутамин. Глутамин-синтетаза преимущественно локализована в астроцитах, а глутаминаза — в нейронах. Глутамат, поглощаясь астроцитами, превращается в глутамин в глутамин-синтетазной реакции. Глутамин, выйдя из астроцитов и входя в нейроны, образует глутамат и далее ГАМК. Таким образом, глутамин и ГАМК осуществляют коммуникацию между большим и малым метаболическими компартментами.

Помимо нейронально-глиального транспорта аминокислот в последние годы установлена возможность перемещения свободных аминокислот от проксимального к дистальному концу нейрона. Так, глутамат, введенный в мозг, передвигается вдоль аксонов двигательных нейронов и оказывается в мышечных нервных окончаниях.

7.Глицин и пути его обмена

Глицин участвует не только в биосинтезе белков, но и в других многочисленных биосинтетических процессах, таких, как образование пуринов, порфиринов, креатина, этаноламина, холина, глутатиона и др. Глицин функционирует также в качестве ингибиторного трансмиттера главным образом в спинном мозге.

Так как потребление глицина в нервной ткани относительно велико, а поступление его из крови происходит медленно, значительная часть глицина синтезируется в мозге denovo. Глюкоза и серии являются главными источниками глицина в ЦНС. Серии может образовываться из глюкозы через 3-фосфоглице-риновую кислоту. Кроме того, серии сравнительно быстро поступает из циркулирующей крови. Синтез глицина denovo происходит в нервной ткани из серина путем обратимой N, W-метилентетрагидрофолат-тет-рагидрофолатзависимой трансформации при участии фермента серингидроксил1етилтрансферазы. Реакция катализируется серингидроксиметилтрансферазой и протекает следующим образом:

Этот фермент относится к пиридоксальзависимым при оптимальной активности в нем содержится 6 молекул пиридоксальфосфата. Активность фермента в метаболических пулах головного мозга относительно постоянна, высокая активность его обнаружена в спинном мозге и в мозжечке. Активность в сером веществе спинного мозга больше, чем в белом, причем в вентральном сером веществе она значительно выше, чем в дорзальном. Это коррелирует с содержанием глицина.

Другим источником синтеза глицина в нервной системе является глиоксиловая кислота, однако вклад ее в синтез глицина в головном мозге invivo не может быть значительным, так как ее уровень в мозге низок.

В нервной ткани существует по крайней мере три пути катаболизма глицина. Первый состоит в том, что реакция превращения серина в глицин легко обратима в ткани мозга и серин-гидроксиметилтрансфераза может выступать в качестве энзима деградации глицина. Кроме того, в ЦНС представлены оксидазы аминокислот, которые могут использовать в качестве субстрата наряду с другими аминокислотами глицин:

Третья система распада глицина локализована исключительно в митохондриях и является нетипичной декарбоксилазой аминокислот, так как зависит и от НАД+, и от тетрагидрофолата. Расщепление глицина на одноуглеродные фрагменты протекает по схеме:

Важно отметить образование в этих реакциях метилентетра-гидрофолата, который может быть использован в мозге как источник одноуглеродных фрагментов. То же следует подчеркнуть применительно к описанной серингидроксиметилтрансферазной реакции.

При участии глицин-расщепляющей системы глицин распадается на метилентетрагидрофолат, диоксид углерода и аммиак, затем происходит окисление метилен-ТГФ с образованием СОз — окончательного продукта распада глицина.

Как уже упоминалось, глицин является ингибиторным трансмиттером в спинном мозге. В других районах депрессорное действие глицина проявляется слабо. Поэтому спинной мозг имеет высокоаффинную и низкоаффинную систему захвата глицина, в то время как кора головного мозга содержит только низкоаффинную систему.

Интересно отметить, что повышенный уровень глинина обнаружен в эпилептогенных районах мозга человека, удаленных хирургическим путем. Он накапливается также в эпилептогенных районах мозга у животных с вызванными кобальтом припадками, причем тяжесть припадков пропорциональна накоплению глицина. Возможно, это — компенсаторные процессы.

Высокий уровень глицина в плазме крови или в моче обычно свидетельствует о нарушении мозговых функций. Гиперглицинемия развивается в раннем возрасте и сопровождается эпизодическими рвотами, подавлением двигательной активности, нарушением ЭЭГ и часто кончается смертью. Известны два типа гиперглииинемии — кетотическая и некетотическая, которая в большинстве случаев тоже летальна. Кетотическая гиперглицинемия сопровождается губчатой дегенерацией белого вещества мозга и задержкой миелинизации.

Метионин представляет особый интерес как источник метильных групп. Полученный с пищей, а также образованный в других тканях, метионин поступает в мозг через систему активного транспорта больших нейтральных аминокислот. Концентрация метионина в целом мозге сравнительно низка — от 10 до 100 нмоль/г сырой массы у различных видов животных. Региональные различия в концентрации метионина невелики. Влияние диеты на концентрацию метионина в мозге также незначительно из-за конкурентных отношений с нейтральными аминокислотами за транспортные системы. Метионин в пуле свободных аминокислот утилизируется на 80% для синтеза белка.

Метаболизм свободного метионина до цистеина начинается с образования S-аденозилметионина, реакция катализируется метионин-аденозилтрансферазой. S-Аденозилметионин является главным донором метальных групп в мозге, необходимых для метилирования катехоламинов, гистамина, фосфатидилэтаноламина, нуклеиновых кислот.

Процессам метилирования отводится важная роль: в проведении сигнала через мембрану, в регулировании жидкостно-сти мембраны и, наконец, в процессах метилирования ДНК. Последние считают вероятными участниками механизмов долговременной памяти. В то время как первая половина цикла превращения метионина связана главным образом с метилированием, вторая часть его ассоциирована в основном с нейротрансмиттерной и нейромо-дуляторной функцией. Оказалось, что 20% серусодержащих аминокислот локализовано в синаптосомах.

Цистатиония — продукт конденсации гомоцистеина и серина. Фермент, участвующий в этом процессе, — цистатионин-синтаза. Цистатионин является промежуточным продуктом метаболизма таких серусодержащих аминокислот, как метионин, цистеин и таурин. Будучи промежуточным метаболитом в обмене серы, он важен для синтеза сульфатидов и сульфатированных мукополисахаридов. Содержание цистатионина выше в белом веществе, чем в сером.

У человека высокие концентрации цистатионина обнаружены в мозге и гораздо меньшие — в других тканях. Интересно отметить, что мозг человека содержит значительно более высокие концентрации цистатионина, чем мозг животных. Концентрация цистатионина в мозге человека повышается в процессе развития, а в мозге крысы, напротив, снижается. Биологическая роль цистатионина не выяснена. При некоторых психических заболеваниях, а также при действии нейротоксинов содержание цистатионина в мозге резко возрастает. В то же время у некоторых умственно отсталых больных с врожденными нарушениями обмена серусодержащих аминокислот содержание цистатионина в мозге было чрезвычайно низким.

Генетическая потеря цистатионинсинтазы ведет к болезни — гомоцистинурии, которая сопровождается экскрецией гомоцистеина с мочой, повышением содержания гомоцистеина и метионина в крови и дефицитом цистатионина и цистатионинсинтазы в мозге и печени. Гомоцистинурия является второй по распространенности аминоацидурией после фенилкетонурии с ярко выраженным действием на ЦНС. Одной из характеристик болезни является фиброз и утончение кровеносных сосудов. Терапевтическое средство — снижение в диете метионина и доноров метильных групп — таких, как холин. Для таких больных необходимо включение цистина в диету, так как они не могут образовывать его из метионина. Клиническая картина у детей выражается в эпизодических судорожных припадках, тяжелом физическом и умственном отставании.

Таурин образуется в мозге посредством окисления цистеина до цистеинсульфоновой кислоты, которая декарбоксилируется с образованием гипотаурина с последующим окислением его до таурина. Он обнаружен в высоких концентрациях в нервной системе беспозвоночных и позвоночных животных. Высокие концентрации таурина найдены в мозге эмбрионов, а также в ранний период постэмбрионального развития. Так, у мышей в первые дни жизни концентрация таурина выше, чем концентрация аминокислот глутаминовой группы, в 3 раза, а у взрослых это отношение уменьшается.

Региональное распределение таурина неравномерно. Он содержится в нейронах и в глии, причем большая часть его обнаружена в растворимой фракции. В мозге крыс синаптосомальные фракции полосатого тела, коры мозга и мозжечка содержат наиболее высокое количество таурина. Интересно, что таурин — наиболее распространенная аминокислота сетчатки некоторых видов животных.

Подобно другим короткоцепочечным омега-аминокислотам таурин подавляет нейрональную возбудимость, вызывая гиперполяризацию. Таурин — предполагаемый трансмиттер в коре и стволе мозга. По последним сведениям, он может быть нейротрансмиттером в некоторых районах гиппокампа. Инактивация таурина в мозговых синапсах осуществляется с помощью высокоаффинного обратного захвата. Описан также захват таурина глиальными клетками, что указывает на роль глии в модуляции его синаптической функции.

Таурин связан с регуляцией транспорта кальция в нервной ткани. Многие авторы склонны объяснять высокую концентрацию таурина в мозге именно участием его в контроле уровня Са+. Модуляция таурином внутриклеточной концентрации Са+, в свою очередь, регулирует нейрональную возбудимость. Таурин подавляет захват и освобождение Са+ синаптосомами мозга. Более того, он подавляет связывание Са+ микросомами мозга в условиях, стимулирующих деполяризацию. Хотя молекулярный механизм взаимодействия таурина с кальций-регулирующими системами еще не ясен, приведенные данные свидетельствуют о том, что роль таурина в организме не ограничивается только нейромедиаторной функцией.

Интересен факт обнаружения нейропептидов, содержащих таурин, которые оказывают гормоноподобные эффекты.

Таурин является слабым $-адренергическим агонистом, он активирует К+ -стимулированное освобождение норадреналина из коры мозга, не влияя на спонтанное освобождение. Интравентрикулярное введение таурина повышает синтез дофамина и норадреналина во всех изученных районах мозга. Влияние его на двигательную активность и регуляцию температуры животного подтверждает медиацию этих эффектов через катехоламинерги-ческую систему. Таурин оказывает антиконвульсивное действие при эпилепсии, блокирует агрессивные реакции у крыс-киллеров. Однако следует иметь в виду, что содержание таурина в мозге трудно корректировать — он плохо проникает через ГЭБ.

Клинически тауриновый дефицит может выражаться в эпилептических припадках, наследственной атаксии Фридрейха, куриной слепоте и др.

Ароматические аминокислоты — триптофан, фенилаланин и тирозин — важны как предшественники 5-гидрокситрилтамина и катехоламинов, играющих чрезвычайно важную роль в нейрональных процессах.

Триптофан является незаменимой аминокислотой и не синтезируется в мозге высших животных. В мозге триптофан может переаминироваться с использованием щавелевоуксусной кислоты в качестве акцептора аминогруппы, а также декарбоксилироваться. Физиологическое значение первой реакции неизвестно. Наиболее интересный нейрональный путь метаболизма триптофана, которой составляет всего 5% от общего метаболизма триптофана в организме — это образование серотонина и мелатонина.

Первая ступень этого процесса — гидроксилирование триптофана в 5-м положении — катализируется триптофан-5-гидро-ксилазой. Энзим требует молекулярного кислорода и тетрагидробиоптерина в качестве кофактора. Этот фермент локализован исключительно в серотонинергических нейронах мозга. Он не полностью насыщен своим субстратом в мозге, Км для триптофангидроксилазы заднего мозга — 50 мкМ, а содержание триптофана там — 30 мкМ. Поэтому даже физиологические вариации уровня триптофана мозга влияют на синтез серотонина, а нагрузки триптофаном изменяют поведенческие реакции животных. Катехоламины являются сильными ингибиторами энзима, что говорит о тесной взаимосвязи между катехольными и индольными путями образования биоаминов.

Вторая ступень катализируется 5-окситриптофандекарбокси-лазой и ведет к образованию серотонина. В эпифизе серотонин при участии специфической ацетилтрансфера-зы ацетилируется с образованием N-ацетилсеротонина; последний подвергается О-метилированию с участием фермента метилтрансферазы, используя в качестве донора метильной группы S аденозилметионин При этом образуется гормон эпифиза мелатонин. Активность двух последних ферментов ответственна за изменение светового — темнового цикла у животных и зависит от циркадного ритма.

На содержание триптофана, а следовательно, и серотонина в мозге оказывает влияние характер используемой пищи; оно возрастает при приеме полноценных белков и богатой углеводами пищи. Углеводы стимулируют освобождение инсулина, который способствует поступлению в мышцы, а следовательно, удалению из циркуляции разветвленных аминокислот — конкурентов ароматических аминокислот за транспортные системы ГЭБ мозга. Таким образом, снижение уровня разветвленных аминокислот в плазме крови приводит к повышению транспорта ароматических аминокислот в мозг. Влияние пищи на поведение людей многие исследователи связывают отчасти с изменением уровня ароматических аминокислот в мозге, а отсюда и уровня биогенных аминов.

Запасы триптофана у животных составляют лишь 2-4% от дневной нормы, поэтому небольшие различия в скорости синтеза и катаболизма белка в зависимости от диеты или гормонального состояния могут вызвать большие изменения в уровне свободного триптофана. В регуляции уровня триптофана, а следовательно, и серотонина в мозге большую роль играет также кинурениновый путь катаболизма триптофана, реализующийся в печени. Этот путь инициируется триптофанпирролазой — печеночным ферментом, который использует главным образом триптофан из пищи и индуцируется как своим субстратом триптофаном, так и глюкокортикоидами. Гормон роста, напротив, предотвращает индукцию триптофанпирролазы триптофаном. Таким образом, триптофанпирролаза печени способствует удалению избытка триптофана из плазмы крови, что, в свою очередь, минимизирует изменение содержания триптофана в мозге.

Фенил аланин также является незаменимой аминокислотой и не синтезируется в мозге высших животных. В мозге происходит трансаминирование и декарбоксилирование фенилаланина. Эти реакции катализируются N-тирозин-2-оксоглутаратаминотранс-феразой и ДОФА-декарбоксилазой.

Главный путь метаболизма фенилаланина в целом организме — его гидроксилирование до тирозина с участием фермента фенилалашш-4-гидроксилазы — не обнаружен в мозге. Другие энзимы, присутствующие в мозге, могут катализировать гидроксилирование лишь небольшой части фенилаланина. Печеночная система гидроксилирования фенилаланина тщательно изучена, так как ее нарушение ведет к самому распространенному и тяжелому заболеванию, связанному с метаболизмом аминокислот, — фенилкетонурии. Система состоит из самой гидроксилазы, неконъюгированного птеридинового кофактора и пиридинсвязанной редуктазы для рециклизирования птеридинового кофактора. Гидроксилаза — сложный железосодержащий белок — является классической монооксигена-зой, требующей молекулярного кислорода в качестве окислителя, и L-эритротетрагидробиоптерина в качестве восстановителя. Второй энзим системы — дегидроптеринредуктаза — катализирует рециклизацию окисленного кофактора, используя НАДФН как источник электронов.

Фенилкетонурия — это следствие генетически обусловленного отсутствия фенилгидроксилазной активности в печени, она проявляется аминоацидурией с нарушениями нервной системы. Уровень фенилаланина в крови таких больных возрастает в несколько сотен раз по сравнению с нормой.

Заболевание сопровождается серьезными неврологическими нарушениями, включая конвульсии, тремор, умственные дефекты, необратимое и глубокое недоразвитие. Большинство больных детей гиперактивны и агрессивны, многие из них являются микроцефалами со слабой пигментацией кожи, волос, глаз. Из биохимических нарушений характерным является генерализованный дефицит миелина, сопровождающийся снижением уровней холестерина, цереброзидов, изменением отношения насыщенных и ненасыщенных жирных кислот.

Стандартная терапия фенилкетонурии — снижение доли фенилаланина в диете.

Тирозин — один из важнейших источников нейромедиаторов — катехоламинов. Превращение тирозина в катехоламины является главным путем метаболизма тирозина в мозге и надпочечниках. Первая ступень, катализируемая тирозин-З-гидроксилазой, лимитирует скорость всего процесса. Энзим является оксидазой со смешанными функциями, требующей кислорода, восстановленного птеридина и Fe+. Под действием фермента тирозин превращается в 3,4-дигидроксифени-лаланин. Активность его подавляется катехоламинами. Естественно, этот энзим служит надежным цитохимическим маркером нейронов, способных синтезировать катехоламины.

Декарбоксилирование ДОФА до дофамина выполняется ДОФА-декарбоксилазой, которая требует в качестве кофактора пиридоксальфосфат. В мозге энзим неспецифичен, действует на широкий спектр ароматических аминокислот, включая 5-гидрокситригттофан.

Дофамин-р-гидроксилаза, необходимая для его превращения в норадреналин, также присутствует в мозге. Показана необходимость молекулярного кислорода и аскорбиновой кислоты для его действия. Энзим содержит ионы меди и стимулируется фумаровой кислотой. Он неспецифичен и катализирует гидроксилирование боковых цепей большого количества р-фенилэтиламинпроизводных; в частности, тирамин является лучшим субстратом для энзима, чем дофамин.

Основной путь деградации тирозина в организме млекопитающих — через р-гидроксифенилпируват, гомогентизиновую кислоту и расщепление кольца — не встречается в головном мозге. В мозге присутствует Ь-тирозин-2-оксоглутаратами-нотрансфераза, которая осуществляет активное переаминирование тирозина в нейрональной ткани. Тирозин мозга является также субстратом для неспецифической декарбокси-лазы ароматических аминокислот.

Хотя известен ряд нарушений во всех путях деградации тирозина, ни один из них не вызывает тяжелых неврологических повреждений.

Гистидин не синтезируется в головном мозге, но он активно транспортируется через гематоэнцефалический барьер. В мозге гистидин может декарбоксилироваться, образуя гистамин — важный нейромедиатор и нейромодулятор. Декарбоксилирование гистидина могут выполнять два энзима. Первый из них — специфическая гистидин-декарбоксилаза, энзим, требующий пиридоксальфосфат в качестве кофактора. Он очень активен в ряде периферических нервов и в симпатических ганглиях. В то же время в головном и спинном мозге активность его мала; К^ для гистидина в нормальных условиях — порядка 410~ М. Фермент индуцируется при стрессе.

Вторым энзимом, который осуществляет декарбоксилирование гистидина, является неспецифическая декарбоксилаза ароматических аминокислот, действующая на ДОФА, 5-гидрокситриптофан, а также на гистидин. Представлено большое количество доказательств, что именно этот энзим является ответственным за декарбоксилирование гистидина в ЦНС.

Разрушение гистамина в целом организме происходит в основном при участии гистаминазы, но этот фермент отсутствует в мозге. Главный путь катаболизма гистамина в мозге — метилирование в 4-м положении с использованием S-аденозилметионина в качестве донора метальной группы при участии специфического энзима гистамин-метилтрансферазы. При подавлении этого энзима уровень гистамина в мозге сильно возрастает. Образованный метилгистамин затем окисляется до соответствующего альдегида и до метилимидазо-луксусной кислоты, которая экскретируется.

Концентрация гистамина в головном и спинном мозге низка, но он присутствует в значительных количествах в некоторых постганглионарных нервах. Его концентрация велика в переднем гипофизе и гипоталамусе. Субклеточно гистамин локализован преимущественно в синаптосомах.

Лизин пока мало исследован в аспекте его значения для нервной системы. Пути деградации лизина в мозге точно не установлены, но они отличаются от локализованных в печени. Лизин в мозге может катаболировать через образование пипеколовой кислоты.

Интересно и важно, что нервная система исключительно чувствительна к нарушению метаболизма лизина в других тканях. Последнее приводит к тяжелым деструктивным и демиелинизационным процессам в ЦНС, сопровождающимся умственной отсталостью.

Аргинин в целом организме ассоциируется прежде всего с процессом синтеза мочевины. Однако в головном мозге не существует полного цикла образования мочевины, хотя некоторые энзимы этого метаболического пути, такие как аргинино-сукцинатсинтетаза, аргининосукдиназа и аргиназа, найдены в этом органе. Центральный фермент цикла — орнитинкарбамоилтрансфераза — не обнаружена в мозге.

Недавно выявлена еще одна важная функция аргинина. Он является источником образования окиси азота — мощного сосудорасширяющего фактора и нейромедиатора. Синтез N0 осуществляется с помощью фермента аргинат-синтазы. Образующийся при этом цитруллин включается в известный цикл образования мочевины.

Генетические дефекты, связанные с метаболизмом аргинина и образованием мочевины вне нервной ткани, сопровождаются неврологическими последствиями. Все эти генетические заболевания, такие как цитруллинемия, аргининосукцинатацидурия, аргининемия, сопровождаются накоплением в плазме крови и в тканях отдельных метаболитов аргинина. Но, вероятно, наиболее серьезным последствием таких метаболических блоков является сопутствующее им повышение концентрации ионов аммония — гипераммониемия, особенно опасная для растущего мозга и часто ведущая к коме. При аргининосукцинатацидурии умственная отсталость может быть очень тяжелой. Это заболевание сопровождается дегенеративными изменениями в белом веществе мозга, дефектами миелинизации и недоразвитием кортикальных слоев.

Метаболизм орнитина — диаминокислоты, являющейся ближайшим родственником аргинина, в нервной ткани открывает еще одну важную функцию аминокислот — они являются предшественниками полиаминов, соединений, которые выполняют пока мало изученный комплекс регуляторных функций.

1. Аминокислоты широко используются для синтеза многих белков, пептидов, нейромедиаторов и других биологически важных соединений. Некоторые аминокислоты сами служат нейромедиаторами.

2. Состав пула свободных аминокислот в нормальных физиологических условиях отличается постоянством, отдельные районы мозга имеют свои характерные метаболические пулы.

3. Разнообразные активные транспортные процессы служат для поддержания уровней и распределения метаболитов как в целом органе, так и в отдельных его районах. Многообразие систем транспорта аминокислот ЦНС отражает полифункциональность этих соединений.

4. Пространственная разобщенность отдельных ступеней метаболизма аминокислот создает условия ддя пространственного разобщения энергетического метаболизма и не связанных с энергетикой функций и превращений аминокислот.

5. Головной мозг характеризуется высокой концентрацией аминокислот глутаминовой группы. Глутаминовая кислота, глутамин, ГАМК, аспарагиновая и N-ацетиласпарагиновая кислоты составляют в сумме 75% пула свободных аминокислот мозга.

6. Метаболизм аминокислот глутаминовой группы также чрезвычайно интенсивен. Эти аминокислоты выполняют ряд важных функций в ЦНС: энергетическую, служат для образования и устранения аммиака, выполняют роль нейромедиаторов и нейромодуляторов.

7. Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

8. Нарушения, особенно генетические, в энзиматической системе метаболизма аминокислот часто имеют тяжелые неврологические последствия. Нарушение транспорта аминокислот в других органах часто также сопровождается неврологическими расстройствами.

www.ronl.ru

Реферат: Реферат: Аминокислоты

Содержание:

Введение

Классификация аминокислот

Виды изомерии аминокислот

Двухосновные моноаминокислоты

Одноосновные диаминокислоты

Оксиаминокислоты

Серосодержащие аминокислоты

Гетероциклические аминокислоты

Способы получения аминокислот

Химические свойства аминокислот:

А) Свойства аминокислот, зависящие от наличия карбоксила.

Б) Свойства аминокислот, зависящие от наличия аминогруппы.

В) Свойства аминокислот, зависящие от совместного наличия карбоксильной и аминогруппы

Окислительно-восстановительные процессы, протекающие с участием аминокислот.

Связывание минерального азота аминокислотами.

Список использованной литературы

 

 

Введение

Аминокислоты - такие кислоты, которые помимо карбоксильной группы содержат аминогруппу Nh3.

 

 

Классификация аминокислот

1) по углеводородному радикалу (предельные, непредельные, ароматические, циклические, гетероциклические.)

2) по числу карбоксильных групп (одноосновные, двухосновные и тд.)

3) по числу аминогрупп (моноамино, диамино и тд.)

4) по наличию других функциональных групп (оксиаминокислоты, серосодержащие аминокислоты)

Виды изомерии аминокислот

1) изомерия углеродного скелета

2) изомерия положения аминогруппы: 2,β, γ и α

В природных условиях, как правило, встречаются α-аминокислоты. Они образуют мономерные звенья белковых молекул, то есть входят в состав белка.

3) оптическая изомерия. Аминокислоты, которые встречаются в природе L-ряда. Рассмотрим оптическую изомерию на примере α-аминопропионовой кислоты.

Сh4 – *CH – C = O  α-аминопропионовая кислота, или аланин.

            Nh3     OH

     Оптические изомеры:

      ОН                            OH

       С  = О                       C = O

Н – С – Nh3              h3N – C – H

       Ch4                                          Ch4

D-изомер(-)          L- изомер (+)

L – изомеры отличаются от D – изомеров вкусом. D-изомеры сладкие, а  L- изомеры горькие или безвкусные. Природные аминокислоты это L- изомеры. В биологическом отношении аминокислоты очень важные соединения, так как из их остатков строятся белковые молекулы. В состав белков входят 20-25 аминокислот.  Это следующие:

1) Сh3 – C = O       аминоуксусная кислота, или глицин

    Nh3       OH 

2)Ch4 – CH – C = O     α- аминопропионовая кислота, аланин

              Nh3     OH

3) Сh4 – CH – CH – C = O      валин

               Ch4   Nh3       OH

4) Ch4 – CH – Ch3 – CH – C = O      лейцин

               Ch4             Nh3      OH

5) Ch4 – Ch3 – CH – CH – C = O     изолейцин

                          Ch4   Nh3      OH

6) C6H5 – Ch3 – CH – C = O     фенилаланин

                            Nh3      OH

 

Двухосновные моноаминокислоты

1) O = C – CH – Ch3 – C = O  аспарагиновая кислота

     HO        Nh3                OH

     Амид этой кислоты называется аспарагин. Причем на аминогруппу замещается гидроксил наиболее удаленный от аминогруппы:

O = C – CH – Ch3 – C = O - аспарагин

 HO       Nh3               Nh3

2) O = C – CH – Ch3 – Ch3 – C = O - глутаминовая кислота

      HO      Nh3                           OH

O = C – CH – Ch3 – Ch3 – C = O – глутамин (амид глутаминовой кислоты)

  HO      Nh3                           Nh3

Одноосновные диаминокислоты

 

1) Ch3 – Ch3 – Ch3 – CH – C = O  -  орнитин

    Nh3                         Nh3       OH

2) Ch3 – Ch3 – Ch3 – Ch3 – CH – C = O  - лизин

    Nh3                                                         Nh3       OH

3) NH = C – NH – Ch3 – Ch3 - Ch3 – CH – C = O  -аргинин, в процессе обмена преобразуется в к-ту цитруллин

            Nh3                                   Nh3        OH

4) Nh3 – C – NH – Ch3 – Ch3 – Ch3 – CH – C = O  -цитруллин

             O                                         Nh3       OH

 

Оксиаминокислоты

 

1) Сh3 – CH – C = O  - серин

    OH      Nh3        OH

2) Ch4 – CH – CH – C = O  - треонин

               OH    Nh3      OH

3) HO –C6h5 – Ch3 – CH – C = O – оксифенилаланин или тирозин

                                 Nh3       OH

 

Серосодержащие аминокислоты

 

1) Ch3 – CH – C = O  - цистеин

     SH      Nh3      OH

2) Ch3 – CH – C = O   - цистин

     S         Nh3      OH

     S

     Ch3 – CH – C = O

                Nh3      OH

3) Ch4 – S – Ch3 – Ch3 –CH – C = O   метионин

                                   Nh3       OH

 

Гетероциклические аминокислоты

 

1) h3C                       Ch3                                        2) OH – HC                    Ch3

                                                                                                                                 OH

    h3C                         CH – C = O                                      h3C                      CH – C =O

                    NH                  OH                                                           NH        

               пролин                                                                       оксипролин

3)  N                       C – Ch3 – CH – C = O             4)         CH                                       Nh3   OH

                                                 Nh3      OH               HC                 C             C – Ch3 – CH – C = O

   HC                       CH                                              HC                 C             CH

                  NH                                                                       CH        NH

            гистидин                                                                       триптофан

Среди всех аминокислот 9 являются незаменимыми, то есть они в тканях синтезироваться не могут и должны поступать с пищей. Это кислоты:

1)         Валин;

2)         Лейцин;

3)         Изолейцин;

4)         Фенилаланин;

5)         Лизин;

6)         Треонин;

7)         Метионин;

8)         Гистидин;

9)         Триптофан.

 

Способы получения аминокислот

 

1.Аминокислоты получаются при гидролизе белка, который протекает при нагревании белковых веществ при температуре равной 1000С , в присутствии серной кислоты в течении 24-48 часов. Этот способ применяется при количественном и качественном определении аминокислот в белке, как правило, методом хроматографии.

2.Действие аммиака на галогенкислоты:

 Ch3 – C = O + Nh4                HCL + Ch3 – C = O

  CL    OH                                            Nh3   OH

хлоруксусная                                     глицин

кислота

3. Присоединение аммиака к непредельным кислотам (таким способом получают β-аминокислоты).

 Ch3 = CH – C = O + HNh3                  Ch3 – Ch3 – C = O

                   OH                                      Nh3             OH

       акриловая к-та                        β – оксипропионовая к-та

Присоединение водорода идет против правила Марковникова, так как сопряженные двойные связи.

4.Восстановительное аминирование. Протекает в растительных и животных организмах. Это способ связан с введением аминогруппы в кетокислоту. Протекает в два этапа:

ОН                              OH                                ОН

С  = О         +Nh4                 C = O             +2H.         С = O

С  = О         -h3O            C = NH                        СH – Nh3

СН3                               Ch4                             Ch4

пировино-            иминокислота                    аланин

градная к-та

Химические свойства аминокислот:

Они зависят от наличия:

1)карбоксильной группы

2)аминогруппы

3)от совместного наличия двух этих групп.

А) Свойства аминокислот, зависящие от наличия карбоксила.

Аминокислоты, как и любые кислоты, способны образовывать: а)соли; б)галогенангидриды; в)сложные эфиры; г)амиды; д)ангидриды; е)подвергаются декарбоксилированию.

                                            R – CH – C = O + h3O - соль

                                                   Nh3      ONa           Nh3  CL

                                                                          R – CH – C = O –хлорангидрид

R – CH – C = O                                                      R – CH – C = O + h3O

      Nh3  OH                                                                 Nh3  O – Ch4 – сложный эфир

                                                                         R – CH – C = O + h3O

                                                                               Nh3      Nh3 – амид

                                                      R – Ch3 - амин

                                                            Nh3

Реакция декарбоксилирования аминокислот протекает в присутствии ферментов декарбоксилаз, а также при разложении белковых соединений, в результате таких реакций образуются амины (низшие амины содержатся в кишечных газах и имеют неприятный запах).

Nh3 – Ch3 – Ch3 – Ch3 – Ch3 – CH – C = O      -CO2        Nh3 – (Ch3)5 – Nh3

             лизин                        Nh3  OH                     диамин пептаметилендиамин (кадаверин)

 

Б) Свойства аминокислот, зависящие от наличия аминогруппы.

1) Реакции ацилирования (ацил- радикал кислоты). По этой реакции один водород аминогруппы замещается на радикал кислоты – ацил. Примером может служить реакция обезвреживания бензойной кислоты в организме животных:

C6H5 – C = O + HNh3 – Ch3 – C = O                C6H5 – C = O         OH

          OH                                  OH                                NH – Ch3 – C = O

бензойная к-та                     глицин                              гиппуровая к-та

2) Реакция аминирования (амин- углеводородный радикал). По этой реакции один водород аминогруппы замещается на углеводородный радикал – амин (такие реакции проводятся в лаборатории, когда надо протитровать аминокислоту, то есть  количественно определить аминокислоту).

                                                                                       OH

Ch4 – CH – C = O + Ch4 – I              HI + Ch4 – CH – C = O

           Nh3 OH                                                     NH – Ch4

аланин                пористый                   

                               метил

По этой  реакции аминогруппа как бы зажимается в тиски, блокируется и становится нереакционноспособной. Реакционноспособной становится только карбоксильная группа.

3) Реакции дезаминирования. Дезаминирование- это отщепление аминогруппы в виде аммиака. Такие реакции протекают в обменных процессах, а часто и при нарушении обмена. Они ведут к распаду аминокислот. Различают четыре вида дезаминирования:

а) окислительное дезаминирование.

 

OH                                       OH                             OH

C = O                +O                 C = O         +h3O           C = O   + Nh4

CH – Nh3      ОКИСЛЕНИЕ           C = NH                      C = O

Ch4                                       Ch4                                   Ch4

аланин                     иминокислота            кетокислота (пировиноградная)

Окислительное дезаминирование – процесс, обратный восстановительному аминированию.

 

б) восстановительное дезаминирование. Протекает под действием водорода:

OH                                 OH

C = O                +2H          C = O  + Nh4

CH – Nh3                       Ch3

Ch4                                      Ch4

аланин              пропионовая(предельная) к-та

в) гидролитическое дезаминирование. Протекает под действием воды. При этом из аминокислоты образуются оксикислоты:

OH                                 OH

C = O                +HOH       C = O    + Nh4

CH – Nh3                       CH – OH

Ch4                                      Ch4

аланин                     оксикислота (молочная)

г) внутримолекулярное дезаминирование:

 R                                                                                      R

Ch3                                                                                   CH

CH – Nh3      ПРОТЕКАЕТ В ОСНОВНОМ В МИКРООРГАНИЗМАХ        CH     + Nh4 

C = O                                                                                C = O

OH                                                                                   OH

                                                                            непредельная к-та

Основной  путь дезаминирования – это окислительное дезаминирование. Этот вид дезаминирования преобладает у животных, растений и большинства микроорганизмов. Происходит под действием ферментов дегидрогеназ. Однако, активность дегидрогеназы тканей животных для большинства аминокислот очень низкая. Активна только дегидрогеназа глутаминовой кислоты. Поэтому большинство аминокислот в организме животных дезаминируются непрямым путем. Непрямое окислительное дезаминирование характеризуется предварительным переаминированием аминокислот с α- кетоглутаровой кислотой:

                       COOH                                                           COOH

R                     Ch3                                                   R              Ch3

CH – Nh3   + Ch3                                               C = O    + Ch3

COOH            C = O                                            COOH      CH – Nh3

                       COOH                                                            COOH

амино-       α-кетоглутаровая                  кетокис-      глутаминовая

кислота                к-та                                       лота             кислота

Образующаяся при этом глутаминовая кислота затем дезаминируется под действием глутаматдегидрогеназы до α-кетоглутаровой кислоты, которая может снова участвовать в непрямом дезаминировании других аминокислот.

COOH                               COOH                            COOH

Ch3                                     Ch3                                 Ch3

Ch3               -2H                Ch3                     +h3O            Ch3   + Nh4

CH – Nh3                            C = NH                            C = O

COOH                              COOH                              COOH

глутаминовая         иминокислота        α-кетоглутаовая к-та

к-та

В) Свойства аминокислот, зависящие от совместного наличия карбоксильной и аминогруппы

1)Амфотерные свойства одноосновных моноаминокислот. Реакция водных растворов таких аминокислот на лакмус нейтральна. Это объясняется тем, что карбоксильная группа обладает кислотными свойствами, а аминогруппа – основными. Эти группы взаимодействуют с образованием, так называемых внутренних солей. Внутренние соли – это соли, образующиеся в результате взаимодействия кислотных и основных групп, находящихся в пределах одной и той же молекулы. При образовании внутренних солей аминокислот ион водорода отщепляется от карбоксильной группы и присоединяется к аминогруппе, которая превращается как бы в ион замещенного аммония. Например, для аланина:

Ch4 – CH – C = O                  Ch4 – CH – C = O -

           Nh3 OH                                 +Nh4  O

                                           внутренняя соль (имеет два полюса + и -).

                                                            ОН

Такие аминокислоты  ( с одной – С = О и одной Nh3) обладают амфотерными свойствами, они могут реагировать как с кислотами, так и с основаниями, образуя при этом комплексные соли. Взаимодействие аминокислоты с кислотой:

Ch4 – CH – C = O  + H+CL-                        Ch4 – CH – C = O    + 

         +Nh4   O-                                              Nh4 OH           CL- 

                                          комплексная соль, где аминокислота является катионом

Взаимодействие со щелочью:

Ch4 – CH – C = O  + NaOH                    Ch4 – CH – C = O     –

         +Nh4   O-                                             Nh3    O-           Na+ + h3O

                                           комплексная соль, где аминокислота является анионом

2) Образование ди- три и полипептидов. Эта реакция протекает в организме под действием ферментов пептидаз. Она ведет к образованию первичной структуры белка. При образовании дипептида две аминокислоты связываются пептидной связью. При этом одна аминокислота реагирует карбоксильной группой , а другая – аминогруппой.

Ch4 – CH – C = O + HNH – Ch3 – C = O     -h3O      Ch4 – CH – C – NH – Ch3 – C = O

           Nh3  OH                             OH                                 Nh3  O                       OH

        аланин                         глицин                               дипептидаланинглицин

 – С = О  -пептидная связь

  NH

Та аминокислота, от которой уходит гидроксил карбоксильной группы, то есть остается кислотный радикал – ацил, меняет окончание «ин» на «ил».

3) Особое поведение аминокислот при нагревании, в присутствии водоотнимающих веществ.

а) α- аминокислоты при нагревании образуют циклические амиды – дикетопиперазины. взаимодействуют две молекулы :

h4C                                                                  h4C             

         CH – C = O                                                     CH – C = O

h3N                OH                -2h3O                   NH                      NH

HO                   Nh3                                                 O = C – HC

  O = C – CH                                                                Ch4

                     Ch4                            дикетопиперазин (2, 5 –диметил – 3, 6 дикетопиперазин)

Для разных кислот радикалы при группе – СН могут быть разными, а ядро дикетопиперазина одно и то же. По мнению русских ученых Землинского, Садикова дикетопиперазины содержатся в полипептидных цепях. Они связывают остатки аминокислот также, как и пептидные связи.

б) β-аминокислоты при нагревании теряют молекулу аммиака и превращаются в непредельные кислоты.

Ch4 – CH – Ch3 – C = O       -Nh4         Ch4 – CH = CH – C = O

           Nh3            OH                                                      OH

Β-аминомасляная к-та                       кротоновая к-та   

в) γ-аминокислоты при нагревании, выделяя воду , образуют внутримолекулярные циклические амиды, так называемые лактамы:

Ch3 – Ch3 – Ch3 – C = O                            h3C  –  Ch3

Nh3                       OH                              h3C              C = O  - лактам γ-аминомасляной к-ты

  γ-аминомасляная к-та                                NH

Лактам капроновой кислоты при полимеризации образует волокно-капрон.

Окислительно-восстановительные процессы, протекающие с участием аминокислот.

Эти процессы протекают в организмах растений и животных. Имеются такие соединения, которые способны либо выделять водород, либо  поглощать его (присоединять). При биологическом окислении идет отщепление двух атомов водорода, а при биологическом восстановлении – присоединение двух томов водорода. Рассмотрим это на примере цистеина и цистина.

Ch3 – CH – C = O                         Ch3 – CH – C = O

HS      Nh3 OH             -2H             S         Nh3 OH

HS      Nh3 OH                +2H             S        Nh3 OH

Ch3 – CH – C = O                        Ch3 – CH – C = O

     цистеин                                            цистин

восстановленная форма         окисленная форма

Две молекулы цистина, теряя два атома водорода, образуют окисленную форму – цистеин. Этот процесс обратимый, при  присоединении двух атомов водорода к цистину образуется цистеин -  восстановленная форма. Аналогично протекает процесс окислительно- восстановительный на примере трипептида – глутатиона, который состоит из трех аминокислот: глутаминовой, глицина и цистеина.

                        цистеин

O = C – NH – CH – Ch3 – SH                                     O = C – NH – CH – Ch3 – S – S –Ch3 – CH – NH – C = O

       Ch3            C = O                              -2Н                     Ch3          C = O                                 C = O         Ch3

       Ch3               NH                              +2Н                     Ch3          NH                                     NH             Ch3

       CH – Nh3     Ch3         глицин                                   CH – Nh3     Ch3                               Ch3             CH – Nh3

       C = O            C = O                                                        C = O           C = O                           C = O          C = O

OH                OH                                                          OH               OH                                OH              OH

          (2 молекулы)

трипептид восстановленная форма                                          гексапептид – окисленная форма

При окислении отщепляется 2 атома водорода и соединяются две молекулы глутатиона и трипептид превращается в гексапептид, то есть окисляется.

Связывание минерального азота аминокислотами.

У растений при избытке азота в почве аминокислоты (аспарагиновая и глутаминовая) способны связывать его в виде аммиака с образованием амидов – глутамина и аспарагина.

OH                                                        Nh3

C = O                                                    C = O

Ch3                                                                  Ch3

Ch3                  + Nh4                           Ch3

CH – Nh3                                                  CH – Nh3

C = O                                                    C = O

OH                                                        OH

глутаминовая к-та                       глутамин

Аналогично идет образование аспарагина. В организмах животных также образуются амиды аспарагиновой и глутаминовой кислот, которые являются резервом (депо) азота.

Аммиак, который образуется при дезамиировании аминокислот, может связываться аспарагиновой и глутаминовой кислотами. При этом образуются амиды аспарагин и глутамин.

Список использованной литературы:

 

 1) Овчинников Ю.А. Биоорганическая химия / Ю.А. Овчинников. – М.: Просвещение, 1987.

 2) Яковишин Л.А. Избранные главы биоорганической химии / Л.А. Яковишин. – Севастополь: Стрижак-пресс, 2006.

3) Филиппович Ю.В. Основы биохимии. - М., 2007

4) Нейланд О.Я. Органическая химия.- М., 1990

www.neuch.ru

Реферат - Виды аминокислот - Биология и химия

Аминокислоты являются основными структурными единицами молекул белковых веществ. При гидролизе белков различной природы всегда получают смесь 20 аминокислот.

В организме животных в процессе обмена веществ многие аминокислоты синтезируются из других аминокислот или соединений и поэтому получили название заменимых аминокислот. Но встречаются и такие аминокислоты, которые не могут синтезироваться в организме или они образуются в нем недостаточно быстро для того, чтобы удовлетворить потребность организма. Такие аминокислоты называются незаменимыми аминокислотами.

У жвачных животных бактерии и другие микроорганизмы рубца превращают в летучие жирные кислоты, клетчатку и легкоусвояемые полисахариды, синтезируют витамины, а также белок из простых азотистых соединений. Поэтому вопрос о снабжении жвачных животных протеином, в том числе и аминокислотами, в основном решается за счет поступления в организм любого протеина и даже небелковых азотистых веществ. Совсем другое наблюдается у многих моногастричных животных.

В процессе длительного филогенетического развития у животных вырабатывалась различная способность синтезировать аминокислоты. Так, например, свиньи могут синтезировать аланин, аргинин, аспарагиновую кислоту, глицин, гистидин, глутаминовую кислоту, пролин, оксипролин, серии, тирозин, цистеин и оксилизин. Таким образом, для свиней, безусловно, незаменимыми аминокислотами являются лизин, метионин, треонин, триптофан, фенилаланин, лейцин, изолейцин и валин. Присутствие названных выше аминокислот в рационе животного обусловлено жизненной необходимостью для нормального отправления функций организма.

По содержанию и соотношению незаменимых аминокислот протеины кормов делятся на полноценные и неполноценные. Корма, имеющие в своем составе достаточное количество и необходимое соотношение незаменимых аминокислот, содержат полноценные протеины, а те корма, в которых недостаточно незаменимых аминокислот, — неполноценные протеины. Различные аминокислоты содержат неодинаковое количество азота (табл.).

Содержание азота и сырого протеина в различных аминокислотах

Аминокислота

Молекулярная масса

Содержание, %

азота

сырого протеина

Алании

89.1

15.71

98.19

Аргинин

174.17

32.15

200.94

Аргинин хлористоводородный

210.67

26.58

166.13

Аспарагиновая кислота

133.11

10.52

65.75

Глутаминовая кислота

147.13

9.52

59.50

Глицин

75.07

18.65

116.56

Гистидин

155.12

27.08

169.25

Гистидин хлористоводородный

209.63

20.04

125.25

Изолейцин

131.18

10.67

66.69

Лейцин

131.18

10.67

66.69

Лизин хлористоводородный

182.65

13.33

95.81

Метионин

149.21

9.38

58.63

Метионинкальциевая соль

338.00

4.14

25.87

Цистин

240.30

11.65

72.81

Фенилаланин

165.19

8.48

53.00

Тирозин

181.19

7.73

48.31

Пролин

115.13

12.60

76.00

Серии

105.01

13.34

83.39

Треонин

119.12

11.75

73.44

Триптофан

204.23

13.71

85.69

Валин

117.15

11.95

74.69

При скармливании рационов с недостатком тех или иных незаменимых аминокислот у животных часто развиваются болезни недостаточностей питания, поэтому рационы моногастричных животных обязательно должны быть сбалансированы по всем незаменимым аминокислотам, для чего и вводят синтетические аминокислоты в недостающие по ним рационы.

Химически чистые аминокислоты — это порошки, большинство из которых хорошо растворяются в воде и плохо или совсем не растворяются в органических растворителях. Водные растворы аминокислот стабильны и их можно стерилизовать при температуре от +100 до +120°С. Аминокислоты имеют температуру плавления около +300°C, не летучи.

Аминокислоты содержат одновременно основную (аминную) и кислотную (карбоксильную) группы, в связи с чем, как и другие амфотерные соединения, они могут диссоциировать.

www.ronl.ru

Реферат - Общие свойства аминокислот

Березов Т.Т., Коровкин Б.Ф.

Кислотно-основные свойства. Эти свойства аминокислот определяют многие физико-химические и биологические свойства белков. На этих свойствах основаны, кроме того, почти все методы выделения и идентификации аминокислот. Аминокислоты легко растворимы в воде. Они кристаллизуются из нейтральных водных растворов в форме биполярных (амфотерных) ионов (цвиттерионов), а не в виде недиссоциированных молекул (последнюю структуру приводят для удобства представления, однако все аминокислоты при физиологических значениях рН имеют структуру цвиттериона).

При растворении в воде кристаллическая аминокислота, например аланин, может реагировать или как кислота (донатор протона):

или как основание (акцептор протона):

Если радикалы аминокислот нейтральные, то они почти не оказывают влияния на диссоциацию α-карбоксильной группы или α-аминогруппы, и величины рК (отрицательный логарифм константы диссоциации) остаются относительно постоянными. Вследствие этого кривые диссоциации почти всех нейтральных аминокислот накладываются друг на друга и могут быть рассмотрены на примере аланина. Если к раствору аланина (например, 0,1 М) в воде постепенно прибавлять сильную кислоту (0,1 М раствор НСl) или сильную щелочь (0,1 М раствор NaOH), то получим кривую титрования аланина, типичную для всех нейтральных аминокислот (рис. 1.6).

Кажущиеся величины рК' для α-карбоксильной группы и α-аминогрупп (т.е. значения рН, при которых эти группы в среднем наполовину диссоциированы) довольно сильно различаются, составляя pK1 = 2,34 и рК2 = 9,69. При низком значении рН (ниже pK1') почти все молекулы аланина являются полностью протонированными и несут положительный заряд. Другими словами, при высокой концентрации водородных ионов в растворе тенденция к диссоциации водорода из структуры аланина оказывается незначительной. Из кривой титрования видно, что точка перехода между ветвями кривой располагается при рН 6,02. Это означает, что при данном значении рН суммарный (или средний) электрический заряд молекулы аланина равен нулю и она не перемещается в электрическом поле ни к аноду, ни к катоду (изоэлектрическое состояние). Такое значение рН получило название изоэлектрической точки и обозначается pI. Изоэлектрическая точка аминокислот, не содержащих дополнительных Nh3- или СООН-групп, представляет собой среднее арифметическое между двумя значениями рК':

соответственно для аланина

Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, рI должна вычисляться из полусуммы значений рК' для α- и ε-NН2-групп. Таким образом, в интервале рН от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированной аминогруппой и диссоциированной карбоксильной группой. Следует отметить, что при физиологических значениях рН тканей и крови (7,1 и 7,4 соответственно) аминокислоты (за ислючением гистидина) не обладают измеримой буферной емкостью. Эту способность они приобретают только при значениях рН, близких к величинам их рК (т.е. при рН 1,7-3,2 и 8,6-10,8).

Рис. 1.6. Кривые, полученные при титровании 0,1 М раствора аланина 0,1 М раствором НСl (а) и 0,1 М раствором NaOH (б).

Стереохимия аминокислот. Важнейшим свойством аминокислот, освобождающихся в процессе гидролиза природных белков в условиях, исключающих рацемизацию, является их оптическая активность. Будучи растворенными в воде (или в НСl), они способны вращать плоскость поляризованного луча (исключение составляет глицин). Это свойство связано с наличием в молекуле всех природных аминокислот (за ислючением глицина) в α-положении асимметрического атома углерода (т. е. атома углерода, все четыре валентные связи которого заняты различными заместителями). Величины удельного вращения вправо или влево являются количественной характеристикой оптической активности, и для большинства аминокислот [а]2р составляет от 10 до 30°. Примерно половина аминокислот белков оказалась правовращающей, их обозначают знаком «+» (Ала, Иле, Глу, Лиз и др.), а чуть меньше половины — левовращающей (Фен, Трп, Лей и др.), их обозначают знаком «–». Все эти аминокислоты принадлежат к L-ряду, а величина и знак оптического вращения зависят от природы радикалов аминокислот и значения рН раствора, в котором измеряют оптическое вращение.

Стереохимию аминокислот принято оценивать не по оптическому вращению, а исходя из абсолютной конфигурации всех четырех замещающих групп, расположенных вокруг асимметрического атома углерода в вершинах модели тетраэдра. Абсолютную конфигурацию аминокислот принято соотносить стереохимически с соединением, произвольно взятым для сравнения, а именно с глицериновым альдегидом, также содержащим асимметрический атом углерода. Ниже представлены L- и D-стереоизомеры глицеринового альдегида. Рядом показаны пространственные конфигурации L-и D-аланина:

Все аминокислоты, образующиеся при гидролизе природных белков в условиях, исключающих рацемизацию, принадлежит к L-ряду. Таким образом, природные аминокислоты имеют пространственное расположение, аналогичное конфигурации L-глицеринового альдегида. Следует еще раз подчеркнуть, что символы L и D означают принадлежность данной аминокислоты по своей стереохимической конфигурации к L- или D-ряду, в то время как знак «+» или «–» указывает на направление изменения плоскости поляризации светового луча. Среди белковых аминокислот имеются две аминокислоты (треонин и изолейцин), которые содержат по два асимметрических атома углерода. Следовательно, если не в природе, то, во всяком случае, в лаборатории возможно получить четыре стереоизомерные формы этих аминокислот. Для треонина известны все четыре изомера. Если условно обозначить символом L выделенный из природных белков треонин, то его зеркальное отображение называют D-треонином. Два других изомера, получивших наименование диастереоизомеров, или аллоформ, также могут иметь L- и D-формы. Структурные конфигурации всех четырех стереоизомеров треонина можно представить следующими формулами:

Как отмечалось, в белковой молекуле D-аминокислоты не обнаружены, однако в живой природе они широко распространены.

Так, D-изомеры глутаминовой кислоты, аланина, валина, фенилаланина, лейцина и ряда других открыты в клеточной стенке бактерий; в составе некоторых антибиотиков, в частности актиномицинов, бацитрацина, грамицидинов А и S, содержатся аминокислоты D-конфигурации.

Аминокислотный состав (качественный и количественный) многих тысяч белков, полученных из разных источников, выяснен (табл. 1.4).

При анализе данных табл. 1.4 виден ряд закономерностей. На долю дикарбоновых аминокислот и их амидов в большинстве белков приходится до 25–27% всех аминокислот. Эти же аминокислоты вместе с лейцином и лизином составляют около 50% всех аминокислот. В то же время на долю таких аминокислот, как цистеин, метионин, триптофан, гистидин, приходится не более 1,5–3,5%. В протаминах и гистонах отмечено высокое содержание основных аминокислот аргинина и лизина, соответственно 26,4 и 85,2% (см. «Химия простых белков»).

Химические реакции для открытия и определения аминокислот в гидролизатах белков. В курсе органической химии подробно рассмотрено множество химических реакций, характерных для α-амино- и α-карбоксильных групп аминокислот (ацилирование, алкилирование, нитрование, этерификация и др.). Здесь будут рассмотрены общие цветные реакции для обнаружения индивидуальных аминокислот и аминокислот, входящих в состав белков, основанные на химической природе радикалов аминокислот (табл. 1.5).

Для открытия в биообъектах и количественного определения аминокислот успешно применяется реакция их с нингидрином. На I стадии реакции образуется восстановленный нингидрин за счет окислительного дезаминирования аминокислот (параллельно происходит декарбоксилирование аминокислот):

На II стадии образовавшийся аммиак реагирует с эквимолярными количествами окисленного и восстановленного нингидрина, образуя сине-фиолетовый продукт, интенсивность окраски которого (при 570 нм) пропорциональна количеству аминокислоты:

На основе нингидриновой реакции были разработаны методы количественного определения аминокислот, в частности метод распределительной хроматографии на бумаге, впервые внедренный в 1944 г. (А. Мартин и Р. Синдж). Эта же реакция используется благодаря своей высокой чувствительности в автоматическом анализаторе аминокислот. Впервые такой прибор сконструировали Д. Шпакман, С. Мур и У. Стейн (рис. 1.7). После разделения смеси аминокислот в колонках, заполненных специальными ионообменными смолами (сульфополистирольный катионит), ток элюента из колонки поступает в смеситель, туда же поступает раствор нингидрина; интенсивность образующейся окраски автоматически измеряется на фотоэлектроколориметре и регистрируется самописцем. Этот метод нашел широкое применение в клинической практике при исследовании крови, мочи, спинномозговой жидкости. С его помощью за 2–3 ч можно получить полную картину качественного состава аминокислот в биологических жидкостях и выявить наличие в них необычных азотсодержащих веществ, что имеет важное диагностическое и прогностическое значение.

Рис. 1.7. Работа автоматического анализатора аминокислот (принципиальная схема

по Шпакману, Муру и Стейну).

1 — смеситель; 2 — фотоэлектроколориметр; 3 — самописец.

Автоматические анализаторы аминокислот все время совершенствуются, повышаются чувствительность методов и скорость проведения анализа. Так, в современных приборах высокоэффективной жидкостной хроматографии (ВЭЖХ) удается проводить анализ гидролизата белка за 45 мин, определяя при этом концентрацию аминокислот в пикомолях (рис. 1.8).

Смесь аминокислот может быть успешно разделена также методом электрофореза на бумаге. При рН 6,0 возможно хорошее разделение кислых и основных аминокислот с нейтральными. В этом случае отрицательно заряженные (кислые) аминокислоты будут двигаться к аноду, а положительно заряженные – к катоду. Нейтральные аминокислоты остаются на линии старта.

Для их разделения электрофорез обычно проводят при рН 1,8–2,0, когда все они мигрируют к аноду с незначительным, но уловимым различием в подвижности. После электрофореза местоположение аминокислот на электофореграмме выявляют с помощью химических реакций, а после элюции окрашенных продуктов определяют их количественно.

Рис. 1.8. ВЭЖХ аминокислот по Цеху и Вольтеру. Разделение на колонке (3 х 250 мм), наполненной ионообменной смолой – полистиролдивинилбензолом. Концентрация аминокислот 500 пмоль/л, реактив для детектирования – флюорескамин, образующий с аминогруппой сильно флюоресцирующее соединение.

1 — Асп; 2 — Тре; 3 — Сер; 4 — Глу; 5 — Гли; 6 — Ала; 7 — Цис; 8 — Вал; 9 — Мет; 10 -Иле; 11 — Лей; 12 — Тир; 13 — Фен; 14 -Лиз; 15 — Гис; 16 — Арг.

www.ronl.ru

Доклад - Виды аминокислот - Биология и химия

Аминокислоты являются основными структурными единицами молекул белковых веществ. При гидролизе белков различной природы всегда получают смесь 20 аминокислот.

В организме животных в процессе обмена веществ многие аминокислоты синтезируются из других аминокислот или соединений и поэтому получили название заменимых аминокислот. Но встречаются и такие аминокислоты, которые не могут синтезироваться в организме или они образуются в нем недостаточно быстро для того, чтобы удовлетворить потребность организма. Такие аминокислоты называются незаменимыми аминокислотами.

У жвачных животных бактерии и другие микроорганизмы рубца превращают в летучие жирные кислоты, клетчатку и легкоусвояемые полисахариды, синтезируют витамины, а также белок из простых азотистых соединений. Поэтому вопрос о снабжении жвачных животных протеином, в том числе и аминокислотами, в основном решается за счет поступления в организм любого протеина и даже небелковых азотистых веществ. Совсем другое наблюдается у многих моногастричных животных.

В процессе длительного филогенетического развития у животных вырабатывалась различная способность синтезировать аминокислоты. Так, например, свиньи могут синтезировать аланин, аргинин, аспарагиновую кислоту, глицин, гистидин, глутаминовую кислоту, пролин, оксипролин, серии, тирозин, цистеин и оксилизин. Таким образом, для свиней, безусловно, незаменимыми аминокислотами являются лизин, метионин, треонин, триптофан, фенилаланин, лейцин, изолейцин и валин. Присутствие названных выше аминокислот в рационе животного обусловлено жизненной необходимостью для нормального отправления функций организма.

По содержанию и соотношению незаменимых аминокислот протеины кормов делятся на полноценные и неполноценные. Корма, имеющие в своем составе достаточное количество и необходимое соотношение незаменимых аминокислот, содержат полноценные протеины, а те корма, в которых недостаточно незаменимых аминокислот, — неполноценные протеины. Различные аминокислоты содержат неодинаковое количество азота (табл.).

Содержание азота и сырого протеина в различных аминокислотах

Аминокислота

Молекулярная масса

Содержание, %

азота

сырого протеина

Алании

89.1

15.71

98.19

Аргинин

174.17

32.15

200.94

Аргинин хлористоводородный

210.67

26.58

166.13

Аспарагиновая кислота

133.11

10.52

65.75

Глутаминовая кислота

147.13

9.52

59.50

Глицин

75.07

18.65

116.56

Гистидин

155.12

27.08

169.25

Гистидин хлористоводородный

209.63

20.04

125.25

Изолейцин

131.18

10.67

66.69

Лейцин

131.18

10.67

66.69

Лизин хлористоводородный

182.65

13.33

95.81

Метионин

149.21

9.38

58.63

Метионинкальциевая соль

338.00

4.14

25.87

Цистин

240.30

11.65

72.81

Фенилаланин

165.19

8.48

53.00

Тирозин

181.19

7.73

48.31

Пролин

115.13

12.60

76.00

Серии

105.01

13.34

83.39

Треонин

119.12

11.75

73.44

Триптофан

204.23

13.71

85.69

Валин

117.15

11.95

74.69

При скармливании рационов с недостатком тех или иных незаменимых аминокислот у животных часто развиваются болезни недостаточностей питания, поэтому рационы моногастричных животных обязательно должны быть сбалансированы по всем незаменимым аминокислотам, для чего и вводят синтетические аминокислоты в недостающие по ним рационы.

Химически чистые аминокислоты — это порошки, большинство из которых хорошо растворяются в воде и плохо или совсем не растворяются в органических растворителях. Водные растворы аминокислот стабильны и их можно стерилизовать при температуре от +100 до +120°С. Аминокислоты имеют температуру плавления около +300°C, не летучи.

Аминокислоты содержат одновременно основную (аминную) и кислотную (карбоксильную) группы, в связи с чем, как и другие амфотерные соединения, они могут диссоциировать.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.