ТЕПЛОПРОВОДНОСТЬ. ПРИМЕРЫ ТЕПЛОПРОВОДНОСТИ В ПРИРОДЕ, БЫТУ, ТЕХНИКЕ. Примеры теплопередачи в природе и технике реферат


Примеры теплопередачи в природе и технике

Слайд 1

«Примеры теплопередачи в природе и технике» Выполнил Иванов Виталий 8 " з "

Слайд 2

Введение

Слайд 3

Основные понятия Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей. Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц называется теплопроводностью. При конвекции энергия переносится самими струями газа или жидкости. Излучение — процесс передачи теплоты путем лучеиспускания. Передача энергии излучением отличается от других видов теплопередачи тем, что она может осуществляться в полном вакууме.

Слайд 4

Основные понятия

Слайд 5

Примеры теплопередачи в природе и технике

Слайд 6

Ветры Все ветры в атмосфере представляют собой конвекционные потоки огромного масштаба.

Слайд 7

Ветры Конвекцией объясняются, например, ветры бризы, возникающие на берегах морей. В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой, его плотность уменьшается и давление становится меньше давления более холодного воздуха над морем. В результате, как в сообщающихся сосудах, холодный воздух по низу с моря перемещается к берегу — дует ветер. Это и есть дневной бриз. Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Образуется ночной бриз -- движение холодного воздуха от суши к морю.

Слайд 8

Тяга Мы знаем, что без притока свежего воздуха горение топлива невозможно.

Слайд 9

Тяга Если в топку, в печь, в трубу самовара не будет поступать воздух, то горение топлива прекратится. Обычно используют естественный приток воздуха - тягу. Для создания тяги над топкой, например в котельных установках фабрик, заводов, электростанций, устанавливают трубу. При горении топлива воздух в ней нагревается. Значит, давление воздуха, находящегося в топке и трубе, становится меньше давления наружного воздуха. Вследствие разницы давлений холодный воздух поступает в топку, а теплый поднимается вверх — образуется тяга.

Слайд 10

Тяга Чем выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе. Поэтому тяга усиливается при увеличении высоты трубы.

Слайд 11

Отопление и охлаждение жилых помещений Жители стран, расположенных в умеренных и холодных поясах Земли, вынуждены обогревать свое жилище.

Слайд 12

Отопление и охлаждение жилых помещений В странах, расположенных в тропических и субтропических поясах, температура воздуха даже в январе достигает + 20 и + 30 С . Здесь применяют устройства, охлаждающие воздух в помещениях. И нагревание, и охлаждение воздуха в помещениях основано на конвекции.

Слайд 13

Отопление и охлаждение жилых помещений Охлаждающие устройства целесообразно располагать наверху, ближе к потолку, чтобы осуществлялась естественная конвекция. Ведь холодный воздух имеет плотность большую, чем теплый, и поэтому будет опускаться.

Слайд 14

Отопление и охлаждение жилых помещений Обогревательные приборы располагают внизу. Во многих современных больших домах устраивают водяное отопление. Циркуляция воды в нем и прогревание воздуха в помещении происходят за счет конвекции.

Слайд 15

Отопление и охлаждение жилых помещений Если установка для обогревания здания находится в нем самом, то в подвальном этаже устанавливают котел, в котором нагревают воду. По вертикальной трубе, отходящей от котла, горячая вода поднимается в бак, который обычно помещают на чердаке дома. От бака проводят систему распределительных труб, по которым вода проходит в радиаторы, устанавливаемые на всех этажах, она отдает им свое тепло и возвращается в котел, где снова подогревается. Так происходит естественная циркуляция воды - конвекция.

Слайд 16

Отопление и охлаждение жилых помещений В больших зданиях используются более сложные установки. Горячая вода подается сразу в несколько зданий из котла, установленного в специальном помещении. Воду гонят в. здания при помощи насосов, т. е. создают искусственную конвекцию.

Слайд 17

Теплопередача и растительный мир Температура нижнего слоя воздуха и поверхностного слоя почвы имеет большое значение для развития растений.

Слайд 18

Теплопередача и растительный мир В прилегающем к Земле слое воздуха и верхнем слое почвы происходят изменения температуры. Днем почва поглощает энергию и нагревается, ночью, наоборот, охлаждается. На ее нагревание и охлаждение влияет присутствие растительности. Так, темная, вспаханная почва сильнее нагревается излучением, но быстрее и охлаждается, чем почва, покрытая растительностью.

Слайд 19

Теплопередача и растительный мир На теплообмен между почвой и воздухом влияет также погода. В ясные, безоблачные ночи почва сильно охлаждается - излучение от почвы беспрепятственно уходит в пространство. В такие ночи ранней весной возможны заморозки на почве. Если же погода облачная, то облака закрывают Землю и играют роль своеобразных экранов, защищающих почву от потери энергии путем излучения.

Слайд 20

Теплопередача и растительный мир Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками.

Слайд 21

Теплопередача и растительный мир Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Кроме того, стекло (или пленка) препятствует движению теплого воздуха вверх, т. е. осуществлению конвекции. Таким образом, стекла теплиц действуют как «ловушка» энергии. Внутри теплиц температура выше, чем на незащищенном грунте, примерно на 10 °С.

Слайд 22

Термос Теплопередача от более нагретого тела к более холодному приводит к выравниванию их температур.

Слайд 23

Термос Поэтому если в комнату внести, например, горячий чайник, то он остынет. Часть его внутренней энергии перейдет к окружающим телам. Чтобы помешать телу остывать или нагреваться, нужно уменьшить теплопередачу. При этом стремятся сделать так, чтобы энергия не передавалась ни одним из трех видов теплопередачи: конвекцией, теплопроводностью и излучением.

Слайд 24

Термос Чтобы сохранить горячей воду, пищу или предохранить лед или мороженое от таяния, пользуются термосом.

Слайд 25

Термос Он состоит из стеклянного сосуда с двойными стенками. Внутренняя поверхность стенок покрыта блестящим металлическим слоем, а из пространства между стенками сосуда выкачан воздух. Лишенное воздуха пространство между стенками не проводит тепло, блестящий слой, вследствие отражения, препятствует передаче энергии излучением. Чтобы защитить стекло от повреждений, термос помещают в картонный или металлический футляр. Сосуд закупоривают пробкой, а сверху футляра навинчивают колпачок.

Слайд 26

Спасибо за внимание!

nsportal.ru

Примеры теплообмена в природе и технике

1. Ветры. Все ветры в атмосфере представляют собой конвекционные потоки огромного масштаба. Конвекцией, например, объясняются бризы — ночные и дневные ветры, возникающие на берегах морей и больших озер.

В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой. При этом воздух над сушей расширяется, после чего его давление становится меньше давления более холодного воздуха над морем. В результате, как в сообщающихся сосудах, холодный воздух по низу с моря (где давление больше) перемещается к берегу (где давление меньше) — дует ветер. Это и есть дневной (или морской) бриз.

Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Теперь более высокое давление оказывается над сушей, и потому воздух начинает перемещаться от берега к морю. Это ночной (или береговой) бриз.

2. Тяга. Мы знаем, что без притока свежего воздуха горение топлива невозможно. Если в топку или печь не будет поступать воздух, то горение прекратится. Для поддержания горения часто используют естественный приток воздуха — тягу. При этом над местом горения топлива устанавливают трубу. Нагреваясь, воздух расширяется, и давление в топке и трубе становится меньше давления наружного воздуха. Вследствие разницы давлений холодный воздух устремляется извне в топку, а теплый поднимается вверх по трубе. Это и есть тяга.

С увеличением высоты трубы тяга усиливается, так как, чем выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе.

3. Водяное отопление. Жители стран, расположенных в умеренных и холодных поясах Земли, вынуждены обогревать свои жилища в холодную погоду. В жилых помещениях наиболее благо приятной для человека считается температура 18—20 °С. Для поддержания такой температуры во многих домах применяют водяное отопление.

Нагревание воды в системах центрального отопления происходит за пределами отапливаемого помещения (в котельных или теплоэлектроцентралях — ТЭЦ). От нагревателя горячая вода по трубопроводам поступает в здания. Здесь (рис. 71) она по главному стояку 1 поднимается вверх, а оттуда — по трубам в отопительные приборы (радиаторы 2). По мере охлаждения в них вода возвращается вниз и снова поступает к нагревателю. Так осуществляется непрерывная циркуляция воды по всей системе. В небольших зданиях эта циркуляция возникает благодаря естественной конвекции, а в больших городских домах она происходит за счет действия специальных насосов (искусственная или принудительная конвекция).

Для предотвращения разрушения отопительной системы (в результате увеличения давления при расширении нагреваемой жидкости) главный стояк 1 снабжают расширительным баком 3.

4. Термос. Теплопередача от более нагретого тела к более холодному приводит к выравниванию их температур. Поэтому, например, горячий чайник, снятый с плиты, при соприкосновении с окружающим воздухом через некоторое время остывает. Чтобы помешать телу остывать (или нагреваться), нужно предотвратить возможный теплообмен, причем во всех его трех проявлениях (при конвекции, теплопроводности и излучении). Это достигается путем помещения тела в специальный сосуд — сосуд Дьюара, который был изобретен в 1892 г. английским ученым Джеймсом Дьюаром.

Сосуды Дьюара вначале применялись лишь для хранения легкоиспаряюшихся сжиженных газов (например, жидкого гелия). Впоследствии их стали применять и в бытовых целях — для сохранения при неизменной температуре помещаемых в них пищевых продуктов. Такие сосуды Дьюара стали называть термосами (рис. 72).

Устройство термоса, предназначенного для хранения жидкостей, показано на рисунке 73. Он состоит из стеклянного сосуда 4 с двойными стенками. Внутренняя поверхность этих стенок покрыта блестящим металлическим слоем, а из пространства между стенками выкачан воздух. Чтобы защитить стеклянный корпус термоса от повреждений, его помещают в картонный или металлический футляр 3. Сосуд закупоривают пробкой 2, а сверху футляра навинчивают колпачок 1.

Термос устроен таким образом, что теплообмен его содержимого с окружающей средой сведен до минимума. Отсутствие воздуха между его стенками препятствует переносу энергии путем конвекции и теплопроводности, а блестящий слой па внутренней поверхности термоса препятствует передаче энергии излучением.

1. Почему дневной бриз дует с моря в сторону берега, а ночной бриз — с берега в сторону моря? 2. В результате чего возникает тяга? 3. Как устроена система водяного отопления? 4. Расскажите об устройстве термоса. За счет чего в нем удается уменьшить теплообмен? Почему пища в термосе все-таки охлаждается?

phscs.ru

Примеры теплопередачи в природе, в быту

Тепловая энергия является термином, который мы используем для описания уровня активности молекул в объекте. Повышенная возбужденность, так или иначе, связана с увеличением температуры, в то время как в холодных объектах атомы перемещаются намного медленней.

Примеры теплопередачи можно встретить повсюду - в природе, технике и повседневной жизни.

Примеры передачи тепловой энергии

Самым большим примером передачи тепла является солнце, которое согревает планету Земля и все, что на ней находится. В повседневной жизни можно встретить массу подобных вариантов, только в гораздо менее глобальном смысле. Итак, какие же примеры теплопередачи можно наблюдать в быту?

Вот некоторые из них:

Тепло - это движение

Тепловые потоки находятся в постоянном движении. Основными способами их передачи можно назвать конвенцию, излучение и проводимость. Давайте рассмотрим эти понятия более подробно.

Что такое проводимость?

Возможно, многие не раз замечали, что в одном и том же помещении ощущения от прикосновения с полом могут быть совершенно разные. Приятно и тепло ходить по ковру, но если зайти в ванную комнату босыми ногами, ощутимая прохлада сразу дает чувство бодрости. Только не в том случае, где есть подогрев полов.

Так почему же плиточная поверхность мерзнет? Это все из-за теплопроводности. Это один из трех типов передачи тепла. Всякий раз, когда два объекта различных температур находятся в контакте друг с другом, тепловая энергия будет проходить между ними. Примеры теплопередачи в этом случае можно привести следующие: держась за металлическую пластину, другой конец которой будет помещен над пламенем свечи, со временем можно почувствовать жжение и боль, а в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.

Факторы проводимости

Хорошая или плохая проводимость зависит от нескольких факторов:

В форме уравнения это выглядит следующим образом: скорость передачи тепла к объекту равна теплопроводности материала, из которого изготовлен объект, умноженной на площадь поверхности в контакте, умноженной на разность температур между двумя объектами и деленной на толщину материала. Все просто.

Примеры проводимости

Прямая передача тепла от одного объекта к другому называются проводимостью, а вещества, которые хорошо проводят тепло, называются проводниками. Некоторые материалы и вещества плохо справляются с этой задачей, их называют изоляторами. К ним относят древесину, пластмассу, стекловолокно и даже воздух. Как известно, изоляторы фактически не останавливают поток тепла, а просто его замедляют в той или иной степени.

Конвекция

Такой вид теплопередачи, как конвекция, происходит во всех жидкостях и газах. Можно встретить такие примеры теплопередачи в природе и в быту. Когда жидкость нагревается, молекулы в нижней части набирают энергию и начинают двигаться быстрее, что приводит к уменьшению плотности. Теплые молекулы текучей среды начинают двигаться вверх, в то время как охладитель (более плотная жидкость) начинает тонуть. После того как прохладные молекулы достигают дна, они опять получают свою долю энергии и снова стремятся к вершине. Цикл продолжается до тех пор, пока существует источник тепла в нижней части.

Примеры теплопередачи в природе можно привести следующие: при помощи специального оборудованной горелки теплый воздух, наполняя пространство воздушного шара, может поднять всю конструкцию на достаточно большую высоту, все дело в том, что теплый воздух легче холодного.

Излучение

Когда вы сидите перед костром, вас согревает исходящее от него тепло. То же самое происходит, если поднести ладонь к горящей лампочке, не дотрагиваясь до нее. Вы тоже почувствуете тепло. Самые крупные примеры теплопередачи в быту и природе возглавляет солнечная энергия. Каждый день тепло солнца проходит через 146 млн. км пустого пространства вплоть до самой Земли. Это движущая сила для всех форм и систем жизни, которые существуют на нашей планете сегодня. Без этого способа передачи мы были бы в большой беде, и мир был бы совсем не тот, каким мы его знаем.

Излучение - это передача тепла с помощью электромагнитных волн, будь то радиоволны, инфракрасные, рентгеновские лучи или даже видимый свет. Все объекты излучают и поглощают лучистую энергию, включая самого человека, однако не все предметы и вещества справляются с этой задачей одинаково хорошо. Примеры теплопередачи в быту можно рассмотреть при помощи обычной антенны. Как правило, то, что хорошо излучает, также хорошо и поглощает. Что касается Земли, то она принимает энергию от солнца, а затем отдает ее обратно в космос. Эта энергия излучения называется земной радиацией, и это то, что делает возможной саму жизнь на планете.

Примеры теплопередачи в природе, быту, технике

Передача энергии, в частности тепловой, является фундаментальной областью исследования для всех инженеров. Излучение делает Землю пригодной для обитания и дает возобновляемую солнечную энергию. Конвекция является основой механики, отвечает за потоки воздуха в зданиях и воздухообмен в домах. Проводимость позволяет нагревать кастрюлю, всего лишь поставив ее на огонь.

Многочисленные примеры теплопередачи в технике и природе очевидны и встречаются повсюду в нашем мире. Практически все из них играют большую роль, особенно в области машиностроения. Например, при проектировании системы вентиляции здания инженеры высчитывают теплоотдачу здания в его окрестностях, а также внутреннюю передачу тепла. Кроме того, они выбирают материалы, которые сводят к минимуму или максимизируют передачу тепла через отдельные компоненты для оптимизации эффективности.

Испарение

Когда атомы или молекулы жидкости (например, воды) подвергаются воздействию значительного объема газа, они имеют тенденцию самопроизвольно войти в газообразное состояние или испариться. Это происходит потому, что молекулы постоянно движутся в разных направлениях при случайных скоростях и сталкиваются друг с другом. В ходе этих процессов некоторые из них получают кинетическую энергию, достаточную для того, чтобы отталкиваться от источника нагревания.

Однако не все молекулы успевают испариться и стать водяным паром. Все зависит от температуры. Так, вода в стакане будет испаряться медленнее, чем в нагреваемой на плите кастрюле. Кипение воды значительно увеличивает энергию молекул, что, в свою очередь, ускоряет процесс испарения.

Основные понятия

Применение на практике

Многочисленные примеры теплопередачи в природе и технике (картинки выше) указывают на то, что эти процессы должны быть хорошо изучены и служили во благо. Инженеры применяют свои знания о принципах передачи тепла, исследуют новые технологии, которые связаны с использованием возобновляемых ресурсов и являются менее разрушительными для окружающей среды. Ключевым моментом является понимание того, что перенос энергии открывает бесконечные возможности для инженерных решений и не только.

fb.ru

реферат на тему теплопередача в природе и технике 8 классы помогите надо  до завтра

Теплопроводностью называется явление передачи энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц, из которых состоит тело. Наибольшей теплопроводностью обладают металлы — она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец, но и здесь теплопроводность в десятки раз больше, чем у воды.При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.Нагревание кастрюли на электрической плитке происходит через теплопроводность Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом. Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью.Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность.Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.  Теплопроводность у различных веществ различна.Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.Лен обладает плохой теплопроводностью Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения. Воздух, вода, древесина обладают плохой теплопроводностью    Теплоизоляционные свойства древесины.Теплоизоляционные свойства стены зависят от ее толщины и коэффициента теплопроводности материала, из которого она построена. Теплопроводность - способность материала передавать теплоту. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м2 при разности температур на противоположных поверхностях 1°С.Сравнение теплопроводности различных стеновых материалов:МатериалКоэффициент теплопроводности, Вт/м °СТолщина стен, см при температуре до - 30°СКладка из обыкновенного глиняного кирпича на цементно-песчаном растворе0.5662Блоки из ячеистого бетона при различной плотности0,11-0,1413-16Древесина сосны (поперек волокон)0.0910 Видно, чтодерево – лучший теплоизолятор, чем другие строительные материалы. Оно в шесть раз эффективней кирпича и в полтора раза – пенобетона.    Прибор для показа различнойтеплопроводности твердых веществ Мы изготовили прибор для показа различной теплопроводности твердых тел. Для этого использовали пустую банку из алюминиевой фольги от напитка типа “Фанта”, два резиновых кольца (самодельные), три отрезка проволоки из алюминия, меди и железа, плитку, горячую воду, 3 фигурки человечков с поднятыми вверх руками, вырезанные из бумаги.Порядок изготовления прибора:üпроволоки изогнуть в виде буквы «Г»;üукрепить их с внешней стороны банки при помощи резиновых колец;üподвесить к горизонтальным частям проволочных отрезков (посредством расплавленного парафина или пластилина) бумажных человечков.Проверка действия прибора. Налить в банку горячей воды (при необходимости подогреть банку с водой на электрической плитке) и наблюдать, какая фигурка упадет первой, второй, третьей. Результаты. Упадет первой фигурка, закрепленная на медной проволоке, вторая – на алюминиевой, третья – на стальной.Вывод. Разные твердые вещества обладают различной теплопроводностью. 

znanija.com

Реферат - «Виды теплопередачи» - Разное

Муниципальное общеобразовательное учреждение «Лицей №43»

Реферат

на тему «Виды

теплопередачи»

Выполнила:

ученица 10 класса

Родина Марина

Проверил:

Ивлев В. И.

Саранск, 2010

Теплопередача, или теплообмен - физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы имеют разную температуру, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики (все самопроизвольные процессы в природе идут с увеличением энтропии). Теплопередачу невозможно остановить, можно только замедлить её. Теплообмен определяет или сопровождает многие процессы в природе (например, ход эволюции звёзд и планет, метеорологические процессы на поверхности Земли и т. д.), в технике и в быту. Во многих случаях, например при исследовании процессов сушки, испарительного охлаждения, диффузии, теплопередача рассматривается совместно с массообменом. Теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними называется теплопроводностью. Различают три вида теплопередачи: теплопроводность, конвекция и излучение.

^ Тепловое излучение — электромагнитное излучение со сплошным спектром, испускаемое веществом и возникающее за счёт его внутренней энергии. В физике для корректного расчёта теплового излучения принята модель абсолютно чёрного тела, тепловое излучение которого описывается законом Стефана — Больцмана. ( Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела: P = SεσT4, где ε - степень черноты (для всех веществ ε < 1, для абсолютно черного тела ε = 1).

Теплопроводность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.^ Закон теплопроводности Фурье Закон теплопроводности Фурье в интегральной форме:

где ^ P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, h — длина параллелепипеда, то есть расстояние между гранями, - коэффициент теплопроводности (иногда называемый просто теплопроводностью). Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума почти ноль (тем ближе к нулю, чем глубже вакуум). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее тепло в вакууме передаётся с помощью излучения. Поэтому для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность хуже излучает и лучше отражает), а воздух между ними откачивают.^ Коэффициенты теплопроводности различных веществ

Материал  

Теплопроводность, Вт/(м·K)  

Алмаз

1001—2600

Серебро

430

Медь

382—390

Золото

320

Алюминий

202—236

Латунь

97—111

Железо

92

Платина

70

Олово

67

Сталь

47

Кварц

8

Стекло

1

Вода

0,6

Кирпич строительный

0,2—0,7

Пенобетон

0,14—0,3

Газобетон

0,1—0,3

Дерево

0,15

Вата хлопковая

0,055

Свежий снег

0,10—0,15

Шерсть

0,05

Минеральная вата

0,045

Пенополистирол

0,04

Пеноизол

0,035

Воздух (300 K, 100 кПа)

0,026

Воздух (сухой неподвижный)

0,024—0,031

Аргон

0,0177

Аэрогель

0,017

Ксенон

0,0057

Вакуум (абсолютный)

0 (строго)

Цветок на куске аэрогеля над горелкой Бунзена

Конвекция (от лат. convectio — принесение, доставка) — явление переноса теплоты в жидкостях или газах путем перемешивания самого вещества (как вынужденно, так и самопроизвольно). При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием каких-то внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.

Существует также естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и погружаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек. Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.

Явление конвекции можно объяснить законом Архимеда и явлением теплового расширения тел. При повышении температуры объем жидкости возрастает, а плотность уменьшается. Под действием силы Архимеда менее плотная нагретая жидкость поднимается вверх, а более плотная холодная жидкость опускается вниз. Если же жидкость нагревать сверху, то менее плотная теплая жидкость там и останется и конвекция не возникнет. Так устанавливается круговорот жидкости, сопровождающийся переносом энергии от нагретых участков к более холодным. Совершенно аналогичным образом возникает конвекция в газах.

На рисунке – тень руки с зажженной спичкой. Волнистые тени над пламенем – струйки поднимающегося теплого воздуха. Такие тени легко появляются на стене темной комнаты при освещении горящей спички фонарем.

Такой процесс часто называется естественной конвекцией. Для её возникновения требуется подогрев жидкости снизу (или охлаждение сверху), причем нагрев в разных участках должен быть неравномерным.

Кроме естественной конвекции, возможна и вынужденная. При вынужденной конвекции потоки нагретой (или охлажденной) жидкости или газа переносятся под действием насосов или вентиляторов. Такая конвекция используется в тех случаях, когда естественная конвекция оказывается недостаточно эффективной, а также в состоянии невесомости, когда естественная конвекция невозможна.

С точки зрения термодинамики конвекция – способ теплопередачи, при котором внутренняя энергия переносится потоками неравномерно нагретых веществ.

Теплообмен конвекцией часто встречается в быту и в природе. Например, отопительные батареи-радиаторы располагаются вблизи пола под подоконником. Поэтому нагреваемый ими воздух, поднимаясь вверх, смешивается с холодным воздухом, опускающимся от окна. В результате в комнате устанавливается почти равномерная температура.

Типичными примерами конвекции в атмосфере являются ветры, в частности бризы и муссоны. Нагреваясь над одними участками Земли и охлаждаясь над другими, воздух начинает циркулировать, перенося с собой энергию и влагу. Явление это весьма сложное. На процесс естественной конвекции накладывается ряд факторов, например, суточное вращение Земли, рельеф местности, влияние морских течений и т. д. Также явление конвекции лежит в основе горообразования, процессов парения птиц, выхода дыма из труб и кратеров вулканов и др.

www.ronl.ru

«Виды теплопередачи» - Реферат

Муниципальное общеобразовательное учреждение «Лицей №43»

Реферат

на тему «Виды

теплопередачи»

Выполнила:

ученица 10 класса

Родина Марина

Проверил:

Ивлев В. И.

Саранск, 2010

Теплопередача, или теплообмен - физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы имеют разную температуру, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики (все самопроизвольные процессы в природе идут с увеличением энтропии). Теплопередачу невозможно остановить, можно только замедлить её. Теплообмен определяет или сопровождает многие процессы в природе (например, ход эволюции звёзд и планет, метеорологические процессы на поверхности Земли и т. д.), в технике и в быту. Во многих случаях, например при исследовании процессов сушки, испарительного охлаждения, диффузии, теплопередача рассматривается совместно с массообменом. Теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними называется теплопроводностью. Различают три вида теплопередачи: теплопроводность, конвекция и излучение.

Тепловое излучение — электромагнитное излучение со сплошным спектром, испускаемое веществом и возникающее за счёт его внутренней энергии. В физике для корректного расчёта теплового излучения принята модель абсолютно чёрного тела, тепловое излучение которого описывается законом Стефана — Больцмана. ( Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела: P = SεσT4, где ε - степень черноты (для всех веществ ε < 1, для абсолютно черного тела ε = 1).

Теплопроводность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

Закон теплопроводности Фурье в интегральной форме:

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, h — длина параллелепипеда, то есть расстояние между гранями, - коэффициент теплопроводности (иногда называемый просто теплопроводностью). Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума почти ноль (тем ближе к нулю, чем глубже вакуум). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее тепло в вакууме передаётся с помощью излучения. Поэтому для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность хуже излучает и лучше отражает), а воздух между ними откачивают.

Коэффициенты теплопроводности различных веществ

Материал  

Теплопроводность, Вт/(м·K)  

Алмаз

1001—2600

Серебро

430

Медь

382—390

Золото

320

Алюминий

202—236

Латунь

97—111

Железо

92

Платина

70

Олово

67

Сталь

47

Кварц

8

Стекло

1

Вода

0,6

Кирпич строительный

0,2—0,7

Пенобетон

0,14—0,3

Газобетон

0,1—0,3

Дерево

0,15

Вата хлопковая

0,055

Свежий снег

0,10—0,15

Шерсть

0,05

Минеральная вата

0,045

Пенополистирол

0,04

Пеноизол

0,035

Воздух (300 K, 100 кПа)

0,026

Воздух (сухой неподвижный)

0,024—0,031

Аргон

0,0177

Аэрогель

0,017

Ксенон

0,0057

Вакуум (абсолютный)

0 (строго)

Цветок на куске аэрогеля над горелкой Бунзена

Конвекция (от лат. convectio — принесение, доставка) — явление переноса теплоты в жидкостях или газах путем перемешивания самого вещества (как вынужденно, так и самопроизвольно). При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием каких-то внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.

Существует также естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и погружаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек. Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.

Явление конвекции можно объяснить законом Архимеда и явлением теплового расширения тел. При повышении температуры объем жидкости возрастает, а плотность уменьшается. Под действием силы Архимеда менее плотная нагретая жидкость поднимается вверх, а более плотная холодная жидкость опускается вниз. Если же жидкость нагревать сверху, то менее плотная теплая жидкость там и останется и конвекция не возникнет. Так устанавливается круговорот жидкости, сопровождающийся переносом энергии от нагретых участков к более холодным. Совершенно аналогичным образом возникает конвекция в газах.

На рисунке – тень руки с зажженной спичкой. Волнистые тени над пламенем – струйки поднимающегося теплого воздуха. Такие тени легко появляются на стене темной комнаты при освещении горящей спички фонарем.

Такой процесс часто называется естественной конвекцией. Для её возникновения требуется подогрев жидкости снизу (или охлаждение сверху), причем нагрев в разных участках должен быть неравномерным.

Кроме естественной конвекции, возможна и вынужденная. При вынужденной конвекции потоки нагретой (или охлажденной) жидкости или газа переносятся под действием насосов или вентиляторов. Такая конвекция используется в тех случаях, когда естественная конвекция оказывается недостаточно эффективной, а также в состоянии невесомости, когда естественная конвекция невозможна.

С точки зрения термодинамики конвекция – способ теплопередачи, при котором внутренняя энергия переносится потоками неравномерно нагретых веществ.

Теплообмен конвекцией часто встречается в быту и в природе. Например, отопительные батареи-радиаторы располагаются вблизи пола под подоконником. Поэтому нагреваемый ими воздух, поднимаясь вверх, смешивается с холодным воздухом, опускающимся от окна. В результате в комнате устанавливается почти равномерная температура.

Типичными примерами конвекции в атмосфере являются ветры, в частности бризы и муссоны. Нагреваясь над одними участками Земли и охлаждаясь над другими, воздух начинает циркулировать, перенося с собой энергию и влагу. Явление это весьма сложное. На процесс естественной конвекции накладывается ряд факторов, например, суточное вращение Земли, рельеф местности, влияние морских течений и т. д. Также явление конвекции лежит в основе горообразования, процессов парения птиц, выхода дыма из труб и кратеров вулканов и др.

refdb.ru

ТЕПЛОПРОВОДНОСТЬ. ПРИМЕРЫ ТЕПЛОПРОВОДНОСТИ В ПРИРОДЕ, БЫТУ, ТЕХНИКЕ

БИЛЕТ №1

ТЕПЛОВОЕ ДВИЖЕНИЕ. ТЕМПЕРАТУРА. ТЕРМОМЕТРЫ. ТЕМПЕРАТУРНЫЕ ШКАЛЫ.

Тепловые явления – явления, связанные с изменением температуры тел.

Тепловое движение – хаотическое движение частиц, из которых состоят тела.

Интенсивность теплового движения очень высока. Например, при комнатной температуре средняя скорость молекул – несколько сотен метров в секунду (скорость пули).

Температура – физическая величина, определяющая направление теплопередачи: при теплопередаче внутренняя энергия всегда переходит от тела с большей температурой к телу с меньшей температурой.

Тела с одинаковой температурой находятся в состоянии теплового равновесия.

Температуру измеряют с помощью термометров. Часто используют жидкостные термометры, действие которых основано на том, что жидкость при нагревании расширяется. Измеряют температуру в градусах.

В шкале Цельсия за 0° принята температура плавления льда. Градусы Цельсия обозначают °С.

В шкале Фаренгейта за 0° принята температура плавления льда, а за 100° температура кипения воды при атмосферном давлении. Градусы Фаренгейта обозначают °F.

В шкале Кельвина за 0° принята температура абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела). Градусы Кельвина обозначают K.

0°С = 32°F = 273 К

 

БИЛЕТ №2

ВНУТРЕННЯЯ ЭНЕРГИЯ И СПОСОБЫ ЕЕ ИЗМЕРЕНИЯ. ОБЪЯСНЕНИЕ ВНУТРЕННЕЙ ЭНЕРГИИ НА ОСНОВЕ УЧЕНИЯ О МОЛЕКУЛЯРНОМ СТРОЕНИИ ВЕЩЕСТВА.

Энергия характеризует способность тела или системы взаимодействующих тел совершить работу.Частицы, из которых состоят тела, движутся и взаимодействуют друг с другом. Поэтому они обладают и кинетической, и потенциальной энергией.Внутренняя энергия тела – сумма кинетической энергии хаотического движения и потенциальной энергии взаимодействия частиц, из которых состоит тело. U – внутренняя энергияВнутренняя энергия тела изменяется при его нагревании или охлаждении, изменении агрегатного состояния и при химических реакциях.

Внутренняя энергия

Кинетическая энергия движущихся молекул Потенциальная энергия взаимодействия молекул

Внутренняя энергия зависит от

t тела агрегатного состояния тела m тела m1 < m2U1 < U2

Способы изменения внутренней энергии

Совершение работы Теплопередача трение, деформация передача тепла от более нагретоготела к менее нагретому без совершенияработыЕ – энергия (Дж)Еп = mgh (А - работа)Ек = U = Еп + Ек

 

 

БИЛЕТ №3

ТЕПЛОПРОВОДНОСТЬ. ПРИМЕРЫ ТЕПЛОПРОВОДНОСТИ В ПРИРОДЕ, БЫТУ, ТЕХНИКЕ.

Теплопроводность – вид теплопередачи, обусловленный передачей энергии от одного тела к другому в результате теплового движения и взаимодействия молекул.Передача энергии посредством теплопередачи может происходить и между частями одного тела.При теплопроводности происходит передача энергии, но не происходит переноса вещества.Теплопроводностью называют также способность вещества проводить тепло. Высокой теплопроводностью обладают все металлы. Намного хуже проводят тепло: вода, кирпич и стекло. Вакуум тепло не проводит.Особенно мала теплопроводность газов. Дело в том, что в газах молекулы находятся далеко друг от друга, а теплопроводность обусловлена взаимодействием молекул между собой.

Примеры:

1. Птицы зимой сидят нахохлившись. Перья задерживают воздух, а он обладает плохой теплопроводностью.

2. Ручки чайников, сковородок и т.д. из пластмассы, т.к. она плохо нагревается; корпус посуда из металла – он лучше проводит тепло и еда быстрее нагревается.

3. Пористые вещества (пенопласт, ткани, паралон и т.д.) – хорошая теплоизоляция, т.к. воздух обладает плохой теплопроводностью.

 

 

БИЛЕТ №4

megaobuchalka.ru


Смотрите также