Реферат: Научная картина мира, понятие, структура, функции. Корпускулярно–волновой дуализм. Его сущность. Научная картина мира структура и формы реферат


Научная картина мира, понятие, структура, функции. Корпускулярно–волновой дуализм. Его сущность

Реферат по дисциплине:

«Концепции современного естествознания»

Научная картина мира, понятие, структура, функции.

Корпускулярно – волновой дуализм. Его сущность

Содержание

1.         Введение

2.         Научная картина мира, понятие, структура, функции

2.1      Понятие и структура научной картины мира

2.2      Современная научная картина мира и ее отличие от ненаучных картин мира

2.3      Взаимосвязь общей научной и естественнонаучной картин мира

2.4      Функциональность научной картины мира

3. Корпускулярно – волновой дуализм. Его сущность

3.1 Необычные свойства микрообъектов. Гипотеза де Бройля

3.2 Доказательство гипотезы де Бройля, сущность явления

4. Список литературы

Введение

Представления о свойствах и закономерностях окружающей нас природы возникают на основе тех знаний, которые в каждый исторический период дают конкретные науки, изучающие определенные области явлений и процессов природы. Поскольку природа есть нечто единое целое, постольку и знания о ней должны иметь целостный характер, т.е. представлять собой определенную систему. Такую общую совокупность научных знаний о природе издавна называют учением о природе или естествознанием.

Раньше в естествознание входили все сравнительно немногочисленные знания, которые были известны о природе, но уже с эпохи Возрождения возникают и обособляются отдельные его отрасли и дисциплины, т.е. начинается процесс дифференциации естественнонаучного знания. Ясно, что не все знания являются одинаково важными для понимания природы.

Чтобы подчеркнуть фундаментальный характер основных и важнейших знаний о природе, ученые ввели понятие естественнонаучной картины мира. Сам термин «картина мира» указывает на то, что речь здесь идет не о части или фрагменте мира, а о целостной концепции природы. Как правило, в формировании такой картины природы наибольшее значение приобретают фундаментальные понятия и законы наиболее развитых отраслей естествознания, которые в определенный исторический период выдвигаются в качестве основополагающей науки или лидера естествознания. Не подлежит сомнению, что фундаментальные науки оказывают свое влияние на представления о мире других наук и ученых определенной эпохи. Но это не означает, что другие науки не участвуют в формировании картины природы. В действительности такая картина возникает как результат синтеза фундаментальных открытий и законов разных отраслей и дисциплин естествознания.

С течением времени ученые открывают различные явления и устанавливают закономерности этих явлений, с последующим выводом теории и доказательством ее на практике опытным путем. В данной работе в третьем разделе мы рассмотрим одно из таких явлений отрытых сначала гипотетически французским ученым де Бройлем, а в последующем подтвержденное опытным путем американскими физиками К. Дэвиссоном и Л. Джермером.. Речь пойдет о корпускулярно-волновом дуализме микрообъектов.

2. Научная картина мира

2.1 Понятие и структура научной картины мира

Научная картина мира — это целостная система представлений об общих свойствах и закономерностях природы, возникающая в результате обобщения и синтеза основных естественно-научных понятий, принципов, методологических установок или - особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий.

Будучи целостной системой представлений об общих свойствах и закономерностях объективного мира, научная картина мира существует как сложная структура, включающая в себя в качестве составных частей общенаучную картину мира и картины мира отдельных наук (физическая, биологическая, геологическая и т.п.). Картины мира отдельных наук, в свою очередь, включают в себя соответствующие многочисленные концепции — определенные способы понимания и трактовки каких-либо предметов, явлений и процессов объективного мира, существующие в каждой отдельной науке.

В структуре научной картины мира можно выделить два главных компонента — понятийный и чувственно-образный. Понятийный представлен философскими категориями (материя, движение, пространство, время и др.) и принципами (материального единства мира, всеобщей связи и взаимообусловленности явлений, детерминизма и др.), общенаучными понятиями и законами (например, закон сохранения и превращения энергии), а также фундаментальными понятиями отдельных наук (поле, вещество, Вселенная, биологический вид, популяция и др.).

Чувственно-образный компонент научной картины мира — это совокупность наглядных представлений о тех или иных объектах и их свойствах (например, планетарная модель атома, образ Метагалактики в виде расширяющейся сферы и др.).

2.2 Современная научная картина мира и ее отличие от ненаучных картин мира.

Основой современной научной картины мира являются фундаментальные знания, полученные, прежде всего, в области физики. Однако в последние десятилетия прошлого века все больше утверждалось мнение, что в современной научной картине мира лидирующее положение занимает биология. Это выражается в усилении влияния, которое оказывает биологическое знание на содержание научной картины мира. Идеи биологии постепенно приобретают универсальный характер и становятся фундаментальными принципами других наук. В частности, в современной науке такой универсальной идеей является идея развития, проникновение которой в космологию, физику, химию, антропологию, социологию и т.д. привело к существенному изменению взглядов человека на мир.

Главное отличие научной картины мира от ненаучных картин мира (например, религиозной) состоит в том, что научная картина мира строится на основе определенной доказанной и обоснованной фундаментальной научной теории. Вместе с тем научная картина мира как форма систематизации знания отличается от научной теории. Если научная картина мира отражает объект, отвлекаясь от процесса получения знания, то научная теория содержит в себе не только знания об объекте, но и логические средства проверки их истинности. Научная картина мира играет эвристическую роль в процессе построения частных научных теорий.

2.3 Взаимосвязь общей научной и естественнонаучной картин мира

Важнейшие концепции естествознания служат основой научных представлений об общей картине природы, поскольку в них формулируются фундаментальные понятия, принципы и законы естествознания в каждую историческую эпоху его развития. Именно они составляют научную основу картины природы в целом и поэтому в значительной степени определяют научный климат эпохи. В теснейшем взаимодействии с развитием наук о природе, начиная с XVII в., развивалась математика, которая создала для тогдашнего естествознания такие мощные математические методы, как дифференциальное и интегральное исчисления, а также дальнейшие их ответвления.

Основой картины природы и мира в целом служили мировоззренческие и философские идеи о строении мироздания, законы его изменения и развития. Человек всегда стремился понять окружающий его мир и свое место в нем. Поэтому уже на ранних этапах цивилизации возникают мифологические и религиозные представления о мире, которые со временем вытесняются научными взглядами на него.

Однако без учета результатов исследования экономических, социальных и гуманитарных наук наши знания о мире в целом будут заведомо неполными и ограниченными. Человек не только природное существо, он теснейшими узами связан с обществом, в котором протекает вся его деятельность. Фундаментальные понятия и принципы жизнедеятельности общества составляют вторую, дополнительную часть целостной научной картины мира. Поэтому следует различать естественнонаучную картину природы, которая составляет первую часть общей картины мира и формируется из результатов исследований и достижений наук о природе. Общая же научная картина мира представляет собой синтез фундаментальных понятий, принципов и закономерностей естествознания и обществознания.

2.4 Преимущество и функциональность научной картины мира

Преимущество научной картины мира, благодаря которому она вытеснит все прежние картины, состоит в ее «единстве — единстве по отношению ко всем исследователям, всем народностям, всем культурам». Следовательно, она имеет объективный характер, и поэтому ее цель «состоит не в полном приспособлении наших мыслей к нашим ощущениям, а в полном освобождении физической картины мира от индивидуальности творческого ума».

Разумеется, без творческой деятельности ученого, его воображения и интуиции, невозможно создание картины мира, но в окончательном виде эта картина не должна содержать каких-либо ссылок на индивидуальные особенности исследователя. Именно поэтому есть возможность ее использования учеными разных народов и культур.

Картина мира у любого человека слишком индивидуальна, поскольку она основана на собственном опыте, личных впечатлениях и ощущениях. Наука стремится найти объективные, не зависящие от индивидуального субъекта закономерности природы. Поэтому в науке приходится абстрагироваться от личных ощущений и представлений и построить такую систему знаний о природе, с которой мог бы согласиться каждый исследователь. Ясно, что не всякая система знаний представляет собой картину природы. Для этого необходимо, во-первых, чтобы эта система отображала наиболее фундаментальные свойства и закономерности природы; во-вторых, все такие свойства должны рассматриваться в рамках единой, целостной картины, так как никакой отдельный фундаментальный закон естествознания не составляет еще картины природы; в-третьих, естественнонаучная картина мира должна быть такой общей теоретической моделью окружающей природы, которая допускает дополнения, исправления и уточнения в связи с развитием научных представлений о мире; в-четвертых, научную картину мира следует постоянно соотносить и сверять как с самой природой, так и с изменением фундаментальных знаний о ней.

В процессе эволюции и прогресса научного познания происходит смена старых понятий новыми понятиями, менее общих теорий более общими и фундаментальными теориями. А это со временем неизбежно приводит к смене научных картин мира, но при этом продолжает действовать принцип преемственности, общий для развития всего научного знания. Старая картина мира не отбрасывается целиком, а продолжает сохранять свое значение, уточняются только границы ее применимости. Электромагнитная картина мира не отвергла механистическую картину мира, а уточнила область ее применения. Аналогично этому квантово-релятивистская картина не отбросила электромагнитную картину, а указала пределы ее применимости.

По мере развития науки и практики в научную картину мира будут вноситься изменения, исправления и улучшения, но эта картина никогда не обретет характера абсолютной истины.

3. Корпускулярно – волновой дуализм. Его сущность

 

3.1 Необычные свойства микрообъектов. Гипотеза де Бройля

В природе микрообъекты имеют необычные свойства, которые проявляются посредством экспериментов. Так учеными было установлено, что микрообъекты в одних опытах обнаруживают себя как материальные частицы, или корпускулы, в других — как волны.

Новый радикальный шаг в развитии физики был связан именно с распространением корпускулярно-волнового дуализма на мельчайшие частицы вещества — электроны, протоны, нейтроны и другие микрообъекты. В классической физике вещество всегда считалось состоящим из частиц, и потому волновые свойства казались явно чуждыми ему. Тем удивительнее оказалось обнаружение существования у микрочастиц волновых свойств.

Первым гипотезу о наличии волновых свойств у микрочастиц материи высказал в 1924 г. известный французский ученый Л. де Бройль. По-видимому, он руководствовался при этом интуитивной идеей о симметрии между веществом и полем и особенно новыми взглядами на свет, элементарные объекты которого — фотоны — обладают одновременно волновыми и корпускулярными свойствами. Несмотря на коренное различие между веществом и полем, такая глубокая аналогия оказалась верной и послужила исходной точкой для разработки новой квантовой физики.

Гипотеза де Бройля состояла в следующем:

Каждой материальной частице независимо от ее природы следует поставить в соответствие волну, длина которой обратно пропорциональна импульсу частицы:

где  — длина волны,

р — импульс частицы, равный произведению ее массы на скорость: р =mv,

h — постоянная Планка.

3.2 Доказательство гипотезы де Бройля, сущность явления

Экспериментально эта гипотеза была подтверждена в 1927 г. американскими физиками К. Дэвиссоном и Л. Джермером, впервые обнаружившими явление дифракции электронов на кристалле никеля. Как мы уже знаем, явление дифракции свидетельствует о типично волновом характере явления. Впоследствии такая же дифракционная картина была обнаружена у протонов, нейтронов и других элементарных частиц при прохождении ими через дифракционную решетку.

Таким образом, было установлено, что как фотоны, т.е. кванты света, так и вещественные частицы, такие, как электрон, протон, нейтрон и другие, обладают не только корпускулярными, но и волновыми свойствами. Это принципиально новое явление, названное впоследствии дуализмом волны и частицы, совершенно не укладывалось в рамки классической физики. Действительно, раньше считали, что объекты ее изучения могли обладать либо корпускулярными, либо волновыми свойствами. В отличие от этого микрообъекты, имеющие квантовый характер, обладают одновременно как корпускулярными, так и волновыми свойствами. Например, в одних экспериментальных условиях электрон обнаруживает типично корпускулярные свойства, а в других — волновые свойства, так что его можно было назвать как частицей, так и волной. Тот факт, что поток электронов представляет собой поток мельчайших частиц вещества, знали и раньше, но то, что этот поток обнаруживает волновые свойства, образуя типичные явления интерференции и дифракции, подобно волнам света, звука или жидкости, оказалось полной неожиданностью для физиков.

Для лучшего понимания всех дальнейших вопросов проделаем такой мысленный эксперимент. Пусть мы имеем устройство, которое дает поток электронов, например электронную пушку. Поставим перед ней тонкую металлическую пластинку с двумя булавочными отверстиями, через которые могут пролетать электроны. Прохождение электронов через эти отверстия регистрируется специальным прибором, например счетчиком Гейгера или электронным множителем, подсоединенным к динамику. Если подсчитать количество электронов, прошедших отдельно через первое отверстие, когда второе закрыто, и через второе, когда первое закрыто, а потом через оба открытых отверстия, то окажется, что сумма вероятностей прохождения электронов, когда открыто отдельно одно из отверстий, а потом другое, не будет равна вероятности их прохождения при двух открытых отверстиях:

где Р — вероятность прохождения электронов при двух открытых отверстиях,

Р1 — вероятность прохождения электронов при открытии первого отверстия,

Р2 — вероятность при открытии второго отверстия.

Это неравенство свидетельствует о наличии интерференции при прохождении электронов через оба отверстия. Интересно отметить, что если на прошедшие за экраном электроны воздействовать светом, то интерференция исчезнет. Следовательно, фотоны, из которых состоит свет, влияют на характер движения электронов и изменяют его. Здесь перед нами совершенно новое явление, заключающееся в том, что всякая попытка наблюдения микрообъектов сопровождается изменением характера их движения. Поэтому любое наблюдение микрообъектов с помощью приборов и измерительных средств исследователя в мире мельчайших частиц материи сопровождается изменением их состояния. Конечно, влияние средств наблюдения на наблюдаемые объекты было известно ученым и в классической физике. Но оно никак не учитывалось в классических теориях. В квантовой же физике этим влиянием уже нельзя было пренебречь. Именно это обстоятельство вызывает обычно возражение со стороны тех, кто не видит различия между микро- и макрообъектами. В макромире, в котором мы живем, мы не замечаем влияния приборов наблюдения и измерения на макротела, которые изучаем, поскольку практически такое влияние чрезвычайно мало и поэтому им можно пренебречь. В этом мире как приборы и инструменты, так и сами изучаемые тела характеризуются тем же порядком величин. Совершенно иначе обстоит дело в микромире, где макроприбор не может не влиять на микрообъекты.

Другое принципиальное отличие микрообъектов от макрообъектов заключается в наличии у первых корпускулярно-волновых свойств, но наличие таких взаимоисключающих, противоречивых свойств у макрообъектов целиком отвергается сторонниками классической физики. Хотя классическая физика и признает обособленное существование корпускулярных свойств у вещества и волновых свойств у поля, но отрицает существование объектов, обладающих одновременно такими свойствами. Корпускулярные свойства она приписывает только веществу, а волновые — исключительно физическим полям (акустическим, гидродинамическим, оптическим или электромагнитным).

Список литературы

1.      Найдыш В.М. «Концепции современного естествознания» - Москва 2004год;

2.      Рузавин Г.И. «Концепции современного естествознания» - Москва 2006год;

3.      Садохин А.П. «Концепции современного естествознания» - Москва 2006год.

www.neuch.ru

Реферат - Научная картина мира, понятие, структура, функции. Корпускулярно–волновой дуализм. Его сущность

Реферат по дисциплине:

«Концепции современного естествознания»

Научная картина мира, понятие, структура, функции.

Корпускулярно – волновой дуализм. Его сущность

Содержание

1. Введение

2. Научная картина мира, понятие, структура, функции

2.1 Понятие и структура научной картины мира

2.2 Современная научная картина мира и ее отличие от ненаучных картин мира

2.3 Взаимосвязь общей научной и естественнонаучной картин мира

2.4 Функциональность научной картины мира

3. Корпускулярно – волновой дуализм. Его сущность

3.1 Необычные свойства микрообъектов. Гипотеза де Бройля

3.2 Доказательство гипотезы де Бройля, сущность явления

4. Список литературы

Введение

Представления о свойствах и закономерностях окружающей нас природы возникают на основе тех знаний, которые в каждый исторический период дают конкретные науки, изучающие определенные области явлений и процессов природы. Поскольку природа есть нечто единое целое, постольку и знания о ней должны иметь целостный характер, т.е. представлять собой определенную систему. Такую общую совокупность научных знаний о природе издавна называют учением о природе или естествознанием.

Раньше в естествознание входили все сравнительно немногочисленные знания, которые были известны о природе, но уже с эпохи Возрождения возникают и обособляются отдельные его отрасли и дисциплины, т.е. начинается процесс дифференциации естественнонаучного знания. Ясно, что не все знания являются одинаково важными для понимания природы.

Чтобы подчеркнуть фундаментальный характер основных и важнейших знаний о природе, ученые ввели понятие естественнонаучной картины мира. Сам термин «картина мира» указывает на то, что речь здесь идет не о части или фрагменте мира, а о целостной концепции природы. Как правило, в формировании такой картины природы наибольшее значение приобретают фундаментальные понятия и законы наиболее развитых отраслей естествознания, которые в определенный исторический период выдвигаются в качестве основополагающей науки или лидера естествознания. Не подлежит сомнению, что фундаментальные науки оказывают свое влияние на представления о мире других наук и ученых определенной эпохи. Но это не означает, что другие науки не участвуют в формировании картины природы. В действительности такая картина возникает как результат синтеза фундаментальных открытий и законов разных отраслей и дисциплин естествознания.

С течением времени ученые открывают различные явления и устанавливают закономерности этих явлений, с последующим выводом теории и доказательством ее на практике опытным путем. В данной работе в третьем разделе мы рассмотрим одно из таких явлений отрытых сначала гипотетически французским ученым де Бройлем, а в последующем подтвержденное опытным путем американскими физиками К. Дэвиссоном и Л. Джермером… Речь пойдет о корпускулярно-волновом дуализме микрообъектов.

2. Научная картина мира

2.1 Понятие и структура научной картины мира

Научная картина мира — это целостная система представлений об общих свойствах и закономерностях природы, возникающая в результате обобщения и синтеза основных естественно-научных понятий, принципов, методологических установок или — особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий.

Будучи целостной системой представлений об общих свойствах и закономерностях объективного мира, научная картина мира существует как сложная структура, включающая в себя в качестве составных частей общенаучную картину мира и картины мира отдельных наук (физическая, биологическая, геологическая и т.п.). Картины мира отдельных наук, в свою очередь, включают в себя соответствующие многочисленные концепции — определенные способы понимания и трактовки каких-либо предметов, явлений и процессов объективного мира, существующие в каждой отдельной науке.

В структуре научной картины мира можно выделить два главных компонента — понятийный и чувственно-образный. Понятийный представлен философскими категориями (материя, движение, пространство, время и др.) и принципами (материального единства мира, всеобщей связи и взаимообусловленности явлений, детерминизма и др.), общенаучными понятиями и законами (например, закон сохранения и превращения энергии), а также фундаментальными понятиями отдельных наук (поле, вещество, Вселенная, биологический вид, популяция и др.).

Чувственно-образный компонент научной картины мира — это совокупность наглядных представлений о тех или иных объектах и их свойствах (например, планетарная модель атома, образ Метагалактики в виде расширяющейся сферы и др.).

2.2 Современная научная картина мира и ее отличие от ненаучных картин мира.

Основой современной научной картины мира являются фундаментальные знания, полученные, прежде всего, в области физики. Однако в последние десятилетия прошлого века все больше утверждалось мнение, что в современной научной картине мира лидирующее положение занимает биология. Это выражается в усилении влияния, которое оказывает биологическое знание на содержание научной картины мира. Идеи биологии постепенно приобретают универсальный характер и становятся фундаментальными принципами других наук. В частности, в современной науке такой универсальной идеей является идея развития, проникновение которой в космологию, физику, химию, антропологию, социологию и т.д. привело к существенному изменению взглядов человека на мир.

Главное отличие научной картины мира от ненаучных картин мира (например, религиозной) состоит в том, что научная картина мира строится на основе определенной доказанной и обоснованной фундаментальной научной теории. Вместе с тем научная картина мира как форма систематизации знания отличается от научной теории. Если научная картина мира отражает объект, отвлекаясь от процесса получения знания, то научная теория содержит в себе не только знания об объекте, но и логические средства проверки их истинности. Научная картина мира играет эвристическую роль в процессе построения частных научных теорий.

2.3 Взаимосвязь общей научной и естественнонаучной картин мира

Важнейшие концепции естествознания служат основой научных представлений об общей картине природы, поскольку в них формулируются фундаментальные понятия, принципы и законы естествознания в каждую историческую эпоху его развития. Именно они составляют научную основу картины природы в целом и поэтому в значительной степени определяют научный климат эпохи. В теснейшем взаимодействии с развитием наук о природе, начиная с XVII в., развивалась математика, которая создала для тогдашнего естествознания такие мощные математические методы, как дифференциальное и интегральное исчисления, а также дальнейшие их ответвления.

Основой картины природы и мира в целом служили мировоззренческие и философские идеи о строении мироздания, законы его изменения и развития. Человек всегда стремился понять окружающий его мир и свое место в нем. Поэтому уже на ранних этапах цивилизации возникают мифологические и религиозные представления о мире, которые со временем вытесняются научными взглядами на него.

Однако без учета результатов исследования экономических, социальных и гуманитарных наук наши знания о мире в целом будут заведомо неполными и ограниченными. Человек не только природное существо, он теснейшими узами связан с обществом, в котором протекает вся его деятельность. Фундаментальные понятия и принципы жизнедеятельности общества составляют вторую, дополнительную часть целостной научной картины мира. Поэтому следует различать естественнонаучную картину природы, которая составляет первую часть общей картины мира и формируется из результатов исследований и достижений наук о природе. Общая же научная картина мира представляет собой синтез фундаментальных понятий, принципов и закономерностей естествознания и обществознания.

2.4 Преимущество и ф ункциональность научной картины мира

Преимущество научной картины мира, благодаря которому она вытеснит все прежние картины, состоит в ее «единстве — единстве по отношению ко всем исследователям, всем народностям, всем культурам». Следовательно, она имеет объективный характер, и поэтому ее цель «состоит не в полном приспособлении наших мыслей к нашим ощущениям, а в полном освобождении физической картины мира от индивидуальности творческого ума».

Разумеется, без творческой деятельности ученого, его воображения и интуиции, невозможно создание картины мира, но в окончательном виде эта картина не должна содержать каких-либо ссылок на индивидуальные особенности исследователя. Именно поэтому есть возможность ее использования учеными разных народов и культур.

Картина мира у любого человека слишком индивидуальна, поскольку она основана на собственном опыте, личных впечатлениях и ощущениях. Наука стремится найти объективные, не зависящие от индивидуального субъекта закономерности природы. Поэтому в науке приходится абстрагироваться от личных ощущений и представлений и построить такую систему знаний о природе, с которой мог бы согласиться каждый исследователь. Ясно, что не всякая система знаний представляет собой картину природы. Для этого необходимо, во-первых, чтобы эта система отображала наиболее фундаментальные свойства и закономерности природы; во-вторых, все такие свойства должны рассматриваться в рамках единой, целостной картины, так как никакой отдельный фундаментальный закон естествознания не составляет еще картины природы; в-третьих, естественнонаучная картина мира должна быть такой общей теоретической моделью окружающей природы, которая допускает дополнения, исправления и уточнения в связи с развитием научных представлений о мире; в-четвертых, научную картину мира следует постоянно соотносить и сверять как с самой природой, так и с изменением фундаментальных знаний о ней.

В процессе эволюции и прогресса научного познания происходит смена старых понятий новыми понятиями, менее общих теорий более общими и фундаментальными теориями. А это со временем неизбежно приводит к смене научных картин мира, но при этом продолжает действовать принцип преемственности, общий для развития всего научного знания. Старая картина мира не отбрасывается целиком, а продолжает сохранять свое значение, уточняются только границы ее применимости. Электромагнитная картина мира не отвергла механистическую картину мира, а уточнила область ее применения. Аналогично этому квантово-релятивистская картина не отбросила электромагнитную картину, а указала пределы ее применимости.

По мере развития науки и практики в научную картину мира будут вноситься изменения, исправления и улучшения, но эта картина никогда не обретет характера абсолютной истины.

3. Корпускулярно – волновой дуализм. Его сущность

3.1 Необычные свойства микрообъектов. Гипотеза де Бройля

В природе микрообъекты имеют необычные свойства, которые проявляются посредством экспериментов. Так учеными было установлено, что микрообъекты в одних опытах обнаруживают себя как материальные частицы, или корпускулы, в других — как волны.

Новый радикальный шаг в развитии физики был связан именно с распространением корпускулярно-волнового дуализма на мельчайшие частицы вещества — электроны, протоны, нейтроны и другие микрообъекты. В классической физике вещество всегда считалось состоящим из частиц, и потому волновые свойства казались явно чуждыми ему. Тем удивительнее оказалось обнаружение существования у микрочастиц волновых свойств.

Первым гипотезу о наличии волновых свойств у микрочастиц материи высказал в 1924 г. известный французский ученый Л. де Бройль. По-видимому, он руководствовался при этом интуитивной идеей о симметрии между веществом и полем и особенно новыми взглядами на свет, элементарные объекты которого — фотоны — обладают одновременно волновыми и корпускулярными свойствами. Несмотря на коренное различие между веществом и полем, такая глубокая аналогия оказалась верной и послужила исходной точкой для разработки новой квантовой физики.

Гипотеза де Бройля состояла в следующем:

Каждой материальной частице независимо от ее природы следует поставить в соответствие волну, длина которой обратно пропорциональна импульсу частицы:

где — длина волны,

р — импульс частицы, равный произведению ее массы на скорость: р =mv,

h — постоянная Планка.

3.2 Доказательство гипотезы де Бройля, сущность явления

Экспериментально эта гипотеза была подтверждена в 1927 г. американскими физиками К. Дэвиссоном и Л. Джермером, впервые обнаружившими явление дифракции электронов на кристалле никеля. Как мы уже знаем, явление дифракции свидетельствует о типично волновом характере явления. Впоследствии такая же дифракционная картина была обнаружена у протонов, нейтронов и других элементарных частиц при прохождении ими через дифракционную решетку.

Таким образом, было установлено, что как фотоны, т.е. кванты света, так и вещественные частицы, такие, как электрон, протон, нейтрон и другие, обладают не только корпускулярными, но и волновыми свойствами. Это принципиально новое явление, названное впоследствии дуализмом волны и частицы, совершенно не укладывалось в рамки классической физики. Действительно, раньше считали, что объекты ее изучения могли обладать либо корпускулярными, либо волновыми свойствами. В отличие от этого микрообъекты, имеющие квантовый характер, обладают одновременно как корпускулярными, так и волновыми свойствами. Например, в одних экспериментальных условиях электрон обнаруживает типично корпускулярные свойства, а в других — волновые свойства, так что его можно было назвать как частицей, так и волной. Тот факт, что поток электронов представляет собой поток мельчайших частиц вещества, знали и раньше, но то, что этот поток обнаруживает волновые свойства, образуя типичные явления интерференции и дифракции, подобно волнам света, звука или жидкости, оказалось полной неожиданностью для физиков.

Для лучшего понимания всех дальнейших вопросов проделаем такой мысленный эксперимент. Пусть мы имеем устройство, которое дает поток электронов, например электронную пушку. Поставим перед ней тонкую металлическую пластинку с двумя булавочными отверстиями, через которые могут пролетать электроны. Прохождение электронов через эти отверстия регистрируется специальным прибором, например счетчиком Гейгера или электронным множителем, подсоединенным к динамику. Если подсчитать количество электронов, прошедших отдельно через первое отверстие, когда второе закрыто, и через второе, когда первое закрыто, а потом через оба открытых отверстия, то окажется, что сумма вероятностей прохождения электронов, когда открыто отдельно одно из отверстий, а потом другое, не будет равна вероятности их прохождения при двух открытых отверстиях:

где Р — вероятность прохождения электронов при двух открытых отверстиях,

Р1 — вероятность прохождения электронов при открытии первого отверстия,

Р2 — вероятность при открытии второго отверстия.

Это неравенство свидетельствует о наличии интерференции при прохождении электронов через оба отверстия. Интересно отметить, что если на прошедшие за экраном электроны воздействовать светом, то интерференция исчезнет. Следовательно, фотоны, из которых состоит свет, влияют на характер движения электронов и изменяют его. Здесь перед нами совершенно новое явление, заключающееся в том, что всякая попытка наблюдения микрообъектов сопровождается изменением характера их движения. Поэтому любое наблюдение микрообъектов с помощью приборов и измерительных средств исследователя в мире мельчайших частиц материи сопровождается изменением их состояния. Конечно, влияние средств наблюдения на наблюдаемые объекты было известно ученым и в классической физике. Но оно никак не учитывалось в классических теориях. В квантовой же физике этим влиянием уже нельзя было пренебречь. Именно это обстоятельство вызывает обычно возражение со стороны тех, кто не видит различия между микро- и макрообъектами. В макромире, в котором мы живем, мы не замечаем влияния приборов наблюдения и измерения на макротела, которые изучаем, поскольку практически такое влияние чрезвычайно мало и поэтому им можно пренебречь. В этом мире как приборы и инструменты, так и сами изучаемые тела характеризуются тем же порядком величин. Совершенно иначе обстоит дело в микромире, где макроприбор не может не влиять на микрообъекты.

Другое принципиальное отличие микрообъектов от макрообъектов заключается в наличии у первых корпускулярно-волновых свойств, но наличие таких взаимоисключающих, противоречивых свойств у макрообъектов целиком отвергается сторонниками классической физики. Хотя классическая физика и признает обособленное существование корпускулярных свойств у вещества и волновых свойств у поля, но отрицает существование объектов, обладающих одновременно такими свойствами. Корпускулярные свойства она приписывает только веществу, а волновые — исключительно физическим полям (акустическим, гидродинамическим, оптическим или электромагнитным).

Список литературы

1. Найдыш В.М. «Концепции современного естествознания» — Москва 2004год;

2. Рузавин Г.И. «Концепции современного естествознания» — Москва 2006год;

3. Садохин А.П. «Концепции современного естествознания» — Москва 2006год.

www.ronl.ru

научная картина

федеральное агентство по образованию

ангарская государственная техническая академия

Кафедра общественных наук

Сюда не сдавать

РЕФЕРАТ

По философии

на тему: Современная научная картина мира

Выполнил:

Проверил:

Ст. преподаватель

Трахтенберг О. Л.

Ангарск 2006 г.

СОДЕРЖАНИЕ

Введение 3

Научная картина мира 4

Заключение 12

Современная научная картина мира динамична, проти­воречива. В ней больше вопросов, чем ответов. Она изумляет, пугает, ставит в тупик, шокирует. Но ничего не поделаешь. Поискам познающего разума нет границ, и в ближайшие годы мы, возможно, будем потрясены новы­ми открытиями и новыми идеями. А сейчас обратимся к картинам мира, которые не меняются веками и служат объяснением устройства мироздания для многих поколе­ний. Они качественно иные и обращены к сложному взаи­модействию мира людей и мира высших сил 12

Литература 13

Введение

Огромное практическое значение науки в XX в. сдела­ло ее той областью знания, к которой массовое сознание испытывает глубокое уважение и пиетет. Слово науки ве­сомо, и оттого рисуемая ею картина мира часто принима­ется за точную фотографию реальной действительности, за изображение Вселенной такой, как она есть на самом деле, независимо от нас. Да ведь наука и претендует на эту роль — бесстрастного и точного зеркала, отражающего мир в строгих понятиях и стройных математических вы­числениях. Однако за привычным, коренящимся еще в эпохе Просвещения доверием к выводам науки, мы часто забываем, что наука — развивающаяся и подвижная систе­ма знаний, что способы видения, присущие ей (парадиг­мы) — изменчивы. А это означает: сегод­няшняя картина мира не равна вчерашней. Повседневное сознание все еще живет научной картиной мира прошлых лет и веков, а сама наука уже убежала далеко вперед и рисует порой вещи столь парадоксальные, что сама ее объективность и беспристрастность начинает казаться мифом...

Научная картина мира

Научная картина мира представляет собой целостную систему представлений об общих свойствах и закономерностях мира, возникающую в результате обобщения и синтеза основных естественнонаучных понятий и принципов. В ее структуре можно выделить два главных компонента понятийный и чувственнообразный. Концептуальный компонент представлен философскими категориями (материя, движение, пространство, время и др.), принципами (системное единство мира, всеобщая взаимосвязь и взаимообусловленность явлений), общенаучными понятиями и законами (закон сохранения и превращения энергии). Чувственнообразный компонент научной картины мира — это совокупность наглядных представлений о природе (планетарная модель атома, образ Meгагалактики в виде расширяющейся сферы).

Главное отличие научной картины мира от донаучной и ненаучной состоит в том, что она строится на основе определенной фундаментальной научной теории, служащей ее обоснованием.

Первые картины мира выдвинуты в рамках античной философии и носили натурфилософский характер. Научная картина мира начинает формироваться только в эпоху возникновения современного естествознания, в XVI – XVII вв. В общей системе научной картины мира определяющим моментом выступает картина той области познания, которая занимает лидирующее положение. Так, например, научная картина мира XVII—XIX вв строилась на базе классической механики, а современная — квантовой механики, а также теории относительности. Рассмотрим более подробно каждую из этих картин.

Элементы научно-механического воззрения на мир складывались на базе зарождающегося мануфактурного производства и рационально-критического сознания формирующейся буржуазии, практицизм которой не мог быть удовлетворен экстатическими образами и представлениями. Как труды Леонардо, так и работы Галилея вытекали из требований времени. Для производственной практики представляли интерес вопросы статики и механического перемещения тел в пространстве.

Идея рационально понимаемой природы постепенно взяла верх. Механика, астрономия, математика стали руководительницами прочих наук, и их точка зрения на мир стала господствующей. Объяснить устройство мира значило, согласно этой позиции, ясно и наглядно представить его себе. Такое объяснение — его ясность — предполагало как логическое выведение изучаемого процесса из общих принципов, так и демонстрацию этого процесса в эксперименте. «Мир устроен рационально» — означало, что он может быть расчленен с помощью анализа на логически связанные друг с другом и математически точно описываемые составные элементы. Английский философ Гоббс, стремясь любой процесс понять как разумный, уподоблял общество мудро построенному механизму Спиноза заставил саму субстанцию – природу – разворачиваться на манер геометрии Евклида. Декарт анализирует жизненные процессы как машинообразно запрограммированные. А французский материалист Ламетри заявил, что человек – это машина.

К концу XVII в. была подготовлена теоретическая база для со­здания всеобъемлющей научной программы объяснения фундаментальных свойств мира на основе механике математического естествознания. Окончательное и адекватное изложение этого дал Ньютон. Общая единица измерения массы была понята как характеристика всех тел, и земных и небесных, в их различных объемах. Сила определялась, исходя из ее воздействия на движение тела. Понятие вели чины тела привело к открытию простых качественных законов.

Концепция Ньютона исключительно успешно прошла проверку в течение всего Нового времени. Ее первый триумф составил закон гравитации Постепенно накопление таких успехов обеспечивало развитие астрономии, физики и инженерии. Был создан целостный образ материального мира, позволяющий рассчитывать самые мелкие элементы отдельных событий. В дальнейшем механистическое объяснение всех природных процессов окончательно установилось в качестве парадигмы науки и явилось своеобразным символом ее интеллектуальной мощи.

Космос стал рассматриваться как гигантская машина. Будучи раз приведенным в движение «механизм мира» функционирует согласно вечным законам природы, подобно заведенным и пущенным в ход часам.

В течение двух веков большинство ученых, поражаясь почти невероятным успехам, достигнутым разумом на поприще открытия законов механики, вдохновлялось идеалом механистической картины мира. Не только физики берут на вооружение разрабо­танную в ней методологию, ею пытаются руководствоваться и хи­мики, и биологи. Сложнейшие социальные явления истолковываются в этом же стиле. Лозунги Великой французской революции — свобода, равенство, братство — в качестве теоретического фундамента имели концепцию, согласно которой общество в принципе может также четко функционировать, как хорошо отлаженная машина, нужно только привести его в соответствие с разумными принципами, отвечающими природе человека.

Переход от механистической к квантово-релятивистской картине мира сопровождался изменением стиля онтологических принципов физики (ломка представлений о неделимости атома, существования абсолютного пространства и времени, жесткой причин­но-следственной обусловленности физических процессов). Законы механики не смогли срабатывать в качестве объяснительного принципа на уровне элементарных частиц и мегамира. Кроме того, в рамках механистической картины мира, постулирующей прин­цип неизменности материальных систем во времени, практически невозможно было объяснить возникновение качественно новых систем. Это с неизбежностью приводило к идее отказа от парадиг­мы механицизма и разработки иного научного образа реальности.

В основе современных научных представлений о строении мира лежит идея ее сложной системной организации. Наличие общих признаков организации позволяет объединить различные объекты в классы разнообразных систем. Эти классы часто называют уров­нями организации материи или видами материи. Все виды мате­рии связаны между собой генетически, т.е. каждый из них разви­вается из другого. Удивительное свидетельство единства всех струк­турных уровней организации мира дает современная физика ос­новных типов взаимодействия. Так оказывается, что реальное един­ство слабого и сильного взаимодействия может проявляться при таких энергиях, которые не существуют в современном мире и могли реализоваться только в первые секунды эволюции Метага­лактики после Большого Взрыва. С другой стороны, мы обнару­живаем, что макроскопические свойства наблюдаемого нами мира (наличие галактик, звезд, планетных систем, жизни на Земле) обусловлены небольшим количеством констант, характеризующих различные свойства элементарных частиц и основные типы фун­даментальных закономерностей. Например, если бы масса элек­трона была в три-четыре раза больше ее значения, то время суще­ствования нейтрального атома водорода исчислялось бы несколь­кими днями. А это привело бы к тому, что галактика и звезды состояли преимущественно из нейтронов и многообразия атомов и молекул в их современном виде просто не существовало бы. Со­временная структура Вселенной очень жестко обусловлена также величиной, выражающей разницу в массах нейтрона и протона. Разность эта очень мала и составляет всего одну тысячную от массы протона. Однако, если бы она была в три раза больше, то во Вселенной не мог бы проходить нуклонный синтез и в ней не было бы сложных элементов, а жизнь вряд ли могла возникнуть.

Это обстоятельство позволило современной науке сформули­ровать так называемый антропный принцип, который становится достаточно надежным принципом объяснения мира и создания со­временной картины мира, способной соединить объективность виде­ния с ценностными оценками.

Это вплотную подводит к идее эволюции Вселенной. В полной мере эта идея была осознана в середине XX в. Надо отметить, что она чужда самому духу ньютоновской физики, которая по своему логическому строю скорее физика бытия, чем физика становле­ния.

На нынешнем этапе развития физической космологии на пе­редний план выдвигается задача воссоздания сценария образова­ния крупномасштабной структуры Вселенной, от самого начала и вплоть до наших дней. Иными словами, она должна включать в себя не только картину возникновения и эволюции галактик, но и звезд, планет и органической жизни.

Каковы же хронологические рамки полной космогонической теории? Космологи обычно делят эволюцию космической материи от момента «Большого Взрыва» по настоящее время на четыре периода, условно именуемые «планковским», «квантовым», «адронным» и «обычным». Каждый из этих периодов охватывает определенные, физически значимые фрагменты космологической шкалы времени, разнящиеся на целых двадцать порядков: 1) от нуля (время, соответствующее моменту «Большого Взрыва») до 10-43 сек занимает «планковский» период; 2) от 10-43 до 10-23 сек — «квантовый»; 3) 10-23 до 10-3 сек — «адронный»; 4) от 10-3 до 1017 сек — «обычный». Последний хронологический рубеж отделяет настоящее от будущего.

На 10-43 сек жизни Вселенной ее плотность была равна 1094 г/см3, а ее радиус составлял порядка 10-33 см. Следующая узловая точка в траектории эволюции космической материи обо­значена цифрой 10-36 сек. Пространственно-временная дистанция между этими двумя математическими величинами наполнена мик­рофизическими событиями поистине вселенского значения. Плот­ность вещества в этот промежуток времени падает, тогда как плот­ность вакуума остается неизменной. Это привело к резкому изме­нению физической ситуации уже спустя 10-35 сек после «Большо­го Взрыва». Плотность вакуума сначала сравнивается, а затем, через несколько мгновений космического времени, становится боль­ше плотности вещества. Тогда дает о себе знать гравитационный эффект вакуума — его силы отталкивания берут верх над силами тяготения обычной материи. Вселенная начинает расширяться в чрезвычайно быстром темпе и в течение всего лишь 10-32 доли секунды достигает огромных размеров, превышающих на много порядков размеры ныне наблюдаемой части Вселенной.

Однако этот космологический процесс ограничен во времени и пространстве. Вселенная, подобно любому расширяющемуся газу, сначала быстро остывает и уже в районе 10-33 сек после «Большого Взрыва» сильно переохлаждается. В результате этого косми­ческого похолодания Вселенная от одной фазы эволюции перехо­дит в другую. Если быть более точным, речь идет о фазовом переходе первого рода — скачкообразном изменении внутренней структуры космической материи и всех связанных с ней характеристик и свойств.

На завершающей стадии этого космического фазового перехода весь энергетический запас вакуума превращается в тепловую энергию обычной материи, а в итоге вселенская плазма вновь по­догревается до первоначальной температуры. На этом этапе эво­люции Вселенной космическая материя, состоящая преимущест­венно из квантов излучения, движется в нормальном замедленном темпе. Самым необычным в космической картине эволюции моло­дой Вселенной оказывается принципиальная возможность резкой смены одних ее состояний другими, сопровождающаяся глубоки­ми качественными изменениями в физической структуре косми­ческой материи. Взглянув сквозь призму новых физических пред­ставлений в далекое прошлое Вселенной, ученые обнаружили, что космическая материя могла находиться в качественно различных фазах, при которых ее свойства существенно разнились. Напри­мер, одна и та же частица могла иметь массу в одной фазе и быть безмассовой в другой.

В последнее время рядом ученых сформулирована вакуумная модель мира, исходя из которой вакуум может порождать множе­ство миров. В качестве наглядного образа можно использовать картину кипящего вакуума, на поверхности которого возникают «пузыри» физических Вселенных, в одной из которых живем мы с вами. Этим самым признается возможность множественности параллельных миров.

Возвращаясь, однако, к этапам эволюции Вселенной, отметим закономерность формирования из элементарных частиц легких атомных ядер (гелий-4 и дейтерий). Далее происходит формиро­вание плазмы, состоящей из горячей смеси фотонов, нейтронов и небольшого количества разряженного ионизированного газа. С наступлением следующего этапа возникают атомы и на заключи­тельном этапе происходит формирование крупномасштабной струк­туры Вселенной. Именно в этот период истории космоса происхо­дит постепенное сгущение и последующее превращение первично­го, все еще достаточно горячего вещества в галактики и их скопле­ния.

Космогонический механизм этого общевселенского процесса еще не выяснен, однако ныне ученые значительно продвинулись в понимании естественных путей формирования химических элемен­тов и состоящих из них веществ. Для нас же важно подчеркнуть другое. Идея эволюции вошла в плоть и кровь современной астро­физики и космологии. Принцип развития стал неотъемлемой час­тью современного стиля мышления в этих науках – ведущих от­раслях новейшего естествознания, имеющих огромное мировоз­зренческое значение. Именно данные астрофизики и космологии в последние годы доказали эволюционный характер Вселенной. Современному положению вещей наиболее адекватна мысль, вос­ходящая к Гераклиту, возрожденная затем Кантом, об изменчи­вости Вселенной как целого. Здесь имеется в виду один сущест­венный терминологический нюанс, на который далеко не всегда обращают должное внимание. Три термина «вся Вселенная», «Все­ленная в целом» и «Вселенная как целое» логически не эквива­лентны. Первый обозначает все части Вселенной безотносительно к целому. Второй — целое безотносительно к частям. Третий все части Вселенной в их внутреннем отношении к целому. Говоря об эволюции космоса, имеется в виду Вселенная как целое. Все уровни структурной организации Вселенной в отдельности и сама Вселенная в целом вовлечены в соответствующие эволюционные процессы, которые к тому же генетически и функционально свя­заны и взаимообусловлены. И именно благодаря идее глобально­го эволюционизма Вселенной она предстает высокоорганизован­ной системой систем, спаянных едиными закономерностями и функ­ционирования, и развития.

Современные научные представления о мире формируют новое мироощущение, которое получило название космизм. Оно рас­сматривает человечество как закономерную ступень космической эволюции, как своеобразную кристаллизацию творческих сил Природы, как бы допустившей в лице человека возможность по­стичь ее сокровенные тайны. Психотерапевтическая функция та­кой идеи очевидна. Идея человека как закономерного звена в раз­витии Вселенной снимает проблему бытийственной укорененнос­ти человека в мире. Духовные силы людей начинают рассматри­ваться не просто как продукт случайного сцепления обстоятельств на планете, затерявшейся в бездне галактик, а как проявление необходимых, но скрытых механизмов, приводящих в движение земную цивилизацию, примиряющих временное и вечное, относи­тельное и абсолютное, земное и небесное.

Если внимательно присмотреться к истории человеческой мыс­ли, то можно увидеть, что именно идеи космизма, включенности человечества в контекст развития универсума составляли подлин­ный нерв духовной культуры. В таком случае перечень имен нельзя ограничить В.И.Вернадским, Тейяр де Шарденом, К.Циолковским, Н.Федоровым и другими признанными защитниками этого уче­ния. В него правомерно включить Платона и средневековых мис­тиков, концепции витализма и пантеизма, «врожденные идеи» Декарта и «жизненный поток» А.Бергсона. Из современников можно сослаться на предложенную Н.Н.Моисеевым концепцию универсального эволюционизма (46а). Одна из центральных идей заключается в следующем. В процессе естественной эволюции су­персистема «Вселенная» обретает с помощью человека способность не только познавать себя, но и направлять свое развитие так, что­бы компенсировать или ослабить возможные дестабилизирующие факторы. Эта идея последовательно и всесторонне развивается в русле новой научной дисциплины — синергетики, или теории о саморазвитии сложных и гиперсложных систем, которая обладает значительным мировоззренческим и методологическим потенциа­лом.

Подобного рода проблемы, решаемые в границах соответству­ющих картин мира, являются «вечными», так как не допускают окончательного ответа, годного для всех времен. Человечество обречено на то, чтобы всегда прислушиваться к таинственной ти­шине межгалактических просторов и ощущать в душе неизъясни­мое очарование творческого постижения звездного неба над своей головой.

Заключение

Современная научная картина мира динамична, проти­воречива. В ней больше вопросов, чем ответов. Она изумляет, пугает, ставит в тупик, шокирует. Но ничего не поделаешь. Поискам познающего разума нет границ, и в ближайшие годы мы, возможно, будем потрясены новы­ми открытиями и новыми идеями. А сейчас обратимся к картинам мира, которые не меняются веками и служат объяснением устройства мироздания для многих поколе­ний. Они качественно иные и обращены к сложному взаи­модействию мира людей и мира высших сил

Литература

  1. ОСНОВЫ ФИЛОСОФИИ Учебное пособие, М.:“ВЛАДОС", 1997

  2. Степин В. С., Горохов В. Г., Розов М. А. Философия науки и техники. М., 1995

  3. Розин В. М. Философия техники. М., 2001

13

studfiles.net

4.5 Научная картина мира. Исторические формы научной картины мира

Любой ученый находится под влиянием определенного мировоззрения, потому что он – человек своей эпохи, своего исторического времени. Так, ученые средних веков находились под влиянием мировоззрения, составной частью которого явился геоцентризм. В XVI – XVII вв. в мировоззрение ученых внедряется гелиоцентризм.

Мировоззрение это совокупность взглядов человека на мир, на свое место в этом мире.

В состав мировоззрения входят:

1. Знания о природе, об обществе, о культуре, о самом человеке. Эти знания исторически развиваются.

2. Идеалы и ценности. Это те предметы (материальные или духовные), на которые ориентируется человек в своей жизни, к достижению которых он стремится.

3. Убеждения людей и их вера. Различаются религиозная вера (вера в сверхъестественное) и научная вера (вера в прогресс научного знания).

Для просвещенного человека, то есть человека, который оценивает мир на основе достоверных знаний, ядром мировоззрения является наука и научная картина мира.

Научная картина мира – это упорядоченная система знаний, которая обобщает результаты естественных, технических и социальных наук на том или ином отрезке исторического времени.

Научная картина мира, в отличие от ненаучной картины мира, опирается на достоверные знания, т.е. на такие знания, которые подтверждены практикой. Достоверные знания можно воспроизвести неоднократно, опытно подтвердить их.

Основная функция и предназначение научной картины мира –обеспечение синтеза, интеграции научных знаний. Она выполняет задачу упорядочивания, систематизации научных знаний.

В содержание научной картины мира входят не все наличные научные знания, а лишь те научные знания, которые имеют наиболее важный и принципиальный характер на данном этапе научного развития.

Очень часто в научной картине мира законы природы формулируются в образной форме. Это делается для того, чтобы научная картина мира была понятна не только узкому кругу ученых, но и широкой просвещенной публике. Нередко законы природы выражаются в форме отрицания. Выражение «Нельзя создать вечный двигатель» формулирует закон сохранения энергии.

Научная картина мира не остается неизменной. Она эволюционирует и в связи с этим можно выделить три основные исторические формы научной картины мира:

1. Классическая научная картина мира

2. Неклассическая научная картина мира

3. Постнеклассическая научная картина мира

Классическая научная картина мира господствует в XVII-XIX вв. Она основана на достижениях науки Нового времени. Основателями этой картины мира явились Н.Коперник, Г.Галилей, И.Ньютон. Эталоном объяснения мира здесь считается однозначная причинно-следственная зависимость. Прошлое изначально определяет настоящее, настоящее изначально определяет будущее. Считалось, что все состояния мира могут быть однозначно просчитаны и предсказаны. Эталоном познания считалась объективность, то есть независимость научных знаний от субъекта, от наблюдателя.

Неклассическая научная картина мира зарождается на рубеже XIX – ХХ вв. На возникновение этой картины мира повлияли достижения в области термодинамики, открытие явлений электромагнетизма, исследование микромира, идея относительности А. Эйнштейна. В данной научной картине мира случайность считается не чем-то внешним и побочным в развитии объекта, а важнейшей стороной происходящих событий. Изменения осуществляются, подчиняясь закону вероятности и больших чисел, т.е. выдвигается идея статистического понимания причинности. Кроме этого, утверждается, что на результат познания значительное влияние оказывает наблюдатель (субъект), а также используемые приборы.

Постнеклассическая научная картина мира начинает формироваться в 70-е годы ХХ в. На эту картину мира серьезное влияние оказали труды бельгийского ученого И. Пригожина о синергетике. С самого начала и к любому данному моменту времени будущее остается непредопределенным. Развитие может пойти в одном из нескольких направлений. Предсказать, в каком именно направлении пойдет будущее развитие событий, невозможно. Направление развития чаще всего определяется каким-то незначительным фактором. Достаточно небольшого «укола» и система перестраивается, выбирает иное направление развития. Придается очень большое значение роли случайности в развитии. Случайное и незначительное событие может вызвать глобальные изменения в мире и в развитии системы.

Функции научной картины мира:

1. Объяснительная функция. Научная картина мира объясняет природные и социальные процессы на базе имеющихся знаний.

2. Функция систематизации научного знания. В научной картине мира обобщаются наиболее важные узловые научные идеи, характерные для той или иной эпохи.

studfiles.net

Научная картина мира - Концепции современного естествознания

Особенности научной картины мира Основные принципы построения научной картины мира Общие контуры современной естественно-научной картины мира Заключение Список использованной литературы Особенности научной картины мира

Научная картина мира представляет собой целостную систему представлений об общих принципах и законах устройства мироздания.Отличия научной картины мира от религиозной.Научная картина мира опирается на науку. Главная опора науки — это факты. Наука обладает критической функцией, всегда готова к самоопровержению вплоть до базовых принципов. Религиозная картина мира основывается на вере. Религия оперирует догмами («положение, принимаемое на веру за непреложную истину, неизменную при всех обстоятельствах» ). Наука опирается на разум, ничто не принимается без доказательств. Религиозная вера складывается из убеждения в истинности основ религиозного учения, признания и следования нормам нравственности, содержащимся в религиозных требованиях к человеку и знания наиболее существенных положений вероучения. Религия — неизменна, ее деятельность направлена на подтверждение исходных догм и догматов. В религиозной картине мира центральное место отведено богу. До XIX в. господствовало утверждение, согласно которому мир появился в результате акта божественного творения по принципу: «И сказал Бог: да будет… и стало». И это же относится к акту творения человека. Согласно этому взгляду, мир не имеет развития в истории. Прошлое и будущее являются точно такими же, как настоящее. Мир появился потому, что так сказал Бог. Вот единственная причина его сотворения. В этом взгляде отсутствует объяснение естественных причин появления и развития мира и человека. С точки зрения научной картины мира, Вселенная образовалась в результате Большого взрыва, и вследствие эволюционного развития возникли звезды, планеты, зародилась жизнь на Земле, появились растения, млекопитающие и человек. В науке есть место вере (аксиомы). И наука, и религия — это духовное освоение мира. Ученые могут верить в бога, понимая под ним природу (пантеизм ).

Основные принципы построения научной картины мира

Картина мира, рисуемая современным естествознанием, необыкновенно сложна и проста одновременно. Сложна она потому, что способна поставить в тупик человека, привыкшего к согласующимся со здравым смыслом классическим научным представлениям. Идеи начала времени, корпускулярно-волнового дуализма квантовых объектов, внутренней структуры вакуума, способной рождать виртуальные частицы, — эти и другие подобные новации придают нынешней картине мира немного «безумный» вид. Но в то же время эта картина величественно проста, стройна и где-то даже элегантна. Словосочетание «научная картина мира» подразумевает некую аналогию между совокупностью описывающих реальный мир научных абстракций и большим живописным полотном, на котором художник компактно разместил все предметы мира. Настоящие живописные полотна имеют один существенный недостаток — степень сходства с изображаемым объектом порой бывает далека от желаемой. Люди стремились добиться точности изображения, и вскоре изобрели фотографию. Точность повысилась, но заметное неудобство стало причинять безжизненность, статичность фотографии. Человечество изобретает кинематограф, и изображаемые объекты оживают и двигаются. Последовательно сменявшие друг друга научные картины мира (античная, ньютоновская и современная) претерпели похожие изменения.Античный ученый рисовал свою картину с большой долей выдумки, сходство с изображаемым было минимальным. Ньютоновская картина мира стала строже и во много раз точнее (черно-белая фотография, местами неясная). Нынешняя научная картина мира обнаружила в каждом фрагменте Вселенной эволюцию, развитие. Описание истории Вселенной требует уже не фотографии, а киноленты, каждый кадр которой соответствует определенному этапу ее развития. Поэтому главным принципом построения научной картины мира является глобальный эволюционизм. Принципы построения научной картины мира в целом соответствуют фундаментальным закономерностям существования и развития самой Природы. Принципы построения научной картины мира:1) Системность — означает воспроизведение наукой того факта, что наблюдаемая Вселенная предстает как наиболее крупная из всех известных систем, состоящая из огромного множества элементов (подсистем) разного уровня сложности. Под «системой» понимается некое упорядоченное множество взаимосвязанных элементов. Эффект системности обнаруживается в появлении у целостной системы новых свойств, возникающих в результате взаимодействия элементов. Важной характеристикой системной организации является иерархичность, субординация («последовательное включение систем нижних уровней в системы все более высоких уровней» ). Системный способ объединения элементов выражает их принципиальное единство: благодаря иерархичному включению систем разных уровней друг в друга любой элемент любой системы оказывается связан со всеми элементами всех возможных систем. 2) Глобальный эволюционизм — это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Эволюционирующий характер Вселенной также свидетельствует о принципиальном единстве мира, каждая составная часть которого есть историческое следствие глобального эволюционного процесса, начатого Большим взрывом.3) Самоорганизация — это наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур в ходе эволюции. Механизм перехода материальных систем в более сложное и упорядоченное состояние сходен для всех систем уровней. 4) Историчность — любая научная картина мира имеет предшествующую историю.

Общие контуры современной естественно-научной картины мира

Общие контуры современной естественно-научной картины мира сформировала третья научная революция. В это время последовала целая серия блестящих открытий в физике (открытие сложной структуры атома, явление радиоактивности, дискретного характера электромагнитного излучения, и т. д.). Наиболее значимыми теориями, составившими основу новой парадигмы научного знания, стали теория относительности (специальная и общая) и квантовая механика. Революционные сдвиги, затрагивающие основания фундаментальных наук, определяют общие контуры научной картины мира на длительный период. Общие контуры современной научной картины мира. 1) Вся научная картина мира относительна.2) Исходные понятия пространства, времени, непрерывности были переосмыслены.3) Объект познания перестал восприниматься как существующий «сам по себе».4) Изменилось «представление» научной картины мира о самой себе: стало ясно, что «единственно верную», абсолютно точную картину не удастся нарисовать никогда. У современной естественно-научной картины мира есть особенность, отличающая ее от прежних вариантов. Она заключается в признании историчности, а следовательно, принципиальной незавершенности настоящей, да и любой другой картины мира. Та, которая есть сейчас, порождена как предшествующей историей, так и специфическими социокультурными особенностями нашего времени. Развитие общества, изменение его ценностной ориентации, осознание важности исследования уникальных природных систем, в которые составной частью включен и сам человек, меняет и стратегию научного поиска, и отношение человека к мируВселенная и общество развиваются, хотя их развитие осуществляется в различных темпоритмах. Но их взаимное наложение делает идею создания окончательной, завершенной, абсолютно истинной научной картины мира практически неосуществимой. Зная это, можно отметить только лишь общий контур современной естественно-научной картины мира.

Заключение

На основании материала, изложенного в контрольной работе, можно сделать следующие выводы:1) Научная картина мира отличается от религиозной наличием эволюционного развития.2) Научная картина мира строится на глобальном эволюционизме, системности, самоорганизации и историчности.3) Появилось сознание того, что абсолютно точную картину мира не удастся нарисовать никогда. Следовательно, можно описать лишь ее общие контуры.

Список использованной литературы

1) Концепции современного естествознания: Учебник для вузов/ В.Н. Лавриненко, В.П. Ратников, Г. В. Баранов и др. — М.: ЮНИТИ-ДАНА, 2002. стр. 42 — 91.2) Горелов А.А. Концепции современного естествознания: Учебное пособие — М.: Высшее образование, 2007. стр.288 — 298.3) Ожегов С.И. Словарь русского языка. — М.: ГИИНС, 1961. стр. 165.

Ключевые слова страницы: как, скачать, бесплатно, без, регистрации, смс, реферат, диплом, курсовая, сочинение, ЕГЭ, ГИА, ГДЗ

referatzone.com


Смотрите также