Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Научная работа: Жидкие кристаллы. Жидкие кристаллы реферат по физике


Работа - Жидкие кристаллы - Физика

Содержание

Введение…

1. Молекулярные диполи и возможность их упорядочения…

2. Жидкокристаллические сегнетоэлектрики. Симметрия…

3. Сегнетоэлектрические смеси…

4. Особые свойства жидкокристаллических сегнетоэлектриков…

5. Сегнетоэлектрики полимеры…

6. Роль жидкокристаллического состояния в физике и технике…

Список литературы…

Введение

Более 100 лет назад (1888 г.) ученые обнаружили, что вещества в жидкокристаллическом состоянии обладают текучестью, как обычные жидкости, и в то же время их оптические свойства поразительно похожи на свойства твердых кристаллов.

Много позже стала ясна физическая причина существования четвертого состояния вещества и его основное условие, которое заключается в том, что молекулы должны иметь не сферическую, а, например, вытянутую форму в одном направлении или заметно уплощенную. В этих случаях атомы в молекулах располагаются в основном либо вдоль определенной линии, либо в выделенной плоскости [ 5 ].

Несферичность молекулы можно характеризовать вектором единичной длины е, который либо параллелен оси молекулы, либо перпендикулярен ее плоскости. Жидким кристаллом называют жидкость, состоящую из таких молекул, которые не только удерживаются в среднем на некотором расстоянии а друг от друга, но и имеют векторы е, параллельные определенной оси L :

а б

Рис.1. [1]

Подчеркнем, что, хотя в таком состоянии вещества оси или плоскости его молекул оказываются параллельными, оно все равно остается жидким: центры масс молекул не образуют какой-либо периодической решетки, как в кристалле, а располагаются хаотично в пространстве и могут в нем свободно перемещаться. Разумеется, ориентация молекул в такой анизотропной жидкости подчиняется этому порядку только при умеренной температуре, пока тепловые флуктуации не настолько сильны, чтобы разрушить данный ориентационный порядок. Сильное повышение температуры вызывает разрушение порядка в ориентации молекул, когда их хаотическое поступательное и вращательное движение становится преобладающим, и жидкий кристалл превращается в обычную жидкость. Жидкие кристаллы, образующиеся при изменении температуры, называются термотропными [ 6 ].

Существование того или иного жидкого состояния зависит не только от температуры, но и от плотности вещества, точнее, от концентрации в растворе несферических молекул.

Когда на каждую молекулу в жидкости приходится объем порядка l 3, где l — длина молекулы, то молекулы могут быть ориентированы как угодно. Помещая то же количество молекул в меньший объем, мы не сможем обеспечить их хаотическую ориентацию в пространстве, так как теперь при некоторых поворотах они будут мешать друг другу. Если диаметр молекулы а заметно меньше ее длины l и на каждую молекулу приходится объем порядка а 2l, то все молекулы должны быть ориентированы одинаково. При промежуточной концентрации, когда на каждую молекулу приходится объем меньший, чем l 3, но больший, чем а 2l, ориентационный порядок будет неполным, но все-таки заметным. Обратим внимание на то, что этот порядок связан с тем, что молекулы из-за сильного отталкивания не могут проникать друг в друга. Жидкие кристаллы, образующиеся при растворении органического вещества в каком-нибудь растворителе, называются лиотропными [ 3 ].

1. Молекулярные диполи и возможность их упорядочения

Молекулы жидкого кристалла, как и всякие другие, могут иметь электрический дипольный момент m, равный qd, где d — расстояние между центрами сосредоточения положительного и отрицательного заряда величиной ±q. Так, например, в молекуле типичного жидкого кристалла п-октил-п’-цианбефинила довольно значительный дипольный момент задается полярной нитрильной группой —C—N, причем избыточный отрицательный заряд сосредоточен на атоме азота, а положительный — углерода [ 1 ].

Если в молекуле имеются электрические диполи, то есть и электростатическое взаимодействие между ними (молекулами). Диполь-дипольное взаимодействие обычно пропорционально фактору p2 /Vm, где Vm — молекулярный объем. Оно стремится установить молекулярные диполи параллельно друг другу, однако тепловое движение, а также межмолекулярные взаимодействия других типов (например, так называемые стерические факторы, обусловленные протяженной конструкцией молекулы) препятствуют этому.

Объем органических молекул обычно довольно велик, что снижает роль диполь-дипольных взаимодействий. Поэтому среди молекулярных кристаллов очень трудно найти вещества, обладающие спонтанной поляризацией, т.е. ненулевым суммарным дипольным моментом единицы объема. Примером такого вещества могут служить полярные кристаллы тиомочевины со сравнительно небольшими (малые Vm) сильно полярными (большие p) молекулами.

Упомянутый выше п-октил-п’-цианбефинил не обладает спонтанной поляризацией ни в твердой кристаллической фазе, ни в одном из его жидкокристаллических состояний (нематическом и смектическом А), так как, во-первых, довольно велик объем молекул, а, во-вторых, их дипольные моменты компенсируются. В твердой фазе такой компенсации способствует елочкообразная упаковка молекул, при которой соседние диполи ориентированы в противоположных направлениях, а в жидкокристаллических фазах — быстрое свободное вращение молекул как вокруг длинных, так и вокруг коротких осей [ 1 ].

Чтобы получить жидкокристаллическую фазу со спонтанной поляризацией за счет взаимодействия статических молекулярных диполей, нужно увеличивать значение p и уменьшать объем молекул. Первое сделать довольно трудно из-за ограничений квантовохимического характера, а второе приводит к утрате жидкокристаллического состояния. Отсюда, казалось бы, следует вывод о невозможности или, скажем более осторожно, принципиальной трудности получения жидких полярных кристаллов, обладающих пиро-, пьезо- и сегнетоэлектическими свойствами.

К счастью, существует другой путь создания жидкокристаллических сегнетоэлектриков, предложенный в 1975 г. Мейером. Идея подхода состоит в том, чтобы получать выделенное (полярное) направление в жидком кристалле за счет других, не диполь-дипольных взаимодействий. Ориентация же молекулярных диполей вдоль полярного направления побочным, вторичным явлением, происходящим просто потому, что дипольный момент жестко связан с молекулярным остовом [ 4 ] .

2. Жидкокристаллические сегнетоэлектрики. Симметрия

Полярная структура получается только в смектической фазе, образованной хиральными молекулами при условии, что молекулы в монослоях наклонены под некоторым углом по отношению к кристаллической оси. Такой жидкий кристалл называется смектиком С. Рассмотрим элементы симметрии обычной смектической фазы С, образованной зеркально-симметричными (нехиральными) молекулами, длинные оси которых (вектор L ) отклонены на угол q от нормали к смектическим слоям, т.е. от кристаллической оси z. В этом случае мы имеем двойную поворотную ось, лежащую в плоскости смектического слоя и перпендикулярную длинным молекулярным осям. Кроме того, имеется зеркальная плоскость, перпендикулярная поворотной оси, и центр симметрии. Таким образом, зеркально-симметрической смектической фазе С отвечает точечная группа симметрии С2h [ 2 ].

Образование смектической фазы С обусловлено особым строением гибких концевых хвостов молекул и в первом приближении не зависит от деталей расположения молекулярных диполей, а также и от отличия асимметричных атомов углерода, задающих хиральную форму молекулы. Если молекулы хиральны, симметрия рассматриваемой смектической фазы понижается до С2, так как зеркальная плоскость и центр симметрии исчезают. В результате в плоскости смектического слоя появляется полярная ось, перпендикулярная плоскости наклона молекул. Именно вдоль этой полярной оси и возникает спонтанная поляризация, если хиральные молекулы обладают электрическим дипольным моментом, перпендикулярным длинной молекулярной оси [ 7 ].

Этого, однако, недостаточно для того, чтобы спонтанная поляризация макроскопического образца, состоящего из многих смектических слоев, была отлична от нуля. Дело в том, что и в фазе С хиральность молекул вызывает образование винтовой сверхструктуры. Как и в случае холестерической фазы, направления директора в соседних смектических слоях образуют между собой некоторый угол, так что при переходе от первого монослоя к последующим директор поворачивается. В результате возникает винтовая структура с шагом h, в которой директор L прецессирует вокруг оси z и соответственно поворачиваются полярная ось С2 и вектор спонтанной поляризации P s.

Таким образом, чтобы получить ненулевое среднее по образцу значение спонтанной поляризации, нужно как-то деформировать винтовую структуру, а лучше вообще раскрутить спираль с помощью внешнего воздействия [ 4 ].

3. Сегнетоэлектрические смеси

Симметрия жидкокристаллического сегнетоэлектрика накладывает определенные ограничения на молекулярную структуру. Молекула должна иметь достаточно длинные хвосты, чтобы образовать смектическую фазу С, обладать стерическим диполем и быть зеркально-асимметричной, и, наконец, иметь поперечный электрический диполь, жестко связанный с хиральным фрагментом молекулы. Очень трудно синтезировать молекулу, обладающую всеми этими особенностями, и в связи с этим возникает вопрос: нельзя ли подобрать такую жидкокристаллическую смесь, разные компоненты которой хорошо удовлетворяли бы некоторым, а смесь в целом — всем перечисленным условиям?

Это оказывается возможным в строго определенном случае. Можно взять за основу нехиральные и бездипольные молекулы, образующие обычную смектическую фазу С в достаточно широком температурном интервале. Это вещество будет служить растворителем для хиральных молекул-примесей, несущих электрический диполь в хиральном фрагменте или вблизи него. Такие молекулы-примеси, встраиваясь в растворитель-матрицу, индуцируют в ней полярную ось и спонтанную поляризацию Величина P s будет пропорциональна концентрации примеси. На этом пути удалось создать жидкие сегнетоэлектрические кристаллы с широким температурным интервалом (скажем, от 0 до 50 градусов) и высокой спонтанной поляризацией (P s @2*10-4 К/м2 ) [ 7 ].

Попытки использовать другие комбинации свойств матрицы не приводят к успеху. Скажем, если электрический диполь находится в молекуле матрицы, а хиральный центр — в молекуле примеси, спонтанная поляризация получается очень малой, поскольку жесткой связи между этими молекулярными фрагментами нет и их движения некореллированы.

Особый интерес представляют смеси правых и левых зеркально-ассиметричных компонент. Если мы имеем дело со смесью правого и левого оптически активных изомеров одного и того же химического соединения, то при одинаковых концентрациях полярное состояние исчезает вместе со спиральностью структуры, и мы получаем обычный смектик С. Если же взять правую и левую формы двух разных молекул, то получатся две компенсационные точки. При одной концентрации, скажем, “правого” вещества становится равным нулю волновой вектор q =2p/h винтовой структуры, т.е. винт раскручивается (шаг h®¥), а при другой концентрации исчезает спонтанная поляризация. При q=0 величина P s имеет конечное значение, и таким образом эта жидкокристаллическая смесь является полностью однородным сегнетоэлектриком с макроскопическим значением спонтанной поляризации, т.е. мы получаем аналог обычного твердого сегнетоэлектрика [ 2 ].

4. Особые свойства жидкокристаллических сегнетоэлектриков

С практической точки зрения наибольший интерес вызывают электрооптические свойства жидких полярных кристаллов. Если в неполярных фазах энергия взаимодействия внешнего поля со средой Fэ пропорциональна величине eaE2, где ea — анизотропия диэлектрической проницаемости среды, то в данном случае взаимодействие пропорционально полю, и следовательно, при малых полях такое взаимодействие намного эффективнее, чем для традиционных фаз.

Линейный электрооптический эффект на практике используется в случаях, когда винтовая закрученность сегнетоэлектрического смектика каким-то образом устранена. Сделать сегнетоэлектрический смектик однородным, т.е. устранить сверхструктуру, можно с помощью воздействия твердых подложек на тонкий слой жидкого кристалла. Однако возможности этого метода ограничены, поскольку он годится только для довольно тонких слоев (в несколько микрон). Более предпочтительно использовать сегнетоэлектрические смеси правых и левых компонент с компенсацией винтовой структуры. В таких смесях удается менять на обратное направление поляризации и связанное с ним направление директора простым переключением полярности внешнего напряжения с амплитудой в несколько вольт.

Полярная структура жидкокристаллических сегнетоэлектриков позволяет наблюдать в них важный нелинейно-оптический эффект — генерацию второй гармоники света [ 1 ].

5. Сегнетоэлектрики полимеры

Трудно переоценить важность создания полимерных сегнетоэлектриков. Это дешевые пленочные материалы, из которых можно сделать пьезо- и пиродатчики произвольной конфигурации и площади, нелинейно-оптические преобразователи, модуляторы светам на линейном электрооптическом эффекте и т.д.

В основе оригинального подхода к созданию полимерных сегнетоэлектриков лежит комбинация двух хорошо разработанных принципов. С одной стороны, это — получение сегнетоэлектрического состояния в жидких низкомолекулярных кристаллах, а с другой — создание жидких полимерных кристаллов гребнеобразного типа, когда молекулярные фрагменты, ответственные за образование жидкого кристалла “подвешены” к полимерной цепи с помощью гибких мостиков [ 2 ].

Главная особенность полимерного сегнетоэлектрика состоит в том, что при понижении температуры он переходит в стеклообразное состояние, т.е. может быть получен в виде прозрачной твердой полимерной пленки, с которой мы привыкли иметь дело в быту. Как показывает опыт, в этом состоянии он сохраняет свои пиро- и пьезоэлектрическме свойства. Величина спонтанной поляризации первых образцов пока невелика, порядка 10-5 К/м2, но имеются ясные пути ее повышения в ближайшем будущем [ 6 ] .

6. Роль жидкокристаллического состояния в физике и технике

Интерес к частично упорядоченным системам вообще и к системам с пониженной размерностью в частности весьма характерен для современного естествознания. Достаточно упомянуть аморфные полупроводники или квазиодномерные структуры органических металлов. Жидкие кристаллы открывают возможность детального исследования эффектов, связанных с “вымораживанием” тех или иных степеней свободы [ 1 ].

Так, например, при плавлении обычного кристалла в изотропную жидкость кристалл теряет устойчивость одновременно по всем трансляционным и ориентационным степеням свободы. Используя жидкие кристаллы, этот сложный процесс можно “разложить по полочкам” и исследовать целый набор фазовых переходов по очереди. Это и происходит сейчас на самом деле: изучение переходов между различными жидкокристаллическими фазами занимает одно из центральных мест в физике кристаллов.

Большой интерес к частично упорядоченным системам проявляется также в спектроскопии, где появилась возможность изучать эффекты анизотропии межмолекулярных взаимодействий. То же самое можно сказать и об изучении различных эффектов переноса (энергии, заряда, различных элементарных возбуждений).

Жидкие кристаллы открывают интересную возможность моделирования самых различных явлений. Фазовые переходы между, скажем, нематическим и смектическим А состояниями имеют много общих черт с фазовыми переходами в сверхтекучем гелии. При этом роль квантовомеханической волновой функции сверхтекучей фазы, не наблюдаемой в экспериментах с гелием, играет здесь амплитуда волны плотности, которую можно определить из рентгеноструктурного анализа. Отмечаются также аналогии между поведением некоторых дефектов и диссипативных структур в жидких кристаллах с эффектом Джозефсена в сверхпроводниках и т.д. Интересные аналогии просматриваются также в поведении определенных дефектов в жидких кристаллах с теоретически предсказанными свойствами магнитных монополей [ 5 ].

Еще один аспект, возбуждающий интерес к жидким кристаллам, обусловлен наличием оптической анизотропии нематической фазы, являющейся трехмерной жидкостью. Оптическая анизотропия позволяет визуализировать сложные гидродинамические процессы, трудно наблюдаемые в обычных жидкостях. К тому же анизотропия электрических и вязкоупругих свойств жидких кристаллов сама по себе может стать причиной возникновения целого ряда новых гидродинамических и электрогидродинамических эффектов. Эти особенности жидкокристаллических фаз открывают возможность моделирования процессов возникновения упорядоченных диссипативных структур, автоволновых процессов, изучения общих принципов самоорганизации материи. Не менее важна и возможность изучения перехода от упорядоченных структур к хаосу, в частности от ламинарного течения жидкости к турбулентному [ 3 ].

Органические материалы все шире внедряются в современную микро- и оптоэлектронику. Достаточно упомянуть фото- и электронорезисты, применяемые в литографическом процессе, лазеры на органических красителях, полимерные сегнетоэлектрические пленки. На наших глазах рождается молекулярная электроника, предполагающая использование молекулярных систем в самых различных функциональных элементах. Одним из классических примеров, подтверждающих данную тенденцию, являются жидкие кристаллы [ 1 ].

Нематические жидкие кристаллы сегодня не имеют конкурентов среди других электрооптических материалов с точки зрения энергетических затрат на их коммутацию. Оптическими свойствами жидкого кристалла можно управлять непосредственно с микросхем, используя мощность в диапазоне микроватт. Это — прямое следствие структурных особенностей жидких кристаллов.

В индикаторе часов, калькуляторов, электронных переводчиков или в плоском жидкокристаллическом телевизионном экране осуществляется один и тот же основной процесс. Благодаря большой анизотропии диэлектрической проницаемости довольно слабое электрическое поле создает заметный вращательный момент, действующий на директор (такой момент в изотропной жидкости не возникает). Из-за малой вязкости этот момент приводит к переориентации директора (оптической оси), чего не случилось бы в твердом веществе. И наконец, этот поворот приводит к изменению оптических свойств жидкого кристалла (двулучепреломлению, дихроизму) благодаря анизотропии его оптических свойств. В тех случаях, когда информацию нужно запомнить, например, при записи ее лазерным лучом, используют специфические вязкоупругие свойства смектической фазы А. Для оптоэлектрических устройств с памятью весьма перспективны также и жидкокристаллические полимеры.

Особо следует отметить возможности создания анизотропных оптических элементов, а также пиро-, пьезодатчиков и нелинейно-оптических материалов на основе гребнеобразных жидкокристаллических полимеров, сочетающих в себе структурную организацию жидких кристаллов (в том числе и спонтанную поляризацию) и механические свойства полимерных материалов.

Список литературы

1. Блинов Л.М., Пикин С.А. Жидкокристаллическое состояние вещества. — М.: Знание, 1986. — 64 с. — (Новое в жизни, науке, технике. Сер. “Физика”; №6).

2. Блинов Л.М., Береснев Л.А. Сегнетоэлектрические жидкие кристаллы. — Успехи физических наук, 1984, т.143, вып.3, стр.391.

3. Веденов А.А. Физика растворов. М.: Наука, 1984.

4. Де Жен П. Физика жидких кристаллов. — Пер. с англ. под ред. А.Ф.Сонина. — М.: Мир, 1977.

5. Сонин А.Ф. Кентавры природы. — М.: Атомиздат, 1980.

6. Пикин С.А., Блинов Л.М. Жидкие кристаллы. — М.: Наука, 1982.

7. Пиндак Р., Монктон Д. Двумерные системы, В кн.: Физика за рубежом. /Пер. с англ. М.: Мир, 1983, с.104.

[1] Ориентационное упорядочение молекул (а — дискообразные молекулы, б — стержнеобразные молекулы) [ 1, стр.4 ]

www.ronl.ru

Научная работа - Жидкие кристаллы

Жидкие кристаллы

Введение

Жидкие кристаллы (сокращённо ЖК) — вещества, обладающиеодновременно свойствами как жидкостей (текучесть), так и кристаллов(анизотропия). По структуре ЖК представляют собой жидкости, похожие на желе,состоящие из молекул вытянутой формы, определённым образом упорядоченных вовсем объёме этой жидкости. Наиболее характерным свойством ЖК является ихспособность изменять ориентацию молекул под воздействием электрических полей,что открывает широкие возможности для применения их в промышленности. По типуЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередьнематики подразделяются на собственно нематические и холестерические жидкиекристаллы.

История открытия жидких кристаллов

Жидкие кристаллы открыл в 1888 г. австрийский ботаник Ф.Рейнитцер. Он обратил внимание, что у кристаллов холестерилбензоата ихолестерилацетата было две точки плавления и, соответственно, два разных жидкихсостояния — мутное и прозрачное. Однако, учёные не обратили особого внимания нанеобычные свойства этих жидкостей. Долгое время физики и химики в принципе непризнавали жидких кристаллов, потому что их существование разрушало теорию отрёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относилижидкие кристаллы то к коллоидным растворам, то к эмульсиям. Научноедоказательство было предоставлено профессором университета Карлсруэ ОттоЛеманном (нем. Otto Lehmann) после многолетних исследований, но даже послепоявления в 1904 году написанной им книги «Жидкие кристаллы», открытию ненашлось применения.

В 1963 г. американец Дж. Фергюсон (англ. James Fergason)использовал важнейшее свойство жидких кристаллов — изменять цвет подвоздействием температуры — для обнаружения невидимых простым глазом тепловыхполей. После того как ему выдали патент на изобретение (U.S. Patent 3114836(англ.)), интерес к жидким кристаллам резко возрос.

В 1965 г. в США собралась Первая международнаяконференция, посвящённая жидким кристаллам. В 1968 г. американские учёныесоздали принципиально новые индикаторы для систем отображения информации.Принцип их действия основан на том, что молекулы жидких кристаллов,поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Подвоздействием напряжения, которое подавали на проводники, впаянные в экран, нанём возникало изображение, состоящее из микроскопических точек. И всё же толькопосле 1973 г., когда группа английских химиков под руководством Джорджа Грея(англ. George William Gray) синтезировала жидкие кристаллы из относительнодешёвого и доступного сырья, эти вещества получили широкое распространение вразнообразных устройствах.

Группы жидких кристаллов

По своим общим свойствам ЖК можно разделить на двебольшие группы:

термотропные ЖК, образующиеся в результате нагреваниятвердого вещества и существующие в определенном интервале температур и давленийи лиотропные ЖК, которые представляют собой двух или более компонентные системы,образующиеся в смесях стержневидных молекул данного вещества и воды (или другихполярных растворителей). Эти стержневидные молекулы имеют на одном концеполярную группу, а большая часть стержня представляет собой гибкую гидрофобнуюуглеводородную цепь. Такие вещества называются амфифилами (амфи — по-греческиозначает с двух концов, филос — любящий, благорасположенный). Примеромамфифилов могут служить фосфолипиды.

Амфифильные молекулы, как правило, плохо растворяются вводе, склонны образовывать агрегаты таким образом, что их полярные группы награнице раздела фаз направлены к жидкой фазе. При низких температурахсмешивание жидкого амфифила с водой приводит к расслоению системы на две фазы.Одним из вариантов амфифилов со сложной структурой может служить системамыло-вода. Здесь имеется алифатический анион СН3-(СН2)n-2-СО2- (где n ~ 12-20)и положительный ион Nа+, К+, NН4+ и др. Полярная группа СО2- стремится ктесному контакту с молекулами воды, тогда как неполярная группа (амфифильнаяцепь) избегает контакта с водой. Это явление типично для амфифилов.

Термотропные ЖК подразделяются на три больших класса:

Нематические жидкие кристаллы. В этих кристаллахотсутствует дальний порядок в расположении центров тяжести молекул, у них нетслоистой структуры, их молекулы скользят непрерывно в направлении своих длинныхосей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок:длинные оси направлены вдоль одного преимущественного направления. Они ведутсебя подобно обычным жидкостям. Нематические фазы встречаются только в такихвеществах, у молекул которых нет различия между правой и левой формами, ихмолекулы тождественны своему зеркальному изображению (ахиральны). Примеромвещества, образующего нематический ЖК, может

Смектические жидкие кристаллы имеют слоистую структуру,слои могут перемещаться друг относительно друга. Толщина смектического слояопределяется длиной молекул (преимущественно, длиной парафинового «хвоста»),однако вязкость смектиков значительно выше чем у нематиков и плотность по нормалик поверхности слоя может сильно меняться. Типичным являетсятерефтал-бис(nара-бутиланилин):

Холестерические жидкие кристаллы — образуются, восновном, соединениями холестерина и других стероидов. Это нематические ЖК, ноих длинные оси повернуты друг относительно друга так, что они образуют спирали,очень чувствительные к изменению температуры вследствие чрезвычайно малойэнергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичногохолестерика можно назвать амил-пара-(4-цианобензилиденамино)- циннамат

Холестерики ярко окрашены и малейшее изменениетемпературы (до тысячных долей градуса) приводит к изменению шага спирали и,соответственно, изменению окраски ЖК.

Во всех приведенных типах ЖК характерным являетсяориентация дипольных молекул в определенном направлении, которое определяетсяединичным вектором — называемым «директором».

В недавнее время открыты так называемые колончатые фазы,которые образуются только дискообразными молекулами, расположенными слоями другна друге в виде многослойных колонн, с параллельными оптическими осями. Частоих называют «жидкими нитями», вдоль которых молекулы обладают трансляционнымистепенями свободы. Этот класс соединений был предсказан академиком Л. Д.Ландау, а открыт лишь в 1977 Чандрасекаром. Схематично характер упорядоченностижидких кристаллов названных типов представлен на рисунке.

У ЖК необычные оптические свойства. Нематики и смектики —оптически одноосные кристаллы. Холестерики вследствие периодического строениясильно отражают свет в видимой области спектра. Поскольку в нематиках ихолестериках носителями свойств является жидкая фаза, то она легкодеформируется под влиянием внешнего воздействия, а так как шаг спирали вхолестериках очень чувствителен к температуре, то, следовательно, и отражениесвета резко меняется с температурой, приводя к изменению цвета вещества.

Эти явления широко используются в различных приложениях,например, для нахождения горячих точек в микроцепях, локализации переломов иопухолей у человека, визуализации изображения в инфракрасных лучах и др.

Характеристики многих электрооптических устройств,работающих на лиотропных ЖК, определяются анизотропией их электропроводности,которая, в свою очередь, связана с анизотропией электронной поляризуемости. Длянекоторых веществ вследствие анизотропии свойств ЖК удельная электропроводностьизменяет свой знак. Например, для н-октилоксибензойной кислоты она проходитчерез нуль при температуре 146° С, и связывают это со структурнымиособенностями мезофазы и с поляризуемостью молекул. Ориентация молекулнематической фазы, как правило, совпадает с направлением наибольшейпроводимости.

Все формы жизни так или иначе связаны с деятельностьюживой клетки, многие структурные звенья которой похожи на структуру жидкихкристаллов. Обладая замечательными диэлектрическими свойствами, ЖК образуютвнутриклеточные гетерогенные поверхности, они регулируют взаимоотношения междуклеткой и внешней средой, а также между отдельными клетками и тканями, сообщаютнеобходимую инертность составным частям клетки, защищая ее от ферментативноговлияния. Таким образом, установление закономерностей поведения ЖК открываетновые перспективы в развитии молекулярной биологии.

Применение жидких кристаллов

Одно из важных направлений использования жидкихкристаллов — термография. Подбирая состав жидкокристаллического вещества,создают индикаторы для разных диапазонов температуры и для различныхконструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы,интегральные схемы и печатные платы электронных схем. Неисправные элементы —сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовымпятнам. Новые возможности получили врачи: жидкокристаллический индикатор накоже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́вредных химических соединений и опасные для здоровья человека гамма- иультрафиолетовое излучения. На основе жидких кристаллов созданы измерителидавления, детекторы ультразвука. Но самая многообещающая область примененияжидкокристаллических веществ — информационная техника. От первых индикаторов,знакомых всем по электронным часам, до цветных телевизоров сжидкокристаллическим экраном размером с почтовую открытку прошло лишь нескольколет. Такие телевизоры дают изображение весьма высокого качества, потребляяменьшее количество энергии.

www.ronl.ru

Курсовая работа - Жидкие кристаллы

Жидкие кристаллы

Введение

Жидкие кристаллы (сокращённо ЖК) — вещества, обладающиеодновременно свойствами как жидкостей (текучесть), так и кристаллов(анизотропия). По структуре ЖК представляют собой жидкости, похожие на желе,состоящие из молекул вытянутой формы, определённым образом упорядоченных вовсем объёме этой жидкости. Наиболее характерным свойством ЖК является ихспособность изменять ориентацию молекул под воздействием электрических полей,что открывает широкие возможности для применения их в промышленности. По типуЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередьнематики подразделяются на собственно нематические и холестерические жидкиекристаллы.

История открытия жидких кристаллов

Жидкие кристаллы открыл в 1888 г. австрийский ботаник Ф.Рейнитцер. Он обратил внимание, что у кристаллов холестерилбензоата ихолестерилацетата было две точки плавления и, соответственно, два разных жидкихсостояния — мутное и прозрачное. Однако, учёные не обратили особого внимания нанеобычные свойства этих жидкостей. Долгое время физики и химики в принципе непризнавали жидких кристаллов, потому что их существование разрушало теорию отрёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относилижидкие кристаллы то к коллоидным растворам, то к эмульсиям. Научноедоказательство было предоставлено профессором университета Карлсруэ ОттоЛеманном (нем. Otto Lehmann) после многолетних исследований, но даже послепоявления в 1904 году написанной им книги «Жидкие кристаллы», открытию ненашлось применения.

В 1963 г. американец Дж. Фергюсон (англ. James Fergason)использовал важнейшее свойство жидких кристаллов — изменять цвет подвоздействием температуры — для обнаружения невидимых простым глазом тепловыхполей. После того как ему выдали патент на изобретение (U.S. Patent 3114836(англ.)), интерес к жидким кристаллам резко возрос.

В 1965 г. в США собралась Первая международнаяконференция, посвящённая жидким кристаллам. В 1968 г. американские учёныесоздали принципиально новые индикаторы для систем отображения информации.Принцип их действия основан на том, что молекулы жидких кристаллов,поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Подвоздействием напряжения, которое подавали на проводники, впаянные в экран, нанём возникало изображение, состоящее из микроскопических точек. И всё же толькопосле 1973 г., когда группа английских химиков под руководством Джорджа Грея(англ. George William Gray) синтезировала жидкие кристаллы из относительнодешёвого и доступного сырья, эти вещества получили широкое распространение вразнообразных устройствах.

Группы жидких кристаллов

По своим общим свойствам ЖК можно разделить на двебольшие группы:

термотропные ЖК, образующиеся в результате нагреваниятвердого вещества и существующие в определенном интервале температур и давленийи лиотропные ЖК, которые представляют собой двух или более компонентные системы,образующиеся в смесях стержневидных молекул данного вещества и воды (или другихполярных растворителей). Эти стержневидные молекулы имеют на одном концеполярную группу, а большая часть стержня представляет собой гибкую гидрофобнуюуглеводородную цепь. Такие вещества называются амфифилами (амфи — по-греческиозначает с двух концов, филос — любящий, благорасположенный). Примеромамфифилов могут служить фосфолипиды.

Амфифильные молекулы, как правило, плохо растворяются вводе, склонны образовывать агрегаты таким образом, что их полярные группы награнице раздела фаз направлены к жидкой фазе. При низких температурахсмешивание жидкого амфифила с водой приводит к расслоению системы на две фазы.Одним из вариантов амфифилов со сложной структурой может служить системамыло-вода. Здесь имеется алифатический анион СН3-(СН2)n-2-СО2- (где n ~ 12-20)и положительный ион Nа+, К+, NН4+ и др. Полярная группа СО2- стремится ктесному контакту с молекулами воды, тогда как неполярная группа (амфифильнаяцепь) избегает контакта с водой. Это явление типично для амфифилов.

Термотропные ЖК подразделяются на три больших класса:

Нематические жидкие кристаллы. В этих кристаллахотсутствует дальний порядок в расположении центров тяжести молекул, у них нетслоистой структуры, их молекулы скользят непрерывно в направлении своих длинныхосей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок:длинные оси направлены вдоль одного преимущественного направления. Они ведутсебя подобно обычным жидкостям. Нематические фазы встречаются только в такихвеществах, у молекул которых нет различия между правой и левой формами, ихмолекулы тождественны своему зеркальному изображению (ахиральны). Примеромвещества, образующего нематический ЖК, может

Смектические жидкие кристаллы имеют слоистую структуру,слои могут перемещаться друг относительно друга. Толщина смектического слояопределяется длиной молекул (преимущественно, длиной парафинового «хвоста»),однако вязкость смектиков значительно выше чем у нематиков и плотность по нормалик поверхности слоя может сильно меняться. Типичным являетсятерефтал-бис(nара-бутиланилин):

Холестерические жидкие кристаллы — образуются, восновном, соединениями холестерина и других стероидов. Это нематические ЖК, ноих длинные оси повернуты друг относительно друга так, что они образуют спирали,очень чувствительные к изменению температуры вследствие чрезвычайно малойэнергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичногохолестерика можно назвать амил-пара-(4-цианобензилиденамино)- циннамат

Холестерики ярко окрашены и малейшее изменениетемпературы (до тысячных долей градуса) приводит к изменению шага спирали и,соответственно, изменению окраски ЖК.

Во всех приведенных типах ЖК характерным являетсяориентация дипольных молекул в определенном направлении, которое определяетсяединичным вектором — называемым «директором».

В недавнее время открыты так называемые колончатые фазы,которые образуются только дискообразными молекулами, расположенными слоями другна друге в виде многослойных колонн, с параллельными оптическими осями. Частоих называют «жидкими нитями», вдоль которых молекулы обладают трансляционнымистепенями свободы. Этот класс соединений был предсказан академиком Л. Д.Ландау, а открыт лишь в 1977 Чандрасекаром. Схематично характер упорядоченностижидких кристаллов названных типов представлен на рисунке.

У ЖК необычные оптические свойства. Нематики и смектики —оптически одноосные кристаллы. Холестерики вследствие периодического строениясильно отражают свет в видимой области спектра. Поскольку в нематиках ихолестериках носителями свойств является жидкая фаза, то она легкодеформируется под влиянием внешнего воздействия, а так как шаг спирали вхолестериках очень чувствителен к температуре, то, следовательно, и отражениесвета резко меняется с температурой, приводя к изменению цвета вещества.

Эти явления широко используются в различных приложениях,например, для нахождения горячих точек в микроцепях, локализации переломов иопухолей у человека, визуализации изображения в инфракрасных лучах и др.

Характеристики многих электрооптических устройств,работающих на лиотропных ЖК, определяются анизотропией их электропроводности,которая, в свою очередь, связана с анизотропией электронной поляризуемости. Длянекоторых веществ вследствие анизотропии свойств ЖК удельная электропроводностьизменяет свой знак. Например, для н-октилоксибензойной кислоты она проходитчерез нуль при температуре 146° С, и связывают это со структурнымиособенностями мезофазы и с поляризуемостью молекул. Ориентация молекулнематической фазы, как правило, совпадает с направлением наибольшейпроводимости.

Все формы жизни так или иначе связаны с деятельностьюживой клетки, многие структурные звенья которой похожи на структуру жидкихкристаллов. Обладая замечательными диэлектрическими свойствами, ЖК образуютвнутриклеточные гетерогенные поверхности, они регулируют взаимоотношения междуклеткой и внешней средой, а также между отдельными клетками и тканями, сообщаютнеобходимую инертность составным частям клетки, защищая ее от ферментативноговлияния. Таким образом, установление закономерностей поведения ЖК открываетновые перспективы в развитии молекулярной биологии.

Применение жидких кристаллов

Одно из важных направлений использования жидкихкристаллов — термография. Подбирая состав жидкокристаллического вещества,создают индикаторы для разных диапазонов температуры и для различныхконструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы,интегральные схемы и печатные платы электронных схем. Неисправные элементы —сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовымпятнам. Новые возможности получили врачи: жидкокристаллический индикатор накоже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́вредных химических соединений и опасные для здоровья человека гамма- иультрафиолетовое излучения. На основе жидких кристаллов созданы измерителидавления, детекторы ультразвука. Но самая многообещающая область примененияжидкокристаллических веществ — информационная техника. От первых индикаторов,знакомых всем по электронным часам, до цветных телевизоров сжидкокристаллическим экраном размером с почтовую открытку прошло лишь нескольколет. Такие телевизоры дают изображение весьма высокого качества, потребляяменьшее количество энергии.

www.ronl.ru

Лекция - Жидкие кристаллы - Физика

Жидкие кристаллы

Введение

Жидкие кристаллы (сокращённо ЖК) — вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.

История открытия жидких кристаллов

Жидкие кристаллы открыл в 1888 г. австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов холестерилбензоата и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния — мутное и прозрачное. Однако, учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относили жидкие кристаллы то к коллоидным растворам, то к эмульсиям. Научное доказательство было предоставлено профессором университета Карлсруэ Отто Леманном (нем. Otto Lehmann) после многолетних исследований, но даже после появления в 1904 году написанной им книги «Жидкие кристаллы», открытию не нашлось применения.

В 1963 г. американец Дж. Фергюсон (англ. James Fergason) использовал важнейшее свойство жидких кристаллов — изменять цвет под воздействием температуры — для обнаружения невидимых простым глазом тепловых полей. После того как ему выдали патент на изобретение (U.S. Patent 3114836 (англ.)), интерес к жидким кристаллам резко возрос.

В 1965 г. в США собралась Первая международная конференция, посвящённая жидким кристаллам. В 1968 г. американские учёные создали принципиально новые индикаторы для систем отображения информации. Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нём возникало изображение, состоящее из микроскопических точек. И всё же только после 1973 г., когда группа английских химиков под руководством Джорджа Грея (англ. George William Gray) синтезировала жидкие кристаллы из относительно дешёвого и доступного сырья, эти вещества получили широкое распространение в разнообразных устройствах.

Группы жидких кристаллов

По своим общим свойствам ЖК можно разделить на две большие группы:

термотропные ЖК, образующиеся в результате нагревания твердого вещества и существующие в определенном интервале температур и давлений и лиотропные ЖК, которые представляют собой двух или более компонентные системы, образующиеся в смесях стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня представляет собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами (амфи — по-гречески означает с двух концов, филос — любящий, благорасположенный). Примером амфифилов могут служить фосфолипиды.

Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе. При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода. Здесь имеется алифатический анион СН3-(СН2)n-2-СО2- (где n ~ 12-20) и положительный ион Nа+, К+, NН4+ и др. Полярная группа СО2- стремится к тесному контакту с молекулами воды, тогда как неполярная группа (амфифильная цепь) избегает контакта с водой. Это явление типично для амфифилов.

Термотропные ЖК подразделяются на три больших класса:

Нематические жидкие кристаллы. В этих кристаллах отсутствует дальний порядок в расположении центров тяжести молекул, у них нет слоистой структуры, их молекулы скользят непрерывно в направлении своих длинных осей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок: длинные оси направлены вдоль одного преимущественного направления. Они ведут себя подобно обычным жидкостям. Нематические фазы встречаются только в таких веществах, у молекул которых нет различия между правой и левой формами, их молекулы тождественны своему зеркальному изображению (ахиральны). Примером вещества, образующего нематический ЖК, может

Смектические жидкие кристаллы имеют слоистую структуру, слои могут перемещаться друг относительно друга. Толщина смектического слоя определяется длиной молекул (преимущественно, длиной парафинового «хвоста»), однако вязкость смектиков значительно выше чем у нематиков и плотность по нормали к поверхности слоя может сильно меняться. Типичным является терефтал-бис(nара-бутиланилин):

Холестерические жидкие кристаллы — образуются, в основном, соединениями холестерина и других стероидов. Это нематические ЖК, но их длинные оси повернуты друг относительно друга так, что они образуют спирали, очень чувствительные к изменению температуры вследствие чрезвычайно малой энергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичного холестерика можно назвать амил-пара-(4-цианобензилиденамино)- циннамат

Холестерики ярко окрашены и малейшее изменение температуры (до тысячных долей градуса) приводит к изменению шага спирали и, соответственно, изменению окраски ЖК.

Во всех приведенных типах ЖК характерным является ориентация дипольных молекул в определенном направлении, которое определяется единичным вектором — называемым «директором».

В недавнее время открыты так называемые колончатые фазы, которые образуются только дискообразными молекулами, расположенными слоями друг на друге в виде многослойных колонн, с параллельными оптическими осями. Часто их называют «жидкими нитями», вдоль которых молекулы обладают трансляционными степенями свободы. Этот класс соединений был предсказан академиком Л. Д. Ландау, а открыт лишь в 1977 Чандрасекаром. Схематично характер упорядоченности жидких кристаллов названных типов представлен на рисунке.

У ЖК необычные оптические свойства. Нематики и смектики — оптически одноосные кристаллы. Холестерики вследствие периодического строения сильно отражают свет в видимой области спектра. Поскольку в нематиках и холестериках носителями свойств является жидкая фаза, то она легко деформируется под влиянием внешнего воздействия, а так как шаг спирали в холестериках очень чувствителен к температуре, то, следовательно, и отражение света резко меняется с температурой, приводя к изменению цвета вещества.

Эти явления широко используются в различных приложениях, например, для нахождения горячих точек в микроцепях, локализации переломов и опухолей у человека, визуализации изображения в инфракрасных лучах и др.

Характеристики многих электрооптических устройств, работающих на лиотропных ЖК, определяются анизотропией их электропроводности, которая, в свою очередь, связана с анизотропией электронной поляризуемости. Для некоторых веществ вследствие анизотропии свойств ЖК удельная электропроводность изменяет свой знак. Например, для н-октилоксибензойной кислоты она проходит через нуль при температуре 146° С, и связывают это со структурными особенностями мезофазы и с поляризуемостью молекул. Ориентация молекул нематической фазы, как правило, совпадает с направлением наибольшей проводимости.

Все формы жизни так или иначе связаны с деятельностью живой клетки, многие структурные звенья которой похожи на структуру жидких кристаллов. Обладая замечательными диэлектрическими свойствами, ЖК образуют внутриклеточные гетерогенные поверхности, они регулируют взаимоотношения между клеткой и внешней средой, а также между отдельными клетками и тканями, сообщают необходимую инертность составным частям клетки, защищая ее от ферментативного влияния. Таким образом, установление закономерностей поведения ЖК открывает новые перспективы в развитии молекулярной биологии.

Применение жидких кристаллов

Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы — сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ — информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.

www.ronl.ru

Методичка - Жидкие кристаллы - Физика

Жидкие кристаллы

Введение

Жидкие кристаллы (сокращённо ЖК) — вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.

История открытия жидких кристаллов

Жидкие кристаллы открыл в 1888 г. австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов холестерилбензоата и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния — мутное и прозрачное. Однако, учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относили жидкие кристаллы то к коллоидным растворам, то к эмульсиям. Научное доказательство было предоставлено профессором университета Карлсруэ Отто Леманном (нем. Otto Lehmann) после многолетних исследований, но даже после появления в 1904 году написанной им книги «Жидкие кристаллы», открытию не нашлось применения.

В 1963 г. американец Дж. Фергюсон (англ. James Fergason) использовал важнейшее свойство жидких кристаллов — изменять цвет под воздействием температуры — для обнаружения невидимых простым глазом тепловых полей. После того как ему выдали патент на изобретение (U.S. Patent 3114836 (англ.)), интерес к жидким кристаллам резко возрос.

В 1965 г. в США собралась Первая международная конференция, посвящённая жидким кристаллам. В 1968 г. американские учёные создали принципиально новые индикаторы для систем отображения информации. Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нём возникало изображение, состоящее из микроскопических точек. И всё же только после 1973 г., когда группа английских химиков под руководством Джорджа Грея (англ. George William Gray) синтезировала жидкие кристаллы из относительно дешёвого и доступного сырья, эти вещества получили широкое распространение в разнообразных устройствах.

Группы жидких кристаллов

По своим общим свойствам ЖК можно разделить на две большие группы:

термотропные ЖК, образующиеся в результате нагревания твердого вещества и существующие в определенном интервале температур и давлений и лиотропные ЖК, которые представляют собой двух или более компонентные системы, образующиеся в смесях стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня представляет собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами (амфи — по-гречески означает с двух концов, филос — любящий, благорасположенный). Примером амфифилов могут служить фосфолипиды.

Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе. При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода. Здесь имеется алифатический анион СН3-(СН2)n-2-СО2- (где n ~ 12-20) и положительный ион Nа+, К+, NН4+ и др. Полярная группа СО2- стремится к тесному контакту с молекулами воды, тогда как неполярная группа (амфифильная цепь) избегает контакта с водой. Это явление типично для амфифилов.

Термотропные ЖК подразделяются на три больших класса:

Нематические жидкие кристаллы. В этих кристаллах отсутствует дальний порядок в расположении центров тяжести молекул, у них нет слоистой структуры, их молекулы скользят непрерывно в направлении своих длинных осей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок: длинные оси направлены вдоль одного преимущественного направления. Они ведут себя подобно обычным жидкостям. Нематические фазы встречаются только в таких веществах, у молекул которых нет различия между правой и левой формами, их молекулы тождественны своему зеркальному изображению (ахиральны). Примером вещества, образующего нематический ЖК, может

Смектические жидкие кристаллы имеют слоистую структуру, слои могут перемещаться друг относительно друга. Толщина смектического слоя определяется длиной молекул (преимущественно, длиной парафинового «хвоста»), однако вязкость смектиков значительно выше чем у нематиков и плотность по нормали к поверхности слоя может сильно меняться. Типичным является терефтал-бис(nара-бутиланилин):

Холестерические жидкие кристаллы — образуются, в основном, соединениями холестерина и других стероидов. Это нематические ЖК, но их длинные оси повернуты друг относительно друга так, что они образуют спирали, очень чувствительные к изменению температуры вследствие чрезвычайно малой энергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичного холестерика можно назвать амил-пара-(4-цианобензилиденамино)- циннамат

Холестерики ярко окрашены и малейшее изменение температуры (до тысячных долей градуса) приводит к изменению шага спирали и, соответственно, изменению окраски ЖК.

Во всех приведенных типах ЖК характерным является ориентация дипольных молекул в определенном направлении, которое определяется единичным вектором — называемым «директором».

В недавнее время открыты так называемые колончатые фазы, которые образуются только дискообразными молекулами, расположенными слоями друг на друге в виде многослойных колонн, с параллельными оптическими осями. Часто их называют «жидкими нитями», вдоль которых молекулы обладают трансляционными степенями свободы. Этот класс соединений был предсказан академиком Л. Д. Ландау, а открыт лишь в 1977 Чандрасекаром. Схематично характер упорядоченности жидких кристаллов названных типов представлен на рисунке.

У ЖК необычные оптические свойства. Нематики и смектики — оптически одноосные кристаллы. Холестерики вследствие периодического строения сильно отражают свет в видимой области спектра. Поскольку в нематиках и холестериках носителями свойств является жидкая фаза, то она легко деформируется под влиянием внешнего воздействия, а так как шаг спирали в холестериках очень чувствителен к температуре, то, следовательно, и отражение света резко меняется с температурой, приводя к изменению цвета вещества.

Эти явления широко используются в различных приложениях, например, для нахождения горячих точек в микроцепях, локализации переломов и опухолей у человека, визуализации изображения в инфракрасных лучах и др.

Характеристики многих электрооптических устройств, работающих на лиотропных ЖК, определяются анизотропией их электропроводности, которая, в свою очередь, связана с анизотропией электронной поляризуемости. Для некоторых веществ вследствие анизотропии свойств ЖК удельная электропроводность изменяет свой знак. Например, для н-октилоксибензойной кислоты она проходит через нуль при температуре 146° С, и связывают это со структурными особенностями мезофазы и с поляризуемостью молекул. Ориентация молекул нематической фазы, как правило, совпадает с направлением наибольшей проводимости.

Все формы жизни так или иначе связаны с деятельностью живой клетки, многие структурные звенья которой похожи на структуру жидких кристаллов. Обладая замечательными диэлектрическими свойствами, ЖК образуют внутриклеточные гетерогенные поверхности, они регулируют взаимоотношения между клеткой и внешней средой, а также между отдельными клетками и тканями, сообщают необходимую инертность составным частям клетки, защищая ее от ферментативного влияния. Таким образом, установление закономерностей поведения ЖК открывает новые перспективы в развитии молекулярной биологии.

Применение жидких кристаллов

Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы — сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ — информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.

www.ronl.ru

Работа - Жидкие кристаллы - Физика

Жидкие кристаллы

Введение

Жидкие кристаллы (сокращённо ЖК) — вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.

История открытия жидких кристаллов

Жидкие кристаллы открыл в 1888 г. австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов холестерилбензоата и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния — мутное и прозрачное. Однако, учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относили жидкие кристаллы то к коллоидным растворам, то к эмульсиям. Научное доказательство было предоставлено профессором университета Карлсруэ Отто Леманном (нем. Otto Lehmann) после многолетних исследований, но даже после появления в 1904 году написанной им книги «Жидкие кристаллы», открытию не нашлось применения.

В 1963 г. американец Дж. Фергюсон (англ. James Fergason) использовал важнейшее свойство жидких кристаллов — изменять цвет под воздействием температуры — для обнаружения невидимых простым глазом тепловых полей. После того как ему выдали патент на изобретение (U.S. Patent 3114836 (англ.)), интерес к жидким кристаллам резко возрос.

В 1965 г. в США собралась Первая международная конференция, посвящённая жидким кристаллам. В 1968 г. американские учёные создали принципиально новые индикаторы для систем отображения информации. Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нём возникало изображение, состоящее из микроскопических точек. И всё же только после 1973 г., когда группа английских химиков под руководством Джорджа Грея (англ. George William Gray) синтезировала жидкие кристаллы из относительно дешёвого и доступного сырья, эти вещества получили широкое распространение в разнообразных устройствах.

Группы жидких кристаллов

По своим общим свойствам ЖК можно разделить на две большие группы:

термотропные ЖК, образующиеся в результате нагревания твердого вещества и существующие в определенном интервале температур и давлений и лиотропные ЖК, которые представляют собой двух или более компонентные системы, образующиеся в смесях стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня представляет собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами (амфи — по-гречески означает с двух концов, филос — любящий, благорасположенный). Примером амфифилов могут служить фосфолипиды.

Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе. При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода. Здесь имеется алифатический анион СН3-(СН2)n-2-СО2- (где n ~ 12-20) и положительный ион Nа+, К+, NН4+ и др. Полярная группа СО2- стремится к тесному контакту с молекулами воды, тогда как неполярная группа (амфифильная цепь) избегает контакта с водой. Это явление типично для амфифилов.

Термотропные ЖК подразделяются на три больших класса:

Нематические жидкие кристаллы. В этих кристаллах отсутствует дальний порядок в расположении центров тяжести молекул, у них нет слоистой структуры, их молекулы скользят непрерывно в направлении своих длинных осей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок: длинные оси направлены вдоль одного преимущественного направления. Они ведут себя подобно обычным жидкостям. Нематические фазы встречаются только в таких веществах, у молекул которых нет различия между правой и левой формами, их молекулы тождественны своему зеркальному изображению (ахиральны). Примером вещества, образующего нематический ЖК, может

Смектические жидкие кристаллы имеют слоистую структуру, слои могут перемещаться друг относительно друга. Толщина смектического слоя определяется длиной молекул (преимущественно, длиной парафинового «хвоста»), однако вязкость смектиков значительно выше чем у нематиков и плотность по нормали к поверхности слоя может сильно меняться. Типичным является терефтал-бис(nара-бутиланилин):

Холестерические жидкие кристаллы — образуются, в основном, соединениями холестерина и других стероидов. Это нематические ЖК, но их длинные оси повернуты друг относительно друга так, что они образуют спирали, очень чувствительные к изменению температуры вследствие чрезвычайно малой энергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичного холестерика можно назвать амил-пара-(4-цианобензилиденамино)- циннамат

Холестерики ярко окрашены и малейшее изменение температуры (до тысячных долей градуса) приводит к изменению шага спирали и, соответственно, изменению окраски ЖК.

Во всех приведенных типах ЖК характерным является ориентация дипольных молекул в определенном направлении, которое определяется единичным вектором — называемым «директором».

В недавнее время открыты так называемые колончатые фазы, которые образуются только дискообразными молекулами, расположенными слоями друг на друге в виде многослойных колонн, с параллельными оптическими осями. Часто их называют «жидкими нитями», вдоль которых молекулы обладают трансляционными степенями свободы. Этот класс соединений был предсказан академиком Л. Д. Ландау, а открыт лишь в 1977 Чандрасекаром. Схематично характер упорядоченности жидких кристаллов названных типов представлен на рисунке.

У ЖК необычные оптические свойства. Нематики и смектики — оптически одноосные кристаллы. Холестерики вследствие периодического строения сильно отражают свет в видимой области спектра. Поскольку в нематиках и холестериках носителями свойств является жидкая фаза, то она легко деформируется под влиянием внешнего воздействия, а так как шаг спирали в холестериках очень чувствителен к температуре, то, следовательно, и отражение света резко меняется с температурой, приводя к изменению цвета вещества.

Эти явления широко используются в различных приложениях, например, для нахождения горячих точек в микроцепях, локализации переломов и опухолей у человека, визуализации изображения в инфракрасных лучах и др.

Характеристики многих электрооптических устройств, работающих на лиотропных ЖК, определяются анизотропией их электропроводности, которая, в свою очередь, связана с анизотропией электронной поляризуемости. Для некоторых веществ вследствие анизотропии свойств ЖК удельная электропроводность изменяет свой знак. Например, для н-октилоксибензойной кислоты она проходит через нуль при температуре 146° С, и связывают это со структурными особенностями мезофазы и с поляризуемостью молекул. Ориентация молекул нематической фазы, как правило, совпадает с направлением наибольшей проводимости.

Все формы жизни так или иначе связаны с деятельностью живой клетки, многие структурные звенья которой похожи на структуру жидких кристаллов. Обладая замечательными диэлектрическими свойствами, ЖК образуют внутриклеточные гетерогенные поверхности, они регулируют взаимоотношения между клеткой и внешней средой, а также между отдельными клетками и тканями, сообщают необходимую инертность составным частям клетки, защищая ее от ферментативного влияния. Таким образом, установление закономерностей поведения ЖК открывает новые перспективы в развитии молекулярной биологии.

Применение жидких кристаллов

Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы — сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ — информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.