kursovaya-referat.ru

Курсовая работа - Великие математики второй половины XVII столетия

Великие математики второй половины XVII столетия

СОДЕРЖАНИЕ.

Глава 1. Первоначальное появление математики.

Глава 2. Великие математики XVII столетия.

ГЛАВА 1. ПЕРВОНАЧАЛЬНОЕ ПОЯВЛЕНИЕ МАТЕМАТИКИ.

Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века — палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях, мало отличавшихся от жизни животных, и их энергия уходила преимущественно на добывание пищи простейшим способом — собиранием ее, где только это было возможно. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки.

Пока не произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Лишь с наступлением этого фундаментального перелома, переворота, когда пассивное отношение человека к природе сменилось активным, мы вступаем в новый каменный век неолит.

Постепенно прекращались кочевые странствия в поисках пищи. Рыболовы и охотники все больше вытеснялись первобытными земледельцами. Такие земледельцы, оставаясь на одном месте, пока почва сохраняла плодородие, строили жилища, рассчитанные на долгие сроки.

Деревни вели между собой значительную торговлю, которая настолько развилась, что можно проследить наличие торговых связей между областями, удаленными на сотни километров друг от друга. Эту коммерческую деятельность сильно стимулировали открытие техники выплавки меди и бронзы и изготовление сначала медных, а затем бронзовых орудий и оружия. Это в свою очередь содействовало дальнейшему формированию языков. Слова этих языков выражали вполне конкретные вещи и весьма немногочисленные абстрактные понятия, но языки уже имели известный запас слов для простых числовых “терминов и для некоторых пространственных образов.

Числовые термины, выражающие некоторые из “наиболее абстрактных понятий, какие в состоянии создать человеческий ум”, как сказал Адам Смит, медленно входили в употребление. Впервые они появляются скорее как качественные, чем количественные термины, выражая различие лишь между одним (или, вернее, “каким-то”—“какой-то” скорее, чем “один человек”) и двумя и многими. С понятия числа большие числа сначала образовывались с помощью сложения: 3 путем сложения 2 и 1, 4 путем сложения 2 и 2, 5 путем сложения 2 и 3.

Развитие ремесла и торговли содействовало кристаллизации понятия числа. Числа группировали и объединяли в большие единицы, обычно пользуясь пальцами одной руки или обеих рук—обычный в торговле прием.

Пальцевый счет, то есть счет пятками и десятками, возник только на известной ступени общественного развития. Но раз до этого дошли, появилась возможность выражать числа в системе счисления, что позволяло образовывать большие числа. Так возникла примитивная разновидность арифметики. Четырнадцать выражали как 10 + 4, иногда как 15 — 1. Умножение зародилось тогда, когда 20 выразили не как 10 + 10, а как 2 * 10. Подобные двоичные действия выполнялись в течение тысячелетий, представляя собой нечто среднее между сложением и умножением.

Возникла и необходимость измерять длину и емкость предметов. Единицы измерения были грубы, и при этом часто исходили из размеров человеческого тела. Об этом нам напоминают такие единицы, как палец, фут (то есть ступня), локоть. Когда начали строить дома такие, как у земледельцев Индии или обитателей свайных построек Центральной Европы, стали вырабатываться правила, как строить по прямым линиям и под прямым углом.

Человек неолита обладал так же острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин и тканей, позже — обработка металлов вырабатывали представление о плоскостных и пространственных соотношениях.

ГЛАВА 2. ВЕЛИКИЕ МАТЕМАТИКИ XVII СТОЛЕТИЯ.

Стремительное развитие математики в эпоху Возрождения было обусловлено не только “счетным уклоном” (Rechenhaftigkeit) купеческого класса, но и эффекгивным использованием и дальнейшим усовершеиствованием машин. Восток и классическая древность пользовались машинами, машинами вдохновлялся гений Архимеда. Однако существование рабства и отсутствие экономически прогрессивного городского уклада жизни сводили на нет пользу от машин в этих более древних общественных формациях. На это указывают труды Герона, в которых есть описание машин, но только предназначенных для развлечения или мистификации.

От машин путь вел к теоретической механике и к научному изучению движения и изменения вообще. Античность уже дала трактаты по статике, и исследования по теоретической механике нового времени, естественно, опирались на статику классических авторов. Задолго до изобретения книгопечатания появлялись кпиги о машинах, сначала эмпирические описания (Кизер (Кyеsеr), начало пятнадцатого века), затем более теоретические, как киига Леона Баттисты Альберти об архитектуре (ок. 1450 г.) и рукописи Леонардо да Винчи (ок. 1500 г.). В рукописях Леонардо в зародыше содержалась вполне механистическая теория природы.

В поисках новых изобретений иногда непосредственно приходили к математическим открытиям. Знаменитытм примером является работа “Маятниковые часы” (Horologium Oscillatorium, 1673г.) Xристиана Гюйгенса. В ней в поисках лучшего способа измерения времени рассмотрены не только маятниковые часы, но изучаются также эволюты и эвольвенты плоской кривой.

Гюйгенс был голландцем, человеком зажиточным и в течение ряда лет жил в Париже. Он был столь же выдающимся физиком, как и астрономом, создал волновую теорию света и выяснил, что у Сатурна есть кольцо. Его книга о маятниковых часах оказала влияние на Ньютона (см. Principia). Для периода до Ньютона и Лейбница наряду с “Арифметикой” Валлиса эта книга представляет анализ в его наиболее развитой форме. Письма и книги Валлиса и Гюйгенса изобилуют новыми открытиями: спрямлениями кривых, квадратурами, построением обверток. Гюйгенс исследовал трактрису, логарифмическую кривую, цепную линию и установил, что циклоида — таутохронная кривая. Несмотря на это обилие результатов, многие из которых были получены уже после того, как Лейбниц опубликовал свое исчисление, Гюйгенс целиком принадлежит к периоду предтеч.

Надо сказать еще, что Гюйгенс был одним из немногих среди больших математиков семнадцатого века, кто заботился о строгости: его методы всегда были вполне архимедовыми.

Работы математиков этого периода охватывали много областей, новых и старых. Они обогатили оригинальными результатами классические разделы, пролили новый свет на прежние области и создавали даже совершенно новые области математических исследований. Примером первого рода может служить то, как Ферма изучал Диофанта. Примером второго рода является новая интерпретация геометрии Дезарга. Вполне новым творением была математическая теория вероятностей.

Диофант стал доступным для читающих на латинском языке в 1621 г.). В своем экземпляре этого перевода Ферма сделал свои знаменитые заметки на полях (опубликованы сыном Ферма в 1670 г.). Среди них мы находим “великую” теорему Ферма о том, что уравнение х n + у n = z n невозможно при целых положительных значениях х , у, z, если п > 2,— в 1847 г. это привело Куммера к его теории идеальных чисел. Доказательства, пригодного для всех п, до сих пор нет, хотя теорема несомненно верна для большого числа значений n2 .

Ферма написал на полях против 8-й задачи II книги Диофанта “Разделить квадратное число на два других квадратных числа” следующие слова: “Разделить куб на два других куба, четвертую степень или вообще какую-либо степень выше второй на две степени с тем же обозначением невозможно, и я нашел воистину замечательное доказательство этого, однако поля слишком узки, чтобы поместить его”. Если Ферма имел такое замечательное доказательство, то за последующие три столетия напряженных исследований такое доказательство не удалось получить. Надежнее допустить, что даже великий Ферма иногда ошибался.

В другой заметке на полях Ферма утверждает, что простое число Вида 4n +1 может быть одним и только одним образом представлено как сумма двух квадратов. Эту теорему позже доказал Эйлер. Еще одна “теорема Ферма”, которая утверждает, что a p — 1 — 1 делится на р, когда р – простое число и а не делится на р .

Ферма и Паскаль стали основателями математической теории вероятностей. Постепенное формирование интерес к задачам, связанным с вероятностями, происходило прежде всего под влиянием развития страхового дела, но те частные вопросы, которые побудили больших математиков поразмыслить над этим предметом, были поставлены в связи с играми в кости и в карты.

Вопросы, связанные с вычислением вероятности результата при различных играх, не раз ставились в средневековой литературе за столетия до того, как Мере обратился к Паскалю, и решались иной раз верно, иной раз неверно. В частности, среди ближайших предшественников Паскаля и Ферма — Тарталья и Галилей. Но решение таких вопросов могло стать поводом для создания особой теории, затем целой математической дисциплины только под влиянием серьезных запросов практики

Блез Паскаль был сыном Этьена Паскаля, корреспондента Мерсенна; кривая “улитка Паскаля” названа в честь Этьена. Блез быстро развивался под присмотром своего отца, и уже в шестнадцатилетнем возрасте он открыл “теорему Паскаля” о шестиугольнике, вписанном в коническое сечение. Эта теорема была опубликована в 1641 г. на одном листе бумаги и повлияла на Дезарга. Через несколько лет Паскаль изобрел счетную машину. Когда ему было двадцать пять лет, он решил поселиться как янсенист в монастыре Пор-Рояль и вести жизнь аскета, но продолжал при этом уделять время науке и литературе. Его трактат об “арифметическом треугольнике”, образованном биномиальными коэффициентами и имеющем применение в теории вероятностей, появился посмертно в 1664 г. Мы уже упоминали о его работах по интегрированию и о его идеях относительно бесконечного и бесконечно малого, которые оказали влияние на Лейбница. Паскаль первый придал удовлетворительную форму принципу полной индукции

Жерар Дезарг был архитектором в Лионе. Он автор книги о перспективе (1636 г.). Его брошюра с любопытным названием “Первоначальный набросок попытки разобраться в том, что получается при встрече конуса с плоскостью”, 1639 г.) содержит некоторые из основных понятий синтетической геометрии такие, как точки на бесконечности, инволюции, полярные соотношения,— все это на курьезном ботаническом языке. Свою “теорему Дезарга” о перспективном отображении треугольников он обнародовал в 1648 г. Плодотворность этих идей в полной мере раскрылась лишь в девятнадцатом столетии.

Общий метод дифференцирования и интегрирования, построенный с полным пониманием того, что один процесс является обратным по отношению к другому, мог быть открыт только такими людьми, которые овладели как геометрическим методом греков и Кавальери, так и алгебраическим методом Декарта и Виллиса. Такие люди могли появиться лишь после 1660 г., и они действительно появились в лице Ньютона и Лейбница. Очень много написано по вопросу о приоритете этого открытия, но теперь установлено, что оба они открыли свои методы независимо друг от друга. Ньютон первым открыл анализ (в 1665— 1666 гг.), Лейбниц в 1673—1676 гг., но Лейбниц первый выступил с этим в печати (Лейбниц в 1684—1686 гг., Ньютон в 1704—1736 г. г. (посмертно)). Школа Лейбница была гораздо более блестящей, чем школа Ньютона.

Исаак Ньютон был сыном землевладельца в Линкольншире. Он учился в Кембридже, возможно, что у Исаака Барроу, который в 1669 г. передал ему свою профессорскую кафедру (примечательное явление в академической жизни), так как Барроу открыто признал превосходство Ньютона. Ньютон оставался в Кембридже до 1696 г., когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его “Математических принципах натуральной философии” (Philisophiae naturalis principia mathematica, 1687 г.), огромном томе, содержащем аксиоматическое построение механики и закон тяготения—закон, управляющий падением яблока на землю и движением Луны вокруг Земли. Ньютон строго математически вывел эмпирически установленные законы Кеплера движения планет из закона тяготения обратно пропорционально квадрату расстояния и дал динамическое объяснение приливов и многих явлений при движении небесных тел. Он решил задачу двух тел для сфер и заложил основы теории движения Луны. Решив задачу о притяжении сфер, он тем самым заложил основы и теории потенциала. Его аксиоматическая трактовка требовала абсолютности пространства и абсолютности времени.

Открытие Ньютоном флюксий стоит в тесной связи с его изучением бесконечных рядов по “Арифметике” Валлиса. При этом Ньютон обобщил биномиальную теорему на случаи дробных и отрицательных показателей и таким образом открыл биномиальный ряд.

Ньютон писал также о конических сечениях и о плоских кривых третьего порядка. В “Перечислении линий третьего порядка” (Enumeratio linearum tertii ordinis, 1704 г.) он дал классификацию плоских кривых третьей степени на 72 вида, исходя из своей теоремы о том, что каждую кубическую кривую можно получить из “расходящейся параболы”y2 = ax3 + bx2 + cx + d при центральном проектировании одной плоскости на другую. Это было первым важным новым результатом, полученным путем применения алгебры к геометрии, так как все предыдущие работы были просто переводом Аполлония на алгебраический язык Ньютону принадлежит также метод получения приближенных значений корней численных уравнении, который он разъяснил на примере уравнения x3 — 2 x — 5 = 0, получив х » 2,09455147.

Готфрид Вильгельм Лейбниц родился в Лейпциге, а большую часть жизни провел при ганноверском дворе, на службе у герцогов, один из которых стал английским королем под именем Георга I.

Кроме философии, он занимался историей, теологией, лингвистикой, биологией, геологией, математикой, дипломатией и “искусством изобретения”. Одним из первых после Паскаля он изобрел счетную машину, пришел к идее парового двигателя, интересовался китайской философией и старался содействовать объединению Германии. Основной движущей пружиной его жизни были поиски всеобщего метода для овладения наукой, создания изобретений и понимания сущности единства вселенной. “Общая наука” (Scientia universalis), которую он пытался построить, имела много аспектов, и некоторые из них привели Лейбница к математическим открытиям. Его поиски “всеобщей характеристики” привели его к занятиям перестановками, сочетаниями и к символической логике; поиски “всеобщего языка”, в котором все ошибки могли выявлялись бы как ошибки вычислений, привели его не только к символической логике, но и к многим новшествам в математических обозначениях. Лейбниц — один из самых плодовитых изобретателей математических символов. Немногие так хорошо понимали единство формы и содержания. На этом философском фоне можно понять, как он изобрел анализ: это было результатом его поисков “универсального языка”, в частности языка, выражающего изменение и движение.

Лейбниц нашел свое новое исчисление между 1673 и 1676 гг. под личным влиянием Гюйгенса и в ходе изучения Декарта и Паскаля. Его подстегивало то, что он знал, что Ньютон обладал подобным методом.

Впервые анализ в форме Лейбница был изложен им в печати в 1684 г. в шестистраничной статье в Acta Eruditorum, математическом журнале, который был основан при его содействии в 1682 г.

Характерно название этой статьи: “Новый метод для максимумов и минимумов, а также для касательных, для которого не являются препятствием дробные и иррациональные количества, и особый вид исчисления для этого”. Изложение было трудным и неясным, но статья содержала наши символы dx, dy и правила дифференцирования, включая d ( uv ) = udv + vdu и дифференцирование дроби, а также условие dy = 0 для экстремальных значений и d 2 y = 0 для точек перегиба. За этой статьей последовала в 1686 г. другая статья с правилами интегрального исчисления в с символом ò (она была написана в форме рецензии).

Нашими обозначениями в анализе мы обязаны Лейбницу, ему принадлежат и названия “дифференциальное исчисление” и “интегральное исчисление”. Благодаря его влиянию стали пользоваться знаком “ = ” для равенства и знаком “ • ” для умножения. Лейбницу принадлежат термины “функция” и “координаты”, а также забавный термин “оскулирующий” (целующий). Ряды

носят имя Лейбница, хотя не он первый их открыл.

www.ronl.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат на тему «Великие математики». Великие математики реферат


Великие математики и их открытия

Математика появилась одновременно со стремлением человека изучить мир вокруг себя. Изначально она входила в состав философии - матери наук - и не была выделена как отдельная дисциплина наравне с той же астрономией, физикой. Однако с течением времени ситуация изменилась. В данной статье мы выясним, кто они - великие математики, список которых уже перемахнул за сотню. Выделим основные имена.

Начало

Знаний у людей накапливалось все больше, в итоге произошло разделение точных и естественных наук. После официального "рождения" каждая из них пошла своим путем, развиваясь, укрепляя фундамент теорией, подкрепленной практикой. Казалось бы, какая практика может быть у математики, самой абстрактной из наук? Этот предмет способен описать абсолютно все процессы, происходящие на нашей планете и за ее пределами, а знание природы явления позволяет делать выводы и строить прогнозы. Отсюда можно сделать вывод, что все науки связаны между собой, наиболее очевидна эта зависимость между математикой и физикой. Поэтому в большинстве случаев великие математики и физики составляют одну группу ученых. Посудите сами - как можно описать что-то, не получив при этом обоснования?

Человеческая история - это не только покорение новых территорий и войны, в которых сильные мира сего преследуют в первую очередь свои интересы, но и бесконечные научные выкладки, призванные объяснить, показать, познать и выяснить перспективу завтрашнего дня. В данной статье мы рассмотрим тех, кто внес весомый вклад в создание настоящего. Кто они, великие математики прошлого, что подготовили почву для современных открытий?

Пифагор

Когда упоминаются великие математики, большинству людей на ум первым делом приходит именно это имя. Никто доподлинно не знает, что из фактов его биографии является правдой, а что – вымыслом, так как имя обросло массой легенд. За период жизни принят диапазон дат от 570 до 490 года до н. э.великие математики

К сожалению, письменных работ после него не осталось, однако принято считать, что именно с его благословения были сделаны многие открытия того времени. Однако мы укажем лишь те достижения, что неоспоримо являются плодами его трудов:

  • Геометрия – знаменитая теорема, которая гласит, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Не стоит забывать и таблицу Пифагора, по которой школьники начальной школы изучают принцип перемножения натуральных чисел. Также он вывел метод построения некоторых многоугольников.
  • География – великий математик Пифагор первый предположил, что планета Земля является круглой.
  • Астрономия – гипотеза о существовании внеземных цивилизаций.

Евклид

Этому древнегреческому математику современная наука обязана геометрией.великие математики и их открытия

Евклид родился в 365 году до н. э. в Афинах и в течение 65 лет (до конца жизни, по сути) проживал в Александрии. Его можно смело назвать революционером среди научных деятелей того времени, так как он проделал огромную работу по объединению всего накопленного опыта прошлых лет в одну ровную, логичную систему без "дыр" и противоречий. Этот великий ученый (физик и математик) создал трактат "Начала", который включал в себя более дюжины томов! Помимо этого, из-под его руки вышли работы, описывающие распространение луча света по прямой.

Теория Евклида хороша тем, что он в ней оттолкнулся от абстрактного "может быть", приведя ряд постулатов (утверждений, что не требуют доказательств), и уже от них, пользуясь сухой математической логикой, вывел стройную систему существующей ныне геометрии.

Франсуа Виет

Великие математики и их открытия тоже зависят от воли случая. Это доказал господин Виет (годы жизни – 1540-1603), который проживал во Франции и служил при королевском дворе сначала адвокатом, а потом и советником монарха. Когда вместо Генриха III на трон взошел Генрих IV, Франсуа поменял род деятельности. Ряд «Мировые великие математики», список которых не мал, пополнился новым именем благодаря войне Франции с Испанией. Последняя в своей переписке применяла сложный шифр, который невозможно было расшифровать. Таким образом, враги французской короны могли вести свободную переписку на территории противника без страха быть пойманными.

Перепробовав все методы, король обратился к Виету. В течение полумесяца математик работал без отдыха, пока не добился нужного результата. Благодаря этому математик вновь стал личным советником, но уже нового короля. Параллельно с этим Испания стала терпеть поражение за поражением, не понимая, в чем дело. Наконец, правда всплыла наружу, и инквизиция заочно вынесла приговор Франсуа к казни, но так и не исполнила его.

На своей новой должности советник получил возможность погрузиться в математику, отдавая всего себя любимому делу, как и все великие люди. О математике и Виете говорили с недоумением, акцентируя внимание на том, что он успевает совмещать увлечение с юридической практикой.

Среди достижений Виета числятся:

  • Буквенные обозначения в алгебре. Французский математик заменил параметры и часть коэффициентов буквами, сократив выражения в несколько раз. Эта мера сделала алгебраические высказывания более простыми и доступными для понимания, параллельно с этим облегчив дальнейшие выводы. Этот шаг стал революционным, так как облегчил дорогу идущим позади. Поистине великий математик Пифагор оставил свое детище в надежных руках. Идеология завтрашнего дня передана полностью.
  • Вывод теории решения уравнений до четвертой степени включительно.
  • Вывод формулы имени себя, по которой и по сей день находят корни квадратных уравнений.
  • Вывод и обоснование первого в истории науки бесконечного произведения.

Леонард Эйлер

Светило науки с удивительной судьбой. Рожденный в Швейцарии (1707 год), он может смело входить в список "Великие русские математики", так как наиболее плодотворно работал и нашел последнее пристанище в России (1783 год).великие ученые математики

Период его работ и открытий связан именно с нашей страной, в которую он переехал в 1726 году по приглашению академии наук в Санкт-Петербурге. За полтора десятилетия он написал массу трудов как по математике, так и по физике. В общей сложности им было сделано около 9 сотен сложнейших выводов, обогативших науку того времени. К закату жизни Леонарда Эйлера, вопреки правилам (но с одобрения французского правительства), Парижская академия наук сделала его девятым членом, тогда как по правилам их должно быть восемь. Только великие математики могли быть удостоены такой чести, так как любая научная организация педантична, когда дело касается соблюдения правил.

Среди открытий Леонарда Эйлера необходимо отметить:

  • Объединение математики как науки. До XVIII века, который по праву считается периодом триумфа Эйлера, все дисциплины были разрознены. Алгебра, математический анализ, геометрия, теория вероятности и т. д. существовали сами по себе, не пересекаясь. Он собрал из них стройную, логичную систему, которая и сейчас преподносится в учебных заведениях без изменений.
  • Вывод числа е, которое примерно равно 2,7. Как вы можете заметить, великие ученые-математики зачастую обретают бессмертие в своих работах, не миновала чаша сия и Эйлера – первая буква фамилии дала название этому иррациональному числу, без которого не существовало бы натурального логарифма.
  • Первую формулировку теории интегрирования с указанием методов, которые в ней применяются. Введение двойных интегралов.
  • Основание и распространение диаграмм Эйлера – лаконичных и наглядных графиков, которые показывают связь множеств вне зависимости от их происхождения. Например, благодаря им можно показать, что бесконечное множество натуральных чисел включено в бесконечное множество рациональных чисел и так далее.
  • Написание революционных для того времени трудов по дифференциальному исчислению.
  • Дополнение элементарной геометрии, выведенной еще Евклидом. Например, он вывел и доказал, что все высоты треугольника пересекаются в одной точке.

Галилео Галилей

Этот научный деятель, проживший всю жизнь в Италии (с 1564 по 1642 год), знаком каждому школьнику. Период его деятельности пришелся на смутную пору, что проходила под знаком инквизиции. Любое инакомыслие каралось, наука преследовалась, так как противоречила утверждениям теологов. Никто и ничто не могло быть описано, ибо на все воля Божья.великие математики список

Именно математик Галилей, согласно легенде, стал автором фразы «И всё-таки она вертится!», после того как отрекся от своих слов о том, что Земля вращается вокруг Солнца, а не наоборот. Шаг этот был обусловлен борьбою за жизнь, так как инквизиция сочла ересью его гипотезу, в которой участники вращения поменялись местами. Священнослужители не могли допустить того, чтобы Земля как творенье Божье перестала быть центром всего.

Однако его труды данной гипотезой не ограничились, ибо в историю он вошел как великий физик и математик. Галилей:

  • путем эмпирических исследований отверг утверждение Аристотеля, в котором говорилась о том, что скорость падения тела прямо пропорциональна его весу;
  • вывел парадокс имени себя, в котором количество натуральных чисел равно количеству их же квадратов, притом что большая часть чисел квадратами не является;
  • написал труд «Рассуждение об игре в кости», в котором рассмотрел эталонную с точки зрения теории вероятностей задачу с выводом и обоснованием.

Андрей Николаевич Колмогоров

Когда упоминаются великие математики России, одним из первых на ум приходит именно этот научный деятель.великий математик пифагор

Алексей Николаевич Колмогоров родился весной 1903 года в городе Тамбове. Начальное образование он получил дома, после чего поступил в частную гимназию. Уже там были отмечены его удивительные способности в области точных наук. В силу ряда обстоятельств его семья была вынуждена переехать в Москву, где их и застала Гражданская война. Несмотря ни на что, Колмогоров поступил в Московский университет на факультет математики. Успехи молодого студента на выбранном поприще были столь велики, что он без особых усилий смог досрочно сдать экзамены, не отрываясь от своего основного увлечения – теории вероятности. В научных изданиях стали появляться труды Андрея Николаевича, начиная с 1923 года, а ведь ему на тот момент едва минуло 20 лет. Методично добиваясь желаемого, математик уже в 1939 году стал академиком. Он проработал всю жизнь в Москве и умер осенью 1987 года, похоронен на Новодевичьем кладбище.

К его весомым работам можно отнести:

  • Усовершенствование методики преподавания математики в начальных и средних школах. Великие математики и их открытия мирового масштаба важны, однако не менее ценной и нужной является работа по подготовке молодого поколения будущих научных деятелей. Всем известно, что основы закладываются в раннем детстве.
  • Развитие математических методов и перенос их из абстрактных областей в прикладные. Иными словами, благодаря трудам Андрея Николаевича математика прочно вошла в естественные науки.
  • Вывод принятых мировым научным сообществом аксиом элементарной теории вероятностей. Последняя характеризуется тем, что описывает конечное число событий.

Николай Иванович Лобачевский

Этот научный деятель, как и все великие русские математики, с детства проявлял недюжинные способности в области точных наук.великие русские математики

Николай Иванович Лобачевский родился в 1793 году в одной из губерний России. В возрасте 7 лет вместе с семьей переехал в Казань, где и прожил всю свою жизнь. Скончался он в возрасте 63 лет, увековечив свое имя на века работой, что дополнила классическую геометрию Евклида. Он ввел несколько уточнений в привычную систему, доказав ряд утверждений, например, о том, что параллельные прямые пересекаются на бесконечности. Его работа определяется в плоскости, которая характеризуется скоростями, близкими к скорости света. Казалось бы, в чем смысл открытия для того времени? Теорию находили спорной, возмутительной, однако с течением времени великие ученые-математики признали, что работа Лобачевского приоткрыла дверь в будущее.

Огюстен Луи Коши

Имя этого математика известно каждому студенту, так как он успел отметиться как в общем курсе высшей математики, так и в ее более узких направлениях, например, в математическом анализе.великие математики и физики

Огюстен Луи Коши (годы жизни – 1789-1857) по праву может считаться отцом математического анализа. Именно он довел до ума все то, что пребывало в подвешенном состоянии, не имея ни определения, ни обоснования. Благодаря его трудам появились такие столпы дисциплины, как непрерывность, предел, производная и интеграл. Также Коши показал сходимость ряда и его радиус, дал математическое обоснование дисперсии в оптике.

Вклад Коши в становлении современной математики был настолько масштабен, что его имя заняло почетное место на первом этаже Эйфелевой башни - именно там в хронологическом порядке перечислены ученые (в том числе великие математики). Список этот служит своеобразным памятником науке и по сей день.

Итог

Из века в век математика привлекала ученых своей неестественностью, которая удивительным образом могла описать все то, что происходит в мире вокруг нас.

Пифагор утверждал, что в основе всего лежит число. Практически все, что происходит с человеком и внутри человека, оно может описать.

Галилей говорил, что математика - это язык природы. Вдумайтесь. Величина, что имеет искусственную природу, описывает все естественное.

Имена великих математиков - это не просто перечень людей, которые увлекались своим делом, расширяя и углубляя научную базу. Это звенья, которые способны связать настоящее и будущее, показать человечеству перспективу.

Однако это палка о двух концах, так как обилие информации дает больше рычагов для воздействия.

Знания - это власть. Бездумное злоупотребление способно погубить то, что так тщательно изучалось и собиралось по крупицам. Осознание этого первостепенно, наука должна идти во благо.

Великие люди о математике говорят с бесконечным уважением, так как это пропуск в завтрашний день.

fb.ru

Доклад - на тему «Великие математики»

МОУ «Шемалаковская ООШ»

Реферат на тему

«Великие математики»

Выполнил ученик 9 класса

Тарасов Иван

2008 год.

Исаак Ньютон /1642-1727/

Англия

Исаак Ньютон, будущий великий математик и физик, родился хилым ребенком. При рождении имел такой невзрачный вид, что окружающие думали, что он протянет всего несколько часов. Две женщины, посланные в город за лекарствами, не торопились возвращаться, полагая, что, пока они придут обратно, новорожденного не будет в живых. Каково же было их удивление, когда, возвратившись, они увидели ребенка живым и издающим внушительные крики!

Отец Ньютона умер еще до рождения ребенка, и вся забота о нем выпала на долю матери. Не досыпая ночей, она думала о том, как уберечь сына от гибели и поправить его здоровье. Мать решила, что сельский воздух вдали от городского шума с хорошим питанием, как живительный бальзам, должны подействовать на его здоровье. Она содержала небольшую ферму и мечтала сделать из своего сына фермера, так как, по ее мнению, для всякой другой профессии он по слабости здоровья не годился.

Заботами матери маленький Ньютон стал заметно поправляться и полегоньку расти. Действительно, как и полагала мать, сельский воздух, деревенские игры и забавы благотворно повлияли на укрепление организма Ньютона. В детстве он получил хорошую физическую закалку. Забегая вперед, нужно сказать что, родившись слабым ребенком, Ньютон прожил до глубокой старости (умер 85 лет). Он не знал очков и за всю жизнь у него не выпало ни одного зуба. Умер он от каменной болезни, признаки которой обнаружил за три недели до своей смерти.

Мать воспитывая свое дитя, думала больше о его физическом здоровье, чем об умственном развитии. На 12-м году жизни она отдала ребенка в частное городское училище (пансион) Кларка — грантемского аптекаря Ньютон не обнаруживал особой любви к наукам и учился довольно посредственно. Перелом в учебе в лучшую сторону произошел в конце двухлетнего пребывания в пансионе. Этому способствовал следующий любопытный случай.

Как-то на перемене один из учеников ударил Ньютона по животу. Удар был настолько силен, что Ньютон чуть не потерял сознания. Острая боль пронзила все тело. Глаза на мгновение перестали видеть. Обливаясь потом он кое-как превозмог страшную боль, от которой хотелось выть и кричать. Обидчик не на шутку испугался. Но, видя, что Ньютон через некоторое время оправился от удара, открыто торжествовал победу и смеялся над потерпевшим. Как хотелось отомстить обидчику в эту минуту! Но этого сделать Ньютон не мог, так как был значительно слабее противника. Как же отомстить, как?

Долго думал обиженный Ньютон и, наконец, нашел весьма оригинальный способ мщения. Его недруг превосходил Ньютона не только в физической силе, он был первым учеником класса. И вот ради мести Ньютон решил немедленно начать хорошо учиться, обогнать своего соперника по учебе и, став первым учеником класса, навсегда отнять у него пальму первенства.

Свой план Ньютон выполнил как нельзя лучше. Оказывается, он обладал исключительными способностями. Он без большого труда стал первым учеником в классе и по умственному развитию оказался выше всех своих товарищей на целую голову. В дальнейшем по успеваемости с ним уже никто не мог состязаться. Прошло всего несколько месяцев, а учитель уже при всех учениках во всеуслышание хвалил юного Ньютона, как образцового ученика, с которого всем надо брать пример.

Пятнадцатый и шестнадцатый годы своей жизни Ньютон провел у матери на ферме. Мать не смогла привить своему сыну вкус к занятиям сельским хозяйством, не смогла сделать его своим помощником по управлению фермой. Все ее попытки в этом направлении оказались напрасными: сын оставался совершенно глух к желаниям и требованиям матери.

Чтобы как-то приобщить молодого Ньютона к хозяйству, она посылала его со старым работником в город на базар. Нужно было продать кое-что из продуктов, кое-что купить для своих нужд. Но и к этим поручениям Ньютон относился безучастно. Не доезжая до города, он просил работника выполнить, что приказывала мать, а сам, заранее обзаведясь книгой, садился у дороги под дерево или под первый попавшийся плетень и принимался за чтение. Чтение для него в то время было страстью. На обратном пути работник забирал юношу и привозил его как ни в чем не бывало домой.

В часы отдыха между чтением книг Ньютон выкраивал время для своих невинных забав. Уединившись, он любил что-нибудь мастерить. Один раз он изготовил водяные часы, другой раз сконструировал весьма оригинальную ветряную мельницу. В эту последнюю модель была посажена мышь, которая выполняла роль мельника. Однажды ночью Ньютон запустил змея собственного изготовления, снабженного светящимися фонарями. Жители соседних деревень, не зная, в чем дело, думали и гадали, что это может быть, и решили, что это, наверное, кометы.

Равнодушие Ньютона к хозяйственным нуждам фермы не могло остаться незамеченным. Мать, конечно, не могла не видеть, что сын ее увлекается книгами. И здесь помог случай. Однажды Ньютон настолько увлекся чтением, что не заметил, как сзади к нему неслышно подошел дядя и поинтересовался, чем так сильно увлечен его племянник. Взяв книгу, он с удивлением увидел, что тот изучал трактат по механике и из него решал какую-то замысловатую задачу. И это в шестнадцать лет!..

Обнаружив в юноше большой талант к науке, дядя немедленно обратился к его матери с просьбой отправить молодого Ньютона опять в Грантемскую школу с тем, чтобы, окончив ее, он мог поступить в университет. «Семнадцати лет от роду Ньютон поступил учиться в Кембриджский университет. Здесь он с жадностью изучал сочинения древних ученых, в частности «Начала» Евклида. Затем он перешел к изучению исследований крупнейших ученых нового времени. Его внимание привлекли геометрия Декарта, арифметика Валлиса и математические сочинения Кеплера. Чтение этих трактатов у него не было механическим. Усваивал он их критически, глубоко осмысливая прочитанное. Прочитанному он, как правило, противопоставлял свою точку зрения и незаконченные мысли автора доводил до «логического конца».

Уже в студенческие годы Ньютон зарекомендовал себя пытливым, упорным и настойчивым исследователем. Так, будучи студентом, Ньютон доказал теорему о биноме. С тех пор формула бинома стала называться «биномом Ньютона». Студентом же он вплотную подошел к проблеме всемирного тяготения. Позднее этой проблеме он посвятил целый трактат «Принципы натуральной философии». Этот капитальный труд прославил автора на весь мир и сделал его «великим из великих» ученых. Окончил университет Ньютон со степенью магистра.

Ньютон внес замечательный вклад и не только в математику, но и в физику, и в астрономию.

Несмотря на свои величайшие заслуги перед наукой, Ньютон был удивительно скромным человеком. О себе он говорил так: «Не знаю, каким я кажусь людям. Самому же себе я кажусь ребенком, который играет на берегу моря и радуется, когда ему удается отыскать гладкий камушек или красивую раковину не совсем обыкновенного вида, в то время как необозримый океан истин лежит передо мною неисследованным».

По описанию тех, кто его знал, Ньютон был мужчиной среднего роста, весьма солидной полноты. Согласно традиции того времени, голову покрывал париком. У него были умные, живые глаза.

Ньютон вел уединенный образ жизни. Погруженный в глубокие размышления, часто не замечал окружающих и был весьма рассеян. Иногда по утрам, вставая с постели, вдруг задумывался и в таком положении, как зачарованный, мог просидеть долгие часы, пока кто-нибудь не выводил его из этого состояния. Увлекшись работой, совершенно забывал о еде.

Что касается рассеянности, то тут дело доходило до анекдотов. Так, однажды он самым серьезным образом уверовал, что обедал, xoтя не брал в рот и маковой росинки и был сильно голоден. Вот как один из биографов Ньютона описывает этот случай. Как-то к Ньютону пришел близкий друг с благим намерением пообедать вместе. В последнюю минуту, когда жареная курица была подана на стол, Ньютон отлучился в свой кабинет и застрял там увлекшись очередной работой, забыв о своем друге и о предстоящей еде. Прождав Ньютона довольно долго и совершенно напрасно, друг расправился с курицей один, а обглоданные кости сложил на блюдо и покрыл их серебряным колпаком. Вскоре после этого явился и сам Ньютон и громко объявил, что ему очень хочется есть. Но сев за стол и обнаружив на блюде одни обглоданные кости, с изумлением, ничего не подозревая, воскликнул: «Интересно, оказывается, я уже пообедал. Вот ведь как можно ошибиться!»

Когда друзья, преклоняясь перед его гением, спрашивали Ньютона, каким образом он открыл законы тяготения, он отвечал: «Непрерывным размышлением о них». При этом свой метод исследований он объяснял следующим образом: «Я постоянно обращаю внимание на предмет моих изысканий и жду, пока дело начинает медленно разъясняться, мало-помалу, пока не станет вполне и всецело ясно».

Свой век Ньютон прожил холостяком. Биографы полагают, что о женитьбе ему некогда было подумать.

Интенсивная научная работа Ньютона падает на первые 45 лет его жизни. В остальные 40 лет он не порадовал человечество ни единым открытием ни в какой из отраслей науки. Это очень странно для гениального человека. В том возрасте, в каком Ньютон перестал творить, казалось, ум его должен был достичь полной зрелости и силы.

Знаменитый французский ученый Жан Батист Био, много сделавший по изучению трудов Ньютона, полагает, что умственные способности Ньютона пострадали от следующего несчастного случая. Однажды вечером Ньютон отлучился из дому и по рассеянности оставил на письменном столе зажженную свечу. Во время его отсутствия его любимая собака по кличке Даймонд вспрыгнула на стол и опрокинула свечу. Все рукописи, лежавшие на столе, сгорели. Нетрудно себе представить, как велико было горе Ньютона, когда возвратившись домой, он обнаружил от своих долголетних трудов один только пепел.

Астрономические открытия Ньютона нанесли сокрушительный удар по авторитету церкви и обнаружили полную несостоятельность церковных догматов. В своем капитальном труде «Математические начала натуральной Философии» (1687) он доказал, что движение небесных тел происходит строго по закону всемирного тяготения, носящему универсальный (всеобщий) характер.

В свете закона всемирного тяготения звучит сказкой, например, утверждение библии о том, что Иисус Навин якобы остановил на время Солнце, чтобы при дневном свете закончить сражение с аммонитянами. Закон всемирного тяготения, одинаково справедливый на Земле и на небе, положил конец религиозным басням о коренном различии «небесного» и «земного». С выводами Ньютона никак не согласуются религиозные мифы о хождении Христа по поверхности воды, о его вознесении «во плоти» и другие несуразности. «Начала натуральной философии» полностью развенчали геоцентризм, как опору религиозного мировоззрения.

Против астрономических открытий Ньютона богословы всех мастей развернули яростную борьбу. И они временно добились своего. Под их воздействием во многих университетах Европы вплоть до XIX века было запрещено преподавание небесной механики Ньютона и его гелиоцентризма на основе закона всемирного тяготения.

Однако сам Ньютон не был атеистом. Уподобляя Вселенную большому «часовому механизму», он пришел к выводу, что этот механизм раз и навсегда когда-то заведен «богом» и им же был дан «первый толчок», в результате чего механизм «сработал» и только после этого все небесные тела пришли в вечное движение.

Еще при жизни Ньютон вкусил сладость величайшей славы. Он был почетным членом многих научных обществ и академий. Последние 23 года своей жизни был президентом Королевского лондонского общества. Королева Анна даровала ему титул рыцаря и возвела в дворянское достоинство. Весь мир преклонялся перед его гением. Казалось, ничего не оставалось желать Ньютону. «Он был в таком почете — говорит Фонтенель,—что смерть не могла принести ему новых почестей, он достиг своего апофеоза».

Погребен Ньютон в английском национальном пантеоне в Вестминстерском аббатстве, месте упокоения всех великих людей Англии. При погребении ему были оказаны почести, какие обычно воздавались только членам королевского двора.

На могильном памятнике имеется латинская надпись, которая гласит: «Здесь покоится сэр Исаак Ньютон, который почти божественной силой своего ума впервые объяснил с помощью своего математического метода движения и формы планет, пути комет, приливы и отливы океана. Он первый исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто не подозревал… Пусть смертные радуются тому, что в их среде жило такое украшение рода человеческого».

В память о великом из великих ученых на стене комнаты, в которой родился Ньютон, укреплена мраморная доска с надписью:

«Природа и ее законы были покрыты мраком; И сказал бог: «Да будет Ньютон!» И все стало светло».

В Кембридже, по преданию, известна комната в которой жил Ньютон. В этом же городе в Trinity College, показывают глобус Ньютона, сделанные им солнечные часы, компас и локон его серебристых волос, который хранится под стеклянным колпаком.

Архимед

/287-212 до н.э./ Греция

О жизни Архимеда известны только отрывочные сведения, которые дошли до нас благодаря древним писателям Цицерону, Плутарху и др. Из их работ узнаем, что Архимед родился в 287 году до новой эры в Сицилии и на 75-м году жизни был убит римским воином при взятии римлянами Сиракуз.

В своих математических работах Архимед, предвосхитив идеи современного математического анализа, остроумно решал задачи на вычисление длин кривых, площадей и объемов. В частности, пользуясь своими оригинальными методами, он нашел площадь сегмента параболы.

Архимед был гениальным вычислителем. Пользуясь своей системой счисления, он подсчитал число песчинок, заполняющих сферу, радиус которой во много раз больше радиуса Земли.

Архимеду принадлежит ряд замечательных изобретений. Он изобрел машину для орошения полей (архимедов винт). Впервые для поднятия тяжестей стал применять систему рычагов и блоков. Дал способ определения состава сплавов путем взвешивания в воде и т. д.

До нас дошли следующие сочинения Архимеда — две книги «О шаре и цилиндре», «Об измерении круга», «О коноидах и сфероидах», «О спирали», две книги «О равновесии плоскости» «О числе песчинок», «О квадратуре параболы», «Послание Эратосфену о некоторых теоремах механики», две книги «О плавающих телах», «Отрывки».

В своем небольшом сочинении «О числе песчинок» Архимед решает вопрос о представлении какого угодно большого числа не употребляя при этом ни нуля, ни показателя степени. За основание своего исчисления он берет число 10.

«Некоторые люди, о царь Гелон, -пишет Архимед в указанном сочинении, — воображают что число песчинок бесконечно велико. Я говорю не о песке, находящемся в Сиракузах или во всей Сицилии, но о песке всей суши как обитаемой, так и необитаемой. Другие признают это число, правда, не неограниченным но все же думают, что оно больше всякого задуманного числа. Если бы эти люди представили себе кучу песка, величиной в земной шар, причем этим песком были бы покрыть все моря и все углубления до вершины величайших гор, то, конечно, люди тем более были бы склонны принять, что превосходящего число песчинок в этой куче.

Я, однако, приведу доказательства, с которыми и ты согласишься, что я в состоянии назвать некоторые числа, не только превосходящие число песчинок в куче, равной земному шару, но даже число песчинок в куче, равной всей Вселенной».

(Под Вселенной здесь подразумевается шар, центр которого находится в центре Земли, а радиус образуется расстоянием между центрами Земли и Солнца.)

И Архимед действительно находит эти большие числа в своей системе счисления и называет их.

Архимед был горячим патриотом своей родины и города Сиракуз, в котором он родился и жил. Архимед в течение двух лет при помощи своих машин с успехом защищал Сиракузы от мощной римской армии, которой командовал Марк Клавдий Марцелл, один из самых крупных военачальников того времени. Вот в каких словах передает древнегреческий писатель Плутарх (ок. 46-ок. 126) взятие города Сиракуз римлянами.

«Марцелл вполне полагался на обилие и блеск своего вооружения и на собственную свою славу. Но все оказалось беспомощным против Архимеда и его машин...

Архимед был родственником умершего царя Гиерона. В свое время Архимед писал Гиерону, что небольшой силой возможно привести в движение сколь угодно большую тяжесть; более того, вполне полагаясь на убедительность своих доказательств, он утверждал даже что был бы в состоянии привести в движение самую Землю, если бы существовала другая, на которую он мог бы стать («Дайте мне, где стать, и я сдвину Землю!»). Гиерон был этим удивлен и предложил Архимеду показать на деле, как возможно большую тяжесть привести в движение малой силой. Архимед осуществил это над грузовым трехмачтовым судном, которое, казалось, могло вытащить на берег только большое число людей. Архимед велел посадить на судно множество людей и нагрузить его большим грузом. Поместившись затем в некотором отдалении на берегу, он без всякого напряжения; очень спокойно нажимая собственной рукой на конец полиспаста, легко, не нарушая равновесия, придвинул судно. Гиерон был этим в высшей степени поражен и, убедившись в высоком значении этого искусства, склонил Архимеда соорудить машины как для обороны, так и для нападения при любой осаде...

Когда римляне начали наступление с суши и с моря, сиракузяне считали невозможным противостоять такой большой силе и военной мощи. Но тогда Архимед привел в действие свои машины и орудия разнообразного рода, на сухопутные войска посыпались камни огромной величины и веса с шумом и невероятной быстротой. Целые подразделения войск валились на землю, и их ряды пришли в полный беспорядок. В то же время и на суда неприятеля обрушивались из крепости тяжелые балки, искривленные в виде рогов; одни из них сильными ударами погружали суда в глубь моря, другие крюками в форме журавлиных клювов, точно железными руками, поднимали корабли высоко в воздух, а затем опускали кормой в воду. В то же время другие машины швыряли суда на скалы возле стен города, и их матросы подвергались страшному уничтожению...

Римляне были так напуганы, что достаточно было показаться над стенами канату или деревянной палке, как все кричали, что Архимед направил на них машину, и быстро убегали. Видя это, Марцелл прекратил сражение и нападение и предоставил дальнейшую осаду действию времени».

Далее Плутарх рассказывает следующее: «Когда корабли Марцелла приблизились на расстояние полета стрелы, то старик (Архимед) велел приблизить шестигранное зеркало, сделанное им. На известном расстоянии от этого зеркала он поместил другие зеркала поменьше такого же вида. Эти зеркала вращались на своих шарнирах при помощи квадратных пластинок. Затем он устанавливал свое зеркало среди лучей солнца летом и зимой. Лучи, отраженные от этих зеркал, произвели страшный пожар на кораблях, которые были обращены в пепел на расстоянии, равном полету стрелы».

Этот рассказ, по словам проф. М. Е. Ващенко-Захарченко, долгое время считался басней, пока известный ученый Бюффон в 1777 году не показал на опыте, что это возможно. При помощи 168 зеркал он в апреле зажег дерево и расплавил свинец с расстояния 45 метров.

Характеристику крупного инженера Архимеду дает греческий писатель II века Афиней, автор энциклопедического труда «Пир софистов» в 15 книгах, дошедшего до нас в несколько сокращенном виде. Афиней рисует Архимеда как изобретательного кораблестроителя.

«Я думаю, — пишет Афиней, — нельзя умолчать о корабле, построенном Гиероном Сиракузским, тем более, что постройкой его руководил геометр Архимед».

Далее Афиней рисует картину строительства «корабля Гиерона» для перевозки зерна. Приводим текст Афинея полностью.

«Заготовляя материал, царь велел привезти с Этны столько лесу, что его хватило бы на шестьдесят четырехрядных кораблей. Когда это было исполнено, он доставил — частично из Италии, частично из Сицилии — дерево для изготовления клиньев, шпангоутов, поперечных брусьев и на другие нужды; для канатов коноплю привезли из Иберии, пеньку и смолу — с реки Радона; словом, все необходимое было свезено отовсюду. Гиерон собрал также корабельных плотников и других ремесленников, а во главе их поставил Архимеда, кораблестроителя из Коринфа, которому приказал немедленно приступить к работам. Сам царь также целые дни проводил на верфи. За шесть месяцев корабль был наполовину закончен. Каждая готовая часть немедленно обшивалась свинцовой чешуей; ее выделывали триста мастеров, не считая подручных. Наконец царь приказал спустить наполовину готовое судно на воду, чтобы там завершить остальные работы. О том, как это сделать, было много споров; но изобретатель Архимед один с немногими помощниками сдвинул огромный корабль с места при помощи построенного им винта (Архимед сам изобрел этот винт). Остальные работы на корабле заняли также шесть месяцев. Все судно было сбито медными гвоздями, большая часть которых весила по десять мин каждый (некоторые гвозди были в полтора раза тяжелее: они скрепляли поперечные брусья, и гнезда для них сверлили буравами). Дерево обшили свинцовой чешуей, положив под нее пропитанное смолой полотно. Когда внешняя отделка корабля была закончена, стали оборудовать его изнутри.

Это было судно с двенадцатью скамьями для гребцов и с тремя проходами один над другим. Самый нижний проход, к которому нужно было спускаться по множеству лестниц, вел к трюму, второй был сделан для тех, кто хотел пройти в жилую часть корабля, и, наконец, последний предназначался для вооруженных караулов. По обе стороны среднего прохода находились каюты для едущих на корабле, числом тридцать, по два ложа в каждой. Помещение для навклеров [кормчих] имело залу на пятнадцать лож и три отдельных покоя по четыре ложа в каждом; к ним примыкала находившаяся на корме кухня. Пол этих кают был составлен из плиток разного камня, и на нем были искусно изображены все события «Илиады». Так же искусно было сделано и остальное: потолки, двери, убранство.

Возле верхнего прохода находился гимнасий и помещение для прогулок; их размеры и устройство соответствовали величине корабля. В них были превосходные сады, полные разнообразных растений, получавших влагу из проложенных под ним свинцовых желобов. Были там и беседки из белого плюща и виноградных лоз, корни которых уходили в наполненные землей пифосы [глиняные кувшины] и там находили пищу; эти тенистые беседки, орошавшиеся точно так же, как и сады, служили местом для прогулок.

Рядом был устроен покой, посвященный Афродите; его пол сложили из агата и других самых красивых камней, какие только встречались на острове, потолок и стены были из кипарисового дерева, а двери — из слоновой кости и туи. Покой был великолепно украшен картинами, статуями и разнообразными чашами. За ним шла зала для занятий; там стояло пять лож, стены и двери были сделаны из самшита. В зале помещалась библиотека; на потолке находились солнечные часы, точно такие же, как в Ахрадине [район Сиракуз]. Была на корабле и баня с тремя медными котлами и ванной из пестрого тавроменийского камня, имевшей пять метретов воды. Построено было и множество помещений для солдат и надсмотрщиков трюмов. Поодаль от жилых кают находились конюшни, по десять у каждого борта, рядом с ними был сложен корм для лошадей и пожитки конников и рабов.

Закрытая цистерна для воды находилась на полу корабля и вмещала две тысячи метретов; она была сделана из досок и просмоленного полотна. Рядом с нею был устроен рыбный садок, также закрытый, сделанный из досок и полос свинца; его наполняли морской водой и держали в нем много рыбы...

Снаружи весь корабль опоясывали атланты, имевшие по шесть локтей в высоту; они были расположены на одинаковом расстоянии друг от друга и поддерживали всю тяжесть карниза. И все судно было покрыто прекрасной росписью.

Было на нем восемь башен, по величине соответствовавших огромным размерам корабля. Две стояли на корме, столько же на носу, остальные — посредине. На каждой было по две выступающих балки с подъемниками, над которыми были устроены проемы, чтобы бросать камни в плывущих внизу врагов. На каждую башню поднималось четверо тяжеловооруженных юношей и два стрелка из лука. Внутри башни все было заполнено камнями и стрелами. Вдоль всех бортов шла стена с зубцами, а за ней настил, поддерживаемый трехногими козлами. На настиле стояла катапульта, бросавшая камни в три таланта и копья в двенадцать локтей длиной. Машину эту построил Архимед; и камни и копья она метала на целый стадий. За стеной были подвешены на медных цепях занавесы из плотно сплетенных ремней. К каждой из трех мачт корабля было приделано по две балки с подъемниками для камней; благодаря этому с мачт можно было бросать абордажные крючья и свинцовые плиты в нападающего противника. Корабль был обнесен частоколом из железных брусьев для защиты против тех, кто захотел бы ворваться на судно. Железные крючья, приводимые в движение механизмами, могли захватить вражеский корабль, силой повернуть его и поставить под удар метательных орудий. У каждого борта располагалось по шестьдесят вооруженных юношей; столько же окружало мачты и башни с подъемниками. И на мачтах, на их медных верхушках сидели люди; на первой-трое, на каждой следующей—на одного меньше. Рабы поднимали камни и дротики в плетеных корзинах при помощи ворота.

…Воду которая скапливалась в трюме, хотя ее набиралось очень много, отливал один человек при помощи изобретенного Архимедом винта. Назвали корабль «Сиракусии», но когда Гиерон отослал его в Египет, он был переименовал в «Александриаду».

На корабль погрузили шестьдесят тысяч медимнов хлеба, десять тысяч глиняных сосудов с сицилийскими солениями, две тысячи талантов шерсти и две тысячи талантов прочих грузов, не считая продовольствия для плавающих людей».

Прошло более двух тысяч лет, как умер Архимед, но его образ близок и дорог всему прогрессивному человечеству. Его жизнь и смерть овеяны легендарной славой. Недаром в течение ряда веков об Архимеде писали прозаики и поэты. Сердечные строки посвящают Архимеду и современные писатели.

Так советский поэт Вадим Шефнер воспевает патриотическую доблесть Архимеда стихами:

Далеко от нашего Союза И до нас за очень много лет В трудный год родные Сиракузы Защищал ученый Архимед. Многие орудья обороны Были сконструированы им, Долго бился город непреклонный, Мудростью ученого храним.

Другой советский поэт Дмитрий Кедрин рисует самоотверженное служение Архимеда науке ради мира и счастья человечества. Поэт взволнованно пишет:

Нет, не всегда смешон и узок Мудрец, глухой к делам земли; Уже на рейде в Сиракузах Стояли римлян корабли. Над математиком курчавым Солдат занес короткий нож, А он на отмели песчаной Окружность вписывал в чертеж. Ах, если б смерть — лихую гостью — Мне так же встретить повезло, Как Архимед, чертивший тростью В минуту гибели — число!

Евклид

/III в. до н.э./

Наука располагает очень скудными биографическими сведениями о жизни и Деятельности Евклида. Известно, что он родом из Афин, был учеником Платона. По приглашению Птолемея I Сотера переехал в Александрию и там организовал математическую школу. Как свидетельствует Папп Александрийский (III век н. э.), Евклид был человеком мягкого характера очень скромным и независимым. О его прямоте и независимости можно судить по следующему факту. Однажды царь Птолемей спросил Евклида: «Нет ли в геометрии более короткого пути, чем тот, который предложен Евклидом в его книгах? На это Евклид якобы ответил: «Для царей нет особого пути в геометрии!..»

К III веку до новой эры в Греции накопился богатый геометрический материал, который необходимо было привести в строгую логическую систему. Эту колоссальную работу и выполнил Евклид. Он написал 13 книг «Начал» (геометрии), которые не утратили своего значения и в настоящее время. Евклид не только систематизировал тот геометрический материал, который был известен до него, но и дополнил его своими собственными исследованиями.

Значение «Начал» Евклида в истории математической науки трудно переоценить. «Начала» Евклида составили целую эпоху в развитии элементарной геометрии. В течение долгих веков «Начала» были чуть ли не единственной учебной книгой, по которой молодежь изучала геометрию, и не потому, что других книг по геометрии не было. Эти книги были. Но они вытеснялись «Началами» Евклида и скоро забывались.

Насколько популярны «Начала» Евклида можно судить по тому факту, что в английских школах и теперь геометрия изучается по некоторым из этих книг. Более того, в настоящее время школьные учебники на всех языках мира или дословно копируют «Начала» Евклида, или написаны под их большим влиянием. Кстати сказать, «Геометрия» А. П. Киселева, которая у нас долгое время являлась стабильным учебником в школе, написана по книгам, которые в свою очередь созданы по «Началам» Евклида с большим заимствованием оттуда формы и содержания, причем доказательства некоторых теорем, например теоремы Пифагора, взяты из Евклида дословно.

Как указывалось выше, «Начала» Евклида состоят из 13 книг. Содержание этих книг следующее: первая книга приводит условия равенства треугольников, соотношения между сторонами и углами треугольников, теорию параллельных линий и условия равновеликости треугольников и многоугольников; во второй книге даются методы превращения многоугольника в равновеликий квадрат; третья содержит учение об окружности; в четвертой рассматриваются вписанные и описанные многоугольники; шестая содержит учение о подобных фигурах; в последних трех книгах, т. е. в одиннадцатой, двенадцатой и тринадцатой, излагаются основы стереометрии. Остальные книги, не упомянутые выше, т. е. пятая, седьмая, восьмая, девятая и десятая, посвящены теории пропорций и арифметике, причем изложение чисто геометрическое.

В «Началах» Евклида дан образец дедуктивного изложения геометрического материала на основе предпосланной системы аксиом и других достоверных истин.

Пифагор

/580-500 до н. э./

Греция

О жизни Пифагора до нас дошли очень скудные данные. По отрывочным сведениям некоторых историков известно, что Пифагор годился на острове Самосе. В молодости путешествовал по Египту, жил в Вавилоне, где имел возможность в течение 12 лет изучать астрономию и астрологию у халдейских жрецов. После Вавилона, побыв некоторое время в своем отечестве, переселился в Южную Италию, а потом в Сицилию и организовал там пифагорейскую школу, которая внесла ценный вклад в развитие математики и астрономии.

Пифагор и его ученики много потрудились над тем, чтобы придать геометрии научный характер. Кроме знаменитой теоремы, носящей его имя, Пифагору приписывается еще ряд замечательных открытий, в том числе:

1. Теорема о сумме внутренних углов треугольника.

2. Задача о покрытии, т. е. деление плоскости на правильные многоугольники (равносторонние треугольники, квадраты и правильные шестиугольники).

3. Геометрические способы решения квадратных уравнений.

4. Правила решать задачу: по данным двум фигурам построить третью, которая была бы равна одной из данных и подобна другой.

Наибольшую славу Пифагору принесла открытая им «теорема Пифагора», которая и до настоящего времени считается одной из важных теорем геометрии, используемых на каждом шагу при изучении геометрических вопросов. Частные случаи этой теоремы были известны некоторым древним народам еще до Пифагора. Например, в своей строительной практике египтяне пользовались так называемым «египетским треугольником» со сторонами 3, 4 и 5. Египтяне знали, что указанный треугольник является прямоугольным и для него выполняется соотношение: 32 + 42 = 52, т. е. как раз то, что утверждает теорема Пифагора.

Частные случаи этой теоремы были известны также китайцам и индийцам. Трудно указать время, когда эти народы впервые стали пользоваться «пифагоровым» соотношением. Но достоверно, что теоремой Пифагора китайцы и индийцы пользовались издавна. В древнем Китае теорему Пифагора стали применять около 2200 лет до новой эры.

В знаменитом трактате «Математика в девяти книгах», составление которого относится к началу новой эры, теорема о соотношении сторон в прямоугольном треугольнике использовалась подвидом правила «Гоу-гу». Согласно этому правилу, древние китайцы по известной гипотенузе и одному катету находили другой, неизвестный катет, а также гипотенузу, если были известны оба катета. Термины «гоу» и «гу» обозначают катеты прямоугольного треугольника, причем «гоу» — горизонтальный, обычно меньший катет, а «гу» — вертикальный и обычно больший катет. В буквальном переводе «гоу» означает крюк, «гу» — ребро, связка.

Индийским ученым теорема Пифагора стала известна не позднее VIII века до новой эры. В самом старом памятнике индийской геометрии «Сулва-сутрах» (VII до н. э.) эта теорема формулировалась так: «Веревка, проведенная наискось в продольном квадрате [прямоугольнике] образует то же, что образует вместе каждая из мер: продольных и поперечных». Эта же теорема в виде краткого правила излагалась еще и так: «То, что образуется на двух сторонах, равно тому, что образуется по диагонали».

Доказательство самого Пифагора своей знаменитой теоремы до нас не дошло. Историки полагают, что первоначальное доказательство теоремы Пифагора относилось к частному случаю, т. е. к рассмотрению равнобедренного прямоугольного треугольника, как это делали индийцы, исходя непосредственно из чертежа.

Открытие теоремы Пифагора связано с разного рода легендами. Например, одна из легенд говорит, что Пифагор, обрадованный своим открытием, в благодарность принес богам в жертву 100 быков (гекатомбу). На эту тему немецкий поэт Адельберт Шамиссо написал стихотворение, которое в переводе Натальи Тереховой и приводится ниже:

Во мгле веков пред нашим взором Блеснула истина. Она, Как теорема Пифагора, До наших дней еще верна. Найдя разгадку, мудрый старец Был благодарен небесам; Он сто быков велел зажарить И в жертву принести богам. С тех пор быки тревожно дышат,— Они, кляня дары богов, О новой истине услышав, Ужасный поднимают рев. Их старца имя потрясает, Их истины лучи слепят; И, новой жертвы ожидая, Быки, зажмурившись дрожат.

Однако это предание о 100 быках, якобы принесенных Пифагором в жертву, мало соответствует действительности, так как устав пифагорейцев запрещал им всякое пролитие крови. Еще Марк Тулий Цицерон (106—43 до н. э.), выдающийся оратор, писатель и политический деятель древнего мира, сомневался в правдивости рассказанной выше легенды, а последователи Пифагора позднейших веков (неопифагорейцы) живых быков заменили «быками», сделанными из муки.

Пифагору приписываются «Золотые стихи» и «Символы». Ниже приводятся некоторые изречения из «Золотых стихов»:

— Делай лишь то, что впоследствии не огорчит тебя и не принудит раскаиваться.

— Не делай никогда того, чего ты не знаешь. Но научись всему, что следует знать, и тогда ты будешь вести спокойную жизнь.

— Не пренебрегай здоровьем своего тела. Доставляй ему вовремя пищу и питье, и упражнения, в которых оно нуждается.

— Приучайся жить просто и без роскоши.

— Не закрывай глаз, когда хочется спать, не разобравши всех своих поступков в прошлый день.

Теперь в качестве примера приводим несколько «Символов» Пифагора, представляющих из себя пословицы, предлагавшиеся Пифагором своим близким друзьям:

— Не проходите мимо весов (т. е. не нарушайте справедливости).

— Не садитесь на подушку (т. е. не успокаивайтесь на достигнутом).

— Не грызите своего сердца (т. е. не предавайтесь меланхолии).

— Не поправляйте огня мечом (т. е. не раздражайте тех, кто и без того во гневе).

— Не принимайте под свою кровлю ласточек (т е говорунов и легкомысленных людей).

«В школе Пифагора процветала числовая мистика. Приняв количественные соотношения за сущность всех вещей и оторвав их от материальной действительности, пифагорейцы пришли к идеализму. Пифагор учил, что мерой всех вещей являются числа и соотношения между ними. По мнению Пифагора, даже такие далеко не математические понятия, как «дружба», «справедливость», «радость» и т. д., находят объяснение в числовых зависимостях, для которых они являются только образами или копиями. Числам явно приписывались мистические свойства. Так, одни числа несут добро, другие — зло, третьи — успех и удачу и т. д.

По Пифагору и его последователям, душа — тоже число, она бессмертна и переселяется от одного человека к другому. Имеется предание, согласно которому будто бы сам Пифагор рассказывал о себе, что он хорошо помнит, в ком жила его собственная душа в последние 207 лет.

Числовая мистика Пифагора и его учеников нанесла большой ущерб дальнейшему развитию математики как науки. Из мистических соображений Пифагор засекретил некоторые свои открытия (например, открытие иррациональных чисел) и тем самым тормозил расцвет науки и задерживал ее поступательное движение.

Современная церковь всячески поощряет числовую мистику. Например, в библии число 666 является числом зверя, число 12 несет счастье, а число 13 —«чертова дюжина» — одно только несчастье.

Ясно, что числовые суеверия, поддерживаемые всеми религиями, не имеют под собой каких-нибудь разумных оснований. Они, как и все другие суеверия, приносят только вред, подрывая веру человека в свои силы и возможности.

Заслугой Пифагора и его последователей является внедрение математики в естествознание Пифагор считал, что Земля имеет форму шара и представляет собой центр Вселенной, причем Солнце, Луна и планеты имеют собственное движение, отличное от суточного движения неподвижных звезд.

Пифагореец Филолай (470—399 до н. э.) полагал, что Земля движется по сфере вокруг «центрального огня», вокруг него же по своим сферам движутся Солнце и планеты

Учение пифагорейцев о движении Земли Коперник воспринял как предысторию своего гелиоцентрического учения. Недаром церковь объявила систему Коперника «ложным пифагорейским учением».

Фалес

/624-547 до н. э./ Греция

Фалес — основатель так называемой Ионийской школы — считается одним из первых древнегреческих геометров и философов. Он был родом из города Милета. В молодости занимался торговлей. Торговые дела заставили его посетить Египет, где он познакомился с египетской наукой. На родину Фалес вернулся уже в летах и в Милете организовал свою школу.

Фалес был крупнейшим астрономом. Именно он первый в истории науки, предсказал солнечное затмение 23 мая 585 года до новой эры.

Много внимания уделял Фалес геометрии. По свидетельству древнегреческого ученого Прокла (410—485), Фалесу принадлежит открытие следующих теорем:

1. Вертикальные углы, полученные при пересечении двух прямых линий, равны.

2. В равнобедренном треугольнике углы, лежащие при основании, равны.

3. Треугольник вполне определяется двумя углами и прилежащей к ним стороной. На основании этого предложения Фалес определил расстояние от корабля в море до берега.

4. Круг делится диаметром пополам.

5. Угол, вписанный в полуокружность, прямой.

6. Фалесу принадлежат способы нахождения высоты пирамиды и вообще различных предметов по их тени.

Вполне вероятно, что это измерение было произведено в тот момент дня, когда длина тени вертикального шеста равнялась его длине. Возможно также, что измерение было произведено на основании подобия треугольников.

Фалес был атеистом. Он отвергал божественное происхождение Вселенной. Сущностью всех вещей считал воду (жидкообразное состояние материи). Выступал против распространенного в то время обожествления небесных светил (Солнца, Луны, Звезд), считал их материальными телами, наполненными огнем.

Вот его отрывочные высказывания:

— Вода есть начало всего; все из нее происходит и в нее превращается.

— Мир есть самая обширная из вещей, существующих в пространстве.

— Нет пустоты.

— Все изменяется и каждое соединение вещей только мгновенно.

— Вещество постоянно разделяется, но это разделение имеет свой предел.

— Звезды имеют земную природу, но воспаленную.

— Луна освещается Солнцем.

Фалес перестал философствовать только со смертью. Смерть Фалеса наступила в престарелом возрасте внезапно, когда он наблюдал олимпийские игры. По-видимому, он умер от солнечного удара. Некоторые утверждают, что он был задушен толпою, возвращавшейся с олимпийских игр.

Тело его было погребено в поле. На гробнице высечена надпись: «Насколько мала эта гробница, настолько велика слава этого царя астрономов в области звезд».

www.ronl.ru

Реферат - Великие математики - Исторические личности

Блез Паскаль (1623-1662)

Блез Паскаль был сыном Этьена Паскаля, корреспон-

дента Мерсенна. Блез быстро развивался под присмотром своего отца, и уже в шестнадцатилетнем возрасте он открыл

“теорему Паскаля” о шестиугольнике, вписанном в кони-

ческое сечение. Эта теорема была опубликована 1691 г. на

одном листке бумаги и повлияла на Дезагра.Через несколь-

ко лет Паскаль изобрел счетную машину. Когда ему было двадцать пять лет, он решил поселиться как янсенист в монастыре Порт-Рояль и вести жизнь аскета, но продолжал при этом уделять время науке и литературе.

Леонард Эйлер (1707-1783)

Самый плодовитый математик восемнадцатого столетия, если только не всех времен, — Леонард Эйлер. Его отец изу-

чал математику под руководством Якоба Бернули, а Лео-

нард под руководством Иоганна. Когда в 1725 г. сын Иоганна Николай уехал в Петербург, молодой Эйлер пос-

ледовал за ним и основался в Петербургской академии до 1741 г. С 1741 по 1766 г. Эйлер находился в Берлинской академии под особым покровительством Фридриха II, а с 1766 до 1783 г. он снова в Петербурге, теперь уже под эги-

дой императрицы Екатерины. Он был дважды женат и имел тринадцать детей. Жизнь этого академика была почти целиком посвящена работе в различных областях чистой и прикладной математики. Хотя он потерял в 1735 г. один глаз, а в 1766 г. – второй, ничто не смогло ослабить его про-

дуктивность. В течении его жизни увидели свет 530 книг и статей; умирая он оставил много рукописей, которые Петер-

бургская академия опубликовала в течении 47 лет. Это довело число его работ до 886.

Исаак Ньютон (1642-1727)

Исаак Ньютон был сыном землевладельца в Линкольн-

шире. Он учился в Кембридже, возможно, что у Исаака Барроу, который в 1669 г. передал ему свою профессор-

скую кафедру (примечательное явление в академической жизни), так как Барроу открыто признал превосходство Ньютона. Ньютон оставался в Кембридже до 1696 г.,

когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его “Математических принципах натуральной философии”, огромном томе, содержащем ак-

сеоматическое построение механики и закон тяготения —

закон управляющий падением яблока на землю и движени-

ем Луны вокруг Земли.

Эварист Галуа (1811-1832)

Парижская среда с ее напряженной математической деятельностью породила, около 1830 г. гения первой вели-

чины, которой подобно комете исчез также внезапно, как и

появился. Эварист Галуа, сын мера маленького городка вблизи Парижа, дважды не был принят в Политехническую

школу и лишь затем он поступил в Нормальную школу, но был оттуда уволен. Он старался просуществовать, обучая математике и одновременно стараясь как-нибудь совмес- тить свою страстную любовь к науке и приверженность к демократическим идеям. Галуа как республиканец участ-

вовал в революции 1830 г., несколько месяцев провел в тюрьме и вскоре после этого, двадцати одного года от роду, был убит на дуэли. Две статьи, которые он послал в печать, пропали в редакторских ящиках, несколько других статей были напечатаны спустя много лет. Перед дуэлью он напи-

сал одному из друзей резюме своих открытий и попросил

о его открытиях сообщить ведущим математикам.

Готфрид Вильгельм Лейбниц (1646-1716)

Готфрид Вильгельм Лейбниц родился в Лейпциге, а боль-

шую часть жизни провел при ганноверском дворе, на служ-

бе у герцогов, одним из которых стал английским королем

под именем Георга I.. Лейбниц был еще более правоверным

христианином, чем другие мыслители его столетия. Кроме философии, он занимался историей, тео­логией, линг-

вистикой, биологией, геологией, математикой, дипломатией и «искусством изобретения». Одним из пер­вых после Паскаля он изобрел счетную машину, пришел к идее парового двигателя, интересовался китайской фи­лософией и старался содействовать объединению Герма­нии. Основной движущей пружиной его жизни были по­иски всеобщего метода для овладения наукой, создания изобретений и понимания сущности единства вселенной. «Общая наука» которую он пытал­ся построить, имела много аспектов, и некоторые из них привели Лейбница к математическим открытиям. Его поиски «всеобщей характеристики» привели его к заня­тиям перестановками, сочетаниями и к символической логике.

Франсуа Виет (1504-1604)

Родился в Фонтене-лс-Конт, Париж. Французский математик. По профессии юрист. Ему при­надлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-н сте­пеней. Среди открытий сам В. особенно высоко ценил установление зависимости между корнями и коэффициентами урав­нений. Виет предложил метод, сходный с поздней­шим методом Ньютона. В тригономет­рии Виет дал полное решение задачи об оп­ределении всех элементов плоского или сферич. треугольника по трем данным. Впервые рассмотрел бесконечные произведения. Сочинения были написаны трудным языком и поэтому получили меньшее распростране­ние, чем заслуживали

Николай Иванович Лобачевский (1792-1825)

Вся жизнь Николая Ивановича Лобачевского была отдана науке и его родному Казанскому университету, который он окончил в 1811 г., где стал профессором (в 1816 г.), был деканом и в течение двадца­ти лет ректором. С самого начала своей научной работы он занимался вопросами обоснования анализа и аксиомати­кой геометрии. Получилась новая геометрическая система, «о которой, как уже упо­миналось, Лобачевский впервые и первый сообщил 11 (23) февраля 1826 г. в Казанском университете. Как Эйлер, Лобачевский под конец жизни почти ослеп, и свою последнюю работу по открытой им геометрии он продик­товал («Пангеометрия», 1855).

Бонавентура Кавальери (1598-1647)

Родился в Болонье. Итальянский математик. Монах ордена иеронимитов. С 1629 по рекомендации Г. Галилея занимал кафедру математики в Болонском университетете. В труде «Геометрия» (1635) Ковальери развил новый метод определе­ния площадей и объёмов. Ввёл понятие «суммы всех» неде­лимых, проведённых внутри контура фигуры. Отношение двух «сумм всех» неделимых явилось зародышевой формой отношения двух определённых интегра­лов. Труды Ковальери сыграли большую роль в формировании исчисления бесконечно малых.

Пафнутий Львович Чебышев (1821—1894)

Во главе русской математики середины и второй половины девятнадцатого столетия стоял Пафнутий Льво­вич Чебышев. Чебышев был воспитанником Московского университета, который он окончил в 1841 г. и где он защитил магистерскую диссертацию «Опыт эле­ментарного анализа теории вероятностей» из области, ко­торая стала одним из основных предметов его исследова­ний.

Все начинания Чебышев поддерживал своим авто­ритетом, но организационного участия в них не прини­мал, так как в 1847 г. переехал в Петербург, где работал до своей кончины. Тридцать пять лет Чебышев читал лек­ции в Петербургском университете, с 1853 г. он был чле­ном Академии наук. Его преподавательская деятельность была исключительно плодотворной.

Георг Кантор (1845-1918)

Родился в Петербурге. Немецкий математик. В 1867 окончил Берлинский университет. Кантор разработал теорию бесконечных мно­жеств и теорию трансфинитных чисел. В 1874 он доказал несчётность множества всех дейст-вительиых чисел, установив существование неэквивалентных (т. е. имеющих разные мощности) бесконечных множеств, сформулировал (1878) общее понятие мощности множества. В 1879—84 Кантор систематически изложил принципы своего учения о бесконечности. Идеи Кантора встретили со стороны современников резкое сопротивление, но вcледствии оказали большое влияние на развитие математики.

Евклид (3 век до н. э.)

О жизни Евклида мы не имеем никаких достоверных данных. Вероятно, он жил во времена первого Птолемея (306—283), которому, согласно преданию, он заявил, что к геометрии нет «царской дороги». Его наиболее знаме­нитое и наиболее выдающееся произведение — тринадцать книг его «Начал» но ему приписывают несколько других меньших трудов. Среди последних так называемые «Данные», содержащие то, что мы назвали бы приложениями алгебры к геометрии… Это первые математические труды, которые дошли до нас от древних греков полностью. Эта книга, была основной при изучении геометрии.

Пифагор (580-500 л. до н. э.)

Древнегре­ческий мыслитель, религиозный и политический деятель, основатель пифагореизма. Скуд­ные сведения о его жизни и учении трудно отделять от легенд, представляющих Пифагора как полубога, совершенного мудреца. В зрелом возрасте он поселился в южно италийском г. Кротоне, где осно­вал строго закрытое сообщество своих последователей, уже при жизни почитав­ших его как высшее существо.

В области математики П. приписы- вается систематич. введение доказательств в геометрию, построение планиметрии прямолинейных фигур, создание учения о подобии, доказательство теоремы, С именем П. связывают также учение о чётных и ;

нечётных, простых и составных числах,

www.ronl.ru

Реферат: Великие математики

Блез Паскаль (1623-1662)

Блез Паскаль был сыном Этьена Паскаля, корреспон- дента Мерсенна. Блез быстро развивался под присмотром своего отца, и уже в шестнадцатилетнем возрасте он открыл“теорему Паскаля” о шестиугольнике, вписанном в кони- ческое сечение. Эта теорема была опубликована 1691 г. на одном листке бумаги и повлияла на Дезагра.Через несколь- ко лет Паскаль изобрел счетную машину. Когда ему было двадцать пять лет, он решил поселиться как янсенист в монастыре Порт-Рояль и вести жизнь аскета, но продолжал при этом уделять время науке и литературе.

Леонард Эйлер (1707-1783)

Самый плодовитый математик восемнадцатого столетия, если только не всех времен, - Леонард Эйлер. Его отец изу- чал математику под руководством Якоба Бернули, а Лео- нард под руководством Иоганна. Когда в 1725 г. сын Иоганна Николай уехал вПетербург, молодой Эйлер пос- ледовал за ним и основался в Петербургской академии до 1741 г. С 1741 по1766 г. Эйлер находился в Берлинской академии под особым покровительствомФридриха II, а с 1766 до 1783 г. он снова в Петербурге, теперь уже под эги- дой императрицы Екатерины. Он был дважды женат и имел тринадцать детей.Жизнь этого академика была почти целиком посвящена работе в различных областях чистой и прикладной математики. Хотя он потерял в 1735 г. один глаз, а в 1766 г. – второй, ничто не смогло ослабить его про- дуктивность. В течении его жизни увидели свет 530 книг и статей; умирая он оставил много рукописей, которые Петер- бургская академия опубликовала в течении 47 лет. Это довело число его работ до 886.

Исаак Ньютон (1642-1727)

Исаак Ньютон был сыном землевладельца в Линкольн-

шире. Он учился в Кембридже, возможно, что у Исаака Барроу, который в 1669 г. передал ему свою профессор-

скую кафедру (примечательное явление в академической жизни), так как Барроу открыто признал превосходство Ньютона. Ньютон оставался в Кембридже до1696 г.,

когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его “Математических принципах натуральной философии”, огромном томе, содержащем ак- сеоматическое построение механики и закон тяготения - закон управляющий падением яблока на землю и движени- ем Луны вокруг Земли.

Эварист Галуа (1811-1832)

Парижская среда с ее напряженной математической деятельностью породила, около 1830 г. гения первой вели- чины, которой подобно комете исчез также внезапно, как и появился. Эварист Галуа, сын мера маленького городка вблизи Парижа, дважды не был принят в Политехническую школу и лишь затем он поступил в Нормальную школу, но был оттуда уволен. Он старался просуществовать, обучая математике и одновременно стараясь как- нибудь совмес- тить свою страстную любовь к науке и приверженность к демократическим идеям. Галуа как республиканец участ- вовал в революции 1830 г., несколько месяцев провел в тюрьме и вскоре после этого, двадцати одного года от роду, был убит на дуэли. Две статьи, которые он послал в печать, пропали в редакторских ящиках, несколько других статей были напечатаны спустя много лет. Перед дуэлью он напи- сал одному из друзей резюме своих открытий и попросил о его открытиях сообщить ведущим математикам.

Готфрид Вильгельм Лейбниц (1646-1716)

Готфрид Вильгельм Лейбниц родился в Лейпциге, а боль- шую часть жизни провел при ганноверском дворе, на служ- бе у герцогов, одним из которых стал английским королем под именем Георга I. . Лейбниц был еще более правоверным христианином, чем другие мыслители его столетия. Кроме философии, он занимался историей, теологией, линг- вистикой, биологией, геологией, математикой, дипломатией и «искусством изобретения». Одним из первых после Паскаля он изобрел счетную машину, пришел к идее парового двигателя, интересовался китайской философией и старался содействовать объединению Германии. Основной движущей пружиной его жизни были поиски всеобщего метода для овладения наукой, создания изобретений и понимания сущности единства вселенной. «Общая наука» которую он пытался построить, имела много аспектов, и некоторые из них привелиЛейбница к математическим открытиям. Его поиски «всеобщей характеристики» привели его к занятиям перестановками, сочетаниями и к символической логике.

Франсуа Виет (1504-1604)

Родился в Фонтене-лс-Конт, Париж. Французский математик. По профессии юрист. Ему принадлежит установление единообразного приёма решения уравнений2-й, 3-й и 4-н степеней. Среди открытий сам В. особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений. Виет предложил метод, сходный с позднейшим методом Ньютона. В тригонометрии Виет дал полное решение задачи об определении всех элементов плоского или сферич. треугольника по трем данным. Впервые рассмотрел бесконечные произведения. Сочинения были написаны трудным языком и поэтому получили меньшее распространение, чем заслуживали

Николай Иванович Лобачевский (1792-1825)

Вся жизнь Николая Ивановича Лобачевского была отдана науке и его родномуКазанскому университету, который он окончил в 1811 г., где стал профессором(в 1816 г.), был деканом и в течение двадцати лет ректором. С самого начала своей научной работы он занимался вопросами обоснования анализа и аксиоматикой геометрии. Получилась новая геометрическая система, "о которой, как уже упоминалось, Лобачевский впервые и первый сообщил 11 (23) февраля 1826 г. в Казанском университете. Как Эйлер, Лобачевский под конец жизни почти ослеп, и свою последнюю работу по открытой им геометрии он продиктовал («Пангеометрия», 1855).

Бонавентура Кавальери (1598-1647)

Родился в Болонье. Итальянский математик. Монах ордена иеронимитов. С1629 по рекомендации Г. Галилея занимал кафедру математики в Болонском университетете. В труде «Геометрия» (1635) Ковальери развил новый метод определения площадей и объёмов. Ввёл понятие «суммы всех» неделимых, проведённых внутри контура фигуры. Отношение двух «сумм всех» неделимых явилось зародышевой формой отношения двух определённых интегралов. ТрудыКовальери сыграли большую роль в формировании исчисления бесконечно малых.

Пафнутий Львович Чебышев (1821—1894)

Во главе русской математики середины и второй половины девятнадцатого столетия стоял Пафнутий Львович Чебышев. Чебышев был воспитанникомМосковского университета, который он окончил в 1841 г. и где он защитил магистерскую диссертацию «Опыт элементарного анализа теории вероятностей» из области, которая стала одним из основных предметов его исследований.

Все начинания Чебышев поддерживал своим авторитетом, но организационного участия в них не принимал, так как в 1847 г. переехал в Петербург, где работал до своей кончины. Тридцать пять лет Чебышев читал лекции вПетербургском университете, с 1853 г. он был членом Академии наук. Его преподавательская деятельность была исключительно плодотворной.

Георг Кантор (1845-1918)

Родился в Петербурге. Немецкий математик. В 1867 окончил Берлинский университет. Кантор разработал теорию бесконечных множеств и теорию трансфинитных чисел. В 1874 он доказал несчётность множества всех дейст- вительиых чисел, установив существование неэквивалентных (т. е. имеющих разные мощности) бесконечных множеств, сформулировал (1878) общее понятие мощности множества. В 1879—84 Кантор систематически изложил принципы своего учения о бесконечности. Идеи Кантора встретили со стороны современников резкое сопротивление, но вcледствии оказали большое влияние на развитие математики.

Евклид (3 век до н. э.)

О жизни Евклида мы не имеем никаких достоверных данных. Вероятно, он жил во времена первого Птолемея (306—283), которому, согласно преданию, он заявил, что к геометрии нет «царской дороги». Его наиболее знаменитое и наиболее выдающееся произведение — тринадцать книг его «Начал» но ему приписывают несколько других меньших трудов. Среди последних так называемые«Данные», содержащие то, что мы назвали бы приложениями алгебры к геометрии.. Это первые математические труды, которые дошли до нас от древних греков полностью. Эта книга, была основной при изучении геометрии.

Пифагор (580-500 л. до н. э.)

Древнегреческий мыслитель, религиозный и политический деятель, основатель пифагореизма. Скудные сведения о его жизни и учении трудно отделять от легенд, представляющих Пифагора как полубога, совершенного мудреца. В зрелом возрасте он поселился в южно италийском г. Кротоне, где основал строго закрытое сообщество своих последователей, уже при жизни почитавших его как высшее существо.В области математики П. приписы- вается систематич. введение доказательств в геометрию, построение планиметрии прямолинейных фигур, создание учения о подобии, доказательство теоремы, С именем П. связывают также учение о чётных и ; нечётных, простых и составных числах,

www.neuch.ru

Реферат на тему «Великие математики»

скачатьМОУ «Шемалаковская ООШ»

Реферат на тему

«Великие математики»

Выполнил ученик 9 класса

Тарасов Иван

2008 год.

Исаак Ньютон /1642-1727/

Англия

Исаак Ньютон, будущий великий математик и физик, родился хилым ребенком. При рождении имел такой невзрачный вид, что окружающие думали, что он протянет всего несколько часов. Две женщины, посланные в город за лекарствами, не торопились возвращаться, полагая, что, пока они придут обратно, новорожденного не будет в живых. Каково же было их удивление, когда, возвратившись, они увидели ребенка живым и издающим внушительные крики!

Отец Ньютона умер еще до рождения ребенка, и вся забота о нем выпала на долю матери. Не досыпая ночей, она думала о том, как уберечь сына от гибели и поправить его здоровье. Мать решила, что сельский воздух вдали от городского шума с хорошим питанием, как живительный бальзам, должны подействовать на его здоровье. Она содержала небольшую ферму и мечтала сделать из своего сына фермера, так как, по ее мнению, для всякой другой профессии он по слабости здоровья не годился.

Заботами матери маленький Ньютон стал заметно поправляться и полегоньку расти. Действительно, как и полагала мать, сельский воздух, деревенские игры и забавы благотворно повлияли на укрепление организма Ньютона. В детстве он получил хорошую физическую закалку. Забегая вперед, нужно сказать что, родившись слабым ребенком, Ньютон прожил до глубокой старости (умер 85 лет). Он не знал очков и за всю жизнь у него не выпало ни одного зуба. Умер он от каменной болезни, признаки которой обнаружил за три недели до своей смерти.

Мать воспитывая свое дитя, думала больше о его физическом здоровье, чем об умственном развитии. На 12-м году жизни она отдала ребенка в частное городское училище (пансион) Кларка - грантемского аптекаря Ньютон не обнаруживал особой любви к наукам и учился довольно посредственно. Перелом в учебе в лучшую сторону произошел в конце двухлетнего пребывания в пансионе. Этому способствовал следующий любопытный случай.

Как-то на перемене один из учеников ударил Ньютона по животу. Удар был настолько силен, что Ньютон чуть не потерял сознания. Острая боль пронзила все тело. Глаза на мгновение перестали видеть. Обливаясь потом он кое-как превозмог страшную боль, от которой хотелось выть и кричать. Обидчик не на шутку испугался. Но, видя, что Ньютон через некоторое время оправился от удара, открыто торжествовал победу и смеялся над потерпевшим. Как хотелось отомстить обидчику в эту минуту! Но этого сделать Ньютон не мог, так как был значительно слабее противника. Как же отомстить, как?

Долго думал обиженный Ньютон и, наконец, нашел весьма оригинальный способ мщения. Его недруг превосходил Ньютона не только в физической силе, он был первым учеником класса. И вот ради мести Ньютон решил немедленно начать хорошо учиться, обогнать своего соперника по учебе и, став первым учеником класса, навсегда отнять у него пальму первенства.

Свой план Ньютон выполнил как нельзя лучше. Оказывается, он обладал исключительными способностями. Он без большого труда стал первым учеником в классе и по умственному развитию оказался выше всех своих товарищей на целую голову. В дальнейшем по успеваемости с ним уже никто не мог состязаться. Прошло всего несколько месяцев, а учитель уже при всех учениках во всеуслышание хвалил юного Ньютона, как образцового ученика, с которого всем надо брать пример.

Пятнадцатый и шестнадцатый годы своей жизни Ньютон провел у матери на ферме. Мать не смогла привить своему сыну вкус к занятиям сельским хозяйством, не смогла сделать его своим помощником по управлению фермой. Все ее попытки в этом направлении оказались напрасными: сын оставался совершенно глух к желаниям и требованиям матери.

Чтобы как-то приобщить молодого Ньютона к хозяйству, она посылала его со старым работником в город на базар. Нужно было продать кое-что из продуктов, кое-что купить для своих нужд. Но и к этим поручениям Ньютон относился безучастно. Не доезжая до города, он просил работника выполнить, что приказывала мать, а сам, заранее обзаведясь книгой, садился у дороги под дерево или под первый попавшийся плетень и принимался за чтение. Чтение для него в то время было страстью. На обратном пути работник забирал юношу и привозил его как ни в чем не бывало домой.

В часы отдыха между чтением книг Ньютон выкраивал время для своих невинных забав. Уединившись, он любил что-нибудь мастерить. Один раз он изготовил водяные часы, другой раз сконструировал весьма оригинальную ветряную мельницу. В эту последнюю модель была посажена мышь, которая выполняла роль мельника. Однажды ночью Ньютон запустил змея собственного изготовления, снабженного светящимися фонарями. Жители соседних деревень, не зная, в чем дело, думали и гадали, что это может быть, и решили, что это, наверное, кометы.

Равнодушие Ньютона к хозяйственным нуждам фермы не могло остаться незамеченным. Мать, конечно, не могла не видеть, что сын ее увлекается книгами. И здесь помог случай. Однажды Ньютон настолько увлекся чтением, что не заметил, как сзади к нему неслышно подошел дядя и поинтересовался, чем так сильно увлечен его племянник. Взяв книгу, он с удивлением увидел, что тот изучал трактат по механике и из него решал какую-то замысловатую задачу. И это в шестнадцать лет!..

Обнаружив в юноше большой талант к науке, дядя немедленно обратился к его матери с просьбой отправить молодого Ньютона опять в Грантемскую школу с тем, чтобы, окончив ее, он мог поступить в университет. "Семнадцати лет от роду Ньютон поступил учиться в Кембриджский университет. Здесь он с жадностью изучал сочинения древних ученых, в частности «Начала» Евклида. Затем он перешел к изучению исследований крупнейших ученых нового времени. Его внимание привлекли геометрия Декарта, арифметика Валлиса и математические сочинения Кеплера. Чтение этих трактатов у него не было механическим. Усваивал он их критически, глубоко осмысливая прочитанное. Прочитанному он, как правило, противопоставлял свою точку зрения и незаконченные мысли автора доводил до «логического конца».

Уже в студенческие годы Ньютон зарекомендовал себя пытливым, упорным и настойчивым исследователем. Так, будучи студентом, Ньютон доказал теорему о биноме. С тех пор формула бинома стала называться «биномом Ньютона». Студентом же он вплотную подошел к проблеме всемирного тяготения. Позднее этой проблеме он посвятил целый трактат «Принципы натуральной философии». Этот капитальный труд прославил автора на весь мир и сделал его «великим из великих» ученых. Окончил университет Ньютон со степенью магистра.

^

Несмотря на свои величайшие заслуги перед наукой, Ньютон был удивительно скромным человеком. О себе он говорил так: «Не знаю, каким я кажусь людям. Самому же себе я кажусь ребенком, который играет на берегу моря и радуется, когда ему удается отыскать гладкий камушек или красивую раковину не совсем обыкновенного вида, в то время как необозримый океан истин лежит передо мною неисследованным».

По описанию тех, кто его знал, Ньютон был мужчиной среднего роста, весьма солидной полноты. Согласно традиции того времени, голову покрывал париком. У него были умные, живые глаза.

Ньютон вел уединенный образ жизни. Погруженный в глубокие размышления, часто не замечал окружающих и был весьма рассеян. Иногда по утрам, вставая с постели, вдруг задумывался и в таком положении, как зачарованный, мог просидеть долгие часы, пока кто-нибудь не выводил его из этого состояния. Увлекшись работой, совершенно забывал о еде.

Что касается рассеянности, то тут дело доходило до анекдотов. Так, однажды он самым серьезным образом уверовал, что обедал, xoтя не брал в рот и маковой росинки и был сильно голоден. Вот как один из биографов Ньютона описывает этот случай. Как-то к Ньютону пришел близкий друг с благим намерением пообедать вместе. В последнюю минуту, когда жареная курица была подана на стол, Ньютон отлучился в свой кабинет и застрял там увлекшись очередной работой, забыв о своем друге и о предстоящей еде. Прождав Ньютона довольно долго и совершенно напрасно, друг расправился с курицей один, а обглоданные кости сложил на блюдо и покрыл их серебряным колпаком. Вскоре после этого явился и сам Ньютон и громко объявил, что ему очень хочется есть. Но сев за стол и обнаружив на блюде одни обглоданные кости, с изумлением, ничего не подозревая, воскликнул: «Интересно, оказывается, я уже пообедал. Вот ведь как можно ошибиться!»

Когда друзья, преклоняясь перед его гением, спрашивали Ньютона, каким образом он открыл законы тяготения, он отвечал: «Непрерывным размышлением о них». При этом свой метод исследований он объяснял следующим образом: «Я постоянно обращаю внимание на предмет моих изысканий и жду, пока дело начинает медленно разъясняться, мало-помалу, пока не станет вполне и всецело ясно».

^

Интенсивная научная работа Ньютона падает на первые 45 лет его жизни. В остальные 40 лет он не порадовал человечество ни единым открытием ни в какой из отраслей науки. Это очень странно для гениального человека. В том возрасте, в каком Ньютон перестал творить, казалось, ум его должен был достичь полной зрелости и силы.

Знаменитый французский ученый Жан Батист Био, много сделавший по изучению трудов Ньютона, полагает, что умственные способности Ньютона пострадали от следующего несчастного случая. Однажды вечером Ньютон отлучился из дому и по рассеянности оставил на письменном столе зажженную свечу. Во время его отсутствия его любимая собака по кличке Даймонд вспрыгнула на стол и опрокинула свечу. Все рукописи, лежавшие на столе, сгорели. Нетрудно себе представить, как велико было горе Ньютона, когда возвратившись домой, он обнаружил от своих долголетних трудов один только пепел.

Астрономические открытия Ньютона нанесли сокрушительный удар по авторитету церкви и обнаружили полную несостоятельность церковных догматов. В своем капитальном труде «Математические начала натуральной Философии» (1687) он доказал, что движение небесных тел происходит строго по закону всемирного тяготения, носящему универсальный (всеобщий) характер.

В свете закона всемирного тяготения звучит сказкой, например, утверждение библии о том, что Иисус Навин якобы остановил на время Солнце, чтобы при дневном свете закончить сражение с аммонитянами. Закон всемирного тяготения, одинаково справедливый на Земле и на небе, положил конец религиозным басням о коренном различии «небесного» и «земного». С выводами Ньютона никак не согласуются религиозные мифы о хождении Христа по поверхности воды, о его вознесении «во плоти» и другие несуразности. «Начала натуральной философии» полностью развенчали геоцентризм, как опору религиозного мировоззрения.

Против астрономических открытий Ньютона богословы всех мастей развернули яростную борьбу. И они временно добились своего. Под их воздействием во многих университетах Европы вплоть до XIX века было запрещено преподавание небесной механики Ньютона и его гелиоцентризма на основе закона всемирного тяготения.

Однако сам Ньютон не был атеистом. Уподобляя Вселенную большому «часовому механизму», он пришел к выводу, что этот механизм раз и навсегда когда-то заведен «богом» и им же был дан «первый толчок», в результате чего механизм «сработал» и только после этого все небесные тела пришли в вечное движение.

Еще при жизни Ньютон вкусил сладость величайшей славы. Он был почетным членом многих научных обществ и академий. Последние 23 года своей жизни был президентом Королевского лондонского общества. Королева Анна даровала ему титул рыцаря и возвела в дворянское достоинство. Весь мир преклонялся перед его гением. Казалось, ничего не оставалось желать Ньютону. «Он был в таком почете — говорит Фонтенель,—что смерть не могла принести ему новых почестей, он достиг своего апофеоза».

Погребен Ньютон в английском национальном пантеоне в Вестминстерском аббатстве, месте упокоения всех великих людей Англии. При погребении ему были оказаны почести, какие обычно воздавались только членам королевского двора.

На могильном памятнике имеется латинская надпись, которая гласит: «Здесь покоится сэр Исаак Ньютон, который почти божественной силой своего ума впервые объяснил с помощью своего математического метода движения и формы планет, пути комет, приливы и отливы океана. Он первый исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто не подозревал... Пусть смертные радуются тому, что в их среде жило такое украшение рода человеческого».

^

«Природа и ее законы были покрыты мраком;И сказал бог: «Да будет Ньютон!»И все стало светло».

В Кембридже, по преданию, известна комната в которой жил Ньютон. В этом же городе в Trinity College, показывают глобус Ньютона, сделанные им солнечные часы, компас и локон его серебристых волос, который хранится под стеклянным колпаком.

^

/287-212 до н.э./Греция

О жизни Архимеда известны только отрывочные сведения, которые дошли до нас благодаря древним писателям Цицерону, Плутарху и др. Из их работ узнаем, что Архимед родился в 287 году до новой эры в Сицилии и на 75-м году жизни был убит римским воином при взятии римлянами Сиракуз.

В своих математических работах Архимед, предвосхитив идеи современного математического анализа, остроумно решал задачи на вычисление длин кривых, площадей и объемов. В частности, пользуясь своими оригинальными методами, он нашел площадь сегмента параболы.

Архимед был гениальным вычислителем. Пользуясь своей системой счисления, он подсчитал число песчинок, заполняющих сферу, радиус которой во много раз больше радиуса Земли.

Архимеду принадлежит ряд замечательных изобретений. Он изобрел машину для орошения полей (архимедов винт). Впервые для поднятия тяжестей стал применять систему рычагов и блоков. Дал способ определения состава сплавов путем взвешивания в воде и т. д.

До нас дошли следующие сочинения Архимеда - две книги «О шаре и цилиндре», «Об измерении круга», «О коноидах и сфероидах», «О спирали», две книги «О равновесии плоскости» «О числе песчинок», «О квадратуре параболы», «Послание Эратосфену о некоторых теоремах механики», две книги «О плавающих телах», «Отрывки».

В своем небольшом сочинении «О числе песчинок» Архимед решает вопрос о представлении какого угодно большого числа не употребляя при этом ни нуля, ни показателя степени. За основание своего исчисления он берет число 10.

«Некоторые люди, о царь Гелон, -пишет Архимед в указанном сочинении, - воображают что число песчинок бесконечно велико. Я говорю не о песке, находящемся в Сиракузах или во всей Сицилии, но о песке всей суши как обитаемой, так и необитаемой. Другие признают это число, правда, не неограниченным но все же думают, что оно больше всякого задуманного числа. Если бы эти люди представили себе кучу песка, величиной в земной шар, причем этим песком были бы покрыть все моря и все углубления до вершины величайших гор, то, конечно, люди тем более были бы склонны принять, что превосходящего число песчинок в этой куче.

Я, однако, приведу доказательства, с которыми и ты согласишься, что я в состоянии назвать некоторые числа, не только превосходящие число песчинок в куче, равной земному шару, но даже число песчинок в куче, равной всей Вселенной».

(Под Вселенной здесь подразумевается шар, центр которого находится в центре Земли, а радиус образуется расстоянием между центрами Земли и Солнца.)

И Архимед действительно находит эти большие числа в своей системе счисления и называет их.

Архимед был горячим патриотом своей родины и города Сиракуз, в котором он родился и жил. Архимед в течение двух лет при помощи своих машин с успехом защищал Сиракузы от мощной римской армии, которой командовал Марк Клавдий Марцелл, один из самых крупных военачальников того времени. Вот в каких словах передает древнегреческий писатель Плутарх (ок. 46-ок. 126) взятие города Сиракуз римлянами.

«Марцелл вполне полагался на обилие и блеск своего вооружения и на собственную свою славу. Но все оказалось беспомощным против Архимеда и его машин...

Архимед был родственником умершего царя Гиерона. В свое время Архимед писал Гиерону, что небольшой силой возможно привести в движение сколь угодно большую тяжесть; более того, вполне полагаясь на убедительность своих доказательств, он утверждал даже что был бы в состоянии привести в движение самую Землю, если бы существовала другая, на которую он мог бы стать («Дайте мне, где стать, и я сдвину Землю!»). Гиерон был этим удивлен и предложил Архимеду показать на деле, как возможно большую тяжесть привести в движение малой силой. Архимед осуществил это над грузовым трехмачтовым судном, которое, казалось, могло вытащить на берег только большое число людей. Архимед велел посадить на судно множество людей и нагрузить его большим грузом. Поместившись затем в некотором отдалении на берегу, он без всякого напряжения; очень спокойно нажимая собственной рукой на конец полиспаста, легко, не нарушая равновесия, придвинул судно. Гиерон был этим в высшей степени поражен и, убедившись в высоком значении этого искусства, склонил Архимеда соорудить машины как для обороны, так и для нападения при любой осаде...

Когда римляне начали наступление с суши и с моря, сиракузяне считали невозможным противостоять такой большой силе и военной мощи. Но тогда Архимед привел в действие свои машины и орудия разнообразного рода, на сухопутные войска посыпались камни огромной величины и веса с шумом и невероятной быстротой. Целые подразделения войск валились на землю, и их ряды пришли в полный беспорядок. В то же время и на суда неприятеля обрушивались из крепости тяжелые балки, искривленные в виде рогов; одни из них сильными ударами погружали суда в глубь моря, другие крюками в форме журавлиных клювов, точно железными руками, поднимали корабли высоко в воздух, а затем опускали кормой в воду. В то же время другие машины швыряли суда на скалы возле стен города, и их матросы подвергались страшному уничтожению...

Римляне были так напуганы, что достаточно было показаться над стенами канату или деревянной палке, как все кричали, что Архимед направил на них машину, и быстро убегали. Видя это, Марцелл прекратил сражение и нападение и предоставил дальнейшую осаду действию времени».

Далее Плутарх рассказывает следующее: «Когда корабли Марцелла приблизились на расстояние полета стрелы, то старик (Архимед) велел приблизить шестигранное зеркало, сделанное им. На известном расстоянии от этого зеркала он поместил другие зеркала поменьше такого же вида. Эти зеркала вращались на своих шарнирах при помощи квадратных пластинок. Затем он устанавливал свое зеркало среди лучей солнца летом и зимой. Лучи, отраженные от этих зеркал, произвели страшный пожар на кораблях, которые были обращены в пепел на расстоянии, равном полету стрелы».

Этот рассказ, по словам проф. М. Е. Ващенко-Захарченко, долгое время считался басней, пока известный ученый Бюффон в 1777 году не показал на опыте, что это возможно. При помощи 168 зеркал он в апреле зажег дерево и расплавил свинец с расстояния 45 метров.

Характеристику крупного инженера Архимеду дает греческий писатель II века Афиней, автор энциклопедического труда «Пир софистов» в 15 книгах, дошедшего до нас в несколько сокращенном виде. Афиней рисует Архимеда как изобретательного кораблестроителя.

«Я думаю, — пишет Афиней, — нельзя умолчать о корабле, построенном Гиероном Сиракузским, тем более, что постройкой его руководил геометр Архимед».

Далее Афиней рисует картину строительства «корабля Гиерона» для перевозки зерна. Приводим текст Афинея полностью.

«Заготовляя материал, царь велел привезти с Этны столько лесу, что его хватило бы на шестьдесят четырехрядных кораблей. Когда это было исполнено, он доставил — частично из Италии, частично из Сицилии — дерево для изготовления клиньев, шпангоутов, поперечных брусьев и на другие нужды; для канатов коноплю привезли из Иберии, пеньку и смолу — с реки Радона; словом, все необходимое было свезено отовсюду. Гиерон собрал также корабельных плотников и других ремесленников, а во главе их поставил Архимеда, кораблестроителя из Коринфа, которому приказал немедленно приступить к работам. Сам царь также целые дни проводил на верфи. За шесть месяцев корабль был наполовину закончен. Каждая готовая часть немедленно обшивалась свинцовой чешуей; ее выделывали триста мастеров, не считая подручных. Наконец царь приказал спустить наполовину готовое судно на воду, чтобы там завершить остальные работы. О том, как это сделать, было много споров; но изобретатель Архимед один с немногими помощниками сдвинул огромный корабль с места при помощи построенного им винта (Архимед сам изобрел этот винт). Остальные работы на корабле заняли также шесть месяцев. Все судно было сбито медными гвоздями, большая часть которых весила по десять мин каждый (некоторые гвозди были в полтора раза тяжелее: они скрепляли поперечные брусья, и гнезда для них сверлили буравами). Дерево обшили свинцовой чешуей, положив под нее пропитанное смолой полотно. Когда внешняя отделка корабля была закончена, стали оборудовать его изнутри.

Это было судно с двенадцатью скамьями для гребцов и с тремя проходами один над другим. Самый нижний проход, к которому нужно было спускаться по множеству лестниц, вел к трюму, второй был сделан для тех, кто хотел пройти в жилую часть корабля, и, наконец, последний предназначался для вооруженных караулов. По обе стороны среднего прохода находились каюты для едущих на корабле, числом тридцать, по два ложа в каждой. Помещение для навклеров [кормчих] имело залу на пятнадцать лож и три отдельных покоя по четыре ложа в каждом; к ним примыкала находившаяся на корме кухня. Пол этих кают был составлен из плиток разного камня, и на нем были искусно изображены все события «Илиады». Так же искусно было сделано и остальное: потолки, двери, убранство.

Возле верхнего прохода находился гимнасий и помещение для прогулок; их размеры и устройство соответствовали величине корабля. В них были превосходные сады, полные разнообразных растений, получавших влагу из проложенных под ним свинцовых желобов. Были там и беседки из белого плюща и виноградных лоз, корни которых уходили в наполненные землей пифосы [глиняные кувшины] и там находили пищу; эти тенистые беседки, орошавшиеся точно так же, как и сады, служили местом для прогулок.

Рядом был устроен покой, посвященный Афродите; его пол сложили из агата и других самых красивых камней, какие только встречались на острове, потолок и стены были из кипарисового дерева, а двери — из слоновой кости и туи. Покой был великолепно украшен картинами, статуями и разнообразными чашами. За ним шла зала для занятий; там стояло пять лож, стены и двери были сделаны из самшита. В зале помещалась библиотека; на потолке находились солнечные часы, точно такие же, как в Ахрадине [район Сиракуз]. Была на корабле и баня с тремя медными котлами и ванной из пестрого тавроменийского камня, имевшей пять метретов воды. Построено было и множество помещений для солдат и надсмотрщиков трюмов. Поодаль от жилых кают находились конюшни, по десять у каждого борта, рядом с ними был сложен корм для лошадей и пожитки конников и рабов.

Закрытая цистерна для воды находилась на полу корабля и вмещала две тысячи метретов; она была сделана из досок и просмоленного полотна. Рядом с нею был устроен рыбный садок, также закрытый, сделанный из досок и полос свинца; его наполняли морской водой и держали в нем много рыбы...

Снаружи весь корабль опоясывали атланты, имевшие по шесть локтей в высоту; они были расположены на одинаковом расстоянии друг от друга и поддерживали всю тяжесть карниза. И все судно было покрыто прекрасной росписью.

Было на нем восемь башен, по величине соответствовавших огромным размерам корабля. Две стояли на корме, столько же на носу, остальные — посредине. На каждой было по две выступающих балки с подъемниками, над которыми были устроены проемы, чтобы бросать камни в плывущих внизу врагов. На каждую башню поднималось четверо тяжеловооруженных юношей и два стрелка из лука. Внутри башни все было заполнено камнями и стрелами. Вдоль всех бортов шла стена с зубцами, а за ней настил, поддерживаемый трехногими козлами. На настиле стояла катапульта, бросавшая камни в три таланта и копья в двенадцать локтей длиной. Машину эту построил Архимед; и камни и копья она метала на целый стадий. За стеной были подвешены на медных цепях занавесы из плотно сплетенных ремней. К каждой из трех мачт корабля было приделано по две балки с подъемниками для камней; благодаря этому с мачт можно было бросать абордажные крючья и свинцовые плиты в нападающего противника. Корабль был обнесен частоколом из железных брусьев для защиты против тех, кто захотел бы ворваться на судно. Железные крючья, приводимые в движение механизмами, могли захватить вражеский корабль, силой повернуть его и поставить под удар метательных орудий. У каждого борта располагалось по шестьдесят вооруженных юношей; столько же окружало мачты и башни с подъемниками. И на мачтах, на их медных верхушках сидели люди; на первой-трое, на каждой следующей—на одного меньше. Рабы поднимали камни и дротики в плетеных корзинах при помощи ворота.

…Воду которая скапливалась в трюме, хотя ее набиралось очень много, отливал один человек при помощи изобретенного Архимедом винта. Назвали корабль «Сиракусии», но когда Гиерон отослал его в Египет, он был переименовал в «Александриаду».

На корабль погрузили шестьдесят тысяч медимнов хлеба, десять тысяч глиняных сосудов с сицилийскими солениями, две тысячи талантов шерсти и две тысячи талантов прочих грузов, не считая продовольствия для плавающих людей».

Прошло более двух тысяч лет, как умер Архимед, но его образ близок и дорог всему прогрессивному человечеству. Его жизнь и смерть овеяны легендарной славой. Недаром в течение ряда веков об Архимеде писали прозаики и поэты. Сердечные строки посвящают Архимеду и современные писатели.

^

Далеко от нашего СоюзаИ до нас за очень много летВ трудный год родные СиракузыЗащищал ученый Архимед.Многие орудья обороныБыли сконструированы им,Долго бился город непреклонный,Мудростью ученого храним.

^

Н

ет, не всегда смешон и узокМудрец, глухой к делам земли;Уже на рейде в СиракузахСтояли римлян корабли.Над математиком курчавымСолдат занес короткий нож,А он на отмели песчанойОкружность вписывал в чертеж.Ах, если б смерть — лихую гостью —Мне так же встретить повезло,Как Архимед, чертивший тростьюВ минуту гибели — число!

^

/III в. до н.э./

Наука располагает очень скудными биографическими сведениями о жизни и Деятельности Евклида. Известно, что он родом из Афин, был учеником Платона. По приглашению Птолемея I Сотера переехал в Александрию и там организовал математическую школу. Как свидетельствует Папп Александрийский (III век н. э.), Евклид был человеком мягкого характера очень скромным и независимым. О его прямоте и независимости можно судить по следующему факту. Однажды царь Птолемей спросил Евклида: «Нет ли в геометрии более короткого пути, чем тот, который предложен Евклидом в его книгах? На это Евклид якобы ответил: «Для царей нет особого пути в геометрии!..»

К III веку до новой эры в Греции накопился богатый геометрический материал, который необходимо было привести в строгую логическую систему. Эту колоссальную работу и выполнил Евклид. Он написал 13 книг «Начал» (геометрии), которые не утратили своего значения и в настоящее время. Евклид не только систематизировал тот геометрический материал, который был известен до него, но и дополнил его своими собственными исследованиями.

Значение «Начал» Евклида в истории математической науки трудно переоценить. «Начала» Евклида составили целую эпоху в развитии элементарной геометрии. В течение долгих веков «Начала» были чуть ли не единственной учебной книгой, по которой молодежь изучала геометрию, и не потому, что других книг по геометрии не было. Эти книги были. Но они вытеснялись «Началами» Евклида и скоро забывались.

Насколько популярны «Начала» Евклида можно судить по тому факту, что в английских школах и теперь геометрия изучается по некоторым из этих книг. Более того, в настоящее время школьные учебники на всех языках мира или дословно копируют «Начала» Евклида, или написаны под их большим влиянием. Кстати сказать, «Геометрия» А. П. Киселева, которая у нас долгое время являлась стабильным учебником в школе, написана по книгам, которые в свою очередь созданы по «Началам» Евклида с большим заимствованием оттуда формы и содержания, причем доказательства некоторых теорем, например теоремы Пифагора, взяты из Евклида дословно.

Как указывалось выше, «Начала» Евклида состоят из 13 книг. Содержание этих книг следующее: первая книга приводит условия равенства треугольников, соотношения между сторонами и углами треугольников, теорию параллельных линий и условия равновеликости треугольников и многоугольников; во второй книге даются методы превращения многоугольника в равновеликий квадрат; третья содержит учение об окружности; в четвертой рассматриваются вписанные и описанные многоугольники; шестая содержит учение о подобных фигурах; в последних трех книгах, т. е. в одиннадцатой, двенадцатой и тринадцатой, излагаются основы стереометрии. Остальные книги, не упомянутые выше, т. е. пятая, седьмая, восьмая, девятая и десятая, посвящены теории пропорций и арифметике, причем изложение чисто геометрическое.

^

^

/580-500 до н. э./

Греция

О жизни Пифагора до нас дошли очень скудные данные. По отрывочным сведениям некоторых историков известно, что Пифагор годился на острове Самосе. В молодости путешествовал по Египту, жил в Вавилоне, где имел возможность в течение 12 лет изучать астрономию и астрологию у халдейских жрецов. После Вавилона, побыв некоторое время в своем отечестве, переселился в Южную Италию, а потом в Сицилию и организовал там пифагорейскую школу, которая внесла ценный вклад в развитие математики и астрономии.

Пифагор и его ученики много потрудились над тем, чтобы придать геометрии научный характер. Кроме знаменитой теоремы, носящей его имя, Пифагору приписывается еще ряд замечательных открытий, в том числе:

  1. ^
  2. Задача о покрытии, т. е. деление плоскости на правильные многоугольники (равносторонние треугольники, квадраты и правильные шестиугольники).
  3. Геометрические способы решения квадратных уравнений.
  4. Правила решать задачу: по данным двум фигурам построить третью, которая была бы равна одной из данных и подобна другой.
Наибольшую славу Пифагору принесла открытая им «теорема Пифагора», которая и до настоящего времени считается одной из важных теорем геометрии, используемых на каждом шагу при изучении геометрических вопросов. Частные случаи этой теоремы были известны некоторым древним народам еще до Пифагора. Например, в своей строительной практике египтяне пользовались так называемым «египетским треугольником» со сторонами 3, 4 и 5. Египтяне знали, что указанный треугольник является прямоугольным и для него выполняется соотношение: 32 + 42 = 52, т. е. как раз то, что утверждает теорема Пифагора.

Частные случаи этой теоремы были известны также китайцам и индийцам. Трудно указать время, когда эти народы впервые стали пользоваться «пифагоровым» соотношением. Но достоверно, что теоремой Пифагора китайцы и индийцы пользовались издавна. В древнем Китае теорему Пифагора стали применять около 2200 лет до новой эры.

В знаменитом трактате «Математика в девяти книгах», составление которого относится к началу новой эры, теорема о соотношении сторон в прямоугольном треугольнике использовалась подвидом правила «Гоу-гу». Согласно этому правилу, древние китайцы по известной гипотенузе и одному катету находили другой, неизвестный катет, а также гипотенузу, если были известны оба катета. Термины «гоу» и «гу» обозначают катеты прямоугольного треугольника, причем «гоу» — горизонтальный, обычно меньший катет, а «гу» — вертикальный и обычно больший катет. В буквальном переводе «гоу» означает крюк, «гу» — ребро, связка.

Индийским ученым теорема Пифагора стала известна не позднее VIII века до новой эры. В самом старом памятнике индийской геометрии «Сулва-сутрах» (VII до н. э.) эта теорема формулировалась так: «Веревка, проведенная наискось в продольном квадрате [прямоугольнике] образует то же, что образует вместе каждая из мер: продольных и поперечных». Эта же теорема в виде краткого правила излагалась еще и так: «То, что образуется на двух сторонах, равно тому, что образуется по диагонали».

Доказательство самого Пифагора своей знаменитой теоремы до нас не дошло. Историки полагают, что первоначальное доказательство теоремы Пифагора относилось к частному случаю, т. е. к рассмотрению равнобедренного прямоугольного треугольника, как это делали индийцы, исходя непосредственно из чертежа.

Открытие теоремы Пифагора связано с разного рода легендами. Например, одна из легенд говорит, что Пифагор, обрадованный своим открытием, в благодарность принес богам в жертву 100 быков (гекатомбу). На эту тему немецкий поэт Адельберт Шамиссо написал стихотворение, которое в переводе Натальи Тереховой и приводится ниже:

Во мгле веков пред нашим взоромБлеснула истина. Она,Как теорема Пифагора,До наших дней еще верна.Найдя разгадку, мудрый старецБыл благодарен небесам;Он сто быков велел зажаритьИ в жертву принести богам.С тех пор быки тревожно дышат,—Они, кляня дары богов,О новой истине услышав,Ужасный поднимают рев.Их старца имя потрясает,Их истины лучи слепят;И, новой жертвы ожидая,Быки, зажмурившись дрожат.

Однако это предание о 100 быках, якобы принесенных Пифагором в жертву, мало соответствует действительности, так как устав пифагорейцев запрещал им всякое пролитие крови. Еще Марк Тулий Цицерон (106—43 до н. э.), выдающийся оратор, писатель и политический деятель древнего мира, сомневался в правдивости рассказанной выше легенды, а последователи Пифагора позднейших веков (неопифагорейцы) живых быков заменили «быками», сделанными из муки.

^

— Делай лишь то, что впоследствии не огорчит тебя и не принудит раскаиваться.

— ^

— Не пренебрегай здоровьем своего тела. Доставляй ему вовремя пищу и питье, и упражнения, в которых оно нуждается.

— ^

— Не закрывай глаз, когда хочется спать, не разобравши всех своих поступков в прошлый день.

Теперь в качестве примера приводим несколько «Символов» Пифагора, представляющих из себя пословицы, предлагавшиеся Пифагором своим близким друзьям:

— Не проходите мимо весов (т. е. не нарушайте справедливости).

— ^

— Не грызите своего сердца (т. е. не предавайтесь меланхолии).

— Не поправляйте огня мечом (т. е. не раздражайте тех, кто и без того во гневе).

— Не принимайте под свою кровлю ласточек (т е говорунов и легкомысленных людей).

«В школе Пифагора процветала числовая мистика. Приняв количественные соотношения за сущность всех вещей и оторвав их от материальной действительности, пифагорейцы пришли к идеализму. Пифагор учил, что мерой всех вещей являются числа и соотношения между ними. По мнению Пифагора, даже такие далеко не математические понятия, как «дружба», «справедливость», «радость» и т. д., находят объяснение в числовых зависимостях, для которых они являются только образами или копиями. Числам явно приписывались мистические свойства. Так, одни числа несут добро, другие — зло, третьи — успех и удачу и т. д.

По Пифагору и его последователям, душа — тоже число, она бессмертна и переселяется от одного человека к другому. Имеется предание, согласно которому будто бы сам Пифагор рассказывал о себе, что он хорошо помнит, в ком жила его собственная душа в последние 207 лет.

Числовая мистика Пифагора и его учеников нанесла большой ущерб дальнейшему развитию математики как науки. Из мистических соображений Пифагор засекретил некоторые свои открытия (например, открытие иррациональных чисел) и тем самым тормозил расцвет науки и задерживал ее поступательное движение.

Современная церковь всячески поощряет числовую мистику. Например, в библии число 666 является числом зверя, число 12 несет счастье, а число 13 —«чертова дюжина» — одно только несчастье.

Ясно, что числовые суеверия, поддерживаемые всеми религиями, не имеют под собой каких-нибудь разумных оснований. Они, как и все другие суеверия, приносят только вред, подрывая веру человека в свои силы и возможности.

Заслугой Пифагора и его последователей является внедрение математики в естествознание Пифагор считал, что Земля имеет форму шара и представляет собой центр Вселенной, причем Солнце, Луна и планеты имеют собственное движение, отличное от суточного движения неподвижных звезд.

^

Учение пифагорейцев о движении Земли Коперник воспринял как предысторию своего гелиоцентрического учения. Недаром церковь объявила систему Коперника «ложным пифагорейским учением».

Фалес

/624-547 до н. э./Греция

Фалес - основатель так называемой Ионийской школы — считается одним из первых древнегреческих геометров и философов. Он был родом из города Милета. В молодости занимался торговлей. Торговые дела заставили его посетить Египет, где он познакомился с египетской наукой. На родину Фалес вернулся уже в летах и в Милете организовал свою школу.

^

Много внимания уделял Фалес геометрии. По свидетельству древнегреческого ученого Прокла (410—485), Фалесу принадлежит открытие следующих теорем:

  1. Вертикальные углы, полученные при пересечении двух прямых линий, равны.
  2. В равнобедренном треугольнике углы, лежащие при основании, равны.
  3. Треугольник вполне определяется двумя углами и прилежащей к ним стороной. На основании этого предложения Фалес определил расстояние от корабля в море до берега.
  4. Круг делится диаметром пополам.
  5. Угол, вписанный в полуокружность, прямой.
  6. Фалесу принадлежат способы нахождения высоты пирамиды и вообще различных предметов по их тени.
Вполне вероятно, что это измерение было произведено в тот момент дня, когда длина тени вертикального шеста равнялась его длине. Возможно также, что измерение было произведено на основании подобия треугольников.

Фалес был атеистом. Он отвергал божественное происхождение Вселенной. Сущностью всех вещей считал воду (жидкообразное состояние материи). Выступал против распространенного в то время обожествления небесных светил (Солнца, Луны, Звезд), считал их материальными телами, наполненными огнем.

^

— Вода есть начало всего; все из нее происходит и в нее превращается.

— Мир есть самая обширная из вещей, существующих в пространстве.

— Нет пустоты.

— Все изменяется и каждое соединение вещей только мгновенно.

— ^

— Звезды имеют земную природу, но воспаленную.

— Луна освещается Солнцем.

Фалес перестал философствовать только со смертью. Смерть Фалеса наступила в престарелом возрасте внезапно, когда он наблюдал олимпийские игры. По-видимому, он умер от солнечного удара. Некоторые утверждают, что он был задушен толпою, возвращавшейся с олимпийских игр.

Тело его было погребено в поле. На гробнице высечена надпись: «Насколько мала эта гробница, настолько велика слава этого царя астрономов в области звезд».

База данных защищена авторским правом © kursovaya-referat.ru 2017При копировании материала укажите ссылку


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.