Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Доклад: Современные модели развития Вселенной. Современные методы исследования вселенной реферат


Реферат: Современные модели развития Вселенной

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Контрольная работа

 

 

Современные модели развития Вселенной

 

 

 

 

 

 

 

 

 

 

Санкт-Петербург, 2009

Введение

 

С давних времён человека мучил вопрос, как устроен мир, в котором мы живём и откуда он взялся. Придумывались самые невероятные гипотезы. В последнее время человечество очень продвинулось в изучении этого вопроса. Теперь довольно хорошо известно, как устроена Вселенная в очень большой её области. Тем не менее, чем больше мы узнаём о мире, тем больше появляется вопросов. На каждом этапе познания учёные сталкиваются с пределами познавательных возможностей, накладываемых несовершенством инструментов и методов исследования. Эти вопросы, как правило, решаются, но в настоящее время наука в познании мира проникла так далеко, что ограничения в познании с помощью эксперимента и наблюдения накладываются уже самими законами природы.

Поэтому всё больше науке приходится прибегать к помощи философии. Современная космология не возможна без философских подходов, поскольку, на сегодняшний день невозможно заглянуть ни в далёкое прошлое Вселенной, ни в те области, которые удаляются от нас со скоростями, близкими к скорости света.

 

 

1.                Вселенная в целом

 

1.1 Космология – наука о Вселенной

 

Космология – астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной.

Сам термин «космология» образован от двух греческих слов: cosmos – Вселенная и logos – закон, учение. По своей сути космология представляет собой раздел естествознания, использующий достижения и методы астрономии, физики, математики, философии. Естественнонаучной базой космологии являются астрономические наблюдения Галактики и других звездных систем, общая теория относительности, физика микропроцессов и высоких плотностей энергии, релятивистская термодинамика и ряд других новейших физических теорий.

Многие положения современной космологии кажутся фантастическими. Понятия Вселенной, бесконечности, Большого взрыва не поддаются наглядному физическому восприятию; такие объекты и процессы нельзя зафиксировать непосредственно. Из-за этого обстоятельства складывается впечатление, что речь идет о чем-то сверхъестественном. Но такое впечатление обманчиво, поскольку функционирование космологии носит весьма конструктивный характер, хотя многие ее положения и оказываются гипотетичными.

Современная космология – это раздел астрономии, в котором объединены данные физики и математики, а также универсальные философские принципы, поэтому она представляет собой синтез научных и философских знаний. Такой синтез в космологии необходим, поскольку размышления о происхождении и устройстве Вселенной эмпирически трудно проверяемы и чаще всего существуют в виде теоретических гипотез или математических моделей. Космологические исследования обычно развиваются от теории к практике, от модели к эксперименту, и здесь исходные философские и общенаучные установки приобретают большое значение. По этой причине космологические модели существенно различаются между собой – в их основе зачастую лежат противоположные исходные философские принципы. В свою очередь, любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т.е. изменяют фундаментальные представления человека о мире и самом себе.

Важнейший постулат современной космологии заключается в том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, могут быть экстраполированы на гораздо более широкие области, а, в конечном счете, и на всю Вселенную. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные на их базе модели должны допускать проверку для наблюдаемой области Вселенной, а выводы теории – подтверждаться наблюдениями или, во всяком случае, не противоречить им.

 

1.2 Что такое Вселенная?

 

Вселенная – весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Вселенная, изучаемая астрономией, – часть материального мира, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития (эту часть Вселенной называют Метагалактикой).

Ранее ученые полагали, что пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. И только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы можно рассматривать как «примеси».

Межзвездный газ в галактиках обычно составляет несколько процентов от полной массы звезд. Больше всего газа встречается в неправильных галактиках (иногда до 50%) и меньше всего в эллиптических галактиках.

Межзвездная пыль, находящаяся в плоскости диска, поглощает свет звезд, и галактика из-за этого кажется пересеченной темной полосой. Межзвездная пыль – это твердые микроскопические частицы вещества размером меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени «ориентируются», то есть направления их вытянутости имеют тенденцию «выстраиваться» в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным.

Если по своему составу галактики сходны, то структура наблюдаемых галактик различна. Галактики, в основном, бывают трёх видов: эллиптические (E), спиральные (S) и неправильной формы (Ir).

Проще всего выглядят эллиптические галактики: они ровные, однородные по цвету и симметричные. Их почти совершенное строение наводит на мысль об их существенной простоте, и действительно, параметры эллиптических галактик оказалось легче измерить и подыскать под них теоретические модели, чем сделать это для более сложных родственников этих объектов.

Рассмотрим, например, строение типичной эллиптической галактики. В ее центре находится яркое ядро, окруженное размытым сиянием, яркость которого падает по мере удаления от центра. Как и у всех эллиптических галактик, падение яркости описывается простой математической формулой. Форма контура галактики тоже остается почти одинаковой на всех уровнях яркости. Все изофоты представляют собой почти идеальные эллипсы, центрированные в точности на ядро галактики. Направления больших осей и отношения большой оси к малой почти одинаковы у всех эллипсов.

Фундаментальная простота эллиптических галактик согласуется с предположением о том, что они управляются небольшим числом сил. Орбиты звезд гладкие и хорошо перемешаны и ничто, кроме гравитации, не влияет на их расположение, и никакое непрерывное звездообразование не разрушило их правильности.

В отличие от эллиптических галактик для спиральных характерно наличие диска и балджа (утолщения). Спиральные рукава уступают диску и балджу по количеству содержащихся в них звезд, хотя и являются важными и выдающимися частями галактики. Диск спиральной галактики довольно плоский. Видимые с ребра галактики говорят о том, что толщина типичного диска составляет около 1/10 его диаметра.

С помощью методов моделирования на ЭВМ было доказано, что спиральные галактики представляют собой быстро вращающиеся звездные системы. Причиной образования балдж, которые обладают большинством структурных свойств эллиптических галактик, является то, что звезды начинают образовываться сначала в центральных областях галактик, где плотность самая высокая.

Спиральная структура спиральных галактик возникает из-за того, что внутренняя часть галактики вращается со скоростью, отличной от скорости внешней части и рукава постепенно закручиваются в спиральный узор. Для галактик с возрастом, характерным для окружающих нас галактик, число оборотов узора должно быть очень большим – примерно равным возрасту, деленному на средний период вращения – около 100. Однако у реальных спиральных галактик – по крайней мере у тех, что имеют четкие непрерывные спиральные ветви, наблюдаемая закрутка спирального узора составляет лишь на один-два оборота. Встает вопрос: как это объяснить? Проблема до настоящего времени не разрешена. Ученые отдают предпочтение магнитной, волновой и взрывной гипотезам, учитывающим астрофизическую сторону проблемы.

У многих спиральных галактик есть еще одна замечательная структурная особенность – концентрация звезд в форме бруска (бара), пересекающая ядро и простирающаяся симметричным образом в обе стороны. Данные измерений скоростей в них показывают, что бары вращаются вокруг ядра как твердые тела, хотя, разумеется, они на самом деле состоят из отдельных звезд и газа. Все еще идут споры о движениях газа в этих барах. Некоторые данные свидетельствуют о том, что газ течет наружу вдоль бара, а по другим данным, он течет внутрь. В любом случае, существование баров не удивляет астрономов, изучающих динамику галактик. Численные модели показывают, что неустойчивости в диске вращающейся галактики могут проявляться в форме бара, напоминающего наблюдаемые.

Одна из задач современной астрономии – понять, как образовались галактики и как они эволюционируют.

 

1.3 Модели Вселенной

 

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Теоретическое моделирование имеет важное значение для выяснения прошлого и будущего наблюдаемой Вселенной. В 1922 г. А.А. Фридман занялся разработкой оригинальной теоретической модели Вселенной. Он предположил, что средняя плотность не является постоянной, а меняется с течением времени. Фридман пришел к выводу, что любая достаточно большая часть Вселенной, равномерно заполняемая материей не может находиться в состоянии равновесия: она должна либо расширяться, либо сжиматься. Еще в 1917 г. В.М. Слайдер обнаружил «красное смещение» спектральных линий в спектрах далёких галактик. Подобное смещение наблюдается тогда, когда источник света удаляется от наблюдателя. В 1929 г. Э. Хаббл объяснил это явление взаимным разбеганием этих звездных систем. Явление «красного смещения» наблюдается в спектрах почти всех галактик, кроме ближайших (нескольких). И чем дальше от нас галактика, тем больше сдвиг линий в её спектре, т.е. все звездные системы удаляются от нас с огромными скоростями в сотни, тысячи десятки тысяч километров в секунду, более далекие галактики обладают и большими скоростями. А после того, как эффект «красного смещения» был обнаружен и в радиодиапазоне, то не осталось, никаких сомнений в том, что наблюдаемая Вселенная расширяется. В настоящее время известны галактики, удаляющиеся от нас со скоростью 0,46 скорости света. А сверхзвезды и квадры – 0,85 скорости света. На галактики постоянно действует какая-то сила. В отдаленном прошлом материя в нашей области Вселенной находилась в сверхплотном состоянии. Затем произошел «взрыв», в результате которого и началось расширение. Чтобы выяснить дальнейшую судьбу метагалактики, необходимо оценить среднюю плотность межзвездного газа. Если она выше 10 протонов на 1м3, то общее гравитационное поле метагалактики достаточно велико, чтобы постепенно остановить расширение. И оно смещается сжатием.

Возникли два мнения по поводу состояния Метагалактики до начала расширения. Согласно одному из них первоначальное вещество метагалактики состояло из «холодной» смеси протонов, т.е. ядер атомов водорода, электронов и нейтронов. Согласно второй, температура была очень велика, а плотность излучения даже превосходила плотность вещества. Но после открытия в 1965 г. реликтового излучения А. Тицнасом и Р. Вилсоном предпочтение было отдано второй теории. После была представлена попытка представить ход событий на первых стадиях расширения Метагалактики: через 1с после начала расширения сверхплотной исходной плазмы плотность вещества снизилась до 500 кг/ см3, а t=1013 °С. В течение следующих 100 плотность снизилась до 50 г/см2 температура упала. Объединились протоны и нейтроны => ядра гелия. При t=4000о, это продолжалось несколько сотен тысяч лет. Затем, после того, как образовались атомы водорода, началось постепенное формирование горячих водородных облаков, из которых образовались галактики и звезды. Однако в процессе расширения могли сохраниться сгустки сверхплотного до звездного вещества, а в процессе их распада образовались звезды и галактики. Не исключено, что действовали оба механизма. Понятие Метагалактика не является вполне ясным. Оно сформировалось на основании аналогии со звездами. Наблюдения показывают, что галактики, подобно звездам, группирующиеся в рассеянные и шаровые скопления, также объединяются в группы и скопления различной численности. Вся охваченная современными методами астрономических наблюдений часть Вселенной называется Метагалактикой (или нашей Вселенной). В Метагалактике пространство между галактиками заполнено чрезвычайно разряженным межгалактическим газом, пронизывается космическими лучами, в нем существуют магнитные и гравитационные поля, и возможно невидимые массы веществ.

В 1929 г. Хаббл открыл замечательную закономерность, которая была названная «законом Хаббла» или «закон красного смещения».

Объяснив красные смещения эффектом Доплера (воспринимаемая частота волны зависит от относительной скорости ее источника), ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Хотя, безусловно, галактики не разлетаются во все стороны от нашей галактики, которая не занимает никакого особого положения в метагалактике, а происходит взаимное удаление всех галактик. Следовательно, Метагалактика не стационарна.

Промежуток расширения равен 20–13 млрд. лет. Расширение метагалактики является самым грандиозным из известных в настоящие время явлением природы. Это открытие произвело коренное изменение во взглядах философов и ученых. Ведь некоторые философы ставили знак равенства между метагалактикой и вселенной, и пытались доказать, что расширение метагалактики подтверждает религиозное представление о божественности происхождения вселенной. Но Вселенной известны естественные процессы, по всей вероятности это взрывы. Есть предположение, что расширение метагалактики также началось с явления напоминающего. Колоссальный взрыв вещества, обладающего огромной температурой и плотностью.

Эта теория называется теорией «горячей Вселенной». Чтобы сверхплотное вещество превратилось в вещество с близкой плотностью к плотности воды. Через несколько часов плотность почти сравнялась с плотностью нашего воздуха, а сейчас, по истечении миллиардов лет оценка средней плотности вещества в метагалактике приводит к значению порядка 10-28 кг/м3.

Но все эти данные удалось получить только с помощью уникального сложного оборудования позволяющего расширить границы Вселенной. До сих пор человечество совершенствует его, изобретали все более гениальные приборы, но еще на заре цивилизации, когда пытливый человеческий ум обратился к заоблачным высотам, великие философы мыслили свое представление о Вселенной, как о чем-то бесконечном.

Древнегреческий философ Анаксимандр (VI в. до н.э.) ввел представление о некой единой беспредельности, не обладавшей ни какими привычными наблюдениями, качествами, первооснове всего – апейроне (нечто беспредельное, безграничное, бесконечное).

Древнегреческим философам принадлежит ряд гениальных догадок об устройстве Вселенной. Анаксимандр высказал идею изолированности Земли, в пространстве. Эйлалай первым описал пифагорейскую систему мира, где Земля, как и Солнце, обращались вокруг некоего «гигантского огня». Шарообразность Земли утверждал другой пифагореец Парменид (VI–V в. в. до н.э.). Гераклит Понтийский (V–IV в до н.э.) утверждал так же ее вращение вокруг своей оси и донес до греков еще более древнюю идею египтян о том, что само солнце может служить центром вращение некоторых планет (Венера, Меркурий).

Французский философ и ученый, физик, математик, физиолог Рене Декарт (1596–1650) создал теорию об эволюционной вихревой модели Вселенной на основе гелиоцентрализма. В своей модели он рассматривал небесные тела и их системы в их развитии. Для XVII в. в. его идея была необыкновенно смелой. По Декарту, все небесные тела образовывались в результате вихревых движений, происходивших в однородной в начале, мировой материи. Совершенно одинаковые материальные частицы, находясь в непрерывном движении и взаимодействии, меняли свою форму и размеры, что привело к наблюдаемому нами богатому разнообразию природы.

Солнечная система согласно Декарту, представляет собой один из таких вихрей мировой материи. Планеты не имеют собственного движения – они движутся, увлекаемые мировым вихрем. Декарт внес и новую идею для объяснения тяжести: он считал, что в вихрях, возникающих вокруг планет частицы давят друг на друга и тем вызывают явление тяжести (например на Земле). Таким образом, Декарт, первым стал рассматривать тяжесть не как врожденное, а как производное качество тел.

Великий немецкий ученый, философ Иммануил Кант (1724–1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры, и представил Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновения такой Вселенной исключительно под действием механических сил притяжения и отталкивания и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях – начиная с планетной системных и кончая миром туманности.

Эйнштейн совершил радикальную научную революцию, введя свою теорию относительности. Это было сравнительно просто, как и всё гениальное. Ему не пришлось предварительно открыть новые явления, установить количественные закономерности. Он лишь дал принципиально новое объяснение.

Эйнштейн раскрыл более глубокий смысл установленных зависимостей, эффектов уже связанных в некую физико-математическую систему (в виде постулатов Пуанкаре). Заменив в данном случае теорию абсолютности пространства и времени идеей их относительности, которую теперь уже не связывали с идеей абсолютного в пространстве, абсолютной системы отсчета. Такой переворот снимал основное противоречие, создававшее кризисную ситуацию, в теоретическом осмыслении действия. Более того, открылся путь для дальнейшего проникновения в свойства и законы окружающего мира, настолько глубоко, что сам Эйнштейн не сразу осознал степень революционности своей идеи.

В статье от 30.06.1905 г., заложившей основы специальной теории относительности Эйнштейн, обобщая принципы относительности Галилея, провозгласил равноправие всех инерциальных систем отсчета не только в механических, но также электромагнитных явлений.

Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла Лоренца. Она описывает законы всех физических процессов при скоростях движения близких к скорости света.

Впервые принципиально новые космологические следствия общей теории относительности раскрыл выдающийся советский математик и физик – теоретик Александр Фридман (1888–1925 гг.). Выступив в 1922–24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте «красного смещения» в их спектрах.

Этим Фридман доказал, что вещество во Вселенной не может находиться в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

 

 

2.                Современные модели развития Вселенной

 

2.1 Теории эволюции Вселенной

 

Существует несколько теорий эволюции:

Теория стационарного взрыва

Главная идея этой теории заключается в следующем: по мере того как галактики удаляются друг от друга при хаббловском расширении, в увеличивающемся пространстве между ними образуется новая материя. Вновь образованная материя со временем самоорганизуется в галактики, которые, в свою очередь, будут удаляться друг от друга, высвобождая пространство для образования новой материи. Таким образом, наблюдаемое расширение было согласовано с понятием «стационарной» Вселенной, сохраняющей свою общую плотность и не имеющей единственной точки образования (наличие которой предполагает теория Большого взрыва).

Теория пульсирующей Вселенной

Теория пульсирующей вселенной, вариант теории большого взрыва, по которому Вселенная проходит последовательные периоды расширения и сжатия. В конце стадии сжатия, когда Вселенная концентрируется в маленьком объеме большой плотности, вероятно, происходит «разлет» Вселенной, называемый взрывом. Таким образом, по этой теории Вселенная бесконечно пульсирует между «Большим взрывом» и «Большим сжатием».

 

2.2 Большой взрыв

 

Концепция Большого взрыва появилась с открытием закона Хаббла. Этот закон описывает простой формулой результаты наблюдений, согласно которым видимая Вселенная расширяется, и галактики удаляются друг от друга. Нетрудно, следовательно, мысленно «прокрутить пленку назад» и представить, что в исходный момент, миллиарды лет назад, Вселенная пребывала в сверхплотном состоянии. Такая картина динамики развития Вселенной подтверждается двумя важными фактами.

1.                Космический микроволновой фон

В 1964 году американские физики Арно Пензиас и Роберт Уилсон обнаружили, что Вселенная наполнена электромагнитным излучением в микроволновом диапазоне частот. Последовавшие измерения показали, что это характерное классическое излучение черного тела, свойственное объектам с температурой около –270°С (3 К), т.е. всего на три градуса выше абсолютного нуля.

По сути, Пензиас и Уилсон определили температуру составляющих Вселенной после того, как она остывала на протяжении 15 миллиардов лет: ее фоновое излучение оказалось в диапазоне микроволновых радиочастот.

Исторически это открытие и предопределило выбор в пользу космологической теории Большого взрыва. Другие модели Вселенной (например, теория стационарной Вселенной) позволяют объяснить факт расширения Вселенной, но не наличие космического микроволнового фона.

2.                Изобилие легких элементов

Ранняя Вселенная была очень горячей. Даже если протоны и нейтроны при столкновении объединялись и формировали более тяжелые ядра, время их существования было ничтожным, потому что уже при следующем столкновении с еще одной тяжелой и быстрой частицей ядро снова распадалось на элементарные компоненты. Выходит, что с момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла настолько, чтобы энергия соударений несколько смягчилась, и элементарные частицы начали образовывать устойчивые ядра. В истории ранней Вселенной это ознаменовало открытие окна возможностей для образования ядер легких элементов. Все ядра, образовывавшиеся в первые три минуты, неизбежно распадались; в дальнейшем начали появляться устойчивые ядра.

Однако это первичное образование ядер на ранней стадии расширения Вселенной продолжался очень недолго. Вскоре после первых трех минут частицы разлетелись так далеко друг от друга, что столкновения между ними стали крайне редкими, и это ознаменовало закрытие окна синтеза ядер. В этот краткий период первичного нуклеосинтеза в результате соударений протонов и нейтронов образовались дейтерий (тяжелый изотоп водорода с одним протоном и одним нейтроном в ядре), гелий-3 (два протона и нейтрон), гелий-4 (два протона и два нейтрона) и, в незначительном количестве, литий-7 (три протона и четыре нейтрона). Все более тяжелые элементы образуются позже – при формировании звезд.

Теория Большого взрыва позволяет определить температуру ранней Вселенной и частоту соударений частиц в ней. Как следствие, мы можем рассчитать соотношение числа различных ядер легких элементов на первичной стадии развития Вселенной. Сравнив эти прогнозы с реально наблюдаемым соотношением легких элементов (с поправкой на их образование в звездах), мы обнаруживаем впечатляющее соответствие между теорией и наблюдениями.

Конечно, далеко не всё изучено: учёные не могут объяснить саму первопричину возникновения Вселенной; не ясно и то, действовали ли в момент ее зарождения нынешние физические законы. Но убедительных аргументов в пользу теории Большого взрыва на сегодняшний день накоплено больше чем в пользу других теорий.

 

 

3. Исследование Вселенной в наши дни

 

Огромное практическое значение науки в XX в. сделало ее той областью знания, к которой массовое сознание испытывает глубокое уважение. Слово науки весомо, и оттого рисуемая ею картина Вселенной часто принимается за точную фотографию реальной действительности, как она есть на самом деле, независимо от нас. Ведь наука и претендует на эту роль – бесстрастного и точного зеркала, отражающего мир в строгих понятиях и стройных математических вычислениях. Однако за привычным, коренящимся еще в эпохе Просвещения доверием к выводам науки, часто забывается, что она – развивающаяся и подвижная система знаний, что способы видения, присущие ей, изменчивы. А это означает, что сегодняшняя картина Вселенной не равна вчерашней.

Впечатляющий прогресс науки о Вселенной, начатый великой коперниканской революцией, уже неоднократно приводил к весьма глубоким, подчас радикальным изменениям в исследовательской деятельности астрономов и, как следствие, в системе знания о структуре и эволюции космических объектов. В наше время астрономия развивается особенно стремительными темпами, нарастающими с каждым десятилетием. Поток выдающихся открытий и достижений неудержимо наполняет ее новым содержанием.

В начале XXI века перед учёными стоят новые вопросы о устройстве Вселенной, ответы на которые они надеются получить с помощью ускорителя – Большого Адронного Коллайдера (БАК).

Большой Адронный Коллайдер. «Большим» он назван из-за своего размера (его периметр составляет примерно 27 км), «адронным» – потому что он ускоряет протоны и тяжелые ядра, которые являются адронами (то есть частицами, состоящими из кварков), «коллайдером» – потому что ускоряются эти частицы в двух пучках, циркулирующих в нём в противоположных направлениях, и в специальных местах сталкиваются друг с другом.

БАК находится на территории Швейцарии и Франции, вблизи Женевы, в туннеле на глубине около 100 метров.

В начале XX века в физике появились две основополагающие теории – общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику.

В конце 1960-х физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий – сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

БАК дает возможность провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий.

И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования.

 

 

Заключение

 

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Современная научная картина мира динамична, противоречива. В ней больше вопросов, чем ответов. Она изумляет, пугает, ставит в тупик, шокирует. Поискам познающего разума нет границ, и в ближайшие годы мы, возможно, будем потрясены новыми открытиями и новыми идеями.

 

 

Список литературы

 

1.  Лавриненко В.Н. Концепции современного естествознания: учебник/ В.Н. Лавриненко, В.П. Ратникова. – М.: 2006. – 317 с.

2.  Найдыш В.М. Концепции современного естествознания: учебник/ В.М. Найдыш. – М.: 2004. – 622 с.

3.  Садохин А.П. Концепции современного естествознания: учебник/ А.П. Садохин. – М.: 2006. – 449 с.

4.  Новости астрономии, космонавтики, Вселенной. – URL: http://universe-news.ru (Дата обращения 08.10.09)

www.referatmix.ru

Реферат - Современные модели развития Вселенной

Контрольная работа

Современные модели развития Вселенной

Санкт-Петербург, 2009

Введение

С давних времён человека мучил вопрос, как устроен мир, в котором мы живём и откуда он взялся. Придумывались самые невероятные гипотезы. В последнее время человечество очень продвинулось в изучении этого вопроса. Теперь довольно хорошо известно, как устроена Вселенная в очень большой её области. Тем не менее, чем больше мы узнаём о мире, тем больше появляется вопросов. На каждом этапе познания учёные сталкиваются с пределами познавательных возможностей, накладываемых несовершенством инструментов и методов исследования. Эти вопросы, как правило, решаются, но в настоящее время наука в познании мира проникла так далеко, что ограничения в познании с помощью эксперимента и наблюдения накладываются уже самими законами природы.

Поэтому всё больше науке приходится прибегать к помощи философии. Современная космология не возможна без философских подходов, поскольку, на сегодняшний день невозможно заглянуть ни в далёкое прошлое Вселенной, ни в те области, которые удаляются от нас со скоростями, близкими к скорости света.

Вселенная в целом

1.1 Космология – наука о Вселенной

Космология – астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной.

Сам термин «космология» образован от двух греческих слов: cosmos – Вселенная и logos – закон, учение. По своей сути космология представляет собой раздел естествознания, использующий достижения и методы астрономии, физики, математики, философии. Естественнонаучной базой космологии являются астрономические наблюдения Галактики и других звездных систем, общая теория относительности, физика микропроцессов и высоких плотностей энергии, релятивистская термодинамика и ряд других новейших физических теорий.

Многие положения современной космологии кажутся фантастическими. Понятия Вселенной, бесконечности, Большого взрыва не поддаются наглядному физическому восприятию; такие объекты и процессы нельзя зафиксировать непосредственно. Из-за этого обстоятельства складывается впечатление, что речь идет о чем-то сверхъестественном. Но такое впечатление обманчиво, поскольку функционирование космологии носит весьма конструктивный характер, хотя многие ее положения и оказываются гипотетичными.

Современная космология – это раздел астрономии, в котором объединены данные физики и математики, а также универсальные философские принципы, поэтому она представляет собой синтез научных и философских знаний. Такой синтез в космологии необходим, поскольку размышления о происхождении и устройстве Вселенной эмпирически трудно проверяемы и чаще всего существуют в виде теоретических гипотез или математических моделей. Космологические исследования обычно развиваются от теории к практике, от модели к эксперименту, и здесь исходные философские и общенаучные установки приобретают большое значение. По этой причине космологические модели существенно различаются между собой – в их основе зачастую лежат противоположные исходные философские принципы. В свою очередь, любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т.е. изменяют фундаментальные представления человека о мире и самом себе.

Важнейший постулат современной космологии заключается в том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, могут быть экстраполированы на гораздо более широкие области, а, в конечном счете, и на всю Вселенную. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные на их базе модели должны допускать проверку для наблюдаемой области Вселенной, а выводы теории – подтверждаться наблюдениями или, во всяком случае, не противоречить им.

1.2 Что такое Вселенная?

Вселенная – весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Вселенная, изучаемая астрономией, – часть материального мира, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития (эту часть Вселенной называют Метагалактикой).

Ранее ученые полагали, что пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. И только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы можно рассматривать как «примеси».

Межзвездный газ в галактиках обычно составляет несколько процентов от полной массы звезд. Больше всего газа встречается в неправильных галактиках (иногда до 50%) и меньше всего в эллиптических галактиках.

Межзвездная пыль, находящаяся в плоскости диска, поглощает свет звезд, и галактика из-за этого кажется пересеченной темной полосой. Межзвездная пыль – это твердые микроскопические частицы вещества размером меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени «ориентируются», то есть направления их вытянутости имеют тенденцию «выстраиваться» в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным.

Если по своему составу галактики сходны, то структура наблюдаемых галактик различна. Галактики, в основном, бывают трёх видов: эллиптические (E), спиральные (S) и неправильной формы (Ir).

Проще всего выглядят эллиптические галактики: они ровные, однородные по цвету и симметричные. Их почти совершенное строение наводит на мысль об их существенной простоте, и действительно, параметры эллиптических галактик оказалось легче измерить и подыскать под них теоретические модели, чем сделать это для более сложных родственников этих объектов.

Рассмотрим, например, строение типичной эллиптической галактики. В ее центре находится яркое ядро, окруженное размытым сиянием, яркость которого падает по мере удаления от центра. Как и у всех эллиптических галактик, падение яркости описывается простой математической формулой. Форма контура галактики тоже остается почти одинаковой на всех уровнях яркости. Все изофоты представляют собой почти идеальные эллипсы, центрированные в точности на ядро галактики. Направления больших осей и отношения большой оси к малой почти одинаковы у всех эллипсов.

Фундаментальная простота эллиптических галактик согласуется с предположением о том, что они управляются небольшим числом сил. Орбиты звезд гладкие и хорошо перемешаны и ничто, кроме гравитации, не влияет на их расположение, и никакое непрерывное звездообразование не разрушило их правильности.

В отличие от эллиптических галактик для спиральных характерно наличие диска и балджа (утолщения). Спиральные рукава уступают диску и балджу по количеству содержащихся в них звезд, хотя и являются важными и выдающимися частями галактики. Диск спиральной галактики довольно плоский. Видимые с ребра галактики говорят о том, что толщина типичного диска составляет около 1/10 его диаметра.

С помощью методов моделирования на ЭВМ было доказано, что спиральные галактики представляют собой быстро вращающиеся звездные системы. Причиной образования балдж, которые обладают большинством структурных свойств эллиптических галактик, является то, что звезды начинают образовываться сначала в центральных областях галактик, где плотность самая высокая.

Спиральная структура спиральных галактик возникает из-за того, что внутренняя часть галактики вращается со скоростью, отличной от скорости внешней части и рукава постепенно закручиваются в спиральный узор. Для галактик с возрастом, характерным для окружающих нас галактик, число оборотов узора должно быть очень большим – примерно равным возрасту, деленному на средний период вращения – около 100. Однако у реальных спиральных галактик – по крайней мере у тех, что имеют четкие непрерывные спиральные ветви, наблюдаемая закрутка спирального узора составляет лишь на один-два оборота. Встает вопрос: как это объяснить? Проблема до настоящего времени не разрешена. Ученые отдают предпочтение магнитной, волновой и взрывной гипотезам, учитывающим астрофизическую сторону проблемы.

--PAGE_BREAK--

У многих спиральных галактик есть еще одна замечательная структурная особенность – концентрация звезд в форме бруска (бара), пересекающая ядро и простирающаяся симметричным образом в обе стороны. Данные измерений скоростей в них показывают, что бары вращаются вокруг ядра как твердые тела, хотя, разумеется, они на самом деле состоят из отдельных звезд и газа. Все еще идут споры о движениях газа в этих барах. Некоторые данные свидетельствуют о том, что газ течет наружу вдоль бара, а по другим данным, он течет внутрь. В любом случае, существование баров не удивляет астрономов, изучающих динамику галактик. Численные модели показывают, что неустойчивости в диске вращающейся галактики могут проявляться в форме бара, напоминающего наблюдаемые.

Одна из задач современной астрономии – понять, как образовались галактики и как они эволюционируют.

1.3 Модели Вселенной

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Теоретическое моделирование имеет важное значение для выяснения прошлого и будущего наблюдаемой Вселенной. В 1922 г. А.А. Фридман занялся разработкой оригинальной теоретической модели Вселенной. Он предположил, что средняя плотность не является постоянной, а меняется с течением времени. Фридман пришел к выводу, что любая достаточно большая часть Вселенной, равномерно заполняемая материей не может находиться в состоянии равновесия: она должна либо расширяться, либо сжиматься. Еще в 1917 г. В.М. Слайдер обнаружил «красное смещение» спектральных линий в спектрах далёких галактик. Подобное смещение наблюдается тогда, когда источник света удаляется от наблюдателя. В 1929 г. Э. Хаббл объяснил это явление взаимным разбеганием этих звездных систем. Явление «красного смещения» наблюдается в спектрах почти всех галактик, кроме ближайших (нескольких). И чем дальше от нас галактика, тем больше сдвиг линий в её спектре, т.е. все звездные системы удаляются от нас с огромными скоростями в сотни, тысячи десятки тысяч километров в секунду, более далекие галактики обладают и большими скоростями. А после того, как эффект «красного смещения» был обнаружен и в радиодиапазоне, то не осталось, никаких сомнений в том, что наблюдаемая Вселенная расширяется. В настоящее время известны галактики, удаляющиеся от нас со скоростью 0,46 скорости света. А сверхзвезды и квадры – 0,85 скорости света. На галактики постоянно действует какая-то сила. В отдаленном прошлом материя в нашей области Вселенной находилась в сверхплотном состоянии. Затем произошел «взрыв», в результате которого и началось расширение. Чтобы выяснить дальнейшую судьбу метагалактики, необходимо оценить среднюю плотность межзвездного газа. Если она выше 10 протонов на 1м3, то общее гравитационное поле метагалактики достаточно велико, чтобы постепенно остановить расширение. И оно смещается сжатием.

Возникли два мнения по поводу состояния Метагалактики до начала расширения. Согласно одному из них первоначальное вещество метагалактики состояло из «холодной» смеси протонов, т.е. ядер атомов водорода, электронов и нейтронов. Согласно второй, температура была очень велика, а плотность излучения даже превосходила плотность вещества. Но после открытия в 1965 г. реликтового излучения А. Тицнасом и Р. Вилсоном предпочтение было отдано второй теории. После была представлена попытка представить ход событий на первых стадиях расширения Метагалактики: через 1с после начала расширения сверхплотной исходной плазмы плотность вещества снизилась до 500 кг/ см3, а t=1013 °С. В течение следующих 100 плотность снизилась до 50 г/см2 температура упала. Объединились протоны и нейтроны => ядра гелия. При t=4000о, это продолжалось несколько сотен тысяч лет. Затем, после того, как образовались атомы водорода, началось постепенное формирование горячих водородных облаков, из которых образовались галактики и звезды. Однако в процессе расширения могли сохраниться сгустки сверхплотного до звездного вещества, а в процессе их распада образовались звезды и галактики. Не исключено, что действовали оба механизма. Понятие Метагалактика не является вполне ясным. Оно сформировалось на основании аналогии со звездами. Наблюдения показывают, что галактики, подобно звездам, группирующиеся в рассеянные и шаровые скопления, также объединяются в группы и скопления различной численности. Вся охваченная современными методами астрономических наблюдений часть Вселенной называется Метагалактикой (или нашей Вселенной). В Метагалактике пространство между галактиками заполнено чрезвычайно разряженным межгалактическим газом, пронизывается космическими лучами, в нем существуют магнитные и гравитационные поля, и возможно невидимые массы веществ.

В 1929 г. Хаббл открыл замечательную закономерность, которая была названная «законом Хаббла» или «закон красного смещения».

Объяснив красные смещения эффектом Доплера (воспринимаемая частота волны зависит от относительной скорости ее источника), ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Хотя, безусловно, галактики не разлетаются во все стороны от нашей галактики, которая не занимает никакого особого положения в метагалактике, а происходит взаимное удаление всех галактик. Следовательно, Метагалактика не стационарна.

Промежуток расширения равен 20–13 млрд. лет. Расширение метагалактики является самым грандиозным из известных в настоящие время явлением природы. Это открытие произвело коренное изменение во взглядах философов и ученых. Ведь некоторые философы ставили знак равенства между метагалактикой и вселенной, и пытались доказать, что расширение метагалактики подтверждает религиозное представление о божественности происхождения вселенной. Но Вселенной известны естественные процессы, по всей вероятности это взрывы. Есть предположение, что расширение метагалактики также началось с явления напоминающего. Колоссальный взрыв вещества, обладающего огромной температурой и плотностью.

Эта теория называется теорией «горячей Вселенной». Чтобы сверхплотное вещество превратилось в вещество с близкой плотностью к плотности воды. Через несколько часов плотность почти сравнялась с плотностью нашего воздуха, а сейчас, по истечении миллиардов лет оценка средней плотности вещества в метагалактике приводит к значению порядка 10-28 кг/м3.

Но все эти данные удалось получить только с помощью уникального сложного оборудования позволяющего расширить границы Вселенной. До сих пор человечество совершенствует его, изобретали все более гениальные приборы, но еще на заре цивилизации, когда пытливый человеческий ум обратился к заоблачным высотам, великие философы мыслили свое представление о Вселенной, как о чем-то бесконечном.

Древнегреческий философ Анаксимандр (VI в. до н.э.) ввел представление о некой единой беспредельности, не обладавшей ни какими привычными наблюдениями, качествами, первооснове всего – апейроне (нечто беспредельное, безграничное, бесконечное).

Древнегреческим философам принадлежит ряд гениальных догадок об устройстве Вселенной. Анаксимандр высказал идею изолированности Земли, в пространстве. Эйлалай первым описал пифагорейскую систему мира, где Земля, как и Солнце, обращались вокруг некоего «гигантского огня». Шарообразность Земли утверждал другой пифагореец Парменид (VI–V в. в. до н.э.). Гераклит Понтийский (V–IV в до н.э.) утверждал так же ее вращение вокруг своей оси и донес до греков еще более древнюю идею египтян о том, что само солнце может служить центром вращение некоторых планет (Венера, Меркурий).

Французский философ и ученый, физик, математик, физиолог Рене Декарт (1596–1650) создал теорию об эволюционной вихревой модели Вселенной на основе гелиоцентрализма. В своей модели он рассматривал небесные тела и их системы в их развитии. Для XVII в. в. его идея была необыкновенно смелой. По Декарту, все небесные тела образовывались в результате вихревых движений, происходивших в однородной в начале, мировой материи. Совершенно одинаковые материальные частицы, находясь в непрерывном движении и взаимодействии, меняли свою форму и размеры, что привело к наблюдаемому нами богатому разнообразию природы.

Солнечная система согласно Декарту, представляет собой один из таких вихрей мировой материи. Планеты не имеют собственного движения – они движутся, увлекаемые мировым вихрем. Декарт внес и новую идею для объяснения тяжести: он считал, что в вихрях, возникающих вокруг планет частицы давят друг на друга и тем вызывают явление тяжести (например на Земле). Таким образом, Декарт, первым стал рассматривать тяжесть не как врожденное, а как производное качество тел.

Великий немецкий ученый, философ Иммануил Кант (1724–1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры, и представил Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновения такой Вселенной исключительно под действием механических сил притяжения и отталкивания и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях – начиная с планетной системных и кончая миром туманности.

Эйнштейн совершил радикальную научную революцию, введя свою теорию относительности. Это было сравнительно просто, как и всё гениальное. Ему не пришлось предварительно открыть новые явления, установить количественные закономерности. Он лишь дал принципиально новое объяснение.

Эйнштейн раскрыл более глубокий смысл установленных зависимостей, эффектов уже связанных в некую физико-математическую систему (в виде постулатов Пуанкаре). Заменив в данном случае теорию абсолютности пространства и времени идеей их относительности, которую теперь уже не связывали с идеей абсолютного в пространстве, абсолютной системы отсчета. Такой переворот снимал основное противоречие, создававшее кризисную ситуацию, в теоретическом осмыслении действия. Более того, открылся путь для дальнейшего проникновения в свойства и законы окружающего мира, настолько глубоко, что сам Эйнштейн не сразу осознал степень революционности своей идеи.

В статье от 30.06.1905 г., заложившей основы специальной теории относительности Эйнштейн, обобщая принципы относительности Галилея, провозгласил равноправие всех инерциальных систем отсчета не только в механических, но также электромагнитных явлений.

Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла Лоренца. Она описывает законы всех физических процессов при скоростях движения близких к скорости света.

Впервые принципиально новые космологические следствия общей теории относительности раскрыл выдающийся советский математик и физик – теоретик Александр Фридман (1888–1925 гг.). Выступив в 1922–24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте «красного смещения» в их спектрах.

Этим Фридман доказал, что вещество во Вселенной не может находиться в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

    продолжение

--PAGE_BREAK--

Современные модели развития Вселенной

2.1 Теории эволюции Вселенной

Существует несколько теорий эволюции:

Теория стационарного взрыва

Главная идея этой теории заключается в следующем: по мере того как галактики удаляются друг от друга при хаббловском расширении, в увеличивающемся пространстве между ними образуется новая материя. Вновь образованная материя со временем самоорганизуется в галактики, которые, в свою очередь, будут удаляться друг от друга, высвобождая пространство для образования новой материи. Таким образом, наблюдаемое расширение было согласовано с понятием «стационарной» Вселенной, сохраняющей свою общую плотность и не имеющей единственной точки образования (наличие которой предполагает теория Большого взрыва).

Теория пульсирующей Вселенной

Теория пульсирующей вселенной, вариант теории большого взрыва, по которому Вселенная проходит последовательные периоды расширения и сжатия. В конце стадии сжатия, когда Вселенная концентрируется в маленьком объеме большой плотности, вероятно, происходит «разлет» Вселенной, называемый взрывом. Таким образом, по этой теории Вселенная бесконечно пульсирует между «Большим взрывом» и «Большим сжатием».

2.2 Большой взрыв

Концепция Большого взрыва появилась с открытием закона Хаббла. Этот закон описывает простой формулой результаты наблюдений, согласно которым видимая Вселенная расширяется, и галактики удаляются друг от друга. Нетрудно, следовательно, мысленно «прокрутить пленку назад» и представить, что в исходный момент, миллиарды лет назад, Вселенная пребывала в сверхплотном состоянии. Такая картина динамики развития Вселенной подтверждается двумя важными фактами.

Космический микроволновой фон

В 1964 году американские физики Арно Пензиас и Роберт Уилсон обнаружили, что Вселенная наполнена электромагнитным излучением в микроволновом диапазоне частот. Последовавшие измерения показали, что это характерное классическое излучение черного тела, свойственное объектам с температурой около –270°С (3 К), т.е. всего на три градуса выше абсолютного нуля.

По сути, Пензиас и Уилсон определили температуру составляющих Вселенной после того, как она остывала на протяжении 15 миллиардов лет: ее фоновое излучение оказалось в диапазоне микроволновых радиочастот.

Исторически это открытие и предопределило выбор в пользу космологической теории Большого взрыва. Другие модели Вселенной (например, теория стационарной Вселенной) позволяют объяснить факт расширения Вселенной, но не наличие космического микроволнового фона.

Изобилие легких элементов

Ранняя Вселенная была очень горячей. Даже если протоны и нейтроны при столкновении объединялись и формировали более тяжелые ядра, время их существования было ничтожным, потому что уже при следующем столкновении с еще одной тяжелой и быстрой частицей ядро снова распадалось на элементарные компоненты. Выходит, что с момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла настолько, чтобы энергия соударений несколько смягчилась, и элементарные частицы начали образовывать устойчивые ядра. В истории ранней Вселенной это ознаменовало открытие окна возможностей для образования ядер легких элементов. Все ядра, образовывавшиеся в первые три минуты, неизбежно распадались; в дальнейшем начали появляться устойчивые ядра.

Однако это первичное образование ядер на ранней стадии расширения Вселенной продолжался очень недолго. Вскоре после первых трех минут частицы разлетелись так далеко друг от друга, что столкновения между ними стали крайне редкими, и это ознаменовало закрытие окна синтеза ядер. В этот краткий период первичного нуклеосинтеза в результате соударений протонов и нейтронов образовались дейтерий (тяжелый изотоп водорода с одним протоном и одним нейтроном в ядре), гелий-3 (два протона и нейтрон), гелий-4 (два протона и два нейтрона) и, в незначительном количестве, литий-7 (три протона и четыре нейтрона). Все более тяжелые элементы образуются позже – при формировании звезд.

Теория Большого взрыва позволяет определить температуру ранней Вселенной и частоту соударений частиц в ней. Как следствие, мы можем рассчитать соотношение числа различных ядер легких элементов на первичной стадии развития Вселенной. Сравнив эти прогнозы с реально наблюдаемым соотношением легких элементов (с поправкой на их образование в звездах), мы обнаруживаем впечатляющее соответствие между теорией и наблюдениями.

Конечно, далеко не всё изучено: учёные не могут объяснить саму первопричину возникновения Вселенной; не ясно и то, действовали ли в момент ее зарождения нынешние физические законы. Но убедительных аргументов в пользу теории Большого взрыва на сегодняшний день накоплено больше чем в пользу других теорий.

3. Исследование Вселенной в наши дни

Огромное практическое значение науки в XX в. сделало ее той областью знания, к которой массовое сознание испытывает глубокое уважение. Слово науки весомо, и оттого рисуемая ею картина Вселенной часто принимается за точную фотографию реальной действительности, как она есть на самом деле, независимо от нас. Ведь наука и претендует на эту роль – бесстрастного и точного зеркала, отражающего мир в строгих понятиях и стройных математических вычислениях. Однако за привычным, коренящимся еще в эпохе Просвещения доверием к выводам науки, часто забывается, что она – развивающаяся и подвижная система знаний, что способы видения, присущие ей, изменчивы. А это означает, что сегодняшняя картина Вселенной не равна вчерашней.

Впечатляющий прогресс науки о Вселенной, начатый великой коперниканской революцией, уже неоднократно приводил к весьма глубоким, подчас радикальным изменениям в исследовательской деятельности астрономов и, как следствие, в системе знания о структуре и эволюции космических объектов. В наше время астрономия развивается особенно стремительными темпами, нарастающими с каждым десятилетием. Поток выдающихся открытий и достижений неудержимо наполняет ее новым содержанием.

В начале XXI века перед учёными стоят новые вопросы о устройстве Вселенной, ответы на которые они надеются получить с помощью ускорителя – Большого Адронного Коллайдера (БАК).

Большой Адронный Коллайдер. «Большим» он назван из-за своего размера (его периметр составляет примерно 27 км), «адронным» – потому что он ускоряет протоны и тяжелые ядра, которые являются адронами (то есть частицами, состоящими из кварков), «коллайдером» – потому что ускоряются эти частицы в двух пучках, циркулирующих в нём в противоположных направлениях, и в специальных местах сталкиваются друг с другом.

БАК находится на территории Швейцарии и Франции, вблизи Женевы, в туннеле на глубине около 100 метров.

В начале XX века в физике появились две основополагающие теории – общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику.

В конце 1960-х физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий – сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

БАК дает возможность провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий.

И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования.

Заключение

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Современная научная картина мира динамична, противоречива. В ней больше вопросов, чем ответов. Она изумляет, пугает, ставит в тупик, шокирует. Поискам познающего разума нет границ, и в ближайшие годы мы, возможно, будем потрясены новыми открытиями и новыми идеями.

Список литературы

Лавриненко В.Н. Концепции современного естествознания: учебник/ В.Н. Лавриненко, В.П. Ратникова. – М.: 2006. – 317 с.

Найдыш В.М. Концепции современного естествознания: учебник/ В.М. Найдыш. – М.: 2004. – 622 с.

Садохин А.П. Концепции современного естествознания: учебник/ А.П. Садохин. – М.: 2006. – 449 с.

Новости астрономии, космонавтики, Вселенной. – URL: http://universe-news.ru (Дата обращения 08.10.09)

www.ronl.ru

Доклад - Современные модели развития Вселенной

Контрольная работа

Современные модели развития Вселенной

Санкт-Петербург, 2009

Введение

С давних времён человека мучил вопрос, как устроен мир, в котором мы живём и откуда он взялся. Придумывались самые невероятные гипотезы. В последнее время человечество очень продвинулось в изучении этого вопроса. Теперь довольно хорошо известно, как устроена Вселенная в очень большой её области. Тем не менее, чем больше мы узнаём о мире, тем больше появляется вопросов. На каждом этапе познания учёные сталкиваются с пределами познавательных возможностей, накладываемых несовершенством инструментов и методов исследования. Эти вопросы, как правило, решаются, но в настоящее время наука в познании мира проникла так далеко, что ограничения в познании с помощью эксперимента и наблюдения накладываются уже самими законами природы.

Поэтому всё больше науке приходится прибегать к помощи философии. Современная космология не возможна без философских подходов, поскольку, на сегодняшний день невозможно заглянуть ни в далёкое прошлое Вселенной, ни в те области, которые удаляются от нас со скоростями, близкими к скорости света.

Вселенная в целом

1.1 Космология – наука о Вселенной

Космология – астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной.

Сам термин «космология» образован от двух греческих слов: cosmos – Вселенная и logos – закон, учение. По своей сути космология представляет собой раздел естествознания, использующий достижения и методы астрономии, физики, математики, философии. Естественнонаучной базой космологии являются астрономические наблюдения Галактики и других звездных систем, общая теория относительности, физика микропроцессов и высоких плотностей энергии, релятивистская термодинамика и ряд других новейших физических теорий.

Многие положения современной космологии кажутся фантастическими. Понятия Вселенной, бесконечности, Большого взрыва не поддаются наглядному физическому восприятию; такие объекты и процессы нельзя зафиксировать непосредственно. Из-за этого обстоятельства складывается впечатление, что речь идет о чем-то сверхъестественном. Но такое впечатление обманчиво, поскольку функционирование космологии носит весьма конструктивный характер, хотя многие ее положения и оказываются гипотетичными.

Современная космология – это раздел астрономии, в котором объединены данные физики и математики, а также универсальные философские принципы, поэтому она представляет собой синтез научных и философских знаний. Такой синтез в космологии необходим, поскольку размышления о происхождении и устройстве Вселенной эмпирически трудно проверяемы и чаще всего существуют в виде теоретических гипотез или математических моделей. Космологические исследования обычно развиваются от теории к практике, от модели к эксперименту, и здесь исходные философские и общенаучные установки приобретают большое значение. По этой причине космологические модели существенно различаются между собой – в их основе зачастую лежат противоположные исходные философские принципы. В свою очередь, любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т.е. изменяют фундаментальные представления человека о мире и самом себе.

Важнейший постулат современной космологии заключается в том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, могут быть экстраполированы на гораздо более широкие области, а, в конечном счете, и на всю Вселенную. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные на их базе модели должны допускать проверку для наблюдаемой области Вселенной, а выводы теории – подтверждаться наблюдениями или, во всяком случае, не противоречить им.

1.2 Что такое Вселенная?

Вселенная – весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Вселенная, изучаемая астрономией, – часть материального мира, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития (эту часть Вселенной называют Метагалактикой).

Ранее ученые полагали, что пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. И только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/сек.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы можно рассматривать как «примеси».

Межзвездный газ в галактиках обычно составляет несколько процентов от полной массы звезд. Больше всего газа встречается в неправильных галактиках (иногда до 50%) и меньше всего в эллиптических галактиках.

Межзвездная пыль, находящаяся в плоскости диска, поглощает свет звезд, и галактика из-за этого кажется пересеченной темной полосой. Межзвездная пыль – это твердые микроскопические частицы вещества размером меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени «ориентируются», то есть направления их вытянутости имеют тенденцию «выстраиваться» в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным.

Если по своему составу галактики сходны, то структура наблюдаемых галактик различна. Галактики, в основном, бывают трёх видов: эллиптические (E), спиральные (S) и неправильной формы (Ir).

Проще всего выглядят эллиптические галактики: они ровные, однородные по цвету и симметричные. Их почти совершенное строение наводит на мысль об их существенной простоте, и действительно, параметры эллиптических галактик оказалось легче измерить и подыскать под них теоретические модели, чем сделать это для более сложных родственников этих объектов.

Рассмотрим, например, строение типичной эллиптической галактики. В ее центре находится яркое ядро, окруженное размытым сиянием, яркость которого падает по мере удаления от центра. Как и у всех эллиптических галактик, падение яркости описывается простой математической формулой. Форма контура галактики тоже остается почти одинаковой на всех уровнях яркости. Все изофоты представляют собой почти идеальные эллипсы, центрированные в точности на ядро галактики. Направления больших осей и отношения большой оси к малой почти одинаковы у всех эллипсов.

Фундаментальная простота эллиптических галактик согласуется с предположением о том, что они управляются небольшим числом сил. Орбиты звезд гладкие и хорошо перемешаны и ничто, кроме гравитации, не влияет на их расположение, и никакое непрерывное звездообразование не разрушило их правильности.

В отличие от эллиптических галактик для спиральных характерно наличие диска и балджа (утолщения). Спиральные рукава уступают диску и балджу по количеству содержащихся в них звезд, хотя и являются важными и выдающимися частями галактики. Диск спиральной галактики довольно плоский. Видимые с ребра галактики говорят о том, что толщина типичного диска составляет около 1/10 его диаметра.

С помощью методов моделирования на ЭВМ было доказано, что спиральные галактики представляют собой быстро вращающиеся звездные системы. Причиной образования балдж, которые обладают большинством структурных свойств эллиптических галактик, является то, что звезды начинают образовываться сначала в центральных областях галактик, где плотность самая высокая.

Спиральная структура спиральных галактик возникает из-за того, что внутренняя часть галактики вращается со скоростью, отличной от скорости внешней части и рукава постепенно закручиваются в спиральный узор. Для галактик с возрастом, характерным для окружающих нас галактик, число оборотов узора должно быть очень большим – примерно равным возрасту, деленному на средний период вращения – около 100. Однако у реальных спиральных галактик – по крайней мере у тех, что имеют четкие непрерывные спиральные ветви, наблюдаемая закрутка спирального узора составляет лишь на один-два оборота. Встает вопрос: как это объяснить? Проблема до настоящего времени не разрешена. Ученые отдают предпочтение магнитной, волновой и взрывной гипотезам, учитывающим астрофизическую сторону проблемы.

--PAGE_BREAK--

У многих спиральных галактик есть еще одна замечательная структурная особенность – концентрация звезд в форме бруска (бара), пересекающая ядро и простирающаяся симметричным образом в обе стороны. Данные измерений скоростей в них показывают, что бары вращаются вокруг ядра как твердые тела, хотя, разумеется, они на самом деле состоят из отдельных звезд и газа. Все еще идут споры о движениях газа в этих барах. Некоторые данные свидетельствуют о том, что газ течет наружу вдоль бара, а по другим данным, он течет внутрь. В любом случае, существование баров не удивляет астрономов, изучающих динамику галактик. Численные модели показывают, что неустойчивости в диске вращающейся галактики могут проявляться в форме бара, напоминающего наблюдаемые.

Одна из задач современной астрономии – понять, как образовались галактики и как они эволюционируют.

1.3 Модели Вселенной

Во Вселенной нет ничего единственного и неповторимого в том смысле, что в ней нет такого тела, такого явления, основные и общие свойства которого не были бы повторены в другом теле, другими явлениями.

Теоретическое моделирование имеет важное значение для выяснения прошлого и будущего наблюдаемой Вселенной. В 1922 г. А.А. Фридман занялся разработкой оригинальной теоретической модели Вселенной. Он предположил, что средняя плотность не является постоянной, а меняется с течением времени. Фридман пришел к выводу, что любая достаточно большая часть Вселенной, равномерно заполняемая материей не может находиться в состоянии равновесия: она должна либо расширяться, либо сжиматься. Еще в 1917 г. В.М. Слайдер обнаружил «красное смещение» спектральных линий в спектрах далёких галактик. Подобное смещение наблюдается тогда, когда источник света удаляется от наблюдателя. В 1929 г. Э. Хаббл объяснил это явление взаимным разбеганием этих звездных систем. Явление «красного смещения» наблюдается в спектрах почти всех галактик, кроме ближайших (нескольких). И чем дальше от нас галактика, тем больше сдвиг линий в её спектре, т.е. все звездные системы удаляются от нас с огромными скоростями в сотни, тысячи десятки тысяч километров в секунду, более далекие галактики обладают и большими скоростями. А после того, как эффект «красного смещения» был обнаружен и в радиодиапазоне, то не осталось, никаких сомнений в том, что наблюдаемая Вселенная расширяется. В настоящее время известны галактики, удаляющиеся от нас со скоростью 0,46 скорости света. А сверхзвезды и квадры – 0,85 скорости света. На галактики постоянно действует какая-то сила. В отдаленном прошлом материя в нашей области Вселенной находилась в сверхплотном состоянии. Затем произошел «взрыв», в результате которого и началось расширение. Чтобы выяснить дальнейшую судьбу метагалактики, необходимо оценить среднюю плотность межзвездного газа. Если она выше 10 протонов на 1м3, то общее гравитационное поле метагалактики достаточно велико, чтобы постепенно остановить расширение. И оно смещается сжатием.

Возникли два мнения по поводу состояния Метагалактики до начала расширения. Согласно одному из них первоначальное вещество метагалактики состояло из «холодной» смеси протонов, т.е. ядер атомов водорода, электронов и нейтронов. Согласно второй, температура была очень велика, а плотность излучения даже превосходила плотность вещества. Но после открытия в 1965 г. реликтового излучения А. Тицнасом и Р. Вилсоном предпочтение было отдано второй теории. После была представлена попытка представить ход событий на первых стадиях расширения Метагалактики: через 1с после начала расширения сверхплотной исходной плазмы плотность вещества снизилась до 500 кг/ см3, а t=1013 °С. В течение следующих 100 плотность снизилась до 50 г/см2 температура упала. Объединились протоны и нейтроны => ядра гелия. При t=4000о, это продолжалось несколько сотен тысяч лет. Затем, после того, как образовались атомы водорода, началось постепенное формирование горячих водородных облаков, из которых образовались галактики и звезды. Однако в процессе расширения могли сохраниться сгустки сверхплотного до звездного вещества, а в процессе их распада образовались звезды и галактики. Не исключено, что действовали оба механизма. Понятие Метагалактика не является вполне ясным. Оно сформировалось на основании аналогии со звездами. Наблюдения показывают, что галактики, подобно звездам, группирующиеся в рассеянные и шаровые скопления, также объединяются в группы и скопления различной численности. Вся охваченная современными методами астрономических наблюдений часть Вселенной называется Метагалактикой (или нашей Вселенной). В Метагалактике пространство между галактиками заполнено чрезвычайно разряженным межгалактическим газом, пронизывается космическими лучами, в нем существуют магнитные и гравитационные поля, и возможно невидимые массы веществ.

В 1929 г. Хаббл открыл замечательную закономерность, которая была названная «законом Хаббла» или «закон красного смещения».

Объяснив красные смещения эффектом Доплера (воспринимаемая частота волны зависит от относительной скорости ее источника), ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Хотя, безусловно, галактики не разлетаются во все стороны от нашей галактики, которая не занимает никакого особого положения в метагалактике, а происходит взаимное удаление всех галактик. Следовательно, Метагалактика не стационарна.

Промежуток расширения равен 20–13 млрд. лет. Расширение метагалактики является самым грандиозным из известных в настоящие время явлением природы. Это открытие произвело коренное изменение во взглядах философов и ученых. Ведь некоторые философы ставили знак равенства между метагалактикой и вселенной, и пытались доказать, что расширение метагалактики подтверждает религиозное представление о божественности происхождения вселенной. Но Вселенной известны естественные процессы, по всей вероятности это взрывы. Есть предположение, что расширение метагалактики также началось с явления напоминающего. Колоссальный взрыв вещества, обладающего огромной температурой и плотностью.

Эта теория называется теорией «горячей Вселенной». Чтобы сверхплотное вещество превратилось в вещество с близкой плотностью к плотности воды. Через несколько часов плотность почти сравнялась с плотностью нашего воздуха, а сейчас, по истечении миллиардов лет оценка средней плотности вещества в метагалактике приводит к значению порядка 10-28 кг/м3.

Но все эти данные удалось получить только с помощью уникального сложного оборудования позволяющего расширить границы Вселенной. До сих пор человечество совершенствует его, изобретали все более гениальные приборы, но еще на заре цивилизации, когда пытливый человеческий ум обратился к заоблачным высотам, великие философы мыслили свое представление о Вселенной, как о чем-то бесконечном.

Древнегреческий философ Анаксимандр (VI в. до н.э.) ввел представление о некой единой беспредельности, не обладавшей ни какими привычными наблюдениями, качествами, первооснове всего – апейроне (нечто беспредельное, безграничное, бесконечное).

Древнегреческим философам принадлежит ряд гениальных догадок об устройстве Вселенной. Анаксимандр высказал идею изолированности Земли, в пространстве. Эйлалай первым описал пифагорейскую систему мира, где Земля, как и Солнце, обращались вокруг некоего «гигантского огня». Шарообразность Земли утверждал другой пифагореец Парменид (VI–V в. в. до н.э.). Гераклит Понтийский (V–IV в до н.э.) утверждал так же ее вращение вокруг своей оси и донес до греков еще более древнюю идею египтян о том, что само солнце может служить центром вращение некоторых планет (Венера, Меркурий).

Французский философ и ученый, физик, математик, физиолог Рене Декарт (1596–1650) создал теорию об эволюционной вихревой модели Вселенной на основе гелиоцентрализма. В своей модели он рассматривал небесные тела и их системы в их развитии. Для XVII в. в. его идея была необыкновенно смелой. По Декарту, все небесные тела образовывались в результате вихревых движений, происходивших в однородной в начале, мировой материи. Совершенно одинаковые материальные частицы, находясь в непрерывном движении и взаимодействии, меняли свою форму и размеры, что привело к наблюдаемому нами богатому разнообразию природы.

Солнечная система согласно Декарту, представляет собой один из таких вихрей мировой материи. Планеты не имеют собственного движения – они движутся, увлекаемые мировым вихрем. Декарт внес и новую идею для объяснения тяжести: он считал, что в вихрях, возникающих вокруг планет частицы давят друг на друга и тем вызывают явление тяжести (например на Земле). Таким образом, Декарт, первым стал рассматривать тяжесть не как врожденное, а как производное качество тел.

Великий немецкий ученый, философ Иммануил Кант (1724–1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры, и представил Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновения такой Вселенной исключительно под действием механических сил притяжения и отталкивания и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях – начиная с планетной системных и кончая миром туманности.

Эйнштейн совершил радикальную научную революцию, введя свою теорию относительности. Это было сравнительно просто, как и всё гениальное. Ему не пришлось предварительно открыть новые явления, установить количественные закономерности. Он лишь дал принципиально новое объяснение.

Эйнштейн раскрыл более глубокий смысл установленных зависимостей, эффектов уже связанных в некую физико-математическую систему (в виде постулатов Пуанкаре). Заменив в данном случае теорию абсолютности пространства и времени идеей их относительности, которую теперь уже не связывали с идеей абсолютного в пространстве, абсолютной системы отсчета. Такой переворот снимал основное противоречие, создававшее кризисную ситуацию, в теоретическом осмыслении действия. Более того, открылся путь для дальнейшего проникновения в свойства и законы окружающего мира, настолько глубоко, что сам Эйнштейн не сразу осознал степень революционности своей идеи.

В статье от 30.06.1905 г., заложившей основы специальной теории относительности Эйнштейн, обобщая принципы относительности Галилея, провозгласил равноправие всех инерциальных систем отсчета не только в механических, но также электромагнитных явлений.

Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла Лоренца. Она описывает законы всех физических процессов при скоростях движения близких к скорости света.

Впервые принципиально новые космологические следствия общей теории относительности раскрыл выдающийся советский математик и физик – теоретик Александр Фридман (1888–1925 гг.). Выступив в 1922–24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте «красного смещения» в их спектрах.

Этим Фридман доказал, что вещество во Вселенной не может находиться в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

    продолжение

--PAGE_BREAK--

Современные модели развития Вселенной

2.1 Теории эволюции Вселенной

Существует несколько теорий эволюции:

Теория стационарного взрыва

Главная идея этой теории заключается в следующем: по мере того как галактики удаляются друг от друга при хаббловском расширении, в увеличивающемся пространстве между ними образуется новая материя. Вновь образованная материя со временем самоорганизуется в галактики, которые, в свою очередь, будут удаляться друг от друга, высвобождая пространство для образования новой материи. Таким образом, наблюдаемое расширение было согласовано с понятием «стационарной» Вселенной, сохраняющей свою общую плотность и не имеющей единственной точки образования (наличие которой предполагает теория Большого взрыва).

Теория пульсирующей Вселенной

Теория пульсирующей вселенной, вариант теории большого взрыва, по которому Вселенная проходит последовательные периоды расширения и сжатия. В конце стадии сжатия, когда Вселенная концентрируется в маленьком объеме большой плотности, вероятно, происходит «разлет» Вселенной, называемый взрывом. Таким образом, по этой теории Вселенная бесконечно пульсирует между «Большим взрывом» и «Большим сжатием».

2.2 Большой взрыв

Концепция Большого взрыва появилась с открытием закона Хаббла. Этот закон описывает простой формулой результаты наблюдений, согласно которым видимая Вселенная расширяется, и галактики удаляются друг от друга. Нетрудно, следовательно, мысленно «прокрутить пленку назад» и представить, что в исходный момент, миллиарды лет назад, Вселенная пребывала в сверхплотном состоянии. Такая картина динамики развития Вселенной подтверждается двумя важными фактами.

Космический микроволновой фон

В 1964 году американские физики Арно Пензиас и Роберт Уилсон обнаружили, что Вселенная наполнена электромагнитным излучением в микроволновом диапазоне частот. Последовавшие измерения показали, что это характерное классическое излучение черного тела, свойственное объектам с температурой около –270°С (3 К), т.е. всего на три градуса выше абсолютного нуля.

По сути, Пензиас и Уилсон определили температуру составляющих Вселенной после того, как она остывала на протяжении 15 миллиардов лет: ее фоновое излучение оказалось в диапазоне микроволновых радиочастот.

Исторически это открытие и предопределило выбор в пользу космологической теории Большого взрыва. Другие модели Вселенной (например, теория стационарной Вселенной) позволяют объяснить факт расширения Вселенной, но не наличие космического микроволнового фона.

Изобилие легких элементов

Ранняя Вселенная была очень горячей. Даже если протоны и нейтроны при столкновении объединялись и формировали более тяжелые ядра, время их существования было ничтожным, потому что уже при следующем столкновении с еще одной тяжелой и быстрой частицей ядро снова распадалось на элементарные компоненты. Выходит, что с момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла настолько, чтобы энергия соударений несколько смягчилась, и элементарные частицы начали образовывать устойчивые ядра. В истории ранней Вселенной это ознаменовало открытие окна возможностей для образования ядер легких элементов. Все ядра, образовывавшиеся в первые три минуты, неизбежно распадались; в дальнейшем начали появляться устойчивые ядра.

Однако это первичное образование ядер на ранней стадии расширения Вселенной продолжался очень недолго. Вскоре после первых трех минут частицы разлетелись так далеко друг от друга, что столкновения между ними стали крайне редкими, и это ознаменовало закрытие окна синтеза ядер. В этот краткий период первичного нуклеосинтеза в результате соударений протонов и нейтронов образовались дейтерий (тяжелый изотоп водорода с одним протоном и одним нейтроном в ядре), гелий-3 (два протона и нейтрон), гелий-4 (два протона и два нейтрона) и, в незначительном количестве, литий-7 (три протона и четыре нейтрона). Все более тяжелые элементы образуются позже – при формировании звезд.

Теория Большого взрыва позволяет определить температуру ранней Вселенной и частоту соударений частиц в ней. Как следствие, мы можем рассчитать соотношение числа различных ядер легких элементов на первичной стадии развития Вселенной. Сравнив эти прогнозы с реально наблюдаемым соотношением легких элементов (с поправкой на их образование в звездах), мы обнаруживаем впечатляющее соответствие между теорией и наблюдениями.

Конечно, далеко не всё изучено: учёные не могут объяснить саму первопричину возникновения Вселенной; не ясно и то, действовали ли в момент ее зарождения нынешние физические законы. Но убедительных аргументов в пользу теории Большого взрыва на сегодняшний день накоплено больше чем в пользу других теорий.

3. Исследование Вселенной в наши дни

Огромное практическое значение науки в XX в. сделало ее той областью знания, к которой массовое сознание испытывает глубокое уважение. Слово науки весомо, и оттого рисуемая ею картина Вселенной часто принимается за точную фотографию реальной действительности, как она есть на самом деле, независимо от нас. Ведь наука и претендует на эту роль – бесстрастного и точного зеркала, отражающего мир в строгих понятиях и стройных математических вычислениях. Однако за привычным, коренящимся еще в эпохе Просвещения доверием к выводам науки, часто забывается, что она – развивающаяся и подвижная система знаний, что способы видения, присущие ей, изменчивы. А это означает, что сегодняшняя картина Вселенной не равна вчерашней.

Впечатляющий прогресс науки о Вселенной, начатый великой коперниканской революцией, уже неоднократно приводил к весьма глубоким, подчас радикальным изменениям в исследовательской деятельности астрономов и, как следствие, в системе знания о структуре и эволюции космических объектов. В наше время астрономия развивается особенно стремительными темпами, нарастающими с каждым десятилетием. Поток выдающихся открытий и достижений неудержимо наполняет ее новым содержанием.

В начале XXI века перед учёными стоят новые вопросы о устройстве Вселенной, ответы на которые они надеются получить с помощью ускорителя – Большого Адронного Коллайдера (БАК).

Большой Адронный Коллайдер. «Большим» он назван из-за своего размера (его периметр составляет примерно 27 км), «адронным» – потому что он ускоряет протоны и тяжелые ядра, которые являются адронами (то есть частицами, состоящими из кварков), «коллайдером» – потому что ускоряются эти частицы в двух пучках, циркулирующих в нём в противоположных направлениях, и в специальных местах сталкиваются друг с другом.

БАК находится на территории Швейцарии и Франции, вблизи Женевы, в туннеле на глубине около 100 метров.

В начале XX века в физике появились две основополагающие теории – общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику.

В конце 1960-х физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий – сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

БАК дает возможность провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий.

И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования.

Заключение

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Современная научная картина мира динамична, противоречива. В ней больше вопросов, чем ответов. Она изумляет, пугает, ставит в тупик, шокирует. Поискам познающего разума нет границ, и в ближайшие годы мы, возможно, будем потрясены новыми открытиями и новыми идеями.

Список литературы

Лавриненко В.Н. Концепции современного естествознания: учебник/ В.Н. Лавриненко, В.П. Ратникова. – М.: 2006. – 317 с.

Найдыш В.М. Концепции современного естествознания: учебник/ В.М. Найдыш. – М.: 2004. – 622 с.

Садохин А.П. Концепции современного естествознания: учебник/ А.П. Садохин. – М.: 2006. – 449 с.

Новости астрономии, космонавтики, Вселенной. – URL: http://universe-news.ru (Дата обращения 08.10.09)

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.