Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Современный период развития микробиологии. Современные достижения микробиологии реферат


Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт фундаментальной медицины и биологии

Кафедра зоологии позвоночных

Реферат на тему:

«Современные достижения микробиологии»

Выполнила:

Студентка III курса, гр. 01 – 215

Бильданова Н. И.

Проверила:

Яруллина Д. Р.

г. Казань, 2014 г.

Оглавление

Современные достижения микробиологии 3

Ученые научились взвешивать бактерии 3

В древних льдах найдены бактерии, устойчивые к антибиотикам 3

Внутригрупповое сотрудничество помогает бактериальным популяциям противостоять конкурентам 4

Альтруизм у бактерий помогает им противостоять антибиотикам 5

Как настроить бактерий на братоубийство 5

Бактерии обладают чувством обоняния 6

Найдена бактерия, способная вырабатывать электроэнергию 6

Биологи подсмотрели за бактериальным осаждением урана 7

Учёные вывели бактерию с ядовитой ДНК 8

Обнаружен новый необычный вид хлорофилла 9

Амебы стали троянскими конями 10

У бактерий есть свой компас 11

Список литературы 12

Современные достижения микробиологии Ученые научились взвешивать бактерии

В арсенале ученых появился ещё один прибор, который поможет оценивать эффективность новых антибиотиков – это весы для бактерий. Интересно, что для их создания потребовалось всего лишь по-новому взглянуть на старые добрые CD плееры. Разработкой весов для бактерий занялись в лаборатории Раоля Копельмана, а за основу был взят дипломный проект Брендона МакНаута, который работал в исследовательском центре. Теперь для того, чтобы оценить вес бактерии, достаточно прикрепить её к асинхронно вращающемуся магнитному шарику, помещенному в магнитное поле. При этом, чем больше вес микроорганизма, прикрепленного к шарику, тем он медленнее вращается, что объясняется чрезвычайно малыми размерами самого шарика. Так, к примеру, при взвешивании E.coli, шарик вращается в четыре раза медленнее. Исследователи отмечают высокую чувствительность нового прибора, который способен отреагировать на изменение роста бактерии всего в 80 нанометров. Ценность нового прибора заключается в том, что до момента его создания оценивать эффективность антибиотиков приходилось по динамике роста целой бактериальной культуры, на выращивание которой затрачивалось длительное время и значительные средства.

В древних льдах найдены бактерии, устойчивые к антибиотикам

Канадские ученые исследовали фрагменты ДНК, заключенные в куске древнего льда. По этим фрагментам удалось не только определить, какие растения и животные обитали в данной местности 30 тыс. лет назад, но и выяснить некоторые свойства микробного сообщества тех эпох. Оказалось, что древние бактерии уже тогда имели гены устойчивости к антибиотикам. Этот вывод исключительно важен для понимания механизмов формирования устойчивости к современным лекарственным антибиотикам. Ученые подчеркнули, что гены резистентности к современным препаратам зачастую не появляются de novo, а просто выбираются из уже имеющегося набора.

Ученые выявили из замороженной ДНК те участки, которые в настоящее время обеспечивают резистентность к лекарствам. Они выявили гены, обеспечивающие устойчивость к тетрациклину и ванкомицину, к пенициллину и стрептограмину. Так, сейчас устойчивость энтерококковых возбудителей к ванкомицину обеспечивается работой сложного оперона, включающего как гены-регуляторы, так и гены ферментов, меняющих конфигурацию концевых связей пептидов.

В древних пробах нашлись гены всех этих ферментов: и vanH, и vanA, и vanX. Естественно, они были не полностью идентичны современным аналогам, но на филогенетическом древе занимали промежуточную позицию между теми, что найдены среди современных бактерий. Ученые синтезировали соответствующие ферменты, ориентируясь на реконструированную последовательность vanA. Его третичная и четвертичная структура, важная как раз для исполнения своей защитной роли, оказалась такой же, как у современного фермента.

studfiles.net

Современные достижения микробиологии — реферат

Введение

Микробиология (от микро... и биология), наука, изучающая микроорганизмы — бактерии, микоплазмы, актиномицеты, дрожжи, микроскопические грибы и водоросли — их систематику, морфологию, физиологию, биохимию, наследственность и изменчивость, распространение и роль в круговороте веществ в природе, практическое значение.

Наука о мельчайших организмах, не видимых невооруженным глазом. Микробиология изучает строение микробов (морфология), их химическую организацию и закономерности жизнедеятельности (физиология), изменчивость и наследственность (генетика микроорганизмов), взаимоотношения с другими организмами, включая человека, и их роль в формировании биосферы. В ходе исторического развития микробиологии как наука разделилась на общую, сельскохозяйственную, ветеринарную, медицинскую и промышленную. Общая микробиология изучает закономерности жизнедеятельности микробов как организмов, а также роль микробов для поддержания жизни на Земле, в частности их участие в круговороте углерода, азота, энергии и пр.

 

 

 

 

 

 

 

 

 

 

  1. Современные достижения микробиологии

 

Несколько лет назад ученые при попытке установить уровень радиоактивного загрязнения в глубине свалки ядерных отходов Саванна-Ривер открыли новый вид микроорганизмов, которые способы жить и размножаться в условиях повышенного радиоактивного загрязнения. Обнаружение этих микроорганизмов стало огромным прорывом в области микробиологии. Микроорганизмы–экстремофилы, как их назвали ученые, способны переносить огромные температуры и высокие дозы радиации. Учитывая их уникальные свойства, ученые планируют использовать микроорганизмы для очистки огромных хранилищ ядерных и химических отходов.

Ученые предположили, что при помощи бактерий можно утилизировать ядерные и токсические отходы в предельно короткие сроки. По расчетам министерства природных ресурсов для утилизации всех отходов традиционными способами при помощи роботов потребуется примерно 260 миллиардов долларов. Использование микробов-экстремофилов значительно снизит затраты, так как они уничтожают токсины, поедая и разлагая их на безвредные компоненты.

Главные аналитики NASA предполагают, что если удастся разгадать механизм адаптации микроорганизмов к токсинам и радиации, то это позволит создать защитные скафандры, которые на протяжении очень длительного времени смогут защищать человека от опасных излучений. В министерстве здравоохранения считают, что уникальные свойства этих организмов помогут больным раком переносить интенсивные формы лучевой терапии. Экстремофилы, которые обитают в природе, не опасны для человека; опасения вызывают микрооргнаизмы, выращенные в лабораторных условиях, так как очень сложно предсказать их поведение.

Бактерии, которые были обнаружены в Саванна-Ривере, имеют круглые очертания, за что их стали называть радиотолернтными микробами Kineococcus. Удалось изучить 99% их генетического кода, однако до сих пор не известен механизм их живучести, так как радиация разрушает генетический код любого живого существа. Экстремофилы легко разрушают токсины, гербициды, хлорированные вещества и промышленные растворители в радиоактивной среде. В таких условиях даже кварцевое стекло принимает коричневый окрас. Возможно, эти бактерии попали на землю вместе с метеоритами и кометами, точный ответ до сих пор не может дать никто. Экстремофилы, которые обитают в природных условиях, поедают радиацию, но не химикаты. Бактерии, которые уничтожают и радиацию и химикаты, выведены только в лабораторных условиях. Исследователи надеются найти их аналог в природе, так как очень сложно предсказать, как поведут искусственные бактерии в природе, так как на данный момент известна только 1/100 от общего количества бактерий на нашей планете.

Бактерии и микроорганизмы, которые обитают на морских побережьях, способны колонизировать фрагменты полиэтилена. Они образуют на полиэтилене «биопленку», которая ускоряет разложение ядовитых химических элементов и пластика. Это открытие было официально представлено на конференции английского общества микробиологии. За последние десятилетия загрязнение вод Мирового океана полиэтиленом и пластиковым мусором достигло угрожающих масштабов и представляет собой весомую проблему морской экосистеме. Последние исследования показали, что в обычных условиях в водах мирового океана разлагаются легкая и тяжелая разновидность промышленного пластика. Процесс разложения сопровождается выделением токсичных веществ. Компонент бисфенол – А, который используется в производстве компакт-дисков и пластиковых бутылок, считается канцерогеном и относится к группе умеренно опасных.

Учеными производились опыты по выращиванию колоний бактерий на фрагментах пластика. Результаты опытов показали, что некоторые виды микроорганизмов и бактерий могут образовывать на поверхности пластика «биопленку», полностью покрываю его. «Биопленка», образовывающаяся на поверхности пластика, может не разлагать не только пластик, но и содержащиеся в нем токсические отходы.

Бактерия способна очищать сточные воды. Интересное открытие сделали исследователи Американского микробиологического общества. Микробиологи утверждают, что достаточно известная бактерия семейства DesulfitoBacterium способна очищать сточные воды от нечистот и при этом вырабатывать электричество. Такая бактерия функционирует круглосуточно семь дней в неделю. DesulfitoBacterium — это одноклеточные микроорганизмы размером от 0,5 до 3 мкм. У них только одна цитоплазматическая мембрана. Их повсеместная распространенность и метаболический потенциал играет огромную роль в природе. Так как они обеспечивают круговорот веществ в природе и поддерживают равновесие в биосфере. Микроорганизм DesulfitoBacterium можно встретить на дне мирового океана, в горячих источниках, в воде, в земной коре и много где еще. Они выполняют роль продуцента. Микроорганизмы являются первыми живыми существами, которые появились на земле.

Эти интересные открытия были обнародованы на 105-м Генеральном съезде Американского общества микробиологов. Чарльз Милликена из университета Южной Каролины заявил, что микроорганизмы семейства DesulfitoBacterium в состояние производить электрическую энергию, мощность которой достаточна для функционирования не очень большого электрического устройства. Прибор на такой своего рода природной энергии может работать постоянно, лишь бы было «топливо» для бактерии. Бактерия поглощает различные виды растворителей, химикатов и даже может перерабатывать поливинилхлорированный бифенил (РСВ). Это вещество способно за пару часов разрушить эндокринную и иммунную систему человека. У бактерий семейства DesulfitoBacterium очень широкий диапазон метаболических процессов, поэтому бактерия может разлагать огромное количество органических и неорганических веществ. Также прорабатывается возможность использования бактерии DesulfitoBacterium в топливных системах различных агрегатов.

Ученые предполагают, что топливные устройства на основе бактерии DesulfitoBacterium будут иметь неограниченный ресурс, что позволит их использовать очень продолжительное время. Даже если устройство не использовать, его можно хранить в неработающем состоянии до следующего использования

Создан новый генетически модифицированный штамм лактобактерий. Микробиологи университета Гронингена (Германия), работающие под руководством профессора Оскара Куперса (Oscar Kuipers), создали новый генетически модифицированный штамм лактобактерий, осуществляющий ферментацию молочного сахара лактозы, но только до глюкозы.

Это исключает необходимость добавления в молочную продукцию дополнительных подсластителей, а также значительно снижает содержание в ней лактозы, что делает продукты пригодными для употребления людьми, страдающими лактозной непереносимостью.

Бактерии Lactococcus lactis используются при производстве кисломолочной продукции. Удаление из генома бактерии генов, ответственных за метаболизм глюкозы, привело к появлению нового штамма, который не вызывает скисания молока, а, напротив, делает его слаще.

На настоящий момент главной проблемой внедрения этих бактерий в производство молочной продукции заключается в отношении потребителей к генетически модифицированным организмам, а также в официальных ограничениях на их использование.

Однако разработчики считают, что бактериям, скорее всего, удаться преодолеть бюрократические барьеры, т.к. при их создании использовалась только собственная ДНК бактерии, методы нокаутирования и рекомбинации генов без встраивания в геном чужеродного генетического материала.

 

  1. Практическое значение микробиологии

Активно участвуя в круговороте веществ в природе, микроорганизмы играют важнейшую роль в плодородии почв, в продуктивности водоёмов, в образовании и разрушении залежей полезных ископаемых. Особенно важна способность микроорганизмов минерализовать органические остатки животных и растений. Всё возрастающее применение микроорганизмов в практике привело к возникновению микробиологической промышленности и к значительному расширению микробиологических исследований в различных отраслях промышленности и сельского хозяйства. Ранее техническая Микробиология в основном изучала различные брожения, а микроорганизмы использовались преимущественно в пищевой промышленности. Быстро развиваются и новые направления технической микробиологии, которые потребовали иного аппаратурного оформления микробиологических процессов. Выращивание микроорганизмов стали проводить в закрытых ферментёрах большой ёмкости, совершенствовались методы отделения клеток микроорганизмов от культуральной жидкости, выделения из последней и химической очистки их продуктов обмена. Одним из первых возникло и развилось производство антибиотиков. В широких масштабах микробиологическим путём получают аминокислоты (лизин, глютаминовая кислота, триптофан и др.), ферменты, витамины, а также кормовые дрожжи на непищевом сырье (сульфитные щелока, гидролизаты древесины, торфа и сельскохозяйственные растительные отходы, углеводороды нефти и природного газа, фенольные или крахмалсодержащие сточные воды и т.д.). Осуществляется получение микробиологическим путём полисахаридов и осваивается промышленный биосинтез липидов. Резко возросло применение микроорганизмов в сельском хозяйстве. Увеличилось производство бактериальных удобрений, в частности нитрагина, приготовляемого из культур клубеньковых бактерий, фиксирующих азот в условиях симбиоза с бобовыми растениями, и применяемого для заражения семян бобовых культур. Новое направление сельскохозяйственной микробиологии связано с микробиологическими методами борьбы с насекомыми и их личинками — вредителями растений и лесов. Найдены бактерии и грибы, убивающие своими токсинами этих вредителей, освоено производство соответствующих препаратов. Высушенные клетки молочнокислых бактерий используют для лечения кишечных заболеваний человека и сельскохозяйственных животных.

Деление микроорганизмов на полезных и вредных условно, т.к. оценка результатов их деятельности зависит от условий, в которых она проявляется. Так, разложение целлюлозы микроорганизмами важно и полезно в растительных остатках или при переваривании пищи в пищеварительном тракте (животные и человек не способны усваивать целлюлозу без её предварительного гидролиза микробным ферментом целлюлозой). В то же время микроорганизмы, разлагающие целлюлозу, разрушают рыболовные сети, канаты, картон, бумагу, книги, хлопчатобумажные ткани и т.д. Для получения белка микроорганизмы выращивают на углеводородах нефти или природного газа. Одновременно с этим большие количества нефти и продуктов её переработки разлагаются микроорганизмами на нефтяных промыслах или при их хранении. Даже болезнетворные микроорганизмы не могут быть отнесены к абсолютно вредным, т.к. из них приготовляют вакцины, предохраняющие животных или человека от заболеваний. Порча микроорганизмами растительного и животного сырья, пищевых продуктов, строительных и промышленных материалов и изделий привела к разработке различных способов их предохранения (низкая температура, высушивание, стерилизация, консервирование, добавление антибиотиков и консервантов, подкисление и т.п.). В др. случаях возникает необходимость ускорить разложение определённых химических веществ, например пестицидов, в почве.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Благодаря огромным научным достижениям в области  микробиологии и смежных биологических дисциплин (молекулярной биологии, генетики, биохимии и др.) появилась реальная возможность сделать микроорганизмы неисчерпаемым источником биологически активных веществ (кормового и пищевого белка, аминокислот, ферментов, витаминов, гормонов, антибиотиков, спиртов, органических кислот, средств защиты растений и др.).  Эти продукты микробного синтеза находят широкое применение в различных отраслях народного хозяйства

В настоящее время микробиология стала не только фундаментальной наукой – в стране плодотворно работают научно-исследовательские учреждения по многим разделам микробиологической науки.

 

 

 

 

 

 

 

 

 

 

Список литературы:

  1. Борисов Л.Б. Медицинская микробиология, вирусология, иммунология/ Л. Б. Борисов – 4-е издание перер. и доп.- М.: Медицинское информагенство, 2005.- 735с.
  2. Елинов Н.П., Заикина Н.А., Соколова И.П. Руководство к лабораторным занятия по микробиологии./ Под ред. Н.П. Елинова.- М.: «Медицина», 1988.- 207с.
  3. Медицинская микробиология: учебное пособие/ Военная медицинская академия; Под ред. А.М. Королюка, С.Б. Стойчакова.- 2-е изд.- Спб: ЭЛБИ – Спб, 2002.- 267с.
  4. Микробиология и иммунология: [Текст]: [Учебник]/ А.А. Воробьев и др.- 2-е изд. перераб. и доп. – М.: «Медицина», 2005.- 492с.
  5. Основы микробиологии, вирусологии и иммунологии: [Учебное пособие]/ под ред. А.А. Воробьева, Ю.С. Кривошеина.- М.: Издательство Высшая школа, 2001.- 224с.

 

 

 

 

student.zoomru.ru

Реферат - Современный период развития микробиологии

Самостоятельная работа № 2 по теме «Современный период развития микробиологии»

1. Предмет изучения микробиологии.

предметом изучения микробиологии являются микроскопические существа, называемые микроорганизмами, или микробами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами, населяющими нашу планету, — животными, растениями и человеком.

2.Открытие антибиотиков, имеющих важнейшее значение для непосредственной борьбы с возбудителями болезней человека, животных и растений.

Открытие антибиотиков, без преувеличения, можно назвать одним из величайших достижений медицины прошлого века. Первооткрывателем антибиотиков является английский ученый Флеминг, который в 1929 году описал бактерицидное действие колоний грибка Пенициллиума на колонии бактерий разраставшихся по соседству с грибком. Однажды Флеминг заметил, что разросшаяся колония плесневого грибка пенициллиума полностью подавила рост соседней колонии бактерий (обе колонии росли в одной пробирке). Здесь нужно отдать должное гениальности великого ученого сумевшего заметить этот замечательный факт, который послужил основой предположения того, что грибы победили бактерий при помощи специального вещества безвредного для них самих и смертоносного для бактерий. Это вещество и есть природный антибиотик – химическое оружие микромира.

В чистом виде вещество, о существовании, которого догадался Флеминг, было получено во время второй мировой войны и получило название пенициллина.

Важность открытия пенициллина очевидна: его противовоспалительное действие спасло жизни миллионам людей и продолжает их спасать. Во время Второй моровой войны самым быстродействующим антибиотиком оказался пенициллин и именно в этом его заслуга, он помогал приостановить процесс заражения, и солдат имел шанс, при своевременном вмешательстве хирурга, выжить, а иногда даже не стать инвалидом. Пенициллин с легкостью лечил гнойные раны и тяжелые ожоги. В 1944 году 95% военнослужащих с инфицированными ранами вылечились благодаря пенициллину. После окончания войны в 1945 году этот чудо антибиотик стал главным оружием медицины.

Благодаря пенициллину стало возможно излечение людей от туберкулеза и сифилиса – болезней, «косивших» целые города и поколения людей. Когда-то даже банальное воспаление легких было смертельным заболеванием. С открытием данного вещества это заболевание стали без труда лечить. Пенициллин оказался эффективным против гонореи, пневмонии, ревматоидной лихорадки и еще множества заболеваний.

В 1939 году появились первые антибиотики полученные химическим путем – сульфаниламиды – применялись для лечения фурункулов, инфицированных ран, пневмонии, менингита и других. Сульфаниламидные препараты сократили смертность от эпидемии менингита с ожидавшихся 65% до 20%.

В 1944 американским учёным З. А. Ваксманом был открыт антибиотик стрептомицин, который позволил излечивать туберкулёз. Также стрептомицин активен в отношении возбудителей чумы, туляремии, бруцеллёза, дизентерии, кишечной палочки, стафилококков, стрептококков, пневмококков, гонококков, менингококков и некоторых др. возбудителей болезней.

В 1947 году из культурной жидкости актиномицета Streptomyces venezuelae был получен антибиотик хлорамфеникол (левомицетин), обладающий широким спектром антимикробного действия. Синтезирован также химическим путём, ставшим основным методом его получения.

Его применяют для лечения брюшного тифа, дизентерии туляремии, бруцеллёза и других заболеваний.

В 1948 году были открыты цефалоспорины, антибиотики которые активно уничтожали возбудителя тифа. Они эффективны в борьбе с различными микроорганизмами, поэтому используются для лечения многих инфекционных заболеваний

В последние годы антибиотики широко применяются в разных странах для борьбы с заболеваниями растений.

Наряду с использованием известных антибиотиков найдены новые антибиотические вещества для растениеводства. В Японии широко применяется (до 400 т в год) новый актиномицетный антибиотик — бластомицин, очень эффективный против грибных заболеваний риса. В Индии для подавления грибных инфекций риса и хлопчатника используют ауреофунгин (до 100 т в год). В Канаде используют новый антибиотик Р-49, подавляющий развитие ржавчины злаков.

Очень эффективен в борьбе с грибными и бактериальными заболеваниями растений (гоммоз хлопчатника, бактериальное увядание абрикоса и др.) отечественный антибиотический препарат гризин .

3. Дайте определение термину «антибиотик»

Антибиотики (от анти… и греч. bĺоs — жизнь) — вещества биологического происхождения, синтезируемые микроорганизмами и подавляющие рост бактерий и других микроорганизмов.

4. Заполните таблицу с примерами микроорганизмов, продуцирующих антибиотики (грибы, бактерии, бациллы, актиномицеты).

Название антибиотиков

Продуценты антибиотиков

На какие виды микроорганизмов действует антибиотик

Механизм действия на микробную клетку

1.Пенициллин (penicillin)

Продуценты: плесневый грибок пенициллиум (Penicillium)

Действует на: активны в отношении большинства грамположительных, а также некоторых грамотрицательных микроорганизмов (гонококков, менингококков и спирохет).

Механизм действия: Пенициллины обладают бактерицидным эффектом. Мишень их действия — пенициллиносвязывающие белки бактерий, которые выполняют роль ферментов на завершающем этапе синтеза пептидогликана — биополимера, являющегося основным компонентом клеточной стенки бактерий. Блокирование синтеза пептидогликана приводит к гибели бактерии.

2. Цефалоспорины (англ. cephalosporins)

Продуценты: гриб Cephalosporium acremonium (в настоящее время именуемый Acremonium chrysogenum)

Действуют на: высокоактивны по отношению к бактериям кишечной группы (грамотрицательным палочковидным бактериям типа Escherichia coli), в норме населяющим толстый кишечник, и умеренно активны по отношению к очень опасному Pseudomonas aeruginosa, который вызывает тяжелые поражения кожи.

Механизм действия: Цефалоспорины оказывают бактерицидное действие, которое связано с нарушением образования клеточной стенки бактерий

3. Стрептомицин

Продуценты: лучистые грибы (актиномицеты) рода Actinomyces (Streptomyces)

Действует на: активен в отношении туберкулёзных бактерий, возбудителей чумы, туляремии, бруцеллёза, а также дизентерии, кишечной палочки, стафилококков, стрептококков, пневмококков, гонококков, менингококков и некоторых др.; на грибы, простейшие, анаэробные микробы, спирохеты, риккетсии и вирусы не действует.

Механизм действия: В бактериальной клетке, связываясь с рибосомами, нарушает считывание генетического кода, подавляет биосинтез белка; первичный механизм действия окончательно не установлен.

4. хлорамфеникол

Продуценты: актиномицет Streptomyces venezuelae. Синтезирован также химическим путём, ставшим основным методом его получения.

Действует на: Хлорамфеникол обладает широким спектром антимикробной активности, но в процессе многолетнего использования ряд бактерий приобрел устойчивость.

Среди грамположительных кокков наиболее чувствителен к препарату пневмококк, однако многие пенициллинорезистентные штаммы устойчивы. Энтерококки в целом малочувствительны. Среди стафилококков более 30% штаммов устойчивы. Из грамотрицательных кокков наиболее чувствительны менингококки.

Хлорамфеникол действует на многие грамположительные и грамотрицательные палочки: H.influenzae (включая ампициллинорезистентные штаммы), E.coli, сальмонеллы, шигеллы, возбудители дифтерии, коклюша, сибирской язвы, бруцеллеза, чумы. Среди энтеробактерий часто отмечается резистентность. В России 50-90% шигелл и 10% сальмонелл устойчивы к хлорамфениколу.

К хлорамфениколу чувствительны спирохеты (лептоспиры, T. pallidum), риккетсии, актиномицеты. Препарат обладает высокой активностью в отношении спорообразующих и неспорообразующих анаэробов, включая B.fragilis.

Механизм действия: Хлорамфеникол оказывает бактериостатическое действие, которое связано с нарушением синтеза белка рибосомами. В высоких концентрациях обладает бактерицидным эффектом в отношении пневмококка, менингококка и H.influenzae.

5. Тетрациклин

Продуценты: грибки Streptomyces аurefaciens или другие родственные организмы.

Действует на: Активен в отношении большинства грамположительных (стафилококки, пневмококки, стрептококки) и грамотрицательных микроорганизмов (менинго- и гонококки, эшерихии, сальмонеллы, шигеллы, энтеробактерии), а также риккетсий, микоплазм, возбудителей орнитоза (острой инфекционной болезни, передаваемой человеку от птиц), пситтакоза (острой инфекционной болезни, передаваемой человеку от птиц), трахомы (инфекционного заболевания глаз, которое может привести к слепоте) и некоторых простейших.

Механизм действия: обладает бактериостатическим эффектом, который связан с нарушением синтеза белка в микробной клетке.

6. Эритромицин

Продуценты: почвенный гриб (актиномицет) Streptomyces erythreus.

Действует на: активен в отношении грамположительных и грамотрицательных микроорганизмов (стафилококки, пневмококки, стрептококки, гонококки, менингококки). Действует также на ряд грамположительных бактерий, бруцелл, риккетсий, возбудителей трахомы и сифилиса. Слабо или совсем не действует на большинство грамотрицательных бактерий, микобактерий, мелкие и средние вирусы, грибы.

Механизм действия: антимикробный эффект обусловлен нарушением синтеза белка на рибосомах микробной клетки. Как правило, макролиды оказывают бактериостатическое действие, но в высоких концентрациях способны действовать бактерицидно на пневмококк, возбудителей коклюша и дифтерии.

7 .Бацитрацин

Продуценты: грамположительные, спорообразующее аэробные почвенные бактерии Bacillus subtilis

Действует на: активен в отношении многих грамположительных бактерий особенно гемолитических стрептококков.

Механизм действия: подавляет синтез клеточной мембраны

8. Полимиксин

Продуценты: спорообразующиме почвенные бактерии Bacillus polymyxa или друге родственные микроорганизмамы.

Действуют на: действует преимущественно на грамотрицательные микроорганизмы: задерживает рост кишечной и дизентерийной палочек, палочек брюшного тифа и паратифов; эффективен в отношении синегнойной палочки. Не действует на протей, грамположительные кокки, микобактерии, грибы.

Механизм действия: оказывает бактерицидное действие, которое связано с нарушением целостности цитоплазматической мембраны микробной клетки.

9. Неомицин

Продуценты: лучистый гриб Streptomyces fradiae

Действует на: Эффективен в отношении ряда грамположительных (стафилококки, пневмококки и др.) и грамотрицательных (кишечная палочка, палочка дизентерии, протей и др.) микроорганизмов. В отношении стрептококков малоактивен. На патогенные грибы, вирусы и анаэробную флору не действует. Устойчивость микроорганизмов к неомицину развивается медленно и в небольшой степени. Препарат действует бактерицидно.

Механизм действия: Механизм действия связан с непосредственным влиянием на рибосомы и угнетением синтеза белка бактериальной клетки.

10. Нистатин

Продуценты: актиномицет Streptomyces noursei

Действует на: действует на патогенные грибы и особенно на дрожжеподобные грибы рода Candida, а также на аспергиллы; в отношении бактерий неактивен.

Механизм действия: Имеет в структуре большое количество двойных связей, обусловливающих высокую тропность антибиотика к стеролам клеточной мембраны грибов. Вследствие этого молекула встраивается в мембрану клетки с образованием множества каналов, способствующих неконтролируемому транспорту воды, электролитов и неэлектролитов. Клетка теряет устойчивость к воздействию внешних осмотических сил, что приводит к лизису.

5. Современное представление о пробиотиках. Примеры .

«Пробиотики» в современном понимании — это бактерийные препараты из живых микробных культур, предназначенные для коррекции микрофлоры хозяина и лечения ряда заболеваний.

Применение пробиотиков может оказывать следующие воздействия на организм:

воздействие на противоинфекционные защитные механизмы;

иммунномодуляторное;

улучшение барьерных функций;

метаболические эффекты;

изменение моторики и функции кишечника.

Большинство из известных в настоящий момент пробиотических штаммов микроорганизмов являются частью нормальной микрофлоры организма или присутствуют в пищевых продуктах, потребляемых уже несколькими поколениями людей по всему миру.

Тщательное изучение в экспериментальных и клинических условиях демонстрировало определённые эффекты пробиотиков, но эффективность и воспроизводимость лечебных мероприятий с использованием пробиотиков ещё не подтверждены.

Пробиотики, в основном, применяются в качестве профилактических средств и сопутствующей терапии, и не являются основным лечением заболеваний. При применении пробиотиков в качестве основного лечения описано много примеров их положительного воздействия, но эффект большинства составов слабый и при оценке трудно отличим от эффекта плацебо.

Примеры пробиотиков: лактобациллы, грамположительные кокки, бифидобактерии.

6. Современное представление о пребиотиках. Примеры.

Согласно современному представлению, пребиотики представляют собой непереваренные или частично переваренные остатки пищи, способные стимулировать рост популяций некоторых бактерий тонкого и толстого кишечника.

пребиотики не перевариваются в верхних разделах желудочно-кишечного тракта и в неизмененном виде достигают толстой кишки.

К пребиотикам относятся неперевариваемые углеводы: лактулоза, олигосахариды (фрукто-, галакто- и пр.), фиброгам, инулин, лактитол и проч.

7. Перечислите культуры микроорганизмов, находящихся на рабочем столе (укажите русское и латинское название)

Серная палочка ( Bacullus subtilis)

Кишечная палочка (Eschererichia coli)

8. Основные достижения молекулярно-генетического периода развития микробиологии.

Основные достижения молекулярно-генетического периода развития микробиологии:

— в опытах на бактериях была доказана роль ДНК в передаче наследственных признаков

— расшифровка молекулярной структуры и молекулярно-биологической организации многих вирусов и бактерий; открытие простейших форм жизни, «инфекционного белка» приона;

— расшифровка строения антител-иммуноглобулинов

— разработка метода культур животных и растительных клеток и их выращивания в промышленных масштабах с целью получения вирусных антигенов;

— получение вакцин (вакцина гепатита В, малярии, антигенов ВИЧ и других антигенов), биологически активных пептидов (интерфероны, интерлейкины, ростовые факторы и др.) с помощью методов биотехнологии и приемов генетической инженерии;

— разработка синтетических вакцин на основе природных или синтетических антигенов и их фрагментов, а также искусственного носителя. адъюванта (помощника). стимулятора иммунитета;

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.