Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Реферат: Лекции - Гигиена (Солнечная радиация и ее гигиеническое значение). Солнечная радиация реферат


Солнечная радиация и климат | География. Реферат, доклад, сообщение, кратко, презентация, лекция, шпаргалка, конспект, ГДЗ, тест

Распределение солнеч­ной радиации по земной поверхности зависит от угла падения солнечных лучей (рис. 96). На одинаковые площади на экваторе (ab), в средних (a1b1) и высоких (a2b2) широ­тах приходится различное количество радиации. По­этому от южных границ страны к северу угол паде­ния солнечных лучей умень­шается. Соответственно ему уменьшается и поступление солнечной радиации.

Радиация, поступающая непосредственно на земную поверхность в виде прямых солнечных лу­чей при безоблачном небе, называется прямой солнечной радиацией.

Однако не вся солнечная радиация достигает земной поверхности. Часть её поглощается водяными парами, рассеивается, отражается со­держащимися в атмосфере каплями воды, пылью. Это рассеянная ради­ация, которая определяет повсеместную дневную освещённость, цвет неба и зари. Вполне понятно, что чем больше облачность и загрязнён­ность атмосферного воздуха, тем меньше прямой, а больше рассеянной радиации поступает на землю.

Совокупность прямой и рассеянной радиации образует суммарную радиацию. На рис. 97 изолиниями показано распределение суммарной солнечной радиации, измеряемой в ккал/см2. Солнечная радиация мо­жет измеряться также в Международной системе — мДж/м2 в год.

Рис. 96. Зависимость интенсивности солнеч­ной радиации от угла падения лучей; площади ab, a1b1 и a2b2 равны

Поскольку в умеренном, субарктическом и арктическом поясах угол падения солнечных лучей весьма различается по сезонам года, разни­ца в приходе суммарной солнечной радиации достигает существенных значений (таблица).

Таблица. Сезонный ход суммарной солнечной радиации в разных широтах

Широта, ° с. ш.

Пункты

Радиация, мДж/м2

зима

весна

лето

осень

всего за год

70

о. Врангеля

13

433

519

7

972

60

Санкт-Петербург

33

353

506

116

1008

Минимальное количество суммарной радиации зимой в приполяр­ных и полярных областях зависит от незначительной высоты Солнца, короткого дня, длинной полярной ночи. А в летние дни Солнце освеща­ет поверхность практически круглые сутки, но слишком уж короткое северное лето.

Суммарная солнечная радиация, достигшая земной поверхности, частично поглощается почвой и водоёмами и переходит в тепло, а час­тично отражается. Количество поглощённой и отражённой солнечной радиации зависит от свойств поверхности (рис. 98). Материал с сайта http://doklad-referat.ru

Рис. 97. Суммарная солнечная радиация на территори России
Рис. 98. Отражательная способность поверхностей

Суммарная солнечная радиация за вычетом отражённой усваивается сушей и морем и превращается в тепловую энергию. Нагретая земная поверхность излучает тепло, которое нагревает воздух. Часть теплоиз­лучения от земной поверхности и атмосферы уходит обратно в межпла­нетное пространство.

Процесс прихода и расхода радиационного тепла земной поверх­ностью выражается радиационным балансом — разницей между сум­марной радиацией и её потерями на отражение и тепловое излучение.

Среднегодовой радиационный баланс определя­ет особенности теплового режима, испарения, снеготаяния и всего климата в целом.

Вопросы по этому материалу:
  • Что такое солнечная радиация?

  • В каких единицах измеряется суммарная солнечная радиация?

  • Установите изолинии с минимальными и максимальными значениями радиа­ции и выявите особенности их размещения.

  • Сопоставьте среднегодовую обеспеченность северных и южных районов суммарной радиацией. Как это отражается на климате?

  • Испытывает ли суммарная радиация сезонные колебания?

doklad-referat.ru

Солнечная радиация. Радиационный баланс. Географическое распределение составляющих. Энергетическ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГОУ «КГТУ»)Реферат

по дисциплине учение о биосфере

на тему

“Солнечная радиация. Радиационный баланс. Географическое распределение составляющих. Энергетический баланс Земли и климат”Работу выполнила

ст. гр. 07-ЭП

Климова Елена Калининград2010

Содержание1.Солнечная радиация………………………………………………………...….32. Солнечная постоянная…………………………………………………………33.Радиационный баланс………………………………….………………………54. Энергетический баланс……………………………………………………...…75. Распределение составляющих энергетического баланса……………………96. Современный климат…………………………………………………………147.Список использованных источников…………………………………………181. Солнечная радиацияСолнце – ближайшая к Земле звезда, принадлежащая к классу желтых звезд карликов. Диаметр Солнца около 1,4 млн.км , среднее расстояние от Земли 149,5 млн. км . В результате происходящих на Солнце ядерных реакция температура на его поверхности равна приблизительно 6000 К, что обуславливает излучение Солнцем значительного количества энергией.

 Поступающая от Солнца на Землю радиация является единственной формой прихода лучистой энергией, определяющей энергетический баланс и термический режим Земли. Радиационная энергия, приходящая к земле от всех других небесных тел, на столько мала, что не оказывает сколько-нибудь заметного влияния на происходящие на Земле процессы теплообмена. В соответствии с температурой излучающей поверхности Солнца максимум радиационной энергии наблюдается при длинах волн около 0,50 мкм, причем основная часть энергии, излучаемой Солнцем, приходится на интервал длин волн 0,3-2,0 мкм.

При удалении от Солнца интенсивность его излучения изменяется обратно пропорционально квадрату расстояния. Так как Земля движется вокруг Солнца по эллиптической орбите, интенсивность солнечной радиации, приходящей на внешнюю границу атмосферы, изменяется в течение года в соответствии с изменением расстояния между Землей и Солнцем. Наименьшее расстояние Земли от Солнца отмечается в начале января и составляет 147 млн. км. Наибольшее расстояние, достигаемое в начале июня, равно 153 млн. км. 2. Солнечная постояннаяПоток солнечной энергии за единицу времени через площадку единичного размера, перпендикулярно солнечным лучам и расположенную вне атмосферы на среднем расстоянии от Земли, называют солнечной постоянной. В связи с изменениями расстояния Земли от Солнца фактические значения потоков солнечной энергии на внешней границе атмосферы Земли отличаются от солнечной постоянной. Эти отличия достигают 3,5%.

Вопрос об определении величины солнечной постоянной рассматривался в многочисленных исследованиях. В течение длительного времени солнечная постоянная находилась по данным наземных актинометрических наблюдений. Такой метод определения ее величины был связан с заметными погрешностями, поскольку приходилось учитывать ослабление потока солнечной радиации в атмосфере, что можно было сделать только приближенно.

В последнее время были выполнены наблюдения за величиной солнечной постоянной на больших высотах, в том числе и на спутниках Земли. Эти наблюдения  привели к заключению, что солнечная постоянная равна 1368 Вт/м².

Наблюдения на спутниках показали, что солнечная постоянная может на короткое время изменяться на величину от 0,1%-0,2% . Вопрос о возможности ее длительных изменений, относящихся к интервалам больше года, пока еще не выяснен, в связи с чем значение этих изменений для колебания климата не может считаться доказанным.

 Зная величину солнечной постоянной, можно рассчитать, сколько энергии поступило бы на поверхность Земли в различных широтах при отсутствии влияния атмосферы на радиацию.Наибольшие суточные суммы радиации наблюдаются под полюсами в периоды летнего солнцестояния. Следует отметить, что в периоды при перемещении к более низким широтам после некоторого снижения радиации наблюдается небольшой второй максимум, который после перехода в южное полушарие сменяется областью снижения радиации вплоть до нулевых значений. В периоды равноденствий максимум радиации приходится на экватор, причем при увеличении широты суммы радиации убывают сначала медленно, а затем все быстрее. В высотах широтах зимой радиация мала и равна нуля.

В действительности атмосфера не является вполне прозрачной средой для солнечной радиации. Заметная часть поступающей от Солнца радиации поглощается и рассеивается в атмосфере, а также отражается обратно в мировое пространство. Особенно большое влияние на распространение солнечной радиации оказывают облака, однако и при отсутствии облачности солнечная радиация в атмосфере существенно изменяется.

Радиация Солнца поглощается в атмосфере  водяным паром и каплями воды, озоном, углекислым газом и пылью. Рассеяние солнечной радиации обуславливается как молекулами воздуха, так и различными примесями – пылью, водяными каплями и т.д.

Прошедший через атмосферу поток прямой  солнечной радиации зависит от прозрачности атмосферы, а также от высоты Солнца, которая определяет длину пути солнечных лучей в атмосфере. Наибольшее значение потока прямой радиации наблюдается при безоблачном небе и высокой прозрачности атмосферы. В таких условиях на перпендикулярную поверхность может достигать 1000-1200 Вт/м². Средние полуденные значения этого потока в средних широтах обычно равны 700-900 Вт/м². При уменьшении высоты Солнца в суточном ходе прямая солнечная радиация заметно уменьшается в соответствии с возрастанием оптической массы атмосферы.

Количество рассеянной радиации, поступающей к земной поверхности, изменяется в широких пределах, главным образом в зависимости от условий облачности и высоты Солнца. Теоретический расчет этого потока радиации довольно сложен и не дает вполне точных результатов. Имеющиеся данные наблюдения позволяют заключить, что во многих случаях поток рассеянной радиации сравним по величине с потоком прямой радиации, приходящей на горизонтальную поверхность. Наибольшие значения рассеянной радиации наблюдается при наличии облачности. Существенное влияние на рассеянную радиацию оказывает отражательная способность земной поверхности. В частности, рассеянная радиация заметно возрастает при наличии снежного покрова, который отражает значительное количество солнечной энергии.

Общая картина основных преобразований энергии Солнца в географической оболочке Земли имеет следующий вид. Поток солнечной радиации на среднем расстоянии Земли от Солнца равен величине солнечной постоянной. Вследствие шарообразности Земли на единицу поверхности внешней границы атмосферы в среднем поступает четвертая часть общей величины потока – около 340 Вт/м², причем приблизительно 240 Вт/м² поглощается Землей как планетой. При этом существенно, что большая часть общего количества поглощенной солнечной радиации поглощается поверхностью Земли, тогда как атмосфера поглощает значительно меньшую часть.3. Радиационный балансПоверхность Земли, нагретая в  результате поглощения солнечной радиации, становится источником длинноволнового излучения, передающего тепло в атмосферу. Содержащиеся в атмосфере водяной пар, пыль и различные газы, поглощающие длинноволновую радиацию, задерживают длинноволновое излучение земной поверхности. В связи с этим значительная часть излучения земной поверхности компенсируется противоизлучением атмосферы. Разность собственного излучения  поверхности Земли и поглощаемого земной поверхностью противоизлучения атмосферы называется эффективным излучением. Эффективное излучение земной поверхности зависит главным образом от температуры земной поверхности, влагосодержания воздуха и облачности. В зависимости от этих фак­торов эффективное излучение может изменяться от значений, близких к нулю, до нескольких сот Вт/м2. Эффективное излучение обычно в несколько раз меньше потока длинноволнового излучения земной поверхности, который  наблюдался бы при полной прозрачности атмосферы для длинноволновой радиации. Сумма потоков радиационной  энергии, приходящих к поверхности Земли и уходящих от нее, называется радиационным балансом земной поверхности. Очевидно, что радиационный баланс равен разности между количеством прямой и рассеянной радиации, поглощаемой земной поверхностью, и эффективным излучением. 

www.coolreferat.com

Реферат - Лекции - Гигиена (Солнечная радиация и ее гигиеническое значение)

Под солнечной радиацией мы понимаем весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес представляет оприческая часть солнечнечного света, которая занимает диапозон от 280-2800 нм. Более длинные волны -- радиоволны, более короткие -- гамма-лучи, ионизируещее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озонов слое в частности. Озон распространен в всей атмосфере, но на высоте около 35 км формирует озоновый слой. Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интесивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучибудет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая -- зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка: 1. ультрафиолетовые лучи, от 280 до 400 нм 2. видимый спектр от 400 до 760 нм 3. инфракрасные лучи от 760 до 2800 нм. При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра. Интенсивность солнечной радиации мы оцениваем исходя из так называемой солнечной постоянной. Солнечная постоянная -- это количество солнечной энергии поступающей в единицу времени на единицу площади, расположенную на верхней границе атмосферы под прямым углом к солнечным лучам при среднем расстоянии Земли от Солнца. Эта солнечная постоянная измерена с помощью спутника и равна 1,94 калории\см2 в мин. Проходя через атмосферу солнечные лучи значительно ослабевают -- рассеиваются, отражаются, поглащаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1, 43 -- 1,53 калории\см2 в мин. Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34. Биологическое значение видимого участка спектра. Видимый участок спекра -- специфический раздражитель органа зрения. Свет необходимое условие работы глаза, самого тонкого и чуткого органа чувств. Свет дает примерно 80% информации о внешнем мире. В этом состоит специфическое действие видимого света, но еще общебиологическое дйествие видимого света: он стимулирует жизнедеятельность организма, усиливает обмен веществ, улучшает общее самочувствие, влияет напсихофмоциональную сферу, повышает работоспосбность. Свет оздоравливает окружающую среду. При недостатке естественного осещения возникают изменения со стороны органа зрения. Быстро наступает утомляемость, снижается работоспособность, увеличивается производственный травматизм. На организм влияет не только освещенность, но и различная цветовая гамма оказывает различное влияние на психофмоциональное состояние. Наилучшие показатели выполнения работы были получены препарат желтом и белом освещении. В психофизиологическом отношении цвета действуют противоположно друг другу. Было сформировано 2 группы цветов в связи с этим: 1) теплые тона -- желтый, оранжевый, красный. 2) холодные тона -- голубой, синий, фиолетовый. Холодные и тепые тона оказывают разное физиологическое действие на организм. Теплые тона увеличивают мускульное напряжение, повышают кровянное давление, учащают ритм дыхания. Холодные тона наоборот понижают кровянное давление, замедляют ритм сердца и дыхания. Это часто используют на практике: для пациентов с высокой температурой больше всего подходят палаты окрашенные в лиловый цвет, темная охра улучшает сомочувствие больных с пониженным давлением. Красный цвет повышает аппетит. Более того эффективность лекарст можно повысить изменив цвет таблетки. Больным страдающим депрессивными расстройствами давали одно и то же лекарство в таблетках разного цвета: красного, желтого, зеленого. Самые лучшие результаты принесло лечение таблетками желтого цвета. Цвет используется как носитель закодированной информации например на производстве для обозначенея опасности. Существует общепринятый стандарт на сигнально-опозновательную окраску : зеленый -- вода, красный -- пар, желтый -- газ, оранжевый -- кислоты, фиолетовый -- щелочи, коричневый -- горючие ждкости и масла, синий -- воздух, серый -- прочее. С гигиенических позиций оценка видимого участка спектра проводится по следующим показателям: отдельно оценивается естественное и отдельно искусственно освещение. Естственное освещение оценивается по 2 группам показателей: физические и светотехнические. К первой группе относится : 1. световой коэффициет -- характеризует собой отношение площади застекленной поверхности окон к площади пола. 2. Угол падения -- характеризует собой под каким углом падают лучи. По норме минимальный угол падения должен быть не менее 270. 3. Угол отверстия-- характеризует освещенность небесным светом (должен быть не менее 50). На первых этажах ленинградских домов - колодцев этот угол фактически отсутсвует. 4. Глубина заложения помещения -- это отношение расстояния от верхнего края окна до пола к глубине помещения (расстояние от наружной до внутренней стены). Светотехнические показатели -- это показатели определяемые с помощью прибора -- люксметра. Измеряется абсолютная и относительная освещаемость. Абсолютная освещаемость -- это освещаемость на улице. Коеффициент освещаемости (КЕО) определяется как отношение относительной освещаемости (измеряемой как отношение относительной освещенности (измеренной в помещении) к абсолютной, выраженное в %. Освещенность в помещении измеряется на рабочем месте. Принцип работы люксметра состоит в том что прибор имеет чувствительный фотоэлемент (селеновый - так как селен приближен по чувствительности к глазу человека). Ориентировочную освещаемость на улице можно узнать с помощью гра светового климата. Для оценки исскуственного освещения помещений иеет значение яркость, отсутсвие пульсаций, цветность и др. ИНФРАКРАСНЫЕ ЛУЧИ. Основное биологическое действие этих лучей -- тепловое, причем это действие также зависит от длины волны. Короткие лучи несут больше энергии, поэтому они проникают в глубь, оказывают сильный тепловой эффект. Длинновлонвый участок оказывает свое тепловое действие на поверхности. Это используется в физиотерапии для прогрева участков лежащих на разной глубине. Для того чтобы оценить измерить инфракрасные лучи существует прибор -- актинометр. Измеряется инфракрасная радиация в калориях на см2\мин. Неблагоприятное действие инфракрасных лучей наблюдается в горячих цехах, где они могут приводить к профессиональным заболеваниям -- катаракте (помутнение хрусталика). Причиной катаракты является короткие инфракрасные лучи. Мерой профилактики является использование защитных очков, спецодежды. Особенности воздействия инфракрасных лучей на кожу: возникает ожог -- эритема. Она возникает за счет теплового расширения сосудов. Особенность ее состоит в том, что она имеет различные границы, возникает сразу. В связи с действием инфракрасных лучей могут возникать 2 состояния организма: тпловой удар и солнечный удар. Солнечный удар - результат прямого воздействия солнечных лучей на тело человека в основном с поражением ЦНС. Солнечный удар поражает тех кто проводит много часов подряд под палящими лучами солнца с непокрытой головой. Происходит разогревание мозговых оболчек. Тепловой удар возникает из-за перегревания организма. Он может случатся с тем кто выполняет тяжелую физическую работу в жарком помещении или при жаркой погоде. Особенно характерны были тепловые удары у наших военнослужащих в Афганистане. Помимо актинометров для измерения инфракрасной радиации существуют пираметры различных видов. В основе ох действия -- поглащение черным телом лучистой энергии. Воспринимающий слой состоит из зачерненных и белых пластинок, которые в зависимости от инфракрасной радиации нагреваются по разному. Возникает ток на термобатарее и регистрируется интенсивность инфракрасной радиации. Поскольку интенсивность инфракрасной радиации имеет значение в условиях производства то существуют нормы инфракрасной радиации для горячих цехов, для того чтобы избежать неблагоприятного воздействия на организм человека, например, в трубопрокатном цехе нарма 1,26 - 7,56, выплавка чугуна 12,25. Уровни излучения превышающие 3,7 считаются значительными и требуют проведения профилактических мероприятий -- применение защитных экранов, водянные завесы, спецодежда. УЛЬТРАФИОЛЕТОВЫЕ ЛУЧИ (УФ). Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длиноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества -- гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту -- гистамин и другие биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы -- она возникает несразу. Эритема имеет четко ограниченные границы. Ультрофиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого распада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом является проверкой защитных свойств организма ( больной человек не загорает, загорает медленно). Самый благоприятный загарвозникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длиноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере -- длиноволновые УФЛ. Коротковолновые лучи наиболее подвержаны рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере -- он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых -- остепороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голодания. Для профилактики солнечного голодания используется искусственный загар. Световое голодание -- это длительное отсутсвие УФ спектра. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль. УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды. Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившийся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

www.ronl.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.