Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Устройство и принцип действия разрядников. Роговые разрядники реферат


Реферат Разрядник

скачать

Реферат на тему:

План:

    Введение
  • 1 Применение
  • 2 Устройство и принцип действия
    • 2.1 Электроды
    • 2.2 Дугогасительное устройство
  • 3 Виды разрядников
    • 3.1 Трубчатый разрядник
    • 3.2 Вентильный разрядник
    • 3.3 Магнитовентильный разрядник (РВМГ)
    • 3.4 ОПН
    • 3.5 Cтержневые искровые промежутки
    • 3.6 Разрядник длинно-искровой
  • 4 Обозначение
  • ПримечанияИсточники

Введение

Разря́дник — электрический аппарат, предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях.

1. Применение

В электрических сетях часто возникают импульсные всплески напряжения, вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания, приводящего к разрушительным последствиям.[1] Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники.

2. Устройство и принцип действия

Разрядник состоит из двух электродов и дугогасительного устройства.

2.1. Электроды

Один из электродов крепится на защищаемой цепи, второй электрод заземляется. Пространство между электродами называется искровым промежутком. При определенном значении напряжения между двумя электродами искровой промежуток пробивается, снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

2.2. Дугогасительное устройство

После пробоя импульсом искровой промежуток достаточно ионизирован, чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА, защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.

3. Виды разрядников

3.1. Трубчатый разрядник

Трубчатый разрядник представляет собой дугогасительную трубку из полимеров, способных подвергаться термической деструкции с выделением значительного количества газов и без значительного обугливания — полихлорвинила или оргстекла (первоначально, в начале XX века, это была фибра), с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на небольшом расстоянии от него (расстояние регулируется в зависимости от напряжения защищаемого участка). При возникновении перенапряжения пробиваются оба промежутка: между разрядником и защищаемым участком и между двумя электродами. В результате пробоя в трубке возникает интенсивная газогенерация (преимущественно углекислый газ), и через выхлопное отверстие образуется продольное дутье, достаточное для гашения дуги.

3.2. Вентильный разрядник

Вентильный разрядник РВМК-1150

Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором. В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора — снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством — его сопротивление нелинейно — оно падает с увеличением значения силы тока. Это свойство позволяет пропустить больший ток при меньшем падении напряжения. Благодаря этому свойству вентильные разрядники и получили свое название. Среди прочих преимуществ вентильных разрядников следует отметить бесшумность срабатывания и отсутствие выбросов газа или пламени.

3.3. Магнитовентильный разрядник (РВМГ)

РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов, заключенное в фарфоровый цилиндр.

При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля, создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

3.4. ОПН

Различные ОПН

Ограничитель перенапряжения нелинейный (ОПН) — это элемент защиты без искровых промежутков. Активная часть ОПН состоит из легированного металла, при подаче напряжения он ведет себя как множество последовательно соединенных варисторов. Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. При отсутствии перенапряжений ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После окончания действия перенапряжения на выводах ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояние занимает единицы наносекунд (в отличие от разрядников с искровыми промежутками, у которых это время срабатывания может достигать единиц микросекунд). Кроме высокой скорости срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании.

3.5. Cтержневые искровые промежутки

Cтержневые искровые промежутки также известные как «дугозащитные рога» применяются для защиты от пережога защищеных проводов и перевода однофазного к.з в двухфазное. Для возникновения дуги необходим ток к.з. превышающий 1 кА. Вследствие относительно низкого напряжения (6-10кВ против 20кВ в сетях Финляндии) и высокого сопротивления заземления «дугозащитные рога» в российских сетях не срабатывают.

В настоящее время на ВЛ 6-10 кВ они запрещены «Положением о технической политике» ФСК.

3.6. Разрядник длинно-искровой

Фотография скользящего разряда

Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.

Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются.

РДИ предназначены для защиты воздушных линий электропередачи напряжением 6-10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и прямого удара молнии; рассчитаны для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет.

Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.

4. Обозначение

Spark gap schematic.png

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68.1. Общее обозначение разрядника2. Разрядник трубчатый3. Разрядник вентильный и магнитовентильный4. ОПН

Примечания

  1. Общие принципы выбора варисторов для защиты от импульсных напряжений - www.proton-impuls.ru/stati/opvv.htm

Источники

  • Родштейн Л. А. Электрические аппараты: Учебник для техникумов. — 4-е изд., перераб. и доп. — Л.: Энергоатомиздат. Ленингр. отд-ние, 1981. — 304 с: ил.
  • Защита сетей 6-35 кВ от перенапряжений / Халилов Ф. Х., Евдокунин Г. А., Поляков B.C., Подпоркин Г. В., Таджибаев А. И. — СПб.: Энергоатомиздат. Санкт-Петербургское отделение, 2002.- 272 с.

wreferat.baza-referat.ru

Устройство и принцип действия разрядников

Сущность перенапряжения электрических установок. Внутренние и атмосферные перенапряжения. Принцип действия трубчатых, вентильных разрядников, разрядников постоянного тока. Серия нелинейных ограничителей перенапряжений. Схема длинно-искрового разрядника. Краткое сожержание материала:

Размещено на

5

Размещено на

Устройство и принцип действия разрядников

Содержание

1.Общие сведения

2.Трубчатые разрядники

3.Вентильные разрядники

4.Разрядники постоянного тока

5.Ограничители перенапряжений

6.Длинно-искровые разрядники

1.Общие сведения

При работе электрических установок возникают напряжения, которые могут значительно превышать номинальные значения (перенапряжения). Эти перенапряжения могут пробить электрическую изоляцию элементов оборудования и вывести установку из строя. Чтобы избежать пробоя электрической изоляции, она должна выдерживать эти перенапряжения, однако габаритные размеры оборудования получаются чрезмерно большими, так как перенапряжения могут быть в 6-8 раз больше номинального напряжения. С целью облегчения изоляции возникающие перенапряжения ограничивают с помощью разрядников и изоляцию оборудования выбирают по этому ограниченному значению перенапряжений. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные. Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий), дуговых замыканиях на землю и других процессах. Они характеризуются относительно низкой частотой воздействующего напряжения (до 1000 Гц) и длительностью воздействия до 1 с. Вторые возникают при воздействии атмосферного электричества, имеют импульсный характер воздействующих напряжений и малую длительность (десятки микросекунд). Электрическая прочность изоляции при импульсах зависит от формы импульса, его амплитуды. Зависимость максимального напряжения импульса от времени разряда называется вольт-секундной характеристикой. Для изоляции с неоднородным электрическим полем характерна резко падающая вольт-секундная характеристика. При равномерном поле вольт-секундная характеристика пологая и идет почти параллельно оси времени.

Рис.1. Согласование характеристик разрядника и защищаемого оборудования

перенапряжение разрядник электрическая установка

Основным элементом разрядника является искровой промежуток. Вольт-секундная характеристика этого промежутка (кривая 1 на рис.1) должна лежать ниже вольт-секундной характеристики защищаемого оборудования (кривая 2). При появлении перенапряжения промежуток должен пробиться раньше, чем изоляция защищаемого оборудования. После пробоя линия заземляется через сопротивление разрядника. При этом напряжение на линии определяется током I, проходящим через разрядник, сопротивлениями разрядника и заземления Rз. Чем меньше эти сопротивления, тем эффективнее ограничиваются перенапряжения, т.е. больше разница между возможным (кривая 4) и ограниченным разрядником перенапряжением (кривая 3). Во время пробоя через разрядник протекает импульс тока.

Напряжение на разряднике при протекании импульса тока данного значения и формы называется остающимся напряжением. Чем меньше это напряжение, тем лучше качество разрядника. После прохождения импульса тока искровой промежуток оказывается ионизированным и легко пробивается номинальным фазным напряжением. Возникает КЗ на землю, при котором через разрядник протекает ток промышленной частоты, который называется сопровождающим. Сопровождающий ток может изменяться в широких пределах. Чтобы избежать выключения оборудования от релейной защиты, этот ток должен быть отключен разрядником в возможно малое время (около полупериода промышленной частоты).

К разрядникам предъявляются следующие требования.

1.Вольт-секундная характеристика разрядника должна идти ниже характеристики защищаемого объекта и должна быть пологой.

2.Искровой промежуток разрядника должен иметь определенную гарантированную электрическую прочность при промышленной частоте (50 Гц) и при импульсах.

3.Остающееся напряжение на разряднике, характеризующее его ограничивающую способность, не должно достигать опасных для изоляции оборудования значений.

4.Сопровождающий ток частотой 50 Гц должен отключаться за минимальное время.

5.Разрядник должен допускать большое число срабатываний без осмотра и ремонта.

Рис.2. Обозначение разрядников

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727--68.

1. Общее обозначение разрядника

2. Разрядник трубчатый

3. Разрядник вентильный и магнитовентильный

4. ОПН

Промышленность выпускает вентильные разрядники серий РН, РВН, РНК, РВО, РВС, РВТ, РВМГ, РВРД, РВМ, РВМА, РМВУ и трубчатые.

Разрядник РН - низкого напряжения, предназначен для защиты от атмосферных перенапряжений изоляции электрооборудования напряжением 0,5 кВ.

Разрядник РВН - вентильный, для защиты от атмосферных перенапряжений изоляции электрооборудования.

Разрядник РНК предназначен для защиты устройств контроля изоляции вводов высокого напряжения трансформаторов.

Разрядник РВРД - вентильный, с растягивающейся дугой, предназначен для защиты изоляции электрических машин от атмосферных и кратковременных внутренних перенапряжений.

Разрядник РМВУ - вентильный, магнитный, униполярный, предназначен для защиты от перенапряжений изоляции тягового электрооборудования в установках постоянного тока.

Разрядник РА - серии А, предназначен для защиты от перенапряжений обмоток возбуждения крупных синхронных машин (турбогенераторов, гидрогенераторов и компенсаторов) с номинальным током возбуждения до 3000 А.

Разрядник РВО - вентильный облегченной конструкции; разрядник РВС - вентильный станционный; разрядник РВТ - вентильный, токоограничивающий; разрядник PC - вентильный для защиты электроустановок сельскохозяйственного назначения; разрядники серии РВМ, РВМГ, РВМА, РВМК - вентильные с магнитным гашением дуги, модификации Г и А, комбинированные, предназначены для защиты от атмосферных и кратковременных внутренних перенапряжений (в пределах пропускной способности разрядников) изоляции оборудования электрических станций и подстанций переменного тока номинальным напряжением 15-500 кВ.

Трубчатые разрядники РТВ и РТФ - винипластовые или фибробакелитовые, предназначены для защиты от атмосферных перенапряжений изоляции линий электропередачи и с другими средствами защиты для защиты изоляции электрооборудования станций и подстанций напряжением 3, 6, 10, 35, 110 кВ.

2.Трубчатые разрядники

Рис.3. Трубчатый разрядник

Трубчатый разрядник (рис.3) при нормальной работе установки отделен от линии воздушным промежутком S2. При появлении перенапряжения пробиваются промежутки S1 и S2 и импульсный ток отводится в землю. После прохождения импульсного тока по разряднику течет сопровождающий ток промышленной частоты. В узком канале обоймы (трубки) 1 из газогенерирующего материала (винипласта или фибры) в промежутке S1 между электродами 2 и 3 загорается дуга. Внутри обоймы поднимается давление. Образующиеся газы могут выходить через отверстие в кольцевом электроде 3.При прохождении тока через нуль происходит гашение дуги под действием охлаждения промежутка S1 газами, выходящими из разрядника. В заземленном электроде 4 имеется буферный объем 5, где накапливается потенциальная энергия сжатого газа. При проходе тока через нуль создается газовое дутье из буферного объема, что способствует эффективному гашению дуги.

Предельный отключаемый ток промышленной частоты определяется механической прочностью обоймы и составляет 10 кА для фибробакелитовой обоймы и 20 кА для винипластовой, упрочненной стеклотканью на эпоксидной смоле. Сопровождающий ток частотой 50 Гц определяется местом расположения разрядника и меняется в довольно широком диапазоне в зависимости от режима работы энергосистемы. Поэтому должны быть известны минимальные и максимальные значения тока КЗ в месте установки разрядника.

Минимальный ток разрядника определяется гасящей способностью трубки. Чем меньше диаметр выхлопного канала, чем больше его длина, тем меньше нижний предел отключаемого тока. Однако при больших токах в трубке возникает высокое давление. При недостаточной механической прочности трубки может произойти разрушение разрядника. В настоящее время выпускаются винипластовые разрядники высокой прочности с наибольшим отключаемым током до 20 кА.

Работа трубчатого разрядника сопровождается сильным звуковым эффектом и выбросом газов. Так, зона выброса газов разрядника PTB-I10 имеет вид конуса с диаметром 3,5 и высотой 2,2 м. При размещении разрядников необходимо, чтобы в эту зону не попадали элементы, находящиеся под высоким потенциалом.

Защитная характеристика разрядника в значительной степени зависит от вольт-секундной характеристики искрового промежутка. В трубчатом разряднике промежуток образован стержневыми электродами, имеющими крутую вольт-секундную характеристику из-за большой неоднородности электрического поля. В то же время электрическое поле в защищаемых аппаратах и оборудовании стремятся сделать равномерным с целью более полного использования изоляционных материалов и уменьшения габаритов и массы. При равномерном поле вольт-секундная характеристика получается пологой, практически мало зависящей от времени. В связи с этим трубчатые разрядники, имеющие крутую вольт-секундную характеристику, непригодны для защиты подстанционного оборудования. Обычно с их помощью защищается только линейная изоляция (изоляция, создаваемая подвесны...

www.tnu.in.ua

"Устройство и принцип действия разрядников"

Выдержка из работы

Устройство и принцип действия разрядников

Содержание

1. Общие сведения

2. Трубчатые разрядники

3. Вентильные разрядники

4. Разрядники постоянного тока

5. Ограничители перенапряжений

6. Длинно-искровые разрядники

1. Общие сведения

При работе электрических установок возникают напряжения, которые могут значительно превышать номинальные значения (перенапряжения). Эти перенапряжения могут пробить электрическую изоляцию элементов оборудования и вывести установку из строя. Чтобы избежать пробоя электрической изоляции, она должна выдерживать эти перенапряжения, однако габаритные размеры оборудования получаются чрезмерно большими, так как перенапряжения могут быть в 6−8 раз больше номинального напряжения. С целью облегчения изоляции возникающие перенапряжения ограничивают с помощью разрядников и изоляцию оборудования выбирают по этому ограниченному значению перенапряжений. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные. Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий), дуговых замыканиях на землю и других процессах. Они характеризуются относительно низкой частотой воздействующего напряжения (до 1000 Гц) и длительностью воздействия до 1 с. Вторые возникают при воздействии атмосферного электричества, имеют импульсный характер воздействующих напряжений и малую длительность (десятки микросекунд). Электрическая прочность изоляции при импульсах зависит от формы импульса, его амплитуды. Зависимость максимального напряжения импульса от времени разряда называется вольт-секундной характеристикой. Для изоляции с неоднородным электрическим полем характерна резко падающая вольт-секундная характеристика. При равномерном поле вольт-секундная характеристика пологая и идет почти параллельно оси времени.

Рис. 1. Согласование характеристик разрядника и защищаемого оборудования

перенапряжение разрядник электрическая установка

Основным элементом разрядника является искровой промежуток. Вольт-секундная характеристика этого промежутка (кривая 1 на рис. 1) должна лежать ниже вольт-секундной характеристики защищаемого оборудования (кривая 2). При появлении перенапряжения промежуток должен пробиться раньше, чем изоляция защищаемого оборудования. После пробоя линия заземляется через сопротивление разрядника. При этом напряжение на линии определяется током I, проходящим через разрядник, сопротивлениями разрядника и заземления Rз. Чем меньше эти сопротивления, тем эффективнее ограничиваются перенапряжения, т. е. больше разница между возможным (кривая 4) и ограниченным разрядником перенапряжением (кривая 3). Во время пробоя через разрядник протекает импульс тока.

Напряжение на разряднике при протекании импульса тока данного значения и формы называется остающимся напряжением. Чем меньше это напряжение, тем лучше качество разрядника. После прохождения импульса тока искровой промежуток оказывается ионизированным и легко пробивается номинальным фазным напряжением. Возникает К З на землю, при котором через разрядник протекает ток промышленной частоты, который называется сопровождающим. Сопровождающий ток может изменяться в широких пределах. Чтобы избежать выключения оборудования от релейной защиты, этот ток должен быть отключен разрядником в возможно малое время (около полупериода промышленной частоты).

К разрядникам предъявляются следующие требования.

1. Вольт-секундная характеристика разрядника должна идти ниже характеристики защищаемого объекта и должна быть пологой.

2. Искровой промежуток разрядника должен иметь определенную гарантированную электрическую прочность при промышленной частоте (50 Гц) и при импульсах.

3. Остающееся напряжение на разряднике, характеризующее его ограничивающую способность, не должно достигать опасных для изоляции оборудования значений.

4. Сопровождающий ток частотой 50 Гц должен отключаться за минимальное время.

5. Разрядник должен допускать большое число срабатываний без осмотра и ремонта.

Рис. 2. Обозначение разрядников

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2. 727--68.

1. Общее обозначение разрядника

2. Разрядник трубчатый

3. Разрядник вентильный и магнитовентильный

4. ОПН

Промышленность выпускает вентильные разрядники серий РН, РВН, РНК, РВО, РВС, РВТ, РВМГ, РВРД, РВМ, РВМА, РМВУ и трубчатые.

Разрядник РН — низкого напряжения, предназначен для защиты от атмосферных перенапряжений изоляции электрооборудования напряжением 0,5 кВ.

Разрядник РВН — вентильный, для защиты от атмосферных перенапряжений изоляции электрооборудования.

Разрядник РНК предназначен для защиты устройств контроля изоляции вводов высокого напряжения трансформаторов.

Разрядник РВРД — вентильный, с растягивающейся дугой, предназначен для защиты изоляции электрических машин от атмосферных и кратковременных внутренних перенапряжений.

Разрядник РМВУ — вентильный, магнитный, униполярный, предназначен для защиты от перенапряжений изоляции тягового электрооборудования в установках постоянного тока.

Разрядник РА — серии А, предназначен для защиты от перенапряжений обмоток возбуждения крупных синхронных машин (турбогенераторов, гидрогенераторов и компенсаторов) с номинальным током возбуждения до 3000 А.

Разрядник РВО — вентильный облегченной конструкции; разрядник РВС — вентильный станционный; разрядник РВТ — вентильный, токоограничивающий; разрядник PC — вентильный для защиты электроустановок сельскохозяйственного назначения; разрядники серии РВМ, РВМГ, РВМА, РВМК — вентильные с магнитным гашением дуги, модификации Г и А, комбинированные, предназначены для защиты от атмосферных и кратковременных внутренних перенапряжений (в пределах пропускной способности разрядников) изоляции оборудования электрических станций и подстанций переменного тока номинальным напряжением 15−500 кВ.

Трубчатые разрядники РТВ и РТФ — винипластовые или фибробакелитовые, предназначены для защиты от атмосферных перенапряжений изоляции линий электропередачи и с другими средствами защиты для защиты изоляции электрооборудования станций и подстанций напряжением 3, 6, 10, 35, 110 кВ.

2. Трубчатые разрядники

Рис. 3. Трубчатый разрядник

Трубчатый разрядник (рис. 3) при нормальной работе установки отделен от линии воздушным промежутком S2. При появлении перенапряжения пробиваются промежутки S1 и S2 и импульсный ток отводится в землю. После прохождения импульсного тока по разряднику течет сопровождающий ток промышленной частоты. В узком канале обоймы (трубки) 1 из газогенерирующего материала (винипласта или фибры) в промежутке S1 между электродами 2 и 3 загорается дуга. Внутри обоймы поднимается давление. Образующиеся газы могут выходить через отверстие в кольцевом электроде 3. При прохождении тока через нуль происходит гашение дуги под действием охлаждения промежутка S1 газами, выходящими из разрядника. В заземленном электроде 4 имеется буферный объем 5, где накапливается потенциальная энергия сжатого газа. При проходе тока через нуль создается газовое дутье из буферного объема, что способствует эффективному гашению дуги.

Предельный отключаемый ток промышленной частоты определяется механической прочностью обоймы и составляет 10 кА для фибробакелитовой обоймы и 20 кА для винипластовой, упрочненной стеклотканью на эпоксидной смоле. Сопровождающий ток частотой 50 Гц определяется местом расположения разрядника и меняется в довольно широком диапазоне в зависимости от режима работы энергосистемы. Поэтому должны быть известны минимальные и максимальные значения тока КЗ в месте установки разрядника.

Минимальный ток разрядника определяется гасящей способностью трубки. Чем меньше диаметр выхлопного канала, чем больше его длина, тем меньше нижний предел отключаемого тока. Однако при больших токах в трубке возникает высокое давление. При недостаточной механической прочности трубки может произойти разрушение разрядника. В настоящее время выпускаются винипластовые разрядники высокой прочности с наибольшим отключаемым током до 20 кА.

Работа трубчатого разрядника сопровождается сильным звуковым эффектом и выбросом газов. Так, зона выброса газов разрядника PTB-I10 имеет вид конуса с диаметром 3,5 и высотой 2,2 м. При размещении разрядников необходимо, чтобы в эту зону не попадали элементы, находящиеся под высоким потенциалом.

Защитная характеристика разрядника в значительной степени зависит от вольт-секундной характеристики искрового промежутка. В трубчатом разряднике промежуток образован стержневыми электродами, имеющими крутую вольт-секундную характеристику из-за большой неоднородности электрического поля. В то же время электрическое поле в защищаемых аппаратах и оборудовании стремятся сделать равномерным с целью более полного использования изоляционных материалов и уменьшения габаритов и массы. При равномерном поле вольт-секундная характеристика получается пологой, практически мало зависящей от времени. В связи с этим трубчатые разрядники, имеющие крутую вольт-секундную характеристику, непригодны для защиты подстанционного оборудования. Обычно с их помощью защищается только линейная изоляция (изоляция, создаваемая подвесными изоляторами). При выборе трубчатого разрядника необходимо рассчитать возможный минимальный и максимальный ток КЗ в месте установки и по этим токам выбрать соответствующий разрядник. Номинальное напряжение разрядника должно соответствовать номинальному напряжению сети. Размеры внутреннего S1 и внешнего S2 промежутков выбираются по специальным таблицам.

3. Вентильные разрядники

Рис. 4. Вентильный разрядник (а) и его искровые промежутки в увеличенном масштабе (б)

Разрядник типа PBC-1O (разрядник вилитовый станционный на 10 кВ) показан на рис. 4, а. Основными элементами являются вилитовые кольца 1, искровые промежутки 2 и рабочие резисторы 3. Эти элементы расположены внутри фарфорового кожуха 4, который с торцов имеет специальные фланцы 5 для крепления и присоединения разрядника. Рабочие резисторы 3 изменяют свои характеристики при наличии влаги. Кроме того, влага, оседая на стенках и деталях внутри разрядника, ухудшает его изоляцию и создает возможность перекрытия. Для исключения проникновения влаги кожух разрядника герметизируется по торцам с помощью пластин 6 и уплотнительных резиновых прокладок 7.

Работа разрядника происходит в следующем порядке. При появлении перенапряжения пробиваются три последовательно включенных блока искровых промежутков 2 (рис. 4, б). Импульс тока при этом через рабочие резисторы замыкается на землю. Возникший сопровождающий ток ограничивается рабочими резисторами, которые создают условия для гашения дуги сопровождающего тока.

После пробоя искровых промежутков напряжение на разряднике

Если сопротивление разрядника Rр определяемое рабочими резисторами, линейное, то напряжение на разряднике растет пропорционально току и может стать выше допустимого для защищаемого оборудования. Для ограничения напряжения Uр сопротивление Rр выполняется нелинейным и с ростом тока уменьшается. Зависимость между напряжением и током в этом случае выражается как

где, А -постоянная, характеризующая напряжение на сопротивлении Rp при токе 1 А; б -показатель нелинейности. Случай, когда б=0, является идеальным, так как напряжение Up не зависит от тока.

Описанные разрядники получили название вентильных, потому что при импульсных токах их сопротивление резко падает, что дает возможность пропустить большой ток при относительно небольшом падении напряжения.

Рис. 5. Вольт-амперная характеристика вилитового резистора

В качестве материала нелинейных резисторов широко применяется вилит. В области больших токов его показатель нелинейности б=0,13−0,2. Типичная вольт-амперная характеристика вилитового резистора приведена на рис. 5, а. При небольших токах сопротивление Rp велико и напряжение линейно растет с ростом тока (область А). При больших токах сопротивление резко уменьшается и напряжение Uр почти не растет (область В).

Основу вилита составляют зерна карборунда SiC с удельным сопротивлением около 10-2 Ом·м. На поверхности карборундовых зерен создается пленка оксида кремния SiO2 толщиной 10-7 м, сопротивление которой зависит от приложенного к ней напряжения. При небольших напряжениях удельное сопротивление пленки составляет 104-106 Ом·м. При увеличении приложенного напряжения сопротивление пленки резко уменьшается, сопротивление определяется в основном зернами карборунда и падение напряжения ограничивается.

Рабочие резисторы изготавливаются в виде дисков диаметром 0,1−0,15 м и высотой (20−60)·10-3 м. С помощью жидкого стекла зерна карборунда прочно связываются между собой.

Вилит очень гигроскопичен. Для защиты от влаги цилиндрическая поверхность дисков покрывается изолирующей обмазкой. Торцевые поверхности являются контактными и металлизируются.

Обычно несколько рабочих резисторов в виде дисков соединяются последовательно (на рис. 3, а изображено 10 дисков). При наличии n дисков остающееся напряжение

Для уменьшения остающегося напряжения число дисков n должно быть как можно меньше.

При прохождении тока температура дисков повышается. При протекании импульса тока большой амплитуды, но малой длительности (десятки микросекунд) резисторы не успевают нагреваться до высокой температуры. При длительном протекании даже небольших токов промышленной частоты (один полупериод равен 10 мс) температура может превысить допустимое значение, диски теряют свои вентильные свойства, и разрядник выходит из строя.

Предельно допустимая амплитуда импульса тока для диска диаметром 100 мм равна 10 кА при длительности импульса 40 мкс. Допустимая амплитуда прямоугольного импульса с длительностью 2000 мкс не превышает 150 А. Такие токи диск без повреждения пропускает 20−30 раз.

После прохождения импульсного тока через разрядник начинает протекать сопровождающий ток, представляющий собой ток промышленной частоты. По мере приближения тока к нулевому значению сопротивление вилита резко увеличивается, что ведет к искажению синусоидальной формы тока. Увеличение сопротивления цепи ведет к уменьшению тока и угла сдвига фаз ц между током и напряжением (ц-> 0). На рис. 5, б показаны кривые токов в рабочем резисторе. Здесь 1 -напряжение источника 50 Гц; 2 -кривая тока цепи, определяемого индуктивным сопротивлением Х; 3 -кривая тока, определяемого рабочим резистором (Rр> >X). Из-за нелинейности резистора Rp уменьшается возвращающееся напряжение (напряжение промышленной частоты). Уменьшение скорости подхода тока к нулю уменьшает мощность дуги в области нулевого значения тока. Все это облегчает процесс гашения дуги, горящей между электродами разрядного промежутка. Благодаря применению латунных электродов в искровых промежутках после прохода тока через нуль около каждого катода образуется промежуток, электрическая прочность которого 1,5 кВ. Это обеспечивает гашение сопровождающего тока при первом прохождении тока через нуль и позволяет погасить дугу в искровых промежутках без применения специальных дугогасительных устройств.

Устройство искрового промежутка вентильного разрядника ясно из рис. 4, б. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристику. Расстояние между электродами принимается (0,5−1)·10-3 м.

Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка. Так как диэлектрическая проницаемость воздуха значительно меньше, чем у входящей в состав миканита слюды, то в приэлектродном объеме воздуха возникают высокие градиенты электрического поля, вызывающие его начальную ионизацию. Образующиеся электроны приводят к быстрому формированию разряда в центре искрового промежутка.

Искровые промежутки последовательно соединяются, образуя блок (см. рис. 4, б). Обычно разрядник имеет несколько таких блоков. Результирующая вольт-секундная характеристика последовательно соединенных промежутков достаточно пологая.

Экспериментально установлено, что одиночный искровой промежуток способен отключить сопровождающий ток с амплитудой 80--100 А при действующем значении напряжения 1--1,5 кВ. Число единичных промежутков выбирается исходя из этого напряжения. Количество дисков рабочего резистора должно быть таким, чтобы максимальное значение тока не превысило 80--100 А. При этом гашение дуги обеспечивается за один по л у пери од.

Для обеспечения равномерной нагрузки при промышленной частоте промежутки шунтируются нелинейными резисторами 1 (рис. 4). Термическая стойкость дисков рассчитана на пропускание сопровождающего тока в течение одного-двух полупериодов.

Внутренние перенапряжения имеют низкочастотный характер и могут длиться до 1 с. Вследствие малой термической стойкости вилит не может быть использован для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений используется аналогичный вилиту материал тервит, обладающий большой термической стойкостью и повышенным показателем нелинейности б=0,15- 0,29.

Рис. 6. Комбинированный разрядник с тервитовыми резисторами

Тервитовые диски используются в комбинированных разрядниках (рис. 6, а), предназначенных для защиты как от внутренних (коммутационных), так и от внешних (атмосферных) перенапряжений. При внутренних перенапряжениях работают оба нелинейных резистора НР1 и НР2 (кривая 1 иа рис. 6, б). При атмосферных перенапряжениях из-за большого тока напряжение на НР2 пробивает промежуток ИП2 и напряжение на защищаемой линии снижается (кривая 2).

Вентильные разрядники работают бесшумно. Число срабатываний фиксируется специальным регистратором, который включается между нижним выводом разрядника и заземлением. Наиболее надежны электромагнитные регистраторы, якорь которых при прохождении импульсного тока воздействует на храповой механизм счетного устройства.

С помощью искровых промежутков, показанных на рис. 4, б невозможно отключение токов 200--250 А. В этом случае для гашения дуги применяются камеры магнитного дутья с постоянным магнитом. Дуга, возникающая в искровом промежутке, под воздействием магнитного поля загоняется в узкую щель с керамическими станками. На этом принципе созданы разрядники на напряжение до 500 кВ. Увеличение диаметра дисков до 150 мм позволяет поднять их термическую стойкость. В результате комбинированные магнитно-вентильные разрядники позволяют ограничивать как внутренние, так и атмосферные перенапряжения.

Основные характеристики вентильного разрядника:

1. Напряжение гашения Uгаш — наибольшее приложенное к разряднику напряжение промышленной частоты, при котором надежно обрывается сопровождающий ток. Это напряжение определяется свойствами разрядника. Напряжение промышленной частоты, прикладываемое к разряднику, зависит от параметров схемы. Если при КЗ на землю одной фазы на свободных фазах появляется перенапряжение, то напряжение гашения, прикладываемое к разряднику, определяется уравнением

где Кз — коэффициент, зависящий от способа заземления нейтрали; Uном — номинальное линейное напряжение сети. Для установок с заземленной нейтралью Кз=0,8, для изолированной нейтрали Кз = l, l.

2. Ток гашения Iгаш, под которым понимается сопровождающий ток, соответствующий напряжению гашения Uгаш.

3. Дугогасящее действие искрового промежутка характеризуется коэффициентом

где Uпр — напряжение пробоя частотой 50 Гц искрового промежутка.

4. Защитное действие нелинейного резистора характеризуется коэффициентом защиты

где Uост — напряжение на разряднике при импульсном токе 5--14 кА. Это напряжение должно быть на 20--25% ниже разрядного напряжения защищаемой изоляции.

4. Разрядники постоянного тока

Рис. 7. Разрядник постоянного тока

Для защиты установок от перенапряжений постоянного тока могут быть применены вентильные разрядники. Однако гашение дуги постоянного тока значительно сложнее, чем переменного. Для использования околоэлектродного падения напряжения требуется очень большое число искровых промежутков, так как на каждой паре электродов напряжение не должно превышать 20--30 В.

Для гашения дуги целесообразно использовать магнитное дутье с помощью постоянных магнитов. Возникающая при этом электродинамическая сила с большой скоростью перемещает дугу в узкой щели из дугостойкого изоляционного материала. В результате интенсивного охлаждения дуги ее сопротивление увеличивается и ток прекращается.

Вентильный разрядник для сети с напряжением 3 кВ постоянного тока показан на рис. 7. Рабочий резистор 1 состоит из двух вилитовых дисков, соединенных с двумя искровыми промежутками 2 с магнитным гашением дуги. Надежное контактирование промежутков и дисков достигается с помощью пружины 3, одновременно являющейся токоподводящим элементом. Основные элементы разрядника располагаются в фарфоровом кожухе 6, который закрыт снизу крышкой 7. Герметизация разрядника осуществляется крышкой 4 с резиновым уплотнением 5.

5. Ограничители перенапряжений

На основе оксида цинка, имеющего резко выраженную нелинейность вольт-амперной характеристики, разработана серия нелинейных ограничителей перенапряжений (ОПН) на номинальное напряжение 110--500 кВ.

ОПН представляет собой нелинейный резистор с высоким коэффициентом нелинейности б=0,04 (против 0,1 --0,2 для вилита). Он включается параллельно защищаемому объекту (между потенциальным выводом и землей) без разрядных промежутков. Благодаря высокой нелинейности при номинальном фазном напряжении через ОПН протекает ничтожный ток 1 мА. При увеличении напряжения сопротивление ОПН резко уменьшается, ток, протекающий через него, растет. При напряжении 2,2Uф через ОПН протекает ток 104 А. После прохождения импульса напряжения ток в цепи ОПН определяется фазным напряжением сети.

Рис. 8. Вольт-амперная характеристика ограничителя ОПН-500

ОПН ограничивают коммутационные перенапряжения до уровня 1,8Uф и атмосферные перенапряжения до (2−2,4)Uф. Из вольт-амперной характеристики ОПН-500 (рис. 8) видно, что при снижении перенапряжений с 2Uф до Uф ток, протекающий через резисторы, уменьшается в 106 раз. Сопровождающий ток, протекающий после срабатывания аппарата, невелик (миллиамперы), так же как и невелика мощность, выделяемая в резисторах. Это позволяет отказаться от последовательного включения нескольких искровых промежутков и дает возможность присоединять ОПН непосредственно к защищаемому оборудованию, что значительно повышает надежность работы.

Высокая нелинейность резисторов ОПН (для области больших токов б?0,04) позволяет значительно снизить перенапряжения и уменьшить габариты оборудования, особенно при напряжении 750 и 1150 кВ. Габаритные размеры и масса ОПН намного меньше, чем у обычных вентильных разрядников того же класса напряжения.

6. Длинно-искровые разрядники

Авторы идеи РДИ Подпоркин Георгий Викторович, доктор технических наук, профессор Политехнического Университета Санкт -- Петербурга, Senior Member IEEE, и Сиваев Александр Дмитриевич, кандидат технических наук, начали первые эксперименты по разработке длинно -- искровых разрядников ещё в 1989 году, а в 1992 было получено авторское свидетельство.

Рис. 9. Схема длинно-искрового разрядника

Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.

Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются.

Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.

Разрядник длинно-искровой петлевого типа (РДИП)

РДИП-10 предназначен для защиты воздушных линий электропередачи напряжением 6−10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и рассчитан для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет.

Разрядник длинно-искровой модульный (РДИМ)

РДИМ предназначен для защиты от прямых ударов молнии и индуктированных грозовых перенапряжений воздушных линий электропередачи (ВЛ) и подходов к подстанциям напряжением 6, 10 кВ трехфазного переменного тока с неизолированными и защищенными проводами.

РДИМ обладает наилучшими вольт-секундными характеристиками, именно поэтому его целесообразно применять для защиты участков линии, подверженных прямым ударам молнии, а также для защиты подходов к подстанциям ВЛ.

РДИМ состоит из двух отрезков кабеля с корделем, выполненным из резистивного материала. Отрезки кабеля сложены между собой так, что образуются три разрядных модуля 1, 2, 3.

Показать Свернуть

gugn.ru

Разрядники - Разрядники Реферат.docx

Разрядникискачать (2391.2 kb.)

Доступные файлы (1):

содержание

Разрядники Реферат.docx

Реклама MarketGid: Содержание
1.Общие сведения 3
2.Трубчатые разрядники 6
3.Вентильные разрядники 8
4.Разрядники постоянного тока 13
5.Ограничители перенапряжений 14
6.Длинно-искровые разрядники 15

1.Общие сведения

При работе электрических установок возникают напря

жения, которые могут значительно превышать номинальные значения (перенапряжения). Эти перенапряжения могут пробить электрическую изоляцию элементов оборудования и вывести установку из строя. Чтобы избежать пробоя элек

трической изоляции, она должна выдерживать эти перена

пряжения, однако габаритные размеры оборудования полу

чаются чрезмерно большими, так как перенапряжения мо

гут быть в 6-8 раз больше номинального напряжения. С целью облегчения изоляции возникающие перенапряже

ния ограничивают с помощью разрядников и изоляцию обо

рудования выбирают по этому ограниченному значению перенапряжений. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные. Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий), дуговых замыканиях на землю и других процессах. Они ха

рактеризуются относительно низкой частотой воздействую

щего напряжения (до 1000 Гц) и длительностью воздейст

вия до 1 с. Вторые возникают при воздействии ат

мосферного электричества, имеют импульсный характер воздействующих напряжений и малую длительность (де

сятки микросекунд). Электрическая прочность изоляции при импульсах зависит от формы импульса, его амплитуды. Зависимость максимального напряжения импульса от вре

мени разряда называется вольт-секундной характеристикой. Для изоляции с неоднородным электрическим полем ха

рактерна резко падающая вольт-секундная характеристика. При равномерном поле вольт-секунд

ная характеристика пологая и идет почти параллельно оси вре

мени.Рис.1. Согласование ха

рактеристик разрядника и защищаемого оборудованияОсновным элементом разряд

ника является искровой про

межуток. Вольт-секундная характеристика этого промежутка (кривая 1 на рис.1) должна лежать ниже вольт-секундной характеристики защищаемого обо

рудования (кривая 2). При появ

лении перенапряжения промежуток должен пробиться раньше, чем изоляция защищаемого оборудования. После пробоя линия заземляется через соп

ротивление разрядника. При этом напряжение на линии оп

ределяется током I, проходящим через разрядник, сопро

тивлениями разрядника и заземления Rз. Чем меньше эти сопротивления, тем эффективнее ограничиваются перена

пряжения, т.е. больше разница между возможным (кри

вая 4) и ограниченным разрядником перенапряжением (кривая 3). Во время пробоя через разрядник протекает импульс тока.

Напряжение на разряднике при протекании импульса тока данного значения и формы называется остающим

ся напряжением. Чем меньше это напряжение, тем лучше качество разрядника. После прохождения импульса тока искровой промежу

ток оказывается ионизированным и легко пробивается но

минальным фазным напряжением. Возникает КЗ на землю, при котором через разрядник протекает ток промышленной частоты, который называется сопровождающим. Сопровождающий ток может изменяться в широких пре

делах. Чтобы избежать выключения оборудования от релейной защиты, этот ток должен быть отключен разрядником в воз

можно малое время (около полупериода промышленной частоты).

К разрядникам предъявляются следующие требования.

1.Вольт-секундная характеристика разрядника должна идти ниже характеристики защищаемого объекта и долж

на быть пологой.

2.Искровой промежуток разрядника должен иметь опре

деленную гарантированную электрическую прочность при промышленной частоте (50 Гц) и при импульсах.

3.Остающееся напряжение на разряднике, характери

зующее его ограничивающую способность, не должно до

стигать опасных для изоляции оборудования значений.

4.Сопровождающий ток частотой 50 Гц должен отклю

чаться за минимальное время.

5.Разрядник должен допускать большое число сраба

тываний без осмотра и ремонта.

Рис.2. Обозначение разрядниковНа электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68.

1. Общее обозначение разрядника

2. Разрядник трубчатый

3. Разрядник вентильный и магнитовентильный

4. ОПН

Промышлен

ность выпускает вентильные разрядники се

рий РН, РВН, РНК, РВО, РВС, РВТ, РВМГ, РВРД, РВМ, РВМА, РМВУ и трубчатые.

Разрядник РН - низкого напряжения, предназначен для защиты от атмосферных перенапряжений изоляции электрооборудо

вания напряжением 0,5 кВ.

Разрядник ^ - вентильный, для за

щиты от атмосферных перенапряжений изо

ляции электрооборудования.

Разрядник РНК предназначен для за

щиты устройств контроля изоляции вводов высокого напряжения трансформаторов.

Разрядник РВРД - вентильный, с растя

гивающейся дугой, предназначен для за

щиты изоляции электрических машин от ат

мосферных и кратковременных внутренних перенапряжений.

Разрядник РМВУ - вентильный, маг

нитный, униполярный, предназначен для за

щиты от перенапряжений изоляции тягового электрооборудования в установках постоян

ного тока.

Разрядник РА - серии А, предназначен для защиты от перенапряжений обмоток возбуждения крупных синхронных машин (турбогенераторов, гидрогенераторов и ком

пенсаторов) с номинальным током возбу

ждения до 3000 А.

Разрядник ^ - вентильный облегчен

ной конструкции; разрядник РВС - вен

тильный станционный; разрядник РВТ - вентильный, токоограничивающий; разряд

ник PC - вентильный для защиты электроу

становок сельскохозяйственного назначения; разрядники серии РВМ, РВМГ, РВМА, РВМК - вентильные с магнитным гашением дуги, модификации Г и А, комби

нированные, предназначены для защиты от атмосферных и кратковременных внутренних перенапряжений (в пределах пропускной спо

собности разрядников) изоляции оборудова

ния электрических станций и подстанций переменного тока номинальным напряже

нием 15-500 кВ.

Трубчатые разрядники РТВ и РТФ - винипластовые или фибробакелитовые, предназначены для защиты от атмосферных перенапряжений изоляции ли

ний электропередачи и с другими

средствами защиты для защиты изоляции электрообору

дования станций и подстанций напряжением 3, 6, 10, 35, 110 кВ.

^

Рис.3. Трубчатый разрядник

Трубчатый разрядник (рис.3) при нормальной работе установки отделен от линии воздушным промежутком S2. При появлении перена

пряжения пробиваются промежут

ки S1 и S2 и импульсный ток от

водится в землю. После прохож

дения импульсного тока по разряднику течет сопровождающий ток промышленной частоты. В уз

ком канале обоймы (трубки) 1 из газогенерирующего материала (винипласта или фибры) в проме

жутке S1 между электродами 2 и 3 загорается дуга. Внутри обой

мы поднимается давление. Образующиеся газы могут выходить через отверстие в кольцевом электроде 3.При прохождении тока через нуль происходит гашение дуги под действием охлаждения промежутка S1 газами, выходящими из разряд

ника. В заземленном электроде 4 имеется буферный объем 5, где накап

ливается потенциальная энергия сжатого газа. При проходе тока через нуль создается газовое дутье из буферного объема, что способствует эффективному гашению дуги.

Предельный отключаемый ток промышленной частоты определяет

ся механической прочностью обоймы и составляет 10 кА для фибробакелитовой обоймы и 20 кА для винипластовой, упрочненной стеклотка

нью на эпоксидной смоле. Сопровождающий ток частотой 50 Гц опре

деляется местом расположения разрядника и меняется в довольно широком диапазоне в зависимости от режима работы энергосистемы. Поэтому должны быть известны минимальные и максимальные значе

ния тока КЗ в месте установки разрядника.

Минимальный ток разрядника определяется гасящей способностью трубки. Чем меньше диаметр выхлопного канала, чем больше его длина, тем меньше нижний предел отключаемого тока. Однако при больших токах в трубке возникает высокое давление. При недостаточной механической прочности трубки может произойти разрушение разрядника. В настоящее время выпускаются винипластовые разрядники высокой прочности с наибольшим отключаемым током до 20 кА.

Работа трубчатого разрядника сопровождается сильным звуковым эффектом и выбросом газов. Так, зона выброса газов разрядника PTB-I10 имеет вид конуса с диаметром 3,5 и высотой 2,2 м. При раз

мещении разрядников необходимо, чтобы в эту зону не попадали эле

менты, находящиеся под высоким потенциалом.

Защитная характеристика разрядника в значительной степени за

висит от вольт-секундной характеристики искрового промежутка. В трубчатом разряднике промежуток образован стержневыми электро

дами, имеющими крутую вольт-секундную характеристику из-за боль

шой неоднородности электрического поля. В то же время электрическое поле в защищаемых аппаратах и оборудовании стремятся сделать рав

номерным с целью более полного использования изоляционных матери

алов и уменьшения габаритов и массы. При равномерном поле вольт-секундная характеристика получается пологой, практически мало зави

сящей от времени. В связи с этим трубчатые разрядники, имеющие крутую вольт-секундную характеристику, непригодны для защиты подстанционного оборудования. Обычно с их помощью защищается только линейная изоляция (изоляция, создаваемая подвесными изоляторами). При выборе трубчатого разрядника

необходимо рассчитать возможный минимальный и максимальный ток КЗ в месте установки и по этим то

кам выбрать соответствующий разрядник. Номинальное напряжение разрядника должно соответствовать номинальному напряжению сети. Размеры внутреннего S1 и внешнего S2 промежутков (рис.3) выби

раются по специальным таблицам.

^ Рис.4. Вентильный разрядник (а) и его искровые промежутки в увеличенном масштабе (б)Разрядник типа PBC-1O (разрядник вилитовый станционный на 10 кВ) показан на рис.4,а. Основными элементами являются вилитовые кольца 1, искровые промежутки 2 и рабочие резисторы 3. Эти элементы расположены внутри фарфорового кожуха 4, который с тор

цов имеет специальные фланцы 5 для крепления и присоединения раз

рядника. Рабочие резисторы 3 изменяют свои характеристики при наличии влаги. Кроме того, влага, оседая на стенках и деталях внутри разряд

ника, ухудшает его изоляцию и создает возможность перекрытия. Для исключения проникновения влаги кожух разрядника герметизируется по торцам с помощью пластин 6 и уплотнительных резиновых прокла

док 7.

Работа разрядника происходит в следующем порядке. При появлении перенапряжения пробиваются три последовательно включенных блока искровых промежутков 2 (рис.4,б). Импульс тока при этом через рабочие резисторы замыкается на землю. Возникший сопровождающий ток ограничивается рабочими резисторами, которые создают условия для гашения дуги сопровождающего тока.

После пробоя искровых промежутков напряжение на разряднике

Если сопротивление разрядника Rр определяемое рабочими рези

сторами, линейное, то напряжение на разряднике растет пропорцио

нально току и может стать выше допустимого для защищаемого оборудования. Для ограничения напряжения Uр сопротивление Rр выпол

няется нелинейным и с ростом тока уменьшается. Зависимость между напряжением и током в этом случае выражается как

где ^ -постоянная, характеризующая напряжение на сопротивлении Rp при токе 1 А; α -показатель нелинейности. Случай, когда α=0, яв

ляется идеальным, так как напряжение Up не зависит от тока.

Описанные разрядники получили название вентильных, потому что при импульсных токах их сопротивление резко падает, что дает воз

можность пропустить большой ток при относительно небольшом паде

нии напряжения.Рис.5. Вольт-амперная характеристика вилитового резистораВ качестве материала нелинейных резисторов широко применяется вилит. В области больших токов его показатель нелинейности α=0,13-0,2. Типичная вольт-амперная характеристика вилитового резистора приведена на рис.5,а. При небольших токах сопротивление Rp ве

лико и напряжение линейно растет с ростом тока (область А). При больших токах сопротивление резко уменьшается и напряжение Uр поч

ти не растет (область В).

Основу вилита составляют зерна карборунда SiC с удельным со

противлением около 10-2 Ом·м. На поверхности карборундовых зерен создается пленка оксида кремния SiO2 толщиной 10-7 м, сопротивление которой зависит от приложенного к ней напряжения. При небольших напряжениях удельное сопротивление пленки составляет 104-106 Ом·м. При увеличении приложенного напряжения сопротивление пленки рез

ко уменьшается, сопротивление определяется в основном зернами кар

борунда и падение напряжения ограничивается..

Рабочие резисторы изготавливаются в виде дисков диаметром 0,1-0,15 м и высотой (20-60)·10-3 м. С помощью жидкого стекла зер

на карборунда прочно связываются между собой.

Вилит очень гигроскопичен. Для защиты от влаги цилиндрическая поверхность дисков покрывается изолирующей обмазкой. Торцевые по

верхности являются контактными и металлизируются.

Обычно несколько рабочих резисторов в виде дисков соединяются последовательно (на рис.3,а изображено 10 дисков). При наличии n дисков остающееся напряжение

Для уменьшения остающегося напряжения число дисков n должно быть как можно меньше.

При прохождении тока температура дисков повышается. При про

текании импульса тока большой амплитуды, но малой длительности (десятки микросекунд) резисторы не успевают нагреваться до высокой температуры. При длительном протекании даже небольших токов про

мышленной частоты (один полупериод равен 10 мс) температура мо

жет превысить допустимое значение, диски теряют свои вентильные свойства, и разрядник выходит из строя.

Предельно допустимая амплитуда импульса тока для диска диа

метром 100 мм равна 10 кА при длительности импульса 40 мкс. Допу

стимая амплитуда прямоугольного импульса с длительностью 2000 мкс не превышает 150 А. Такие токи диск без повреждения пропускает 20-30 раз.

После прохождения импульсного тока через разрядник начинает протекать сопровождающий ток, представляющий собой ток промыш

ленной частоты. По мере приближения тока к нулевому значению со

противление вилита резко увеличивается, что ведет к искажению сину

соидальной формы тока. Увеличение сопротивления цепи ведет к умень

шению тока и угла сдвига фаз φ между током и напряжением (φ->0). На рис.5,б показаны кривые токов в рабочем резисторе. Здесь 1 -напряжение источника 50 Гц; 2 -кривая тока цепи, определяемого ин

дуктивным сопротивлением ^ ; 3 -кривая тока, определяемого рабочим резистором (Rр>>X). Из-за нелинейности резистора Rp уменьшается возвращающееся напряжение (напряжение промышленной частоты). Уменьшение скорости подхода тока к нулю уменьшает мощность дуги в области нулевого значения тока. Все это облегчает процесс гашения дуги, горящей между электродами разрядного промежутка. Благодаря применению латунных электродов в искровых промежутках после про

хода тока через нуль около каждого катода образуется промежуток, электрическая прочность которого 1,5 кВ. Это обеспечивает гашение сопровождающего тока при первом прохождении тока через нуль и по

зволяет погасить дугу в искровых промежутках без применения специ

альных дугогасительных устройств.

Устройство искрового промежутка вентильного разрядника ясно из рис.4,б. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристи

ку. Расстояние между электродами принимается (0,5-1)·10-3 м.

Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка. Так как диэлектрическая проницаемость воздуха значительно меньше, чем у входящей в состав миканита слюды, то в приэлектродном объеме воздуха возникают высокие градиенты электрического поля, вызывающие его начальную ионизацию. Образующиеся электро

ны приводят к быстрому формированию разряда в центре искрового промежутка.

Искровые промежутки последовательно соединяются, образуя блок (см. рис.4,б). Обычно разрядник имеет несколько таких блоков. Результирующая вольт-секундная характеристика последовательно со

единенных промежутков достаточно пологая.

Экспериментально установлено, что одиночный искровой промежу

ток способен отключить сопровождающий ток с амплитудой 80—100 А при действующем значении напряжения 1—1,5 кВ. Число единичных

промежутков выбирается исходя из этого напряжения. Количество дис

ков рабочего резистора должно быть таким, чтобы максимальное зна

чение тока не превысило 80—100 А. При этом гашение дуги обеспечи

вается за один по л у пери од.

Для обеспечения равномерной нагрузки при промышленной частоте промежутки шунтируются нелинейными резисторами 1 (рис.4). Тер

мическая стойкость дисков рассчитана на пропускание сопровождающе

го тока в течение одного-двух полупериодов.

Внутренние перенапряжения имеют низкочастотный характер и мо

гут длиться до 1 с. Вследствие малой термической стойкости вилит не может быть использован для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений используется аналогич

ный вилиту материал тервит, обладающий большой термической стой

костью и повышенным показателем нелинейности α=0,15- 0,29.

Рис.6. Комбинированный разрядник с тервитовыми резисторамиТервитовые диски используются в комбинированных разрядниках (рис.6,а), предназначенных для защиты как от внутренних (комму

тационных), так и от внешних (атмосферных) перенапряжений. При внутренних перенапряжениях работают оба нелинейных резистора НР1 и НР2 (кривая 1 иа рис.6,б). При атмосферных перенапряжениях из-за большого тока напряжение на НР2 пробивает промежуток ИП2 и напряжение на защищаемой линии снижается (кривая 2).

Вентильные разрядники работают бесшумно. Число срабатываний фиксируется специальным регистратором, который включается между нижним выводом разрядника и заземлением. Наиболее надежны элект

ромагнитные регистраторы, якорь которых при прохождении импульс

ного тока воздействует на храповой механизм счетного устройства.

С помощью искровых промежутков, показанных на рис. 4,б не

возможно отключение токов 200—250 А. В этом случае для гашения дуги применяются камеры магнитного дутья с постоянным магнитом. Дуга, возникающая в искровом промежутке, под воздействием магнит

ного поля загоняется в узкую щель с керамическими станками. На этом принципе созданы разрядники на напряжение до 500 кВ. Увеличение диаметра дисков до 150 мм позволяет поднять их термическую стой

кость. В результате комбинированные магнитно-вентильные разрядни

ки позволяют ограничивать как внутренние, так и атмосферные перена

пряжения.

^

1.Напряжение гашения Uгаш - наибольшее приложен

ное к разряднику напряжение промышленной частоты, при котором надежно обрывается сопровождающий ток. Это напряжение определяется свойствами разрядника. Напря

жение промышленной частоты, прикладываемое к разряд

нику, зависит от параметров схемы. Если при КЗ на землю одной фазы на свободных фазах появляется перенапря

жение, то напряжение гашения, прикладываемое к разряд

нику, определяется уравнением

где ^ - коэффициент, зависящий от способа заземления нейтрали; Uном - номинальное линейное напряжение сети. Для установок с заземленной нейтралью Кз=0,8, для изо

лированной нейтрали Кз = l,l.

2.Ток гашения Iгаш, под которым понимается сопровож

дающий ток, соответствующий напряжению гашения Uгаш.

3.Дугогасящее действие искрового промежутка харак

теризуется коэффициентом

где Uпр - напряжение пробоя частотой 50 Гц искрового промежутка.4. Защитное действие нелинейного резистора характери

зуется коэффициентом защиты

где Uост - напряжение на разряднике при импульсном то

ке 5—14 кА. Это напряжение должно быть на 20—25 % ниже разрядного напряжения защищаемой изоляции.

^ Рис.7. Разрядник постоян

ного токаДля защиты установок от перенапряжений постоянного тока могут быть применены вентильные разрядники. Однако гашение дуги посто

янного тока значительно сложнее, чем переменного. Для использования околоэлектродного падения напряжения требуется очень большое чис

ло искровых промежутков, так как на каждой паре электродов напря

жение не должно превышать 20—30 В.

Для гашения дуги целесообразно использовать магнитное дутье с помощью постоянных магнитов. Возникающая при этом электродина

мическая сила с большой скоростью перемещает дугу в узкой щели из дугостойкого изоляционного материала. В результате интенсивного ох

лаждения дуги ее сопротивление увеличивается и ток прекращается.

Вентильный разрядник для сети с напряжением 3 кВ постоянного тока показан на рис.7. Рабочий резистор 1 состоит из двух вилитовых дисков, соединенных с дву

мя искровыми промежутками 2 с магнитным гашением дуги. Надежное контактирование промежутков и дисков дости

гается с помощью пружины 3, одновременно являющейся токоподводящим элементом. Основные элементы разрядника располагаются в фарфоровом кожухе 6, который закрыт сни

зу крышкой 7. Герметизация разрядника осуществляется крышкой 4 с резиновым уплот

нением 5.

^

На основе оксида цинка, имеющего резко выраженную нелинейность вольт-амперной характеристики, разработана серия нелинейных ограничителей перенапряжений (ОПН) на номинальное напряжение 110—500 кВ.

ОПН представляет собой нелинейный резистор с высо

ким коэффициентом нелиней

ности α=0,04 (против 0,1 —0,2 для вилита). Он включается параллельно защищаемому объекту (между потенциаль

ным выводом и землей) без разрядных промежутков. Бла

годаря высокой нелинейности при номинальном фазном нап

ряжении через ОПН протекает ничтожный ток 1 мА. При уве

личении напряжения сопротив

ление ОПН резко уменьшает

ся, ток, протекающий через него, растет. При напряжении 2,2Uф через ОПН протекает ток 104 А. После прохождения импульса напряжения ток в цепи ОПН определяется фазным напряжением сети.Рис.8. Вольт-амперная ха

рактеристика ограничителя ОПН-500ОПН ограничивают коммутационные перенапряжения до уровня 1,8Uф и атмосферные перенапряжения до (2-2,4)Uф. Из вольт-амперной характеристики ОПН-500 (рис.8) видно, что при снижении перенапряжений с 2Uф до Uф ток, протекающий через резисторы, уменьшается в 106 раз. Сопровождающий ток, протекающий после срабатыва

ния аппарата, невелик (миллиамперы), так же как и неве

лика мощность, выделяемая в резисторах. Это позволяет отказаться от последовательного включения нескольких искровых промежутков и дает возможность присоединять ОПН непосредственно к защищаемому оборудованию, что значительно повышает надежность работы.

Высокая нелинейность резисторов ОПН (для области больших токов α≈0,04) позволяет значительно снизить пе

ренапряжения и уменьшить габариты оборудования, осо

бенно при напряжении 750 и 1150 кВ.Габаритные размеры и масса ОПН намного меньше, чем у обычных вентильных разрядников того же класса напря

жения.

^

Авторы идеи РДИ Подпоркин Георгий Викторович, доктор технических наук, профессор Политехнического Университета Санкт — Петербурга, Senior Member IEEE, и Сиваев Александр Дмитриевич, кандидат технических наук, начали первые эксперименты по разработке длинно — искровых разрядников ещё в 1989 году, а в 1992 было получено авторское свидетельство.Рис.9. Схема длинно-искрового разрядникаПринцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.

Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются.

Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.^

РДИП-10 предназначен для защиты воздушных линий электропередачи напряжением 6-10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и рассчитан для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет.

Разрядник длинно-искровой модульный (РДИМ)

РДИМ предназначен для защиты от прямых ударов молнии и индуктированных грозовых перенапряжений воздушных линий электропередачи (ВЛ) и подходов к подстанциям напряжением 6, 10 кВ трехфазного переменного тока с неизолированными и защищенными проводами.

РДИМ обладает наилучшими вольт-секундными характеристиками, именно поэтому его целесообразно применять для защиты участков линии, подверженных прямым ударам молнии, а также для защиты подходов к подстанциям ВЛ.

РДИМ состоит из двух отрезков кабеля с корделем, выполненным из резистивного материала. Отрезки кабеля сложены между собой так, что образуются три разрядных модуля 1, 2, 3.

Скачать файл (2391.2 kb.)

gendocs.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.