|
||||||||||||||||||||||||||||||||||||||
|
Курсовая работа: Примерные темы ов по эконометрике. Рефераты по эконометрикеДипломная работа - Примерные темы ов по эконометрикеПримерные темы рефератов по эконометрике. 1. Одномерное нормальное распределение и связанные с ним хи-квадрат распределение, распределения Стьюдента и Снедекора-Фишера, их основные свойства. 2. Статистическое оценивание. Точечные оценки. Линейность, несмещенность, эффективность и состоятельность оценок. Принцип максимального правдоподобия. 3. Статистические выводы и проверка статистических гипотез. Ошибки 1-го и 2-го рода. Уровень доверия и проверка значимости. Интервальные оценки, доверительный интервал. Критерии Неймана-Пирсона, Найквиста-Михайлова, Колмогорова-Смирнова. 4. Разложение суммы квадратов отклонений. Дисперсионный анализ. Степень соответветствия линии регрессии имеющимся данным. Коэффициент детерминации и его свойства. 5. Классическая линейная регрессия для случая одной объясняющей переменной. Статистические характеристики (математическое ожидание, дисперсия и ковариация) оценок параметров. Теорема Гаусса-Маркова. 6. Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия. Доверительные интервалы оценок параметров и проверка гипотез о их значимости. Проверка адекватности регрессии. Прогнозирование по регрессионной модели и его точность. 7. Методология эконометрического исследования на примере линейной регрессии для случая одной объясняющей переменной. Особенности представления результатов регрессионного анализа в одном из основных программных пакетов (например в Excel). 8. Особенности регрессии, проходящей через начало координат (без свободного члена). Влияние изменения масштаба измерения переменных на ккоэффициенты регрессии. 9. Принцип максимального правдоподобия. Сравнение оценок МНК и метода максимального правдоподобия при нормальном распределении ошибок в классической линейной регрессии. 10. Множественная линейная регрессия. Матричная запись эконометрической модели и оценок МНК. Коэффициент множественной детерминации, скорректированный на число степеней свободы. 11. Многомерное нормальное рапре деление и его плотность распределения. Математическое ожидание и ковариационная матрица линейного преобразования многомерного нормально распределенного вектора. Распределение некоторых квадратичных форм от многомерного нормально распределенного вектора. 12. Проверка значимости коэффициентов и адекватности модели в множественной линейной регрессии. Построение доверительных интервале и областей для коэффициентов регрессии. Прогнозирование в множественной линейной регрессии, вероятностные характеристики прогноза. • 13. Функциональные преобразования переменных в линейной регрессионной модели. Лог-линейная регрессия, как модель с постоянной эластичностью. Модель с постоянными темпами роста (полу-логарифмическая модель). Функциональные преобразования при построении кривых Филлипса и Энгеля. Полиномиальная регрессия. 14. Фиктивные (dummy) переменные в множественной линейной регрессии. Проверка структурных изменений и сравнение двух регрессий с помощью фиктивных переменных. Анализ сезонности. Динамизация коэффициентов линейной регрессии. 15. Проверка общей линейной гипотезы о коэффициентах множественной линейной регрессии. Регрессия с ограничениями на параметры. 16. Понятие об автокорреляции остатков. Экономические причины автокорреляции остатков. Тест серий. Статистика Дарбина-Уотсона. Обобщенный метод наименьших квадратов для оценки регрессии при наличии автокорреляции. Процедура Кокрена-Оркутта. Двух-шаговая процедура Дарбина. 17. Регрессионные динамические модели. Авторегрессия и модель с распределенными лагами. Схема Койека. Адаптивные ожидания. 18. Гетероскедастичность и- экономические причины ее наличия. Последствия тетероскедастичности для оценок МНК. Признаки присутствия гетероскедастачности. Тесты Бройша-Пагана, Голфелда-Квандта, Парка, Глейзера, ранговая корреляция по Спирмену. 19. Взвешенный метод наименьших квадратов. Выбор «наилучшей» модели. Ошибка спецификации модели. Пропущешые и излишние переменные. 20. Мультиколлинеарность данные и последствия этого для оценок параметров регрессионной модели. Идеальная и практическая мультиколлинеарность (квазимультиколлинеарность). Показатели степени мультиколлинеарности. Вспомогательные регрессии. Методы-борьбы с мультиколлинеарностью. Литература 1. Айвазян С.А., Мхитарян B.C. Прикладная статистика и основы эконометрики. — М.: ЮНИТИ, 1998. 2. Джонстон Дж. Эконометрические методы: Пер. с англ. — М.: Статистика, 1980. 3. Доугерти К. Введение в эконометрику: Пер. с англ. — М.: Инфра-М, 1997. 4. Дрейпер И., Смит Г. Прикладной регрессионный анализ: Пер. с англ. — Кн. 1, 2. — М.: Финансы и статистика, 1986, 1987. 5. Дубров A.M., Мхитарян B.C., Трошин Л.И. Многомерные статистические методы. — М.: Финансы и статистика, 1998. 6. Магнус Я. Р., Катышев Л. К., Пересецкий А.А. Эконометрика. Начальный курс. — М.: Дело, 2000. 7. Тюрин Ю.Н., Макаров А.А. Статистический анализ динных на компьютерах /Под ред. В.Э. Фигурнова. — М Инфра-М, 1998. 8. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах: Пер. с англ. — М.: ЮНИТИ, 1999. 9. Ферстер Э., Ренц Б. Методы корреляционного и ре грей сионного анализа: Пер. с нем. — М.: Финансы и стати стика,1982. 10. Эконометрика /Под ред. Н.И. Елисеевой. — М.: Финки-сы и статистика, 2001. www.ronl.ru Реферат - Примерные темы ов по эконометрикеПримерные темы рефератов по эконометрике. 1. Одномерное нормальное распределение и связанные с ним хи-квадрат распределение, распределения Стьюдента и Снедекора-Фишера, их основные свойства. 2. Статистическое оценивание. Точечные оценки. Линейность, несмещенность, эффективность и состоятельность оценок. Принцип максимального правдоподобия. 3. Статистические выводы и проверка статистических гипотез. Ошибки 1-го и 2-го рода. Уровень доверия и проверка значимости. Интервальные оценки, доверительный интервал. Критерии Неймана-Пирсона, Найквиста-Михайлова, Колмогорова-Смирнова. 4. Разложение суммы квадратов отклонений. Дисперсионный анализ. Степень соответветствия линии регрессии имеющимся данным. Коэффициент детерминации и его свойства. 5. Классическая линейная регрессия для случая одной объясняющей переменной. Статистические характеристики (математическое ожидание, дисперсия и ковариация) оценок параметров. Теорема Гаусса-Маркова. 6. Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия. Доверительные интервалы оценок параметров и проверка гипотез о их значимости. Проверка адекватности регрессии. Прогнозирование по регрессионной модели и его точность. 7. Методология эконометрического исследования на примере линейной регрессии для случая одной объясняющей переменной. Особенности представления результатов регрессионного анализа в одном из основных программных пакетов (например в Excel). 8. Особенности регрессии, проходящей через начало координат (без свободного члена). Влияние изменения масштаба измерения переменных на ккоэффициенты регрессии. 9. Принцип максимального правдоподобия. Сравнение оценок МНК и метода максимального правдоподобия при нормальном распределении ошибок в классической линейной регрессии. 10. Множественная линейная регрессия. Матричная запись эконометрической модели и оценок МНК. Коэффициент множественной детерминации, скорректированный на число степеней свободы. 11. Многомерное нормальное рапре деление и его плотность распределения. Математическое ожидание и ковариационная матрица линейного преобразования многомерного нормально распределенного вектора. Распределение некоторых квадратичных форм от многомерного нормально распределенного вектора. 12. Проверка значимости коэффициентов и адекватности модели в множественной линейной регрессии. Построение доверительных интервале и областей для коэффициентов регрессии. Прогнозирование в множественной линейной регрессии, вероятностные характеристики прогноза. • 13. Функциональные преобразования переменных в линейной регрессионной модели. Лог-линейная регрессия, как модель с постоянной эластичностью. Модель с постоянными темпами роста (полу-логарифмическая модель). Функциональные преобразования при построении кривых Филлипса и Энгеля. Полиномиальная регрессия. 14. Фиктивные (dummy) переменные в множественной линейной регрессии. Проверка структурных изменений и сравнение двух регрессий с помощью фиктивных переменных. Анализ сезонности. Динамизация коэффициентов линейной регрессии. 15. Проверка общей линейной гипотезы о коэффициентах множественной линейной регрессии. Регрессия с ограничениями на параметры. 16. Понятие об автокорреляции остатков. Экономические причины автокорреляции остатков. Тест серий. Статистика Дарбина-Уотсона. Обобщенный метод наименьших квадратов для оценки регрессии при наличии автокорреляции. Процедура Кокрена-Оркутта. Двух-шаговая процедура Дарбина. 17. Регрессионные динамические модели. Авторегрессия и модель с распределенными лагами. Схема Койека. Адаптивные ожидания. 18. Гетероскедастичность и- экономические причины ее наличия. Последствия тетероскедастичности для оценок МНК. Признаки присутствия гетероскедастачности. Тесты Бройша-Пагана, Голфелда-Квандта, Парка, Глейзера, ранговая корреляция по Спирмену. 19. Взвешенный метод наименьших квадратов. Выбор «наилучшей» модели. Ошибка спецификации модели. Пропущешые и излишние переменные. 20. Мультиколлинеарность данные и последствия этого для оценок параметров регрессионной модели. Идеальная и практическая мультиколлинеарность (квазимультиколлинеарность). Показатели степени мультиколлинеарности. Вспомогательные регрессии. Методы-борьбы с мультиколлинеарностью. Литература 1. Айвазян С.А., Мхитарян B.C. Прикладная статистика и основы эконометрики. — М.: ЮНИТИ, 1998. 2. Джонстон Дж. Эконометрические методы: Пер. с англ. — М.: Статистика, 1980. 3. Доугерти К. Введение в эконометрику: Пер. с англ. — М.: Инфра-М, 1997. 4. Дрейпер И., Смит Г. Прикладной регрессионный анализ: Пер. с англ. — Кн. 1, 2. — М.: Финансы и статистика, 1986, 1987. 5. Дубров A.M., Мхитарян B.C., Трошин Л.И. Многомерные статистические методы. — М.: Финансы и статистика, 1998. 6. Магнус Я. Р., Катышев Л. К., Пересецкий А.А. Эконометрика. Начальный курс. — М.: Дело, 2000. 7. Тюрин Ю.Н., Макаров А.А. Статистический анализ динных на компьютерах /Под ред. В.Э. Фигурнова. — М Инфра-М, 1998. 8. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах: Пер. с англ. — М.: ЮНИТИ, 1999. 9. Ферстер Э., Ренц Б. Методы корреляционного и ре грей сионного анализа: Пер. с нем. — М.: Финансы и стати стика,1982. 10. Эконометрика /Под ред. Н.И. Елисеевой. — М.: Финки-сы и статистика, 2001. www.ronl.ru Курсовая работа - Примерные темы ов по эконометрикеПримерные темы рефератов по эконометрике. 1. Одномерное нормальное распределение и связанные с ним хи-квадрат распределение, распределения Стьюдента и Снедекора-Фишера, их основные свойства. 2. Статистическое оценивание. Точечные оценки. Линейность, несмещенность, эффективность и состоятельность оценок. Принцип максимального правдоподобия. 3. Статистические выводы и проверка статистических гипотез. Ошибки 1-го и 2-го рода. Уровень доверия и проверка значимости. Интервальные оценки, доверительный интервал. Критерии Неймана-Пирсона, Найквиста-Михайлова, Колмогорова-Смирнова. 4. Разложение суммы квадратов отклонений. Дисперсионный анализ. Степень соответветствия линии регрессии имеющимся данным. Коэффициент детерминации и его свойства. 5. Классическая линейная регрессия для случая одной объясняющей переменной. Статистические характеристики (математическое ожидание, дисперсия и ковариация) оценок параметров. Теорема Гаусса-Маркова. 6. Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия. Доверительные интервалы оценок параметров и проверка гипотез о их значимости. Проверка адекватности регрессии. Прогнозирование по регрессионной модели и его точность. 7. Методология эконометрического исследования на примере линейной регрессии для случая одной объясняющей переменной. Особенности представления результатов регрессионного анализа в одном из основных программных пакетов (например в Excel). 8. Особенности регрессии, проходящей через начало координат (без свободного члена). Влияние изменения масштаба измерения переменных на ккоэффициенты регрессии. 9. Принцип максимального правдоподобия. Сравнение оценок МНК и метода максимального правдоподобия при нормальном распределении ошибок в классической линейной регрессии. 10. Множественная линейная регрессия. Матричная запись эконометрической модели и оценок МНК. Коэффициент множественной детерминации, скорректированный на число степеней свободы. 11. Многомерное нормальное рапре деление и его плотность распределения. Математическое ожидание и ковариационная матрица линейного преобразования многомерного нормально распределенного вектора. Распределение некоторых квадратичных форм от многомерного нормально распределенного вектора. 12. Проверка значимости коэффициентов и адекватности модели в множественной линейной регрессии. Построение доверительных интервале и областей для коэффициентов регрессии. Прогнозирование в множественной линейной регрессии, вероятностные характеристики прогноза. • 13. Функциональные преобразования переменных в линейной регрессионной модели. Лог-линейная регрессия, как модель с постоянной эластичностью. Модель с постоянными темпами роста (полу-логарифмическая модель). Функциональные преобразования при построении кривых Филлипса и Энгеля. Полиномиальная регрессия. 14. Фиктивные (dummy) переменные в множественной линейной регрессии. Проверка структурных изменений и сравнение двух регрессий с помощью фиктивных переменных. Анализ сезонности. Динамизация коэффициентов линейной регрессии. 15. Проверка общей линейной гипотезы о коэффициентах множественной линейной регрессии. Регрессия с ограничениями на параметры. 16. Понятие об автокорреляции остатков. Экономические причины автокорреляции остатков. Тест серий. Статистика Дарбина-Уотсона. Обобщенный метод наименьших квадратов для оценки регрессии при наличии автокорреляции. Процедура Кокрена-Оркутта. Двух-шаговая процедура Дарбина. 17. Регрессионные динамические модели. Авторегрессия и модель с распределенными лагами. Схема Койека. Адаптивные ожидания. 18. Гетероскедастичность и- экономические причины ее наличия. Последствия тетероскедастичности для оценок МНК. Признаки присутствия гетероскедастачности. Тесты Бройша-Пагана, Голфелда-Квандта, Парка, Глейзера, ранговая корреляция по Спирмену. 19. Взвешенный метод наименьших квадратов. Выбор «наилучшей» модели. Ошибка спецификации модели. Пропущешые и излишние переменные. 20. Мультиколлинеарность данные и последствия этого для оценок параметров регрессионной модели. Идеальная и практическая мультиколлинеарность (квазимультиколлинеарность). Показатели степени мультиколлинеарности. Вспомогательные регрессии. Методы-борьбы с мультиколлинеарностью. Литература 1. Айвазян С.А., Мхитарян B.C. Прикладная статистика и основы эконометрики. — М.: ЮНИТИ, 1998. 2. Джонстон Дж. Эконометрические методы: Пер. с англ. — М.: Статистика, 1980. 3. Доугерти К. Введение в эконометрику: Пер. с англ. — М.: Инфра-М, 1997. 4. Дрейпер И., Смит Г. Прикладной регрессионный анализ: Пер. с англ. — Кн. 1, 2. — М.: Финансы и статистика, 1986, 1987. 5. Дубров A.M., Мхитарян B.C., Трошин Л.И. Многомерные статистические методы. — М.: Финансы и статистика, 1998. 6. Магнус Я. Р., Катышев Л. К., Пересецкий А.А. Эконометрика. Начальный курс. — М.: Дело, 2000. 7. Тюрин Ю.Н., Макаров А.А. Статистический анализ динных на компьютерах /Под ред. В.Э. Фигурнова. — М Инфра-М, 1998. 8. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах: Пер. с англ. — М.: ЮНИТИ, 1999. 9. Ферстер Э., Ренц Б. Методы корреляционного и ре грей сионного анализа: Пер. с нем. — М.: Финансы и стати стика,1982. 10. Эконометрика /Под ред. Н.И. Елисеевой. — М.: Финки-сы и статистика, 2001. www.ronl.ru |
|
||||||||||||||||||||||||||||||||||||
|
|