Реферат: Сверхпроводящие материалы в электронике. Магнитометр на СКВИДах. Реферат сверхпроводящие материалы


Реферат - Сверхпроводящие материалы в электронике. Магнитометр на СКВИДах

Содержание:

1. Сверхпроводимость. Основные параметры сверхпроводников 2. Эффект Джозефсона 3. Магнитометр 4. Сверхпроводящий материал - соединение Nb3Sn 5. Получение джозефсоновских переходов 6. Список литературы

1. Сверхпроводимость. Основные параметры сверхпроводников.

Явление сверхпроводимости состоит в том, что при некоторой температуре, близкой к абсолютному нулю, электросопротивление в некоторых материалах исчезает. Эта температура называется критической температурой перехода в сверхпроводящее состояние. Сверхпроводимость обнаружена более чем у 20 металлов и большого количества соединений и сплавов (Тк ? 23К), а также у керамик (Тк > 77,4К – высокотемпературные сверхпроводники.) Сверхпроводимость материалов с Тк ? 23К объясняется наличием в веществе пар электронов, обладающих энергией Ферми, противоположными спинами и импульсами (пары Купера), которые образуются благодаря взаимодействию электронов с колебаниями ионов решетки – фононами. Все пары находятся, с точки зрения квантовой механики, в одном состоянии (они не подчиняются статистике Ферми т.к. имеют целочисленный спин) и согласованы между собой по всем физическим параметрам, то есть образуют единый сверхпроводящий конденсат. Сверхпроводимость керамик, возможно, объясняется взаимодействием электронов с каким-либо другими квазичастицами. По взаимодействию с магнитным полем сверхпроводники делятся на две основные группы: сверхпроводники I и II рода. Сверхпроводники первого рода при помещении их в магнитное поле «выталкивают» последнее так, что индукция внутри сверхпроводника равна нулю (эффект Мейсснера). Напряжонность магнитного поля, при котором разрушается сверхпроводимость и поле проникает внутрь проводника, называется критическим магнитным полем Нк. У сверхпроводников второго рода существует промежуток напряженности магнитного поля Нк2 > Н > Нк1, где индукция внутри сверхпроводника меньше индукции проводника в нормальном состоянии. Нк1 – нижнее критическое поле, Нк2 – верхнее критическое поле. Н Нк2 – сверхпроводимость нарушается. Через идеальные сверхпроводники второго рода можно пропускать ток силой: (критический ток). Объясняется это тем, что поле, создаваемое током, превысит Нк1, вихревые нити, зарождающиеся на поверхности образца, под действием сил Лоренца, двигаются внутрь образца с выделением тепла, что приводит к потере сверхпроводимости.

Tk, Нк1, Нк2, некоторых металлов и соединений: Вещество Тк К ?0Нк1 Тл ?0Нк2 Тл Pb 7.2 0.55 Nb 9.2 0.13 0.27 Te 7.8 V 5.3 Ta 4.4 Sn 3.7 V3Si 17.1 23.4 Nb3Sn 18.2 24.5 Nb3Al 18.9 Nb3Ga 20.3 34.0 Nb3Ge 23.0 37.0 (Y0.6Ba0.4)2CuO4 96 160?20 Y1.2Ba0.3CuO4-8 102 18 при 77К

2. Эффект Джозефсона. 3. Если два сверхпроводника соединить друг с другом «слабым» контактом, например тончайшей полоской из диэлектрика, через него пойдет туннельный сверхпроводящий ток, т.е. произойдет туннелирование сверхпроводящих куперовских пар. Благодаря этому обе системы сверхпроводников связаны между собой. Связь эта очень слаба, т.к. мала вероятность туннелирования пар даже через очень тонкий слой изолятора. Наличие связи приводит к тому, что в следствии процесса обмена парами состояние обеих систем изменяется во времени. При этом интенсивность и направление обмена определяется разностью фаз волновых функций между системами. Если разность фаз ?=?1 - ?2, тогда из квантовой механики следует . Энергии в точках по одну и другую сторону барьера Е1 и Е2 могут отличаться только если между этими точками существует разность потенциалов Us. В этом случае (1). Если сверхпроводники связаны между собой с одной стороны и разделены слабым контактом с другой, то напряжение на контакте можно вызвать, меняя магнитный поток внутри образовавшегося контура. При этом . Учитывая, что квант потока и поток Ф через контур может быть лишь nФ0, где n=0,?1,?2,?3,... Джозефсон предсказал, что (2) Где: Is – ток через контакт Ic – максимальный постоянный джозефсоновский ток через контакт ? -- разность фаз. Из (1), (2) следует . Поскольку на фазовое соотношение между системами влеяет магнитное поле, то сверхпроводящим током контура можно управлять магнитным полем. В большинстве случаев используется не один джозефсоновский контакт, а контур из нескольких контактов, включенных параллельно, так называемый сверхпроводящий квантовый интерферометр Джозефсона (СКВИД). Величина магнитного поля, необходимого для управления током, зависит от площади контура и может бать очень мала. Поэтому СКВИДы применяют там, где нужна большая чувствительность. Известны несколько типов джозефсоновских контактов, но наиболее распространены следующие:

изолятор ? 1нм сверхпроводники

туннельный переход переход типа «мостик»

3. Магнитометр.

Магнитометр - прибор на основе джозевсоновских переходов, применяющийся для измерения магнитного поля и градиента магнитного поля. В магнитометрах используются СКВИДы 2х типов: на постоянном токе и переменном. Рассмотрим магнитометр на СКВДах постоянного тока.

I

A B U

переходы джозефсоновские

Если к такому кольцу приложить поле, то оно будет наводить в кольце циркулирующий сверхпроводящий ток. Он будет вычитаться из постоянного тока I в А и складываться в В. Тогда максимальный ток кольца зависит от магнитного потока Ф и равен: Ic – ток кольца, Ф0 – квант потока, Ф – захваченный поток. При этом R – сопротивление перехода, l – индуктивность кольца. ?U – достигает нескольких микровольт и может быть измерена обычными электронными приборами.

I Imax nФ0

(n+1/2)Ф0

U n

Рисунок слева: ВАХ сверхпроводящего кольца с 2-мя джозевсоновскими переходами. Рисунок справа: Зависимость Imax от внешнего потока n – число квантов потока пронизывающих контур.

Техническая реализация магнитометров на СКВИДе на постоянном токе с 2-мя тунельными переходами.

Кварцевая трубка

Полоска из Pb

Платиновый электрод

Pb

Джозефсоновские переходы

Платиновый электрод

Контур СКВИДа образован цилиндрической пленкой из Pb нанесенной на кварцевый цилиндр длинной 18 мм с наружным диаметром 8мм, а внутренним 6мм. Описанная здесь конструкция яв- 2 мм ляется датчиком включенным в электри- ческую схему, обеспечивающую изме- рение и индикацию отклика датчика 1.5мм на изменение внешнего магнитного поля. Такая система представляет со- 600нм 600нм бой магнитометр. 20 нм

4. Сверхпроводящий материал – соединение Nb3Sn. 5. Соединение Nb3Sn имеет Тк=18.2К и Нк2=18.5 МА/m (?0Нк=23Тл) при 4.2К. Благодаря таким параметрам можно получить джозефсоновские переходы чувствительные как к малым полям 10-17Тл, так и к изменению больших полей ?1Тл. Соединение имеет такую решетку: атомы ниобия расположены в местах, занятых на рисунке и образуют со своими ближайшими соседями три цепочки, перпендикулярные друг – другу:

Nb

Sn

Атомы ниобия в этих цепочках связаны дополнительными ковалентными связями. Цепочки ниобия в кристаллической структуре, для получения сверх проводящих свойств не должны быть нарушены, что может произойти при избытке атомов олова или при недостаточной степени порядка в кристаллической решетке. Диаграмма фазового равновесия системы Nb-Sn приведена на рисунке:

toC 2500 ?+ж 2000 2000 ? Ж 1500 Nb3Sn3 ?+Nb3Sn 910-920 1000 Nb3Sn 840-860 500 805-820 NbSn7 232-234

Nb 0 10 20 30 40 50 60 70 80 90 100 Sn Соединение Nb3Sn хрупко и изделие из него не могут бать получены обычным металлургическим путем, т.е. выплавкой с последующей деформацией. Массивные изделия из этого соединения: цилиндры, пластины и т.д. получают, как правило, металлокерамическим методом, т.е. смешивая в соответствующих пропорциях порошки ниобия и олова, прессуя изделия нужной формы и нагревая их до температуры образования химического соединения Nb3Sn, обычно в интервале 960-1200O.

5. Получение джозефсоновских переходов.

Джозефсоновские туннельные переходы представляют собой две тонкие сверхпроводящие пленки разделенные барьерным слоем диэлектрика или полупроводника. Рассмотрим некоторые из методов получения переходов с диэлектрическим барьером. На тщательно очищенную подложку в вакууме наносится первая пленка сверхпроводящего соединения толщиной в несколько тысяч ангстрем. Нанесение первой пленки осуществляется путем катодного распыления.

4

1

6

2 3 5

1. Катод 2. Распыляющий газ 3. К вакуумному насосу 4. Держатель с подложкой 5. Постоянное напряжение 4 кВ 6. ВЧ – генератор 3-300 МГц

Газовый разряд при низком давлении можно возбудить высокочастотным электрическим полем. Тогда в газовом промежутке, содержащим аргон, возникает тлеющий разряд. Образовавшиеся при этом положительные ионы, разгоняются электрическим полем, ударяются о катод распыляя сплав. Вылетающие с катода атомы осаждаются на подложке. В такой системе были достигнуты скорости осаждения до 1А/сек. При смещении на катоде – мишени 500В. Для высокочастотного катодного распыления Nb3Sn необходим вакуум перед распылением 10-4Па, температура подложки 900OС, чистота напускаемого аргона 99,999%, его давление менее 1Па. Для качества туннельного перехода большое значение имеет структура пленки. В напыленных пленках обычно сильно искажена кристаллическая решетка, и в них, как правило со временем происходят структурные изменения: течение дислокаций, деформация границ зерен, что может значительно ухудшить свойства туннельного перехода (например возникнуть закоротки). Одним из способов устранения этих нежелательных явлений состоит во внесении в пленку примесей стабилизирующих их структуру. Так пленки образующие туннельный переход получались последовательным напылением In (49нм), Au (9нм), Nb3Sn (350нм) для нижнего электрода и Nb3Sn (300нм), Au(5нм), Nb3Sn(200нм) для верхнего электрода. После этого пленки выдерживались при температуре 75ОС в течении 2ч., что приводило к стабилизации свойств перехода. Следующим важным этапом получения туннельного перехода является образование барьерного слоя, как правило, это слой окисла на поверхности первой пленки. Свойства туннельного перехода и его срок службы определяется прежде всего качеством барьерного слоя. Этот слой должен быть плотным, тонким (?2нм), ровным, не иметь пор и не меняться со временем при температурном циклировании. Наиболее удачный метод приготовления туннельных барьеров состоит в окислении пленки в слабом ВЧ разряде в атмосфере кислорода. Подложка с пленочным электродом крепится к катоду разрядной камеры. Сначала поверхность пленки очищают от естественного окисления путем ВЧ катодного распыления в атмосфере аргона при давлении 0.5 Па в течении 1-5 мин. Сразу после этого аргон в камере заменяется кислородом или аргонокислородной смесью и зажигается разряд на частоте 13.56 МГц. За определенное время на пленке, находящейся в разряде, образовался слой окисла необходимой толщины. Для получения туннельных барьеров толщиной 2-5нм необходимо поддерживать разряд мощностью 0.003-0,1 Вт/мм2 в течении 10-20 мин. Применяют туннельные переходы с барьером из полупроводника. В качестве материала барьера используется различные п/п: CdS, CdSe, Ge, InSb, CuAs и др. Основной метод нанесения п/п барьера – распыление. Однако в напыленном слое п/п имеется много отверстий и пустот, наличие которых способствует появлению закороток в переходе. Для устранения этого недостатка после напыления барьера переход подвергается окислению. В результате закоротки действительно не возникают, но свойства барьера при это ухудшаются: уменьшается максимальная плотность тока, величина емкости увеличивается. Наилучшие туннельные переходы с полупроводниковым барьером, получаются, когда барьер представляет собой монокристалл. Такие переходы реализованы не созданием барьера на сверхпроводящей пленке, а наоборот, нанесением пленки на обе стороны тонкой монокристаллической п/п мембраны из Si. Известно, что скорость травления монокристаллического Si перпендикулярно плоскости (100) в 16 раз больше чем в направлении плоскости (111). В результате этого в пластине Si, поверхность которого параллельна (100), при травлении небольшого, незащищенного фоторезистом участка, образуются ямки. Боковые стенки ямки образуют плоскости (111) под углом 54.7О к поверхности. Таким образом, размер дна ямки ?1, т.е. размер мембраны определяется соотношением , где ?2 – размер открытого незащищенного участка поверхности, t – глубина ямки. Чтобы получить мембрану нужной толщины, необходимо каким-либо образом автоматически остановить травление. Это достигается с помощью легирования бором обратной стороны кремниевой подложки на глубину равную необходимой толщине мембраны. Скорость травления быстро падает, когда достигается слой Si с концентрацией бора, равной n=4?1019 см-3, и полностью останавливается при n=7?1019 см-3. Таким образом были получены мембраны толщиной 40-100 нм. Далее с двух сторон наносятся сверхпроводящие пленки, образующие переход. В случае последовательного напыления: сверхпроводящая пленка – барьер – сверхпроводящая пленка – последнюю пленку можно нанести методом катодного распыления. Готовые переходы защищают от влияния атмосферы слоем фоторезиста. Для получения воспроизводимых туннельных систем необходимо, чтобы между операциями пленка не подвергалась воздействию атмосферы т.к. адсорбция газов на поверхности пленок может вызвать неконтролируемое изменение характеристик перехода. Список литературы:

1. Г.Н. Кадыкова «Сверхпроводящие материалы» М. МИЭМ 1990 2. А.Ф. Волков, Н.В. Заварицкий «Электронные устройства на основе слабосвязных сверхпроводников» М. Советское радио 1982 3. Р. Берри, П. Холл, М. Гаррис «Тонкопленочная технология» М. Энергия 1979 4. Т. Ван-Дузер Ч.У. Тернер «Физические основы сверхпроводниковых устройств и цепей» М. Радио и связь 1984 5.

9

www.ronl.ru

Реферат - Сверхпроводящие материалы в электронике. Магнитометр на СКВИДах

Явление сверхпроводимости состоит в том, что при некоторой температуре, близкой к абсолютному нулю, электросопротивление в некоторых материалах исчезает. Эта температура называется критической температурой перехода в сверхпроводящее состояние. Сверхпроводимость обнаружена более чем у 20 металлов и большого количества соединений и сплавов (Тк ? 23К), а также у керамик (Тк > 77,4К – высокотемпературные сверхпроводники.) Сверхпроводимость материалов с Тк ? 23К объясняется наличием в веществе пар электронов, обладающих энергией Ферми, противоположными спинами и импульсами (пары Купера), которые образуются благодаря взаимодействию электронов с колебаниями ионов решетки – фононами. Все пары находятся, с точки зрения квантовой механики, в одном состоянии (они не подчиняются статистике Ферми т.к. имеют целочисленный спин) и согласованы между собой по всем физическим параметрам, то есть образуют единый сверхпроводящий конденсат. Сверхпроводимость керамик, возможно, объясняется взаимодействием электронов с каким-либо другими квазичастицами. По взаимодействию с магнитным полем сверхпроводники делятся на две основные группы: сверхпроводники I и II рода. Сверхпроводники первого рода при помещении их в магнитное поле «выталкивают» последнее так, что индукция внутри сверхпроводника равна нулю (эффект Мейсснера). Напряжонность магнитного поля, при котором разрушается сверхпроводимость и поле проникает внутрь проводника, называется критическим магнитным полем Нк. У сверхпроводников второго рода существует промежуток напряженности магнитного поля Нк2 > Н > Нк1, где индукция внутри сверхпроводника меньше индукции проводника в нормальном состоянии. Нк1 – нижнее критическое поле, Нк2 – верхнее критическое поле. Н Нк2 – сверхпроводимость нарушается. Через идеальные сверхпроводники второго рода можно пропускать ток силой: (критический ток). Объясняется это тем, что поле, создаваемое током, превысит Нк1, вихревые нити, зарождающиеся на поверхности образца, под действием сил Лоренца, двигаются внутрь образца с выделением тепла, что приводит к потере сверхпроводимости.

Если два сверхпроводника соединить друг с другом «слабым» контактом, например тончайшей полоской из диэлектрика, через него пойдет туннельный сверхпроводящий ток, т.е. произойдет туннелирование сверхпроводящих куперовских пар. Благодаря этому обе системы сверхпроводников связаны между собой. Связь эта очень слаба, т.к. мала вероятность туннелирования пар даже через очень тонкий слой изолятора. Наличие связи приводит к тому, что в следствии процесса обмена парами состояние обеих систем изменяется во времени. При этом интенсивность и направление обмена определяется разностью фаз волновых функций между системами. Если разность фаз ?=?1 - ?2, тогда из квантовой механики следует . Энергии в точках по одну и другую сторону барьера Е1 и Е2 могут отличаться только если между этими точками существует разность потенциалов Us. В этом случае (1). Если сверхпроводники связаны между собой с одной стороны и разделены слабым контактом с другой, то напряжение на контакте можно вызвать, меняя магнитный поток внутри образовавшегося контура. При этом . Учитывая, что квант потока и поток Ф через контур может быть лишь nФ0, где n=0,?1,?2,?3,... Джозефсон предсказал, что (2) Где: Is – ток через контакт Ic – максимальный постоянный джозефсоновский ток через контакт ? -- разность фаз. Из (1), (2) следует . Поскольку на фазовое соотношение между системами влеяет магнитное поле, то сверхпроводящим током контура можно управлять магнитным полем. В большинстве случаев используется не один джозефсоновский контакт, а контур из нескольких контактов, включенных параллельно, так называемый сверхпроводящий квантовый интерферометр Джозефсона (СКВИД). Величина магнитного поля, необходимого для управления током, зависит от площади контура и может бать очень мала. Поэтому СКВИДы применяют там, где нужна большая чувствительность. Известны несколько типов джозефсоновских контактов, но наиболее распространены следующие:

Если к такому кольцу приложить поле, то оно будет наводить в кольце циркулирующий сверхпроводящий ток. Он будет вычитаться из постоянного тока I в А и складываться в В. Тогда максимальный ток кольца зависит от магнитного потока Ф и равен: Ic – ток кольца, Ф0 – квант потока, Ф – захваченный поток. При этом R – сопротивление перехода, l – индуктивность кольца. ?U – достигает нескольких микровольт и может быть измерена обычными электронными приборами.

Рисунок слева: ВАХ сверхпроводящего кольца с 2-мя джозевсоновскими переходами. Рисунок справа: Зависимость Imax от внешнего потока n – число квантов потока пронизывающих контур.

Техническая реализация магнитометров на СКВИДе на постоянном токе с 2-мя тунельными переходами.

Кварцевая трубка

Полоска из Pb

Платиновый электрод

Pb

Джозефсоновские переходы

Платиновый электрод

Контур СКВИДа образован цилиндрической пленкой из Pb нанесенной на кварцевый цилиндр длинной 18 мм с наружным диаметром 8мм, а нутренним 6мм. Описанная здесь конструкция яв- 2 мм ляется датчиком включенным в электри- ческую схему, обеспечивающую изме- рение и индикацию отклика датчика 1.5мм на изменение внешнего магнитного поля. Такая система представляет со- 600нм 600нм бой магнитометр. 20 нм

4. Сверхпроводящий материал – соединение Nb3Sn.

Соединение Nb3Sn имеет Тк=18.2К и Нк2=18.5 МА/m (?0Нк=23Тл) при 4.2К. Благодаря таким параметрам можно получить джозефсоновские переходы чувствительные как к малым полям10-17Тл, так и к изменению больших полей ?1Тл. Соединение имеет такую решетку: атомы ниобия расположены в местах, занятых на рисунке и образуют со своими ближайшими соседями три цепочки, перпендикулярные друг – другу:

Атомы ниобия в этих цепочках связаны дополнительными ковалентными связями. Цепочки ниобия в кристаллической структуре, для получения сверх проводящих свойств не должны быть нарушены, что может произойти при избытке атомов олова или при недостаточной степени порядка в кристаллической решетке. Диаграмма фазового равновесия системы Nb-Sn приведена на рисунке:

Соединение Nb3Sn хрупко и изделие из него не могут бать получены обычным металлургическим путем, т.е. выплавкой с последующей деформацией. Массивные изделия из этого соединения: цилиндры, пластины и т.д. получают, как правило, металлокерамическим методом, т.е. смешивая в соответствующих пропорциях порошки ниобия и олова, прессуя изделия нужной формы и нагревая их до температуры образования химического соединения Nb3Sn, обычно в интервале 960-1200O.

5. Получение джозефсоновских переходов.

Джозефсоновские туннельные переходы представляют собой две тонкие сверхпроводящие пленки разделенные барьерным слоем диэлектрика или полупроводника. Рассмотрим некоторые из методов получения переходов с диэлектрическим барьером. На тщательно очищенную подложку в вакууме наносится первая пленка сверхпроводящего соединения толщиной в несколько тысяч ангстрем. Нанесение первой пленки осуществляется путем катодного распыления.

1. Катод 2. Распыляющий газ 3. К вакуумному насосу 4. Держатель с подложкой 5. Постоянное напряжение 4 кВ 6. ВЧ – генератор 3-300 МГц

Газовый разряд при низком давлении можно возбудить высокочастотным электрическим полем. Тогда в газовом промежутке, содержащим аргон, возникает тлеющий разряд. Образовавшиеся при этом положительные ионы, разгоняются электрическим полем, ударяются о катод распыляя сплав. Вылетающие с катода атомы осаждаются на подложке. В такой системе были достигнуты скорости осаждения до 1А/сек. При смещении на катоде – мишени 500В. Для высокочастотного катодного распыления Nb3Sn необходим вакуум перед распылением 10-4Па, температура подложки 900OС, чистота напускаемого аргона 99,999%, его давление менее 1Па. Для качества туннельного перехода большое значение имеет структура пленки. В напыленных пленках обычно сильно искажена кристаллическая решетка, и в них, как правило со временем происходят структурные изменения: течение дислокаций, деформация границ зерен, что может значительно ухудшить свойства туннельного перехода (например возникнуть закоротки). Одним из способов устранения этих нежелательных явлений состоит во внесении в пленку примесей стабилизирующих их структуру. Так пленки образующие туннельный переход получались последовательным напылением In (49нм), Au (9нм), Nb3Sn (350нм) для нижнего электрода и Nb3Sn (300нм), Au(5нм), Nb3Sn(200нм) для верхнего электрода. После этого пленки выдерживались при температуре 75ОС в течении 2ч., что приводило к стабилизации свойств перехода. Следующим важным этапом получения туннельного перехода является образование барьерного слоя, как правило, это слой окисла на поверхности первой пленки. Свойства туннельного перехода и его срок службы определяется прежде всего качеством барьерного слоя. Этот слой должен быть плотным, тонким (?2нм), ровным, не иметь пор и не меняться со временем при температурном циклировании. Наиболее удачный метод приготовления туннельных барьеров состоит в окислении пленки в слабом ВЧ разряде в атмосфере кислорода. Подложка с пленочным электродом крепится к катоду разрядной камеры. Сначала поверхность пленки очищают от естественного окисления путем ВЧ катодного распыления в атмосфере аргона при давлении 0.5 Па в течении 1-5 мин. Сразу после этого аргон в камере заменяется кислородом или аргонокислородной смесью и зажигается разряд на частоте 13.56 МГц. За определенное время на пленке, находящейся в разряде, образовался слой окисла необходимой толщины. Для получения туннельных барьеров толщиной 2-5нм необходимо поддерживать разряд мощностью 0.003-0,1 Вт/мм2 в течении 10-20 мин. Применяют туннельные переходы с барьером из полупроводника. В качестве материала барьера используется различные п/п: CdS, CdSe, Ge, InSb, CuAs и др. Основной метод нанесения п/п барьера – распыление. Однако в напыленном слое п/п имеется много отверстий и пустот, наличие которых способствует появлению закороток в переходе. Для устранения этого недостатка после напыления барьера переход подвергается окислению. В результате закоротки действительно не возникают, но свойства барьера при это ухудшаются: уменьшается максимальная плотность тока, величина емкости увеличивается. Наилучшие туннельные переходы с полупроводниковым барьером, получаются, когда барьер представляет собой монокристалл. Такие переходы реализованы не созданием барьера на сверхпроводящей пленке, а наоборот, нанесением пленки на обе стороны тонкой монокристаллической п/п мембраны из Si. Известно, что скорость травления монокристаллического Si перпендикулярно плоскости (100) в 16 раз больше чем в направлении плоскости (111). В результате этого в пластине Si, поверхность которого параллельна (100), при травлении небольшого, незащищенного фоторезистом участка, образуются ямки. Боковые стенки ямки образуют плоскости (111) под углом 54.7О к поверхности. Таким образом, размер дна ямки ?1, т.е. размер мембраны определяется соотношением , где ?2 – размер открытого незащищенного участка поверхности, t – глубина ямки. Чтобы получить мембрану нужной толщины, необходимо каким-либо образом автоматически остановить травление. Это достигается с помощью легирования бором обратной стороны кремниевой подложки на глубину равную необходимой толщине мембраны. Скорость травления быстро падает, когда достигается слой Si с концентрацией бора, равной n=4?1019 см-3, и полностью останавливается при n=7?1019 см-3 . Таким образом были получены мембраны толщиной 40-100 нм. Далее с двух сторон наносятся сверхпроводящие пленки, образующие переход. В случае последовательного напыления: сверхпроводящая пленка – барьер – сверхпроводящая пленка – последнюю пленку можно нанести методом катодного распыления. Готовые переходы защищают от влияния атмосферы слоем фоторезиста. Для получения воспроизводимых туннельных систем необходимо, чтобы между операциями пленка не подвергалась воздействию атмосферы т.к. адсорбция газов на поверхности пленок может вызвать неконтролируемое изменение характеристик перехода. Список литературы:

1. Г.Н. Кадыкова «Сверхпроводящие материалы» М. МИЭМ 1990 2. А.Ф. Волков, Н.В. Заварицкий «Электронные устройства на основе слабосвязных сверхпроводников» М. Советское радио 1982 3. Р. Берри, П. Холл, М. Гаррис «Тонкопленочная технология» М. Энергия 1979 4. Т. Ван-Дузер Ч.У. Тернер «Физические основы сверхпроводниковых устройств и цепей» М. Радио и связь 1984

www.ronl.ru

Реферат - Сверхпроводимость - Рефераты на репетирем.ру

Сверхпроводимость.

ВВЕДЕНИЕ .

Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tс, и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца ( эффект Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,22К Hg практически теряет сопротивление.

ТЕОРИЯ СВЕРХПРОВОДИМОСТИ.

Далее оказалось, что при крайне низких температурах целый ряд веществ обладает сопротивлением по крайней мере в 10-12 раз меньше, чем при комнатной температуре. Эксперименты показывают, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления Холла. В то время, как в обычных проводниках под влиянием магнитного поля ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте.

Сверхпроводимость исчезает под действием следующих факторов:

1) повышение температуры;

2) действие достаточно сильного магнитного поля;

3) достаточно большая плотность тока в образце;

С повышением температуры до некоторой Tс почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец ( наиболее крутой переход наблюдается в монокристаллах).

Переход от сверхпроводящего состояния в нормальное можно осуществить путем повышения магнитного поля при температуре ниже критической Tс. Минимальное поле Bс, в котором разрушается сверхпроводимость называется критическим магнитным полем. Зависимость критического поля от температуры описывается эмпирической формулой.

Вс = B0 [ 1 - (T/Tс)2 ],

где В0 - критическое поле, экстраполированное к абсолютному нулю температуры.

Для некоторых веществ повидимому имеет место зависимость от Т в первой степени. При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если повышая магнитное поле уничтожить сверхпроводимость при H=Ht ( H - сила поля, Ht - повышенная сила поля: Ht = a (Tс2 - T2) ) , то с понижением интенсивности поля сверхпроводимость появится вновь при поле Ht´< Ht, dH = Ht - Ht´ меняется от образца к образцу и обычно составляет 10% Ht. Повышение силы тока также приводит к исчезновению сверхпроводимости, то есть при этом понижается Tс. Чем ниже температура, тем выше та предельная сила тока it при которой сверхпроводимость уступает место обычной проводимости.

Сверхпроводимость наблюдается как у элементов, так и у сплавов и металлических соединений. Сверхпроводимость есть у Hg, Sn(белое), Pb, Tl, Tn, Ga, Ta, Th, Ti, Nb (иногда Cd).

Идеальный проводник и сверхпроводник. Эффект Мейснера.

Для анализа поведения идеального проводника в магнитном поле рассмотрим контур, помещенный в поле с индукцией Ba (рис.2, а). Если площадь, ограниченая кольцом равна А, то поток, пронизывающий кольцо, можно описать по формуле

Ф=А×Вa.

При изменении приложенного поля в кольце, согласно закону Ленца, индуцируются токи. Они направлены так, что созданный ими внутри кольца поток стремится компенсировать изменение потока, вызванное переменной приложенного поля. Между инлуцированным током и электродвижущей силой (-А×dBа/dt) справедливо следующее соотношение:

-А×dBа/dt=Ri+L×di/dt,

где R и L - полное сопротивление и индуктивность контура.

В обычном кольце наведенные токи из-за конечного сопротивления быстро затухают и поток, пронизывающий контур принимает новое значение. В случае идеальной проводимости R=0, последнее соотношение принимает вид

-А×dBа­/dt=L×di/dt

или

Li+ABа=const.

Таким образом, полный магнитный поток через контур без сопротивления (Li+ABа) не может измениться. Даже при снижении внешнего поля до нуля, внутренний поток сохраняется благодаря циркулирующему в замкнутом кольце индуцированного незатухающего тока.

Все вышеизложенное относилось к условию, при котором кольцо, находясь в приложенном магнитном поле, охлаждалость ниже температуры Тс, при которой исчезало сопротивление. Если же контур сначала охладить, а затем приложить внешне поле, то результирующий внутренний поток останется равным нулю несмотря на наличие внешнего поля.

Рассмотрим поведение идеального проводника в магнитном поле. Предположим, что образец из идеального проводника проходит следующие стадии: сначала охлаждается ниже некоторой температуры, когда падает сопротивление, а затем накладывается магнитное поле. Сопротивление по любому произвольно выбранному замкнутому контуру внутри металла равно нулю. Следовательно, величина магнитного потока, заключенного внутри этого кольца, остается равной нулю. Произвольность выбора контура позволяет заключить, что магнитный поток равен нулю по всему объему образца. Это связано с индуцированными магнитным полем незатухающими токами по поверхности образца. Они создают магнитный поток, плотность которого Вi повсюду внутри металла точно равна по величине и противоположна по плотности потока приложенного магнитного поля Вa. Таким образом, возникает ситуация, когда поверхностные токи, часто называемые экранирующими, препятствуют проникновению в образец магнитного потока приложенного поля. Если внутри вещества, находящегося во внешнем поле, магнитный поток равен нулю, то говорят, что он проявляет идеальный диамагнетизм. При снижении плотности приложенного поля до нуля образец остается в своем ненамагниченном состоянии.

В другом случае, когда магнитное поле приложено к образцу, находящемуся выше переходной температуры, конечная картина заметно изменится. Для большинства металлов (кроме ферромагнетиков) значение относительной магнитной проницаемости близко к единице. Поэтому плотность магнитного потока внутри образца практически равна плотности потока приложенного поля. Исчезновение электросопротивления после охлаждения не оказывает влияния на намагниченность, и распределение магнитного потока не меняется. Если теперь снизить приложенное поле до нуля, то плотность магнитного потока внутри сверхпроводника не может меняться, на поверхности образца возникают незатухающие токи, поддерживающие внутри магнитный поток. В результате образец остается все время намагниченным. Таким образом, намагниченность идеального проводника зависит от последовательности изменения внешних условий.

В течение почти четверти века считали, что единственным характеристическим свойством сверхпроводящего состояния является отсутствие электрического сопротивления. Это означает, что сверхпроводник в магнитном поле будет вести себя так, как описано выше. Однако такой подход приводит к неоднозначному описанию сверхпроводящей фазы.

Эксперимент, иллюстрирующий переход из сверхпроводящего состояния в обычное продемонстрировал, что сверхпроводники - нечто большее, чем идеальные проводники. Они обладают дополнительным свойством, отсутствующим от металла, просто лишенного сопротивления: металл в серхпроводящем состоянии никогда не позволяет магнитному потоку проникнуть внутрь, всегда Вi=0.

Когда сверхпроводник охлаждается в слабом магнитном поле, то при температуре перехода на его поверхности возникает незатухающий ток, циркуляция которого обращает внутренний магнитный поток в нуль. Это явление, заключающееся в том, что внутри сверхпроводника плотность магнитного потока всегда, даже во внешнем магнитном поле, равна нулю, называется эффектом Мейснера.

Эффект выталкивания магнитного поля из сверхпроводника можно пояснить на основе представлений о намагниченности. Если экранирующие токи, полностью компенсирующие внешнее магнитное поле, сообщают образцу магнитный момент m, то намагниченность M выражается соотношением

M=m/V,

где V - объем образца. Можно говорить о том, что экранирующие токи приводят к появлению намагниченности, соответствующей намагниченности идеального ферромагнетика с магнитной восприимчивостью, равной минус единице.

Эффекты Джозефсона. Если два сверхпроводника разделены между собой достаточно тонким слоем диэлектрика ( например, два металических слоя, разделенных окислом), то проникновение через барьер макроскопических волновых функций приводит к их перекрытию или к тунелированию электронных пар. Связанные с этим эффекты были количественно исследованы Брайаном Джозефсоном в 1962г.. Он показал, что если имеется разность фаз между этими двумя волновыми функциями, то ток может протекать в отсутствие какой-либо разности потенциалов.

Слой диэлектрика - не единственно возможный тип “слабого звена”, среди других типов можно отметить точечный контакт двух хорошо пришлифованных сверхпроводников, или же микромостик, образованный путем травления сверхпроводящей пленки. На практике при нулевом напряжении через контакт можно пропустить ток только вплоть до некоторого порогового значения, выше которого появится напряжение. Это напряжение затем возрастает при росте тока. Такое явление называется стационарным эффектом Джозефсона. Нестационарный эффект Джозефсона возникает, когда к контакту прикладывается напряжение и через него начинает течь переменный ток.

Эффект Джозефсона может иметь много приложений, но он может быт и паразитным. Он возникает на границах зерен в поликристаллических образцах новых сверхпроводников и препятствует, например, попыткам измерения лондоновской глубины проникновения.

Сверхпроводники первого рода. Проанализируем протекание тока по проволоке круглого сечения, находящемся в сверхпроводящем состоянии. В отличии от экранирующего тока, возникающего при наложении магнитного поля, ток от внешнего источника будем называть транспортным. Если бы этот ток протекал внутри сверхпроводника, он создавал бы в его объеме магнитное поле, что противоречит эффекту Мейснера. Следовательно, ток, протекающий должен быть ограничен тонким слоем около поверхности, в который проникает магнитное поле. Толщина этого поверхностного слоя равна глубине проникновения l.

Протекающий по сверхпроводнику транспортный ток будет создавать магнитное поле. Между плотностью тока и магнитным полем существует строгая связь, которая означает, что критическому полю соответствует определенная критическая плотность тока (правило Сильсби). Причем совершенно безразлично, о каком токе идет речь - транспортном, или экранирующем. Для проволоки круглого сечения магнитное поле на поверхности В0 и суммарный ток I связаны отношением

B0=m0(1/(2pR)),

где R - радиус проволоки.

Из данного уравнения следует, что критический ток имеет такую же зависимость от температуры, как и критическое магнитное поле. Расчет показывает, что, например, для оловянной проволоки радиусом 0,5 мм критическая сила тока при Т=0 К составляет 75 А .

С помощью правила Сильсби можно определить также критические токи для сверхпроводников во внешнем магнитном поле. Для этого необходимо сложить внешнее магнитное поле с полем транспортного тока на поверхности. Плотность тока достигает результирующее значение, когда это результирующее поле Врез становится критическим. Для проволоки радиусом R в магнитном поле Bа, перпендикулярном ее оси:

Врез=2Bа+(1/(2pR))m0.

Здесь значение 2Вa на образующей цилиндра получено для коэффициента размагничивания uм=1/2.

Зависимость критического тока от внешнего поля Вa можно определить из уравнения:

Iс=(2pR)/m0(Bс-2Bа).

График ее представлен на рис.4

рис.4 Зависимость критического тока от внешнего магнитного поля, перпендикулярного проволоке.

Процесс нарушения сверхпроводимости в массивных образцах при достижении критической силы тока происходит с образованием промежуточного состояния. Структура его для цилиндрического образца представлена на рис.5. При включении внешнего магнитного поля происходит его наложение на круговое поле тока, в результате чего геометрия межфазных границ между сверхпроводящими и нормальными областями значительно усложняется.

В конце разговора о сверхпроводниках первого рода отметим, что низкие критические параметры делают практически невозможным их техническое использование.

рис.5 Структура промежуточного состояния проволоки, несущей критический ток.

Сверхпроводники второго рода. Принципиальное отличие сверхпроводника второго рода от сверхпроводника первого рода начинает проявляться в тот момент, когда магнитное поле на поверхности достигает значения Вc1 . При этом сверхпроводник переходит в смешанное состояние. Проникновение магнитного поля в объем сверхпроводника приводит к тому, что в этих условиях транспортный ток распределяется равномерно по всему сечению, не занятому вихревыми нитями. Таким образом, в отличие от сверхпроводников 1 рода, в которых ток протекает по тонкому поверхностному слою, в сверхпроводники 11 рода транспортный ток проникает во всем объеме.

Известно, что между током и магнитным полем всегда существует сила взаимодействия, которую называют силой Лоренса. Применительно к смешанному состоянию сверхпроводника эта сила будет действовать между абрикосовскими вихрями и транспортным током. Возможности транспортного перераспределения тока ограничены конечными размерами проводника, и, следовательно, под действием силы Лоренса вихревые нити должны перемещаться.

Для описания особенностей поведения сверхпроводников в магнитном поле проанализируем термодинамику образования поверхностей раздела между сверхпроводящей и нормальной фазами. В нормальной области В³Bc, в сверхпроводящей спадает до нуля на глубине порядка l (рис.3). В нормальном состоянии плотность сверхпроводящих электронов равна нулю, в то время, как в сверхпроводнике она имеет определенную величину ns(Т). На некотором расстоянии от границы x плотность сверхпроводящих электронов по порядку величины достигает значения, равного ns(Т). Характеристический параметр x называют длиной когерентности, зависимость ее от температуры определяется формулой

z(Т)=z0(Tc/(Tc-T))½,

где x0 зависит от свойств сверхпроводника и составляет по порядку величины 10-6 - 10-8 м.

рис.3 Распределение магнитного потока и плотности сверхпроводящих электронов вблизи фазовой границы.

Основы микроскопической теории сверхпроводимости.

Взаимодействие электронов с фотонами. Ранее было показано, что переход о нормального к свехпроводящему состоянию связан с определенным упорядочиванием в электронной системе твердого тела. На основании этого можно предположить, что переход в сверхпроводящее состояние обусловлен взаимодействием электронов друг с другом.

В принципе можно предположить различные механизмы такого взаимодействия. Были попытки объяснить упорядочение системы с помощью механизма кулоновского отталкивания электронов. Рассматривалось магнитное взаимодействие электронов, которые, пролетая через решетку с большими скоростями, создают магнитное поле и с помощью него взаимодействия между собой. Однако эти и другие подходы не позволяют построить теорию сверхпроводимости и объяснить электрические, магнитные и тепловые свойства сверхпроводников.

Конструктивной основой для создания такой теории стала идея о взаимодействии электронов через колебания решетки, сформулированная в 1950-51 гг. практически независимо друг от друга Г. Фрелихом и Дж. Бардиным. Такое рассмотрение позволило уже в 1957 г. Дж. Бардину, Л. Куперу и Дж. Шифферу создать микроскопическую теорию сверхпроводимости, получившая название БКШ ( по начальным буквам фамилий авторов).

Рассмотрим качественно механизм межэлектронного взаимодействия через колебания решетки. Как известно, ионы в кристаллической структуре совершают колебания около положений равновесия. Если в такую решетку поместить всего два электрона и пренебречь всеми остальными, то положительно заряженные ионы, расположенные вблизи этих электронов, будут притягиваться к ним. Образуются две области поляризации решетки, то есть скопления положительного заряда ионов вблизи оказывающих поляризующее действие отрицательно заряженных электронов. Второй электрон и поляризованная им область решетки могут реагировать на поляризацию, вызванную первым электроном. При этом второй электрон испытывает притяжение к месту поляризации первого электрона, а следовательно, и к нему самому.

Рассмотренная выше модель имеет весьма существенный недостаток - она является статической. Реально электроны в металле имеют очень большие скорости (порядка 106 м/c) . Поэтому можно предположить, что электрон, перемещаясь по кристаллу, притягивает ионы и создает область избыточного положительного заряда. Такая динамическая поляризация является относительно устойчивой, поскольку масса ионов значительно больше, чем масса электронов. Таким образом, второй электрон, пролетая сквозь решетку, притягивается к этому сгустку положительного заряда, а следовательно, и к первому электрону. Отметим, что при высоких температурах ( больше критической) интенсивное тепловое движение узлов кристалла делает поляризацию решетки слабой, а следовательно, практически невозможным взаимодействие между электронами.

Энергетические щели. Для развития динамической модели будем полагать, что второй электрон движется по поляризованному следу первого электрона. При этом возможны две ситуации: первая - импульсы электронов одинаковы по величине и направлению, то есть они образуют пару частиц с удвоенным импульсом, вторая - импульсы электронов одинаковы по величине и противоположны по направлению. Такую корреляцию электронов также можно рассматривать, как пару с нулевым импульсом. Если электроны, кроме того, будут иметь противоположные спины, то такая пара будет обладать уникальными свойствами.

Чрезвычайно интересным с точки зрения понимания механизма сверхпроводимости является вопрос о процессах энергообмена в свехпроводящем состоянии. В принципе ясно, что эти процессы связаны с разрушением куеперовских пар и энергетическими переходами в системе свободных электронов, причем как первое, так и второе определяется совокупностью свободных состояний, в которые могут перейти электроны. Сложность рассматриваемой задачи связана с тем, что образование куперовских пар приводит к изменению квантово - механических состояний неспаренных электронов.

Распределение электронов в нормальном металле описывается функцией Ферми-Дирака

f(E)=(e (E-m)/(kT)+ 1)-1.

Где k - постоянная Больцмана; m - химический потенциал.

При температуре Т=0 К полная функция распределения N(E)=f(E)g(E), определяющая число частиц с энергией Е, равна плотности числа состояний g(E), так как f(E)=1:

g(E)=((4pV)/ n3)(2m)3/2Е1/2.

График этой функции представлен на рис.6а

Взаимодействие электронов в сверхпроводнике с образованием куперовских пар приводит к тому, что небольшая область энергии вблизи уровня Ферми становится запрещенной для электронов - возникает энергетическая щель. В пределах этой щели нет ни одного разрешенного для неспаренных электронов энергетического уровня. Под влиянием взаимодействия между электронами, имеющими энергию, близкую к Еf, они оказываются как бы сдвинутыми относительно уровня Ферми (рис.6б).

рис.6 а) плотность состояний электронов в нормальном металле при Т =0. Занятое состояние заштриховано. б) плотность состояний неспаренных электронов в сверхпроводнике. Занятое состояние заштриховано.

рис.7 Зависимость ширины энергетической щели от температуры.

При Т=0 К ширина щели максимальна (2d0»10-2 - 10-3 эВ), а все свободные (неспаренные) электроны находятся под щелью (на уровне с энергией меньше Еf). При повышении температуры часть куперовских пар разрушается, а некоторые неспаренные электроны “перескакивают” щель и заполняют состояния с энергией больше Еf. Ширина щели 2d(T) при этом уменьшается (рис.7).

Между максимальной (при Т=0 К) шириной щели 2d0и критической температурой Тc существует прямая зависимость. По теории БКШ, удовлетворительно согласующейся с экспериментальными данными для большого числа сверхпроводников (кроме Nb, Ta, Pb, Hg):

2d0=3,5 kTс.

Ширина щели по этому соотношению определяется в эВ.

Высокотемпературная сверхпроводимость. Рассмотренный ранее маханизм перехода в сверхпроводящее состояние онован на межэлектронном взаимодействии посредством кристаллической решетки, то есть засчет обмена фононами. Как показывают оценки, для такого механизма сверхпроводимости, называемая фононным, максимальная величина критической температуры не может превышать 40 К.

Таким образом, для реализации высокотемпературной сверхпроводимости (с Тc>90 К) необходимо искать другой механизм корреляции электронов. Один из возможных подходов описан подходов описан американским физиком Литтлом. Он предположил, что в органических веществах особого строения возможна всерхпроводимость при комнатных температурах. Основная идея заключалась в том, чтобы получить свеобразную полимерную нитку с регулярно расположенными электронными фргментами. Корреляция электронов, движущихся вдоль цепочки, осуществляется засчет поляризации этих фрагментов, а не кристаллической решетки. Поскольку масса электрона на несколько порядков меньше массы любого иона, поляризация электронных фрагментов может быть более сильной, а критическая температура более высокой, чем при фоновом механизме.

В основе теоретической модели высокотемпературной сверхпроводимости, разработанной академиком В.Л.Гизбургом, лежит так называемый экситонный механизм взаимодействия электронов. Дело в том, что в электронной системе существуют особые волны - экситоны. Подобно фононам они являются квазичастицами, перемещающимися по кристаллу и не связанными с переносом электрического заряда и массы. Модельный образец такого сверхпроводника представляет собой металлическую пленку в слоях диэлектрика или полупроводника. Электроны проводимости, движущиеся в металле, отталкивают электроны диэлектрика, то есть окружают себя облаком избыточного положительного заряда, который и приводит к образованию электроной пары. Такой механизм корреляции электронов предсказывает весьма высокие значения критической температуры (Тc=200 К).

ИСПОЛЬЗОВАНИЕ СВЕРХПРОВОДИМОСТИ.

Идея высокотемпературной сверхпроводимости ( ВТСП ) в органических соединениях была выдвинута в 1950г. Ф.Лондоном и лишь 14 лет спустя появился отклик на эту идею в работах американского физика В.Литтла, вызвавший критические отзывы, отрицающие возможность ВТСП в неметаллических системах. Таким образом, хотя идея ВТСП родилась ы работе Ф. Лондона в 1950г., годом рождения проблемы следует считать время появления первых, пока, правда, малочисленных потоков информации по ВТСП - 1964г.. Если рассмотреть эволюцию температуры сверхпроводящего перехода,, то станет ясно, что рост температуры сверхпроводящего перехода приводил к возможности использования хладагентов со все более высокой температурой кипения ( жидкий гелий, водород, неон, азот). Хотя до азотных температур перехода, открытых недавно в металлокерамиках, практически использовался для охлаждения жидкий гелий, однако скачки в росте температуры перехода дают право положить их в основу периодизации ВТСП о гелиевом, водородном, неоновом и, наконец, азотном периодах ВТСП. Так Nb3Sn сменился Nb - Al - Ge, затем наибольшая температура была обнаружена d 1973-81гг. у Nb3Ge (23,9 K), которая оставалась рекордной вплоть до сверхпроводимости металлокерамиками. La - Sr - Cu - O при 30 К в 86г., вырастая до 100 К на материале I - Ba - Cu - O.

Ключевым для проблемы ВТСП является вопрос критической температуры от характеристики вещества. С открытием в 86 нового класса сверхпроводящих материалов с более высокими, чем ранее критическими температурами, во всем мире развернулись работы по изучению по изучению свойств ВТСП с целью определения возможности их применения в различных областях науки и техники. Интерес к ВТСП объясняется в первую очередь тем, что повышение рабочей температуры до азотной позволит существенно упростить и удешевить системы криогенного обеспечения, повысить их надежность. Для успешного применения ВТСП в сильноточных устройствах (соляноидах, накопителях энергии, электромагнитах, транспорте с магнитным подвесом) необходимо решить ряд вопросов. Одной из важнейших проблем при создании сильноточных устройств с использованием ВТСП является проблема обеспечения устойчивой работы обмоток с током. Проблема стабилизации ВТСП включает в себя несколько аспектов. Внутренним свойством сверхпроводимости является скачкообразный характер проникновения в них магнитного поля. Этот процесс сопровождается выделением части запасенной энергии магнитного поля при его распределении. Поэтому, наиболее важное направление стабилизации сверхпроводников - их стабилизация против сигналов потока. Крое того, проводники, внутренне стабилизированные против сигналов потока, при работе подвергаются действию различного рода возмущений как механического, так и электромагнитного характера, тоже сопровождающиеся выделением энергии.

Основные характеристики композитных ВТСП-проводников.

Традиционные сверхпроводники второго рода (сплавы Nb - Ti, соединение Nb3Sn ) применяются в сверхпроводящих магнитных системах в виде композитов с матрицей из нормального метала с высокими тепло- и электропроводностью. Наличие пластичной матрицы (чаще всего медной) значительно облегчает изготовление тонких длинномерных проводников волочением или прокаткой, то есть сверхпроводящие материалы отличаются хрупкостью. Стабильность сверхпроводимости - состояние относительно скачков магнитного потока - достигается путем изготовления проводников с весьма малым диаметром отдельных сверхпроводящих или же лент с малой толщиной сверхпроводящего слоя. По этим же причинам ВТСП-проводники в большинстве случаев изготавливаются в форме композитов, имеющих малую толщину или диаметр. Дополнительная причина применения нормального металла связана с необходимостью защиты ВТСП-материала от влажности и других факторов окружающей Среды, вызывающих деградацию оксидного сверхпроводника. Наилучшие результаты получены при использовании серебряной матрицы или обмотки сверхпроводника: кроме того, что серебро лишь в минимальной степени реагирует с ВТСП или его исходной продукции даже при высокой температуре синтеза, серебро отличается высокой диффузионной проницательностью для кислорода, что необходимо при синтезе и обжиге ВТСП.

В настоящее время все усилия в области ВТСП наряду с совершенствованием их свойств и способов получения направлены на создание изделий на основе ВТСП, пригодных для применения в радиоэлектронных системах для детектирования, аналоговой и цифровой обработки сигналов. (см. рис.1).

Основными достоинствами ВТСП являются отсутствие потерь на постоянном и сравнительно небольшие потери на переменном токах, возможность экранирования магнитных и электромагнитных полей, возможность передачи сигналов с крайне малыми искажениями.

Параметром, непосредственно определяющим высокочастотные свойства ВТСП материалов является их поверхностное сопротивление. В обычных металлах поверхностное сопротивление увеличивается пропорционально квадратному корню из частоты в то время, как в ВТСП - пропорционально ее квадрату. Однако, благодаря тому, что начальное значение поверхностного сопротивления ( на постоянном токе) у ВТСП на несколько порядков ниже, чем у металлов, высококачественные ВТСП сохраняют преимущества по сравнению с металлами при частоте до нескольких сотен гигагерц.

Интерес к вопросу практического использования сверхпроводников появился в 50-х гг, когда были открыты сверхпроводники второго рода с высокими критическими параметрами как по значению плотности тока, так и по величине магнитной индукции. В настоящее время использования явления сверхпроводимости приобретает все больше практическое значение.

Применение сверхпроводников потребовало решения ряда новых задач, в частности, интенсивного развития материаловедения в области низких температур. При это исследовались не только сверхпроводники собственно, но и конструкции и изоляционные материалы.

Наибольшее распространение из сверхпроводящих материалов в электротехнике получили сплав ниобий-титан и интерметаллид ниобий-олово. Технологические процессы изготовления исключительно тонких ниобий-титановых нитей и их стабилизации достигли весьма высокого уровня развития. При создании многожильных проводников на основе ниобий-олова широкое применение находит так называемая бронзовая технология.

Развитие сверхпроводниковой техники также связано с созданием ожижителей и рефрижераторов все большей хладопроизводительности на уровне температур жидкого гелия.

Наиболее широкое реальное применение сверхпроводимость находит при создании крупных электромагнитных систем. В 80-х гг в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тороидального магнитного поля.

Сверхпроводящие катушки используются также для пузырьковых водородных камер, для крупных ускорителей элементарных частиц. Изготовление таких катушек для ускорителей довольно сложно, так как требование исключительно высокой однородности магнитного поля вызывает необходимость точного соблюдения заданных размеров.

В последние годы имеет место все более широкое использование явления сверхпроводимости для турбогенераторов, электродвигателей, униполярных машин, топологических генераторов, жестких и гибких кабелей, коммутационных и токоограничивающих устройств, магнитных сепараторов, транспортных систем и др.. Следует также отметить важное направление в работах по сверхпроводимости - создание измерительных устройств для измерения температур, расходов, уровней, давлений и т.д.

На настоящий момент имеются два главных направления в области применения сверхпроводимости. Это прежде всего магнитные системы различного назначения и затем - электрические машины (прежде всего турбогенераторы).

Применение сверхпроводимости в турбогенераторах большой мощности перспективно потому, что именно здесь удается достигнуть того, чего при других технических решениях сделать невозможно, а именно, уменьшить массу и габариты машины при сохранении мощности. В обычных машинах это уменьшение всегда связано с увеличением потерь и трудностями обеспечения высокого КПД. Здесь этот вопрос решается радикально: массу турбогенераторов можно увеличить в 2-2,5 раза, в тоже время в связи с отсутствием потерь в роторе удается повысить КПД примерно на 0,5% и приблизиться для крупных турбогенераторов к КПД порядка 99,3%. Повышение КПД турбогенераторов на 0.1% компенсирует затраты, связанные с созданием генераторов на 30%. В этих условиях экономия энергии, получаемая за счет снижения потерь, очень быстро оправдывает те затраты, которые вкладываются в создание новых сверхпроводниковых машин. Экономически это, конечно, оправдано, но все дело в том, что для того, чтобы выйти в энергетику с большими машинами, нужно пройти очень сложный путь создания машин все больших мощностей. При этом нужно решать и более трудную проблему - обеспечение высокой надежности. Очень важным моментом в этой связи, является отработка токовводов при создании машин высокой мощности. Перепад температур на токовводах составляет около 300К, они имеют внутренние источники тепловыделения, и поэтому представляют собой один из наиболее напряженных в эксплуатационном отношении узлов сверхпроводникового электротехнического устройства, являясь потенциально опасным источником аварий в криогенной зоне. Поэтому, при разработке токовводов, в первую очередь необходимо обращать внимание на надежность их работы, обеспечивая ее даже в ущерб тепло- и электрохарактеристикам токовводов.

табл.1 “Сферы применения сверхпроводимости”

Применение

Примечания

экранирование

Сверхпроводник не пропускает магнитный поток, следовательно, он экранирует электромагнитное излучение. Используется в микроволновых устройствах, защита от излучения при ядерном взрыве.

Магниты - научно-исследовательское оборудование - магнитная левитация

НТСП магниты используются в ускорителях частиц и установках термоядерного синтеза. Интенсивно проводятся работы по созданию поездов на магнитной подушке. Прототип в Японии использует НТСП.

передача энергии, аккумулирование, вращающиеся электрические машины, вычислительные устройства

Прототипные линии НТСП продемонстрировали свою перспективность. Возможность аккумулировать электроэнергию в виде циркулирующего тока. Комбинация полупроводниковых и сверхпроводящих приборов открывает новые возможности в конструкциировании аппаратуры.

Литература, использованная при написании реферата.

1. “Сверхпроводимость”; Павлов Ю.М, ШугаевВ.А.

2. “Сверхпроводимость в технике”; Труды второй всесоюзной конференции по техническому использованию сверхпроводимости.

3. “Введение в сверхпроводимость”; Зайцев, Орлов.

4. “Сверхпроводимость: физика, химия, техника” №1-6, 1996

5. “Сверхпроводимость: исследования и разработки” №6, 1994.

6. “Физическая энциклопедия” т.3

7. Советский Энциклопедический Словарь

referat.store

Реферат - Сверхпроводящие материалы в электронике. Магнитометр на СКВИДах

1. Сверхпроводимость. Основные параметры сверхпроводников.

Явление сверхпроводимости состоит в том, что при некоторой температуре, близкой к абсолютному нулю, электросопротивление в некоторых материалах исчезает. Эта температура называется критической температурой перехода в сверхпроводящее состояние. Сверхпроводимость обнаружена более чем у 20 металлов и большого количества соединений и сплавов (Тк ? 23К), а также у керамик (Тк > 77,4К – высокотемпературные сверхпроводники.) Сверхпроводимость материалов с Тк ? 23К объясняется наличием в веществе пар электронов, обладающих энергией Ферми, противоположными спинами и импульсами (пары Купера), которые образуются благодаря взаимодействию электронов с колебаниями ионов решетки – фононами. Все пары находятся, с точки зрения квантовой механики, в одном состоянии (они не подчиняются статистике Ферми т.к. имеют целочисленный спин) и согласованы между собой по всем физическим параметрам, то есть образуют единый сверхпроводящий конденсат. Сверхпроводимость керамик, возможно, объясняется взаимодействием электронов с каким-либо другими квазичастицами. По взаимодействию с магнитным полем сверхпроводники делятся на две основные группы: сверхпроводники I и II рода. Сверхпроводники первого рода при помещении их в магнитное поле «выталкивают» последнее так, что индукция внутри сверхпроводника равна нулю (эффект Мейсснера). Напряжонность магнитного поля, при котором разрушается сверхпроводимость и поле проникает внутрь проводника, называется критическим магнитным полем Нк. У сверхпроводников второго рода существует промежуток напряженности магнитного поля Нк2 > Н > Нк1, где индукция внутри сверхпроводника меньше индукции проводника в нормальном состоянии. Нк1 – нижнее критическое поле, Нк2 – верхнее критическое поле. Н Нк2 – сверхпроводимость нарушается. Через идеальные сверхпроводники второго рода можно пропускать ток силой: (критический ток). Объясняется это тем, что поле, создаваемое током, превысит Нк1, вихревые нити, зарождающиеся на поверхности образца, под действием сил Лоренца, двигаются внутрь образца с выделением тепла, что приводит к потере сверхпроводимости.

Tk, Нк1, Нк2, некоторых металлов и соединений: Вещество Тк К ?0Нк1 Тл ?0Нк2 Тл Pb 7.2 0.55 Nb 9.2 0.13 0.27 Te 7.8 V 5.3 Ta 4.4 Sn 3.7 V3Si 17.1 23.4 Nb3Sn 18.2 24.5 Nb3Al 18.9 Nb3Ga 20.3 34.0 Nb3Ge 23.0 37.0 (Y0.6Ba0.4)2CuO4 96 160?20 Y1.2Ba0.3CuO4-8 102 18 при 77К

2. Эффект Джозефсона. 3. Если два сверхпроводника соединить друг с другом «слабым» контактом, например тончайшей полоской из диэлектрика, через него пойдет туннельный сверхпроводящий ток, т.е. произойдет туннелирование сверхпроводящих куперовских пар. Благодаря этому обе системы сверхпроводников связаны между собой. Связь эта очень слаба, т.к. мала вероятность туннелирования пар даже через очень тонкий слой изолятора. Наличие связи приводит к тому, что в следствии процесса обмена парами состояние обеих систем изменяется во времени. При этом интенсивность и направление обмена определяется разностью фаз волновых функций между системами. Если разность фаз ?=?1 - ?2, тогда из квантовой механики следует . Энергии в точках по одну и другую сторону барьера Е1 и Е2 могут отличаться только если между этими точками существует разность потенциалов Us. В этом случае (1). Если сверхпроводники связаны между собой с одной стороны и разделены слабым контактом с другой, то напряжение на контакте можно вызвать, меняя магнитный поток внутри образовавшегося контура. При этом . Учитывая, что квант потока и поток Ф через контур может быть лишь nФ0, где n=0,?1,?2,?3,... Джозефсон предсказал, что (2) Где: Is – ток через контакт Ic – максимальный постоянный джозефсоновский ток через контакт ? -- разность фаз. Из (1), (2) следует . Поскольку на фазовое соотношение между системами влеяет магнитное поле, то сверхпроводящим током контура можно управлять магнитным полем. В большинстве случаев используется не один джозефсоновский контакт, а контур из нескольких контактов, включенных параллельно, так называемый сверхпроводящий квантовый интерферометр Джозефсона (СКВИД). Величина магнитного поля, необходимого для управления током, зависит от площади контура и может бать очень мала. Поэтому СКВИДы применяют там, где нужна большая чувствительность. Известны несколько типов джозефсоновских контактов, но наиболее распространены следующие:

изолятор ? 1нм сверхпроводники

туннельный переход переход типа «мостик»

3. Магнитометр.

Магнитометр - прибор на основе джозевсоновских переходов, применяющийся для измерения магнитного поля и градиента магнитного поля. В магнитометрах используются СКВИДы 2х типов: на постоянном токе и переменном. Рассмотрим магнитометр на СКВДах постоянного тока.

I

A B U

переходы джозефсоновские

Если к такому кольцу приложить поле, то оно будет наводить в кольце циркулирующий сверхпроводящий ток. Он будет вычитаться из постоянного тока I в А и складываться в В. Тогда максимальный ток кольца зависит от магнитного потока Ф и равен: Ic – ток кольца, Ф0 – квант потока, Ф – захваченный поток. При этом R – сопротивление перехода, l – индуктивность кольца. ?U – достигает нескольких микровольт и может быть измерена обычными электронными приборами.

I Imax nФ0

(n+1/2)Ф0

U n

Рисунок слева: ВАХ сверхпроводящего кольца с 2-мя джозевсоновскими переходами. Рисунок справа: Зависимость Imax от внешнего потока n – число квантов потока пронизывающих контур.

Техническая реализация магнитометров на СКВИДе на постоянном токе с 2-мя тунельными переходами.

Кварцевая трубка

Полоска из Pb

Платиновый электрод

Pb

Джозефсоновские переходы

Платиновый электрод

Контур СКВИДа образован цилиндрической пленкой из Pb нанесенной на кварцевый цилиндр длинной 18 мм с наружным диаметром 8мм, а внутренним 6мм. Описанная здесь конструкция яв- 2 мм ляется датчиком включенным в электри- ческую схему, обеспечивающую изме- рение и индикацию отклика датчика 1.5мм на изменение внешнего магнитного поля. Такая система представляет со- 600нм 600нм бой магнитометр. 20 нм

4. Сверхпроводящий материал – соединение Nb3Sn. 5. Соединение Nb3Sn имеет Тк=18.2К и Нк2=18.5 МА/m (?0Нк=23Тл) при 4.2К. Благодаря таким параметрам можно получить джозефсоновские переходы чувствительные как к малым полям 10-17Тл, так и к изменению больших полей ?1Тл. Соединение имеет такую решетку: атомы ниобия расположены в местах, занятых на рисунке и образуют со своими ближайшими соседями три цепочки, перпендикулярные друг – другу:

Nb

Sn

Атомы ниобия в этих цепочках связаны дополнительными ковалентными связями. Цепочки ниобия в кристаллической структуре, для получения сверх проводящих свойств не должны быть нарушены, что может произойти при избытке атомов олова или при недостаточной степени порядка в кристаллической решетке. Диаграмма фазового равновесия системы Nb-Sn приведена на рисунке:

toC 2500 ?+ж 2000 2000 ? Ж 1500 Nb3Sn3 ?+Nb3Sn 910-920 1000 Nb3Sn 840-860 500 805-820 NbSn7 232-234

Nb 0 10 20 30 40 50 60 70 80 90 100 Sn Соединение Nb3Sn хрупко и изделие из него не могут бать получены обычным металлургическим путем, т.е. выплавкой с последующей деформацией. Массивные изделия из этого соединения: цилиндры, пластины и т.д. получают, как правило, металлокерамическим методом, т.е. смешивая в соответствующих пропорциях порошки ниобия и олова, прессуя изделия нужной формы и нагревая их до температуры образования химического соединения Nb3Sn, обычно в интервале 960-1200O.

5. Получение джозефсоновских переходов.

Джозефсоновские туннельные переходы представляют собой две тонкие сверхпроводящие пленки разделенные барьерным слоем диэлектрика или полупроводника. Рассмотрим некоторые из методов получения переходов с диэлектрическим барьером. На тщательно очищенную подложку в вакууме наносится первая пленка сверхпроводящего соединения толщиной в несколько тысяч ангстрем. Нанесение первой пленки осуществляется путем катодного распыления.

4

1

6

2 3 5

1. Катод 2. Распыляющий газ 3. К вакуумному насосу 4. Держатель с подложкой 5. Постоянное напряжение 4 кВ 6. ВЧ – генератор 3-300 МГц

Газовый разряд при низком давлении можно возбудить высокочастотным электрическим полем. Тогда в газовом промежутке, содержащим аргон, возникает тлеющий разряд. Образовавшиеся при этом положительные ионы, разгоняются электрическим полем, ударяются о катод распыляя сплав. Вылетающие с катода атомы осаждаются на подложке. В такой системе были достигнуты скорости осаждения до 1А/сек. При смещении на катоде – мишени 500В. Для высокочастотного катодного распыления Nb3Sn необходим вакуум перед распылением 10-4Па, температура подложки 900OС, чистота напускаемого аргона 99,999%, его давление менее 1Па. Для качества туннельного перехода большое значение имеет структура пленки. В напыленных пленках обычно сильно искажена кристаллическая решетка, и в них, как правило со временем происходят структурные изменения: течение дислокаций, деформация границ зерен, что может значительно ухудшить свойства туннельного перехода (например возникнуть закоротки). Одним из способов устранения этих нежелательных явлений состоит во внесении в пленку примесей стабилизирующих их структуру. Так пленки образующие туннельный переход получались последовательным напылением In (49нм), Au (9нм), Nb3Sn (350нм) для нижнего электрода и Nb3Sn (300нм), Au(5нм), Nb3Sn(200нм) для верхнего электрода. После этого пленки выдерживались при температуре 75ОС в течении 2ч., что приводило к стабилизации свойств перехода. Следующим важным этапом получения туннельного перехода является образование барьерного слоя, как правило, это слой окисла на поверхности первой пленки. Свойства туннельного перехода и его срок службы определяется прежде всего качеством барьерного слоя. Этот слой должен быть плотным, тонким (?2нм), ровным, не иметь пор и не меняться со временем при температурном циклировании. Наиболее удачный метод приготовления туннельных барьеров состоит в окислении пленки в слабом ВЧ разряде в атмосфере кислорода. Подложка с пленочным электродом крепится к катоду разрядной камеры. Сначала поверхность пленки очищают от естественного окисления путем ВЧ катодного распыления в атмосфере аргона при давлении 0.5 Па в течении 1-5 мин. Сразу после этого аргон в камере заменяется кислородом или аргонокислородной смесью и зажигается разряд на частоте 13.56 МГц. За определенное время на пленке, находящейся в разряде, образовался слой окисла необходимой толщины. Для получения туннельных барьеров толщиной 2-5нм необходимо поддерживать разряд мощностью 0.003-0,1 Вт/мм2 в течении 10-20 мин. Применяют туннельные переходы с барьером из полупроводника. В качестве материала барьера используется различные п/п: CdS, CdSe, Ge, InSb, CuAs и др. Основной метод нанесения п/п барьера – распыление. Однако в напыленном слое п/п имеется много отверстий и пустот, наличие которых способствует появлению закороток в переходе. Для устранения этого недостатка после напыления барьера переход подвергается окислению. В результате закоротки действительно не возникают, но свойства барьера при это ухудшаются: уменьшается максимальная плотность тока, величина емкости увеличивается. Наилучшие туннельные переходы с полупроводниковым барьером, получаются, когда барьер представляет собой монокристалл. Такие переходы реализованы не созданием барьера на сверхпроводящей пленке, а наоборот, нанесением пленки на обе стороны тонкой монокристаллической п/п мембраны из Si. Известно, что скорость травления монокристаллического Si перпендикулярно плоскости (100) в 16 раз больше чем в направлении плоскости (111). В результате этого в пластине Si, поверхность которого параллельна (100), при травлении небольшого, незащищенного фоторезистом участка, образуются ямки. Боковые стенки ямки образуют плоскости (111) под углом 54.7О к поверхности. Таким образом, размер дна ямки ?1, т.е. размер мембраны определяется соотношением , где ?2 – размер открытого незащищенного участка поверхности, t – глубина ямки. Чтобы получить мембрану нужной толщины, необходимо каким-либо образом автоматически остановить травление. Это достигается с помощью легирования бором обратной стороны кремниевой подложки на глубину равную необходимой толщине мембраны. Скорость травления быстро падает, когда достигается слой Si с концентрацией бора, равной n=4?1019 см-3, и полностью останавливается при n=7?1019 см-3. Таким образом были получены мембраны толщиной 40-100 нм. Далее с двух сторон наносятся сверхпроводящие пленки, образующие переход. В случае последовательного напыления: сверхпроводящая пленка – барьер – сверхпроводящая пленка – последнюю пленку можно нанести методом катодного распыления. Готовые переходы защищают от влияния атмосферы слоем фоторезиста. Для получения воспроизводимых туннельных систем необходимо, чтобы между операциями пленка не подвергалась воздействию атмосферы т.к. адсорбция газов на поверхности пленок может вызвать неконтролируемое изменение характеристик перехода. Список литературы:

1. Г.Н. Кадыкова «Сверхпроводящие материалы» М. МИЭМ 1990 2. А.Ф. Волков, Н.В. Заварицкий «Электронные устройства на основе слабосвязных сверхпроводников» М. Советское радио 1982 3. Р. Берри, П. Холл, М. Гаррис «Тонкопленочная технология» М. Энергия 1979 4. Т. Ван-Дузер Ч.У. Тернер «Физические основы сверхпроводниковых устройств и цепей» М. Радио и связь 1984 5.

2

www.ronl.ru

Реферат: Реферат: Сверхпроводимость

Содержание

1. Явление сверхпроводимости

2. Свойства сверхпроводников

3. Применение сверхпроводников

Список литературы

1. Явление сверхпроводимости

Особую группу материалов высокой электрической проводимости представляют сверхпроводники. При низких температурах (в настоящее время по крайней мере ниже 18° К) определенные металлы и сплавы приобретают способность проводить ток без сколько-нибудь заметного сопротивления; такие твердые тела называются сверхпроводниками.

Это явление известно уже век, его открыл в 1911 г. Камерлинг-Оннес, который наблюдал такое состояние в ртути при температуре жидкого гелия. В таблице 1 приведен список некоторых известных в настоящее время сверхпроводников и температуры перехода их в сверхпроводящее состояние Тк. Переход обычно происходит очень резко: сопротивление падает от своего нормального значения до нуля в интервале порядка 0,05° К.

Рисунок 1 - Изменение электрического сопротивления в металлах (М) и сверхпроводниках (Мсв) в области низких температур [3]

С понижением температуры электрическое сопротивление всех металлов монотонно падает (рисунок 1). Однако есть металлы и сплавы, у которых электрическое сопротивление при критической температуре резко падает до нуля - материал становится сверхпроводником.

Сверхпроводимостьобнаружена у 30 элементов и около 1000 сплавов. Сверхпроводящие свойства обнаруживают многие сплавы со структурой упорядоченных твердых растворов и промежуточных фаз (о-фаза, фаза Лавеса и др.). При обычных температурах эти вещества не обладают высокой проводимостью.

Таблица 1 – Сверхпроводники и их температуры перехода в сверхпроводящее состояние (ºK)[2]

Металл и соединение

Температура перехода Тк, ºК

Металл и соединение

Температура перехода Тк, ºК

Ванадий

Тантал

Белое олово

Свинец

Рений

Молибден

5,1

4,38

3,73

7,22

2,40

0,92

Цинк

Nb3Sn

NbV

V3Si

Tl3Bi5

0,79

18,1

14,7

17,0

6,4

2. Свойства сверхпроводников

Наиболее общим свойством сверхпроводников является существование критической температуры сверхпроводимости Тк, ниже которой электросопротивление вещества становится исчезающе малым. Согласно последним оценкам, верхний предел электросопротивления вещества в сверхпроводящем состоянии (т.е. при температуре ниже Тк) составляет 10-26 Ом·м.

Некоторые элементы могут претерпевать аллотропические превращения под действием высоких давлений (порядка десятков тысяч атмосфер). Образующиеся при этом кристаллографические модификации (так называемые фазы высокого давления) при охлаждении переходят в сверхпроводящее состояние, хотя при обычных давлениях эти элементы не являются сверхпроводниками. Например, сверхпроводником является модификация TeII, образующаяся при давлении 56 000 атмосфер, BiII (25 тысяч атмосфер, Тк= 3,9 К), BiIII (27 тысяч атмосфер, Тк=7,2 К). Фазы высокого давления GaII и SbII остаются сверхпроводниками и после снятия высокого давления, и при атмосферном давлении критические температуры сверхпроводящего перехода этих фаз равны соответственно 7,2 и 2,6 К. В обычном состоянии Be и Ga не являются сверхпроводниками, однако становятся таковыми при осаждении на подложках в виде тонких пленок. Появление сверхпроводимости при осаждении пленок из паровой фазы наблюдали также у Се, Pr, Nd, Eu, Yb.

Характерно, что металлы подгрупп IA, IB и IIА, при комнатной температуре являющиеся хорошими проводниками электричества, не являются сверхпроводниками (за исключением бериллия в тонкопленочном состоянии). Ферро- и антиферромагнитные элементы также не являются сверхпроводниками.

Сверхпроводящие характеристики многих элементов, особенно Mo, Ir и W, весьма чувствительны к чистоте металла, что дает основания предполагать, что с развитием методов рафинирования металлов сверхпроводящие свойства будут обнаружены у некоторых других элементов.

Переход из нормального состояния (с ненулевым электросопротивлением) в сверхпроводящее наблюдается не только в чистых элементах, но также в сплавах и интерметаллических соединениях. В настоящее время известно более тысячи сверхпроводников. Б. Маттиас сформулировал правила, связывающие существование сверхпроводимости с валентностью Z.

1. Сверхпроводимость существует только при 2 < Z < 8.

2. У переходных металлов, их сплавов и соединений при Z = 3, 5 или 7 наблюдаются максимальные температуры перехода в сверхпроводящее состояние (см. рисунок 2).

3. Для каждого данного значения Z предпочтительны определенные кристаллические решетки (для получения максималь ной Tк) причем Ткбыстро растет с атомным объемом сверхпроводника и падает с увеличением массы атома.

Рисунок 2 - Наличие сверхпроводимости и Тк переходных и простых металлов [1]

Наиболее перспективными с точки зрения технического применения являются сверхпроводники с высокой критической температурой. Наиболее высокой Тк обладают сплавы и соединения переходных металлов ниобия и ванадия. Эти сверхпроводящие материалы делятся на три группы: 1) сплавы (твердые растворы) с объемноцентрированной кубической решеткой - Nb-Ti, Nb - Zr. TK ~ 10 К и выше; 2) соединения с решеткой каменной соли, например NbN и Nb (С, N), Тк ~ 18К; 3) соединения ниобия и ванадия с элементами подгрупп алюминия и кремния, имеющие кристаллическую решетку типа β-W и стехиометрическую формулу А3В, где А -Nb или V, В - элемент подгруппы ШВ или IVB, например V3Si, Nb3Sn, Nb3(Al, Ge), TK ~ 21 К и выше.

Критическая температура перехода в сверхпроводящее состояние и другие сверхпроводящие характеристики, о которых будет сказано ниже, соединений А3В весьма чувствительны к малым отклонениям от стехиометрии, к структурному состоянию образца (наличие дисперсных частиц других фаз), дефектов кристаллического строения, степени дальнего порядка. По-видимому, этим объясняется повышение Тк соединений Nb8Al, Nb3Ga, Nb8(Al, Ge) на несколько градусов после закалки от высоких температур и последующего отжига. В частности, Tк соединения Nb3Ge в результате резкой закалки была повышена от 11 до 17К. На тонкопленочных образцах Nb3Ge, полученных распылением, достигнуты значения Тк= 22 К и 23 К. Сверхпроводящие материалы на основе твердых растворов имеют определенные преимущества по сравнению с соединениями типа A3В в связи с их большей пластичностью.

Вещества в сверхпроводящем состоянии обладают специфическими магнитными свойствами. В первую очередь это проявляется в зависимости критической температуры сверхпроводимости от напряженности внешнего магнитного поля. Критическая температура максимальна в отсутствие внешнего магнитного поля и снижается при увеличении его напряженности. При некоторой напряженности внешнего поля Нкм, называемой критической Тк = 0. Другими словами, в полях, равных или больших Нкм, сверхпроводящее состояние в веществе не возникает ни при каких температурах. Такое поведение сверхпроводников иллюстрируется кривой Нк (Т) (рисунок 3). Каждая точка этой кривой дает величину критического внешнего поля Нк при данной температуре Т < Тк, вызывающего потерю сверхпроводимости. Эта кривая является кривой фазового перехода: сверхпроводящая фаза →нормальная фаза. В отсутствие магнитного поля этот переход является фазовым переходом второго рода. В присутствии внешнего магнитного поля - это переход первого рода.

Рисунок 3 - Зависимость критического поля сверхпроводника от температуры [1]

Другим важным магнитным свойством сверхпроводников является их диамагнетизм. Внутри сверхпроводника, помещенного в магнитное поле, индукция равна нулю. Если же сверхпроводник помещен в магнитное поле при температуре выше критической, то при охлаждении ниже Ткмагнитное поле «выталкивается» из сверхпроводника и его индукция в этом случае также равна нулю.

Разрушение сверхпроводимости внешним магнитным полем и идеальный диамагнетизм сверхпроводников связаны с тем, что для сохранения сверхпроводящего состояния суммарный импульс (кинетическая энергия) электронов должен быть меньше определенного значения. В силу этого существует определенная предельная (критическая) плотность тока jc выше которой сверхпроводимость нарушается и появляется конечное электросопротивление. Идеальный диамагнетизм сверхпроводника объясняется тем, что приложенное магнитное поле индуцирует на поверхности сверхпроводника токи, не испытывающие сопротивления. Эти токи циркулируют таким образом, что магнитный поток внутри сверхпроводника уничтожается. Таким образом, внешнее магнитное поле проникает в сверхпроводник только на очень небольшую глубину (так называемая глубина проникновения) порядка 10-8-10-9 м. При увеличении внешнего магнитного поля экранирующие токи должны возрастать, для того чтобы сохранить диамагнетизм сверхпроводника. Если внешнее поле достаточно сильно, токи достигнут критического значения и вещество перейдет в нормальное состояние. Экранирующие токи исчезают, и магнитное поле проникает в вещество. Глубина проникновения магнитного поля (при постоянном поле) возрастает с температурой и стремится к бесконечности при Т → Tк, что соответствует переходу в нормальное состояние.

Сверхпроводники с малой глубиной проникновения (резкое затухание магнитного поля у поверхности) называются мягкими сверхпроводниками, или сверхпроводниками I рода. Имеются также жесткие сверхпроводники, или сверхпроводники II рода. Сверхпроводники II рода характеризуются более высокими значениями критических полей и большей шириной температурной области перехода в сверхпроводящее состояние. Для мягких сверхпроводников (олово, ртуть, цинк, свинец) температурный интервал перехода в сверхпроводящее состояние составляет около 0,05 К, тогда как для жестких сверхпроводников (ниобий, рений, соединения со структурой β-W) температурный интервал сверхпроводящего перехода составляет около 0,5 К.

Фундаментальным различием между сверхпроводниками I и II рода является знак поверхностной энергии между нормальной и сверхпроводящей фазами. В сверхпроводниках II рода эта энергия отрицательна. В силу этого в таких сверхпроводниках в полях, меньших критического, возможно возникновение нормальных (несверхпроводящих) областей, отделенных от сверхпроводящих областей границами, параллельными внешнему магнитному полю. Появление таких нормальных областей (линий магнитного потока) может привести к снижению свободной энергии тела если граничная энергия отрицательна. В сверхпроводниках I родас положительной граничной энергией появление нормальных областей энергетически невыгодно, поэтому сверхпроводники I рода остаются полностью в сверхпроводящем состоянии в полях, меньших критического.

Сверхпроводник II рода при некотором минимальном внешнем магнитном поле, называемом нижним критическим полем Нк1 распадается на смесь нормальных и сверхпроводящих областей. Такое состояние сверхпроводника называется смешанным. Размер областей сверхпроводника в смешанном состоянии составляет около 10-8 м. Напряженность внешнего поля, до которого сохраняется смешанное состояние сверхпроводника, называется верхним критическим полем Нк2. Нормальные области в смешанном состоянии располагаются в объеме сверхпроводника периодически, образуя так называемую решетку линий магнитного потока. Нормальные области являются линиями магнитного потока, так как магнитное поле проникает в нормальную фазу. С увеличением внешнего магнитного поля выше Нк1 линии магнитного потока сближаются, появляются новые линии и, поскольку каждая линия является носителем магнитного потока, средняя плотность магнитного потока (т. е. индукция) в образце увеличивается. При достижении верхнего критического поля Нк2 линии магнитного потока объединяются и суммарная плотность потока в материале от нормальной фазы и от поверхностных диамагнитных токов становится равной потоку от внешнего магнитного поля, т. е. материал переходит в нормальное состояние. В смешанном состоянии в сверхпроводниках II рода не происходит выталкивания магнитного потока.

Среди чистых металлов сверхпроводниками II рода являются ниобий и ванадий, остальные металлы - сверхпроводники I рода. Значения критических полей при 0К(Нкм) чистых металлов приведены ниже [1]:

Металл Al Cd In Pb Os Re Ru

Нкм, А/м 7920 2400 22080 64240 5040 16080 5280

Металл Та Tl Th Sn Zn Zr

Нкм, А/м 66400 13680 12960 24480 4240 3760

Наиболее важные в техническом отношении сверхпроводники с высокой критической температурой перехода являются сверхпроводниками II рода. Величина верхнего критического поля для этих сверхпроводников составляет около 106 А/м. Для соединении Nb8Sn, Nb3Al, V8Ga и V8Si Нк2 составляет -25·106 А/м, для Nb3(Al, Ge) более 40·106 А/м. Критическая плотность тока, которую может сверхпроводник пропустить без перехода в нормальное состояние, для сверхпроводников II рода составляет 109- 1011 А/м2. Получены тонкие пленки нитрида ниобия NbN, имеющие критическую плотность тока около 2·1013 А/м2, критическая плотность тока снижается с увеличением внешнего магнитного поля.

Наиболее высокие значения критических полей и плотностей тока достигаются у сверхпроводников II рода, содержащих микроструктурные неоднородности с характерным размером больше атомного. Этими неоднородностями могут быть дислокации или дислокационные петли, частицы второй фазы, микропоры и т. п. Вследствие взаимодействия указанных неоднородностей с линиями магнитного потока происходит закрепление линий магнитного потока. Это взаимодействие количественно описывают с помощью понятия объемной силы (РV) закрепления линий магнитного потока. Препятствуя смещению линий магнитного потока, структурные неоднородности способствуют, таким образом, сохранению сверхпроводящего состояния при более высоких значениях магнитного поля и плотности тока. С формальной точки зрения закрепление линий магнитного потока на дислокациях, частицах второй фазы и т. п. аналогично закреплению доменных границ в ферромагнетиках на дислокациях или частицах второй фазы.

Теория показывает, что максимальная РV пропорциональна (Hк2)3/2. Это соотношение в основном подтверждается экспериментально. В случае спеченного ниобия, содержащего микропоры, РV прямо пропорциональна (Hк2)n, n = 1,6-1,9, причем РV прямо пропорциональна также и удельной поверхности пор. В общем случае РV зависит от размера центров закрепления и от расстояния между ними. Выделения второй фазы или дислокационные петли диаметром менее 7,0 нм слабо влияют или вообще не вызывают повышения критической плотности тока. Эффективное закрепление линий магнитного потока наблюдается при размере центров закрепления 10 нм и более.

Активные центры закрепления линий магнитного потока в сверхпроводниках создают, используя выделение второй фазы из пересыщенного твердого раствора или облучение частицами высоких энергий. В последнем случае, отжигая облученный материал, вследствие образования скоплений вакансий получают равномерно распределенные в объеме сверхпроводника дислокационные петли. В некоторых сплавах (Zr-Nb, Nb-Ti, Ti-V) частицы второй фазы образуются при закалке β-фазы с о, ц. к. решеткой. В процессе закалки высокотемпературная β-фаза испытывает мартенситное превращение в α`-фазу с ГП решеткой, игольчатые выделения которой служат точками закрепления линий магнитного потока.

Примером образования центров закрепления при выделении из пересыщенного твердого раствора может служить сплав Nb- 25% (ат.) Та, насыщенный при высокой температуре азотом. При старении происходит выделение нитрида Nb2N в форме пластинок толщиной 40 нм. Объемная сила закрепления также пропорциональна числу частиц нитрида в единице объема. Варьируя содержание кислорода, условия облучения нейтронами и отжига, можно получить образцы ниобия, содержащие дислокационные петли разного диаметра. Оказалось, что сила закрепления в образце Nb со средним диаметром петель 16,5 нм и максимальным диаметром 150 нм в 20 раз больше, чем у образца ниобия со средним диаметром петель 2,5 нм и максимальным диаметром 4,5 нм. Приведенные примеры наглядно иллюстрируют чувствительность сверхпроводящих характеристик к фазовому и структурному состояниям сплавов и возможность управления этими характеристиками изменением режимов термообработки, деформации, облучения.

3. Применение сверхпроводников

сопротивление металл сверхпроводимость валентность

Использование явления сверхпроводимости открывает широкие возможности в технике. Широкое применение находят источники мощных постоянных магнитных полей в виде соленоидов с обмотками из сверхпроводящих материалов. Ведутся работы по использованию сверхпроводников для линий электропередач и во многих других электротехнических устройствах.

Из всех элементов, способных переходить в сверхпроводящее состояние, ниобий имеет самую высокую критическую температуру перехода 9,17 К (-263,83 °С). Практическое использование нашли сверхпроводящие сплавы с высоким содержанием ниобия: 65БТ и 35БТ (ГОСТ 10994-74). Сплав 65БТ содержит 22-26% Ti; 63-68% Nb; 8,5-11,5% Zr и имеет критическую температуру перехода 9,7 К (-263,3 СС). Для Т = 4,2 К критические значения плотности тока составляют 2,8·106 А/м2, на пряженностьмагнитногополя (6-7,2)·106 А/м. Проволоку из сплава 35БТ состава 60-64% Ti; 33,5-36,5% Nb; 1,7-4,3% Zr из-за повышенной хрупкости заливают в медную матрицу.

Оба сплава применяют для обмоток мощных генераторов, магнитов большой мощности (например, поезда на магнитной подушке), туннельных диодов (для ЭВМ).

Способность сверхпроводников, являющихся диамагнетиками, выталкивать магнитное поле, используют в магнитных насосах, позволяющих генерировать магнитные поля колоссальной напряженности, а также в криогенных гироскопах. Якорь гироскопа, изготовленный из сверхпроводника, «плавает» в магнитном поле. Отсутствие опор и подшипников устраняет трение и повышает долговечность гироскопа.

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т.н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим.

Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации.

Сверхпроводник наименьшего размера был создан в 2010 году на основе органического сверхпроводника (BETS)2GaCl4, где аббревиатура BETS означает бисэтилендитиотетраселенафульвален. Созданный сверхпроводник состоит всего из четырёх пар молекул этого вещества при общей длине образца порядка 3,76 нм.

Список литературы

1. Лившиц Б.Г., Крапошин В.С., Линецкий Я.Л. Физические свойства металлов и сплавов. М.: Металлургия, 1980. 320 с.

2. Физическое металловедение. Под ред. Р. Кана, т.1. М.: Издательство «Мир», 1967. 339 с.

3. Материаловедение: уч. для ВУЗов. Под ред. Б.Н. Арзамасова. М.: Машиностроение, 1986. 384 с.

4. K. Clark, A. Hassanien, S. Khan, K.-F. Braun, H. Tanaka, S.-W. Hla. Superconductivity in just four pairs of (BETS)2GaCl4 molecules // Nature Nanotechnology. V. 5. P. 261–265, 2010. Перевод Ю. Ерин.

www.neuch.ru


Смотрите также