Подготовить сообщение по теме сила тяжести на других планетах. Реферат сила тяжести на других планетах


Сила тяжести на других планетах: подробный разбор

В статье рассказывается о том, что такое гравитация, какая сила тяжести на других планетах, почему она возникает, для чего нужна, а также воздействие ее на различные организмы.

Космос

О путешествиях к звездам люди мечтали издревле, начиная с тех времен, когда первые астрономы рассмотрели в примитивные телескопы иные планеты нашей системы и их спутники, а значит, по их мнению, они могли быть обитаемы.

С тех пор прошло много веков, но увы, межпланетные и тем более полеты к другим звездам невозможны и сейчас. А единственным внеземным объектом, где побывали исследователи, является Луна. Но уже в начале XX века ученые знали, что сила тяжести на других планетах отличается от нашей. Но почему? Что она собой представляет, отчего возникает и может ли быть губительной? Эти вопросы мы и разберем.

Немного физики

Еще Исаак Ньютон разработал теорию, согласно которой любые два объекта испытывают взаимную силу притяжения. В масштабах космоса и Вселенной в целом подобное явление проявляется очень явственно. Наиболее яркий пример – это наша планета и Луна, которая именно благодаря гравитации и вращается вокруг Земли. Видим проявление гравитации мы и в повседневной жизни, просто привыкли к нему и совсем не обращаем внимание. Это так называемая сила притяжения. Именно из-за нее мы не парим в воздухе, а спокойно ходим по земле. Также она способствует удержанию нашей атмосферы от постепенного улетучивания в космос. У нас она составляет условные 1 G, но какая сила тяжести на других планетах?

Марс

сила тяжести на других планетах

Марс наиболее похож по физическим данным на нашу планету. Конечно, жить там проблематично из-за отсутствия воздуха и воды, но он находится в так называемой зоне обитаемости. Правда, весьма условно. На нем нет ужасающей жары как на Венере, многовековых бурь как на Юпитере, и абсолютного холода как на Титане. И ученые последние десятилетия все не оставляют попыток придумать методы его терраформирования, создания пригодных для жизни условий без скафандров. Однако каково такое явление как сила тяжести на Марсе? Она составляет 0,38 g от земной, это примерно в два раза меньше. Это значит, что на красной планете можно скакать и прыгать гораздо выше, чем на Земле, и все тяжести весить будут также значительно меньше. И этого вполне достаточно для удержания не только его нынешней, «хилой» и жидкой атмосферы, но и гораздо более плотной.

Правда, говорить о терраформации пока рано, ведь для начала нужно хотя бы просто высадиться на него и наладить постоянные и надежные полеты. Но все же сила тяжести на Марсе вполне пригодна для обитания будущих поселенцев.

Венера

сила тяжести на марсе

Еще одной самой близкой к нам планетой (кроме Луны) является Венера. Это мир с чудовищными условиями и невероятно плотной атмосферой, заглянуть за которую долгое время никому не удавалось. Ее наличие, кстати, открыл не кто иной как Михаил Ломоносов.

Атмосфера является причиной парникового эффекта и ужасающей средней температуры на поверхности в 467 градусов по Цельсию! На планете постоянно выпадают осадки из серной кислоты и кипят озера жидкого олова. Такая вот негостеприимная планета Венера. Сила тяжести ее составляет 0,904 G от земной, что почти идентично.

Она также является кандидатом на терраформирование, а впервые ее поверхности достигла советская исследовательская станция 17 августа 1970 года.

Юпитер

венера сила тяжести

Еще одна планета Солнечной системы. Вернее, газовый гигант, состоящий в основном из водорода, который ближе к поверхности из-за чудовищного давления становится жидким. По подсчетам кстати, в его глубинах вполне возможно однажды вспыхнет термоядерная реакция, и у нас будет два солнца. Но если это и произойдет, то, мягко говоря, нескоро, так что беспокоиться не следует. Сила тяжести на Юпитере составляет 2,535 g относительно земной.

Луна

сила тяжести на юпитере

Как уже говорилось, единственным объектом нашей системы (кроме Земли), где побывали люди, является Луна. Правда, до сих пор не утихают споры, были ли те высадки реальностью или мистификацией. Тем не менее из-за ее малой массы сила тяжести на поверхности составляет всего 0,165 g от земной.

Влияние силы притяжения на живые организмы

Сила притяжения также оказывает различные воздействия на живых существ. Попросту говоря, когда будут открыты другие обитаемые миры, мы увидим, что их обитатели сильно отличаются друг от друга в зависимости от массы их планет. К примеру, будь Луна обитаема, то ее населяли бы очень высокие и хрупкие существа, и наоборот, на планете массой с Юпитер жители были бы очень низкие, крепкие и массивные. А иначе на слабых конечностях в таких условиях попросту не выживешь при всем желании.

Сила притяжения сыграет важную роль и при будущей колонизации того же Марса. Согласно законам биологии, если чем-то не пользуешься, то это постепенно атрофируется. Космонавтов с борта МКС на Земле встречают с креслами на колесах, так как в невесомости их мышцы задействованы очень мало, и даже регулярные силовые тренировки не помогают. Так что потомство колонистов на других планетах будет как минимум выше и физически слабее своих предков.

Так что мы разобрались с тем, какая сила тяжести на других планетах.

fb.ru

Сила тяжести на других планетах

До изобретения телескопа было известно лишь семь планет: Меркурий, Венера, Марс, Юпитер, Сатурн, Земля и Луна. Их количество многих устраивало. Поэтому, когда в 1610 г. вышла книга Галилея «Звездный вестник», в которой он сообщил, что с помощью своей «зрительной трубы» ему удалось обнаружить еще четыре небесных тела, «никем еще не виданные от начала мира до наших дней» (спутники Юпитера), то это вызвало сенсацию. Сторонники Галилея радовались новым открытиям, противники же объявили ученому непримиримую войну.

Уже через год в Венеции вышла книга «Размышления об астрономии, оптике и физике», в которой автор утверждал, что Галилей заблуждается и число планет должно быть обязательно семь, так как, во-первых, в Ветхом Завете упоминается семисвечник (а это означает семь планет), во-вторых, в голове имеется лишь семь отверстий, в-третьих, существует только семь металлов и, в-четвертых, «спутники не видны для простого глаза, а поэтому и не могут оказывать влияние на Землю, следовательно, они не нужны, а поэтому они не существуют».

Однако подобными аргументами нельзя было остановить развитие науки, и теперь мы точно знаем, что спутники Юпитера существуют и число планет вовсе не равно семи. Вокруг Солнца обращаются девять больших планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон, из которых лишь первые две не обладают спутниками) и свыше трех тысяч малых планет, называемых астероидами.

Спутники обращаются вокруг своих планет под действием их гравитационного поля. Сила тяжести на поверхности каждой из планет может быть найдена по формуле FT = mg, где g = GM/R2 — ускорение свободного падения на планете. Подставляя в последнюю формулу массу M и радиус R разных планет, можно рассчитать, чему равно ускорение свободного падения g на каждой из них. Результаты этих расчетов (в виде отношения ускорения свободного падения на данной планете к ускорению свободного падения на поверхности Земли) приведены в таблице 7.Ускорение свободного падения на разных планетах

Из этой таблицы видно, что наибольшее ускорение свободного падения и, следовательно, наибольшая сила тяжести на Юпитере. Это самая большая планета Солнечной системы; ее радиус в 11 раз, а масса в 318 раз больше, чем у Земли. Слабее всего притяжение на далеком Плутоне. Эта планета меньше Луны: ее радиус всего лишь 1150 км, а масса в 500 раз меньше, чем у Земли!

Еще меньшей массой обладают малые планеты Солнечной системы. 98% этих небесных тел обращаются вокруг Солнца между орбитами Марса и Юпитера, образуя так называемый пояс астероидов. Первый и самый большой астероид — Церера был открыт в 1801 г. Его радиус около 500 км, а масса примерно 1,2*1021 кг (т. е. в 5000 раз меньше, чем у Земли). Нетрудно подсчитать, что ускорение свободного падения на Церере примерно в 32 раза меньше, чем на Земле! Во столько же раз меньше там оказывается и вес любого тела. Поэтому космонавт, оказавшийся на Церере, смог бы поднять груз массой 1,5 т (рис. 110).Вес тела на маленьких планетах

На Церере, однако, пока еще никто не был. А вот на Луне люди уже побывали. Впервые это произошло летом 1969 г., когда космический корабль «Аполлон-11» доставил на наш естественный спутник трех американских астронавтов: Н. Армстронга, Э. Олдрина и М. Коллинза. «Конечно, — рассказал потом Армстронг,— в условиях лунного притяжения хочется прыгать вверх... Наибольшая высота прыжка составляла два метра — Олдрин прыгнул до третьей ступеньки лестницы лунной кабины. Падения не имели неприятных последствий. Скорость настолько мала, что нет оснований опасаться каких-либо травм».

Ускорение свободного падения на Луне в 6 раз меньше, чем на Земле. Поэтому, прыгая вверх, человек поднимается там на высоту, в 6 раз большую, чем на Земле. Чтобы подпрыгнуть на Луне на 2 м, как это сделал Олдрин, требуется приложить такое же усилие, что и на Земле при прыжке на высоту 33 см.

Первые астронавты находились на Луне 21 ч 36 мин. 21 июля они стартовали с Луны, а 24 июля «Аполлон-11» уже приводнился в Тихом океане. Люди покинули Луну, но на ней осталось пять медалей с изображениями пяти погибших космонавтов. Это Ю. А. Гагарин, В. М. Комаров, В. Гриссом, Э. Уайт и R Чаффи.

??? 1. Перечислите все большие планеты, входящие в состав Солнечной системы. 2. Как называется самая большая из них и самая маленькая? 3. Во сколько раз вес человека на Юпитере превышает вес того же человека на Земле? 4. Во сколько раз сила тяжести на Марсе меньше, чем на Земле? 5. Что вы знаете о Церере? 6. Почему походка астронавтов на Луне напоминала скорее прыжки, чем обычную ходьбу?

phscs.ru

Какая сила тяжести на других планетах? :: SYL.ru

Общеизвестно, что Земля имеет форму шара, сплюснутого у полюсов. Поэтому вес одного и того же тела (определяемый силой притяжения) в различных местах планеты неодинаков. Например, взрослый человек, переместившись из высоких широт к экватору, "потеряет в весе" около 0,5 кг. А какова сила тяжести на других планетах Солнечной системы?

Теория сэра Ньютона

Один из отцов-основателей классической механики, великий английский математик, физик и астроном Исаак Ньютон, изучая движение Луны вокруг нашей планеты, в 1666 году сформулировал Закон всемирного тяготения. По мнению ученого, именно сила тяготения лежит в основе движения всех тел в космосе и на Земле, будь то планеты, вращающиеся вокруг звезд, или яблоко, падающее с веток. Согласно Закону, сила притяжения двух материальных тел пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между телами.

Если вести речь о силе тяжести на Земле и других планетах или астрономических объектах, то из вышесказанного становится ясно, что она пропорциональна массе объекта и обратно пропорциональна квадрату его радиуса. Прежде чем отправиться в космическое путешествие, рассмотрим гравитационные силы на нашей планете.Сила тяжести на Земле и других планетах

Вес и масса

Несколько слов о физических терминах. Теория классической механики утверждает, что гравитация возникает вследствие взаимодействия тела с космическим объектом. Силу, с которой это тело действует на опору или подвес, называют весом тела. Единица измерения этой величины - ньютон (Н). Вес в физике обозначают, как и силу, буквой F и вычисляют по формуле F=mg, где коэффициент g - ускорение свободного падения ( у поверхности нашей планеты g=9,81 м/с2).

Под массой понимают фундаментальный физический параметр, определяющий количество материи, заключенной в теле, и его инертные свойства. Традиционно измеряется в килограммах. Масса тела постоянна в любом уголке нашей планеты и даже Солнечной системы.

Если бы Земля имела строгую шарообразную форму, вес определенного предмета на различных географических широтах земной поверхности на уровне моря был бы неизменным. Но наша планета имеет форму эллипсоида вращения, причем полярный радиус на 22 км короче экваториального. Поэтому, согласно Закону всемирного тяготения, вес тела на полюсе будет на 1/190 больше, чем на экваторе.Сила тяжести на других планетах, формула

На Луне и Солнце

Исходя из формулы, силу тяжести на других планетах и астрономических телах можно легко вычислить, зная их массу и радиус. Кстати, в основе способов и методов определения этих величин лежит все тот же Закон всемирного тяготения Ньютона и 3-й закон Кеплера.

Масса ближайшего к нам космического тела - Луны - в 81 раз, а радиус - в 3,7 раза меньше соответствующих земных параметров. Таким образом, вес любого тела на единственном естественном спутнике нашей планеты будет в шесть раз меньше, чем на Земле, при этом ускорение свободного падения будет иметь значение 1,6 м/с2.

На поверхности нашего светила (в районе экватора) этот параметр имеет значение 274 м/с2 - максимальное в Солнечной системе. Здесь сила тяжести в 28 раз превосходит земную. Например, человек массой 80 кг имеет вес на Земле около 800 Н, на Луне - 130 Н, а на Солнце - более 22 000 Н.Какая сила тяжести на других планетах

Сила тяжести на других планетах

В 2006 году астрономы мира условились считать, что в состав Солнечной системы входит восемь планет (Плутон причислили к карликовым планетам). Условно их принято разделять на две категории:

Сила тяжести на других планетах, краткоОпределение силы тяжести на других планетах осуществляется по тому же принципу, что и для Луны.

В центре Солнечной системы

Космические объекты, принадлежащие к первой группе, расположены внутри орбиты пояса астероидов. Для этих планет характерно следующее строение:

Некоторые астрономические параметры и сила тяжести на других планетах кратко отражены в таблице.

Данные планет земной группы
Радиус орбиты (млн км)Радиус (тыс. км)Масса (кг)Ускорение своб. падения g (м/с2)Вес космонавта (Н)
Меркурий57,92,43,3×10233,7260
Венера108,26,14,9×10248,8622
Земля149,66.46×10249,81686
Марс227,93,46.4×10233,86270

Оперируя данными таблицы, можно определить, что сила тяжести на поверхности Меркурия и Марса в 2,6 раза меньше, чем на Земле, а на Венере вес космонавта будет меньше земного лишь на 1/10 часть.Сила тяжести на других планетах

Гиганты и карлики

Планеты-гиганты, или внешние планеты, располагаются за орбитой Главного пояса астероидов. В основе каждого из этих тел каменное ядро небольших размеров, покрытое громадной газообразной массой, состоящей преимущественно из аммиака, метана и водорода. Гиганты имеют малые периоды обращения вокруг своей оси (от 9 до 17 часов), и при определении гравитационных параметров необходимо учитывать действие центробежных сил.

Вес тела на Юпитере и Нептуне будет больше, чем на Земле, а вот на других планетах сила тяжести немного меньше земной. Эти объекты не имеют твердой или жидкой поверхности, поэтому расчеты ведутся для границы верхнего облачного слоя (см. таблицу).

Планеты-гиганты
Радиус орбиты (млн км)Радиус (тыс. км)Масса (кг)Ускорение своб. падения g (м/с2)Вес космонавта (Н)
Юпитер778711,9×102723,951677
Сатурн1429605,7×102610,44730
Уран2871268,7×10258,86620
Нептун4504251,0×102611,09776

(Примечание: данные по Сатурну во многих источниках (цифровых и печатных) весьма противоречивы).

В заключение несколько любопытных фактов, дающих наглядное представление о том, какая сила тяжести на других планетах. Единственное небесное тело, на котором побывали представители человечества, - Луна. По воспоминаниям американского астронавта Нила Армстронга, тяжелый защитный скафандр не мешал ему самому и его коллегам с легкостью совершать прыжки на высоту до двух метров - с поверхности до третьей ступеньки лестницы лунного модуля. На нашей планете такое же усилие привело лишь к прыжку на 30-35 см.

Вокруг Солнца обращается еще несколько карликовых планет. Масса одной из самых больших - Цереры - в 7,5 тыс. раз меньше, а радиус - в два десятка раз меньше земного. Сила тяжести на ней настолько слаба, что космонавт смог бы легко переместить груз массой около 2 тонн, а оттолкнувшись от поверхности "карлика", просто улетел бы в космическое пространство.

www.syl.ru

The force of gravity on other planets

Around the Sun moves 9 large planets (rice. 322). All of them are held around the Sun by gravitational forces. These forces are very large. Например, between the Sun and the Earth gravitational force acts, approximately equal 30 000 000 000 000 000 000 000 N = 3*1022 Н, или 3*1019 kN. Great value of this force due to the fact, that the Sun and the Earth's mass is very large.

Among the planets in the solar system has the smallest mass of Mercury - its mass is almost 19 times less than the mass of the Earth. Weight of the largest planet of the solar system - Jupiter - in 318 times the mass of the Earth. Around many planets move their satellites, which are also held near the gravitational forces of the planets. The satellite of our Earth - Moon - the closest celestial body to us. The distance between the Earth and the Moon equal average 380 000 км. Moon Weight 81 times less than the mass of the Earth.

The smaller the mass of the planet, those with less force is attracted to the body itself. The force of gravity on the Moon's surface 6 times smaller than the force of gravity, acting on the Earth's surface. Например, car, whose weight 600 кг, on the moon would not be weighed 6000 Н, how on earth, а 1000 Н (rice. 323). To leave the Moon, body must have at speed 11 км/с, how on earth, а 2,4 км/с. And if a person has landed on Jupiter, whose mass is many times larger than the Earth's mass, then there would he weighed almost 3 times, than on Earth.

Besides 9 major planets and their satellites, Sun moves around the group is very small planets, which are called asteroids. Even the biggest of these planets - Ceres, the radius is almost 20 time, by weight and 7500 times smaller than Earth. The force of gravity on these planets so small, that man, rebounding from the surface of a planet, I could fly away with it.

This is how K. Э. Tsiolkovsky in one of the stories of the human conditions of stay on the asteroid Vesta, which has a mass in 60 times less mass of the Earth: "On Earth, I am free to carry another person of the same weight, like me. On the West with the same ease can carry 30 times more, t. it is. 60 human. On Earth, I can hop on 50 см. On the West gives the same effort to jump 30 м. This - the height of a ten-home or a huge pine. There is easy to jump over pits and pit width in a decent river. You can jump over the 15-meter high trees and house. And it without a run ".

Поделиться ссылкой:

Liked this:

Like Loading...

Похожее

tehnar.net.ua

Сила тяжести на других планетах

О путешествиях к звездам люди мечтали издревле, начиная с тех времен, когда первые астрономы рассмотрели в примитивные телескопы иные планеты нашей системы и их спутники. С тех пор прошло много веков, но увы, межпланетные и тем более полеты к другим звездам невозможны и сейчас. А единственным внеземным объектом, где побывали исследователи, является Луна.

Мы знаем, что силой тяжести называется сила, с которой Земля притягивает различные тела.

Сила тяжести всегда направлена к центру планеты. Сила тяжести сообщает телу ускорение, которое называется ускорением свободного падения и численно равно 9,8м/с2. Это значит, что любое тело, независимо от его массы при свободном падении (без сопротивления воздуха) изменяет свою скорость за каждую секунду падения на 9,8 м/с.

Используя формулу для нахождения ускорения свободного падения 

g = GМ/R2

, мы можем рассчитать значения g на поверхности любой планеты. 

Масса планет M и их радиус R известны благодаря астрономическим наблюдениям и сложным расчетам. 

а G — гравитационная постоянная (6,6742•10-11 м3с-2кг-1).

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736•1024 кг, радиус R = 6,371•106 м), мы получим g=6,6742 * 10 *5,9736 / 6,371*6,371 = 9,822м/с2

Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с2, а в технических расчётах обычно принимают g = 9,81 м/с2.

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Благодаря притяжению к Земле течет вода в реках. Человек, подпрыгнув, опускается на Землю, потому что Земля притягивает его. Земля притягивает к себе все тела: Луну, воду морей и океанов, дома, спутники и т. п. Благодаря силе тяжести облик нашей планеты непрерывно меняется. Сходят с гор лавины, движутся ледники, обрушиваются камнепады, выпадают дожди, текут реки с холмов на равнины.

Все живые существа на земле чувствуют ее притяжение. Растения также «чувствуют» действие и направление силы тяжести, из-за чего главный корень всегда растет вниз, к центру земли, а стебель вверх.

Земля и все остальные планеты, движущиеся вокруг Солнца, притягиваются к нему и друг к другу. Не только Земля притягивает к себе тела, но и эти тела притягивают к себе Землю. Притягивают друг друга и все тела на Земле. Например, притяжение со стороны Луны вызывает на Земле приливы и отливы воды, огромные массы которой поднимаются в океанах и морях дважды в сутки на высоту нескольких метров. Притягивают друг друга и все тела на Земле. Поэтому ВЗАИМНОЕ ПРИТЯЖЕНИЕ ВСЕХ ТЕЛ ВСЕЛЕННОЙ НАЗЫВАЕТСЯ ВСЕМИРНЫМ ТЯГОТЕНИЕМ.

Чтобы определить силу тяжести, действующую на тело любой массы, необходимо ускорение свободного падения умножить на массу этого тела.

F = g * m,

где m-масса тела, g – ускорение свободного падения.

Из формулы видно, что значение силы тяжести увеличивается с увеличением массы тела. Так же видно, что сила тяжести зависит также от величины ускорения свободного падения. Значит, делаем вывод: для тела неизменной массы значение силы тяжести меняется с изменение ускорения свободного падения.

Используя формулу для нахождения ускорения свободного падения g=GМ/R2

, мы можем рассчитать значения g на поверхности любой планеты. Масса планет M и их радиус R известны благодаря астрономическим наблю¬дениям и сложным расчетам. где G — гравитационная постоянная (6,6742•10-11 м3с-2кг-1).

Планеты издавна делились учеными на две группы. Первая – это планеты земного типа: Меркурий, Венера, Земля, Марс, с недавних пор – Плутон. Для них характерны относительно небольшие размеры, малое количество спутников и твердое состояние. Оставшиеся – Юпитер, Сатурн, Уран, Нептун – планеты-гиганты, состоящие из газообразного водорода и гелия. Все они движутся вокруг Солнца по эллиптическим орбитам, отклоняясь от заданной траектории, если рядом проходит планета-сосед.

Наша «первая космическая станция» - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53 : 9,31 = 0,38). Она составляет 0,38 g от земной, это примерно в два раза меньше. Это значит, что на красной планете можно скакать и прыгать гораздо выше, чем на Земле, и все тяжести весить будут также значительно меньше. Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь определим, напряжение силы тяжести на Луне. Масса Луны, как мы знаем, в 81 раз меньше массы Земли. Если бы Земля обладала такой маленькой массой, то напряжение силы тяжести на ее поверхности было бы в 81 раз слабее, чем теперь. Но по закону Ньютона шар притягивает так, словно вся его масса сосредоточена в центре. Центр Земли отстоит от ее поверхности на расстоянии земного радиуса, центр Луны – на расстоянии лунного радиуса. Но лунный радиус составляет 27/100 земного, а от уменьшения расстояния в 100/27 раза сила притяжения увеличивается в (100/27)2 раз. Значит, в конечном итоге напряжение силы тяжести на поверхности Луны составляет

1002  /   272 * 81 = 1 / 6 земного

Любопытно, что если бы на Луне существовала вода, пловец чувствовал бы себя в лунном водоеме так же, как на Земле. Его вес уменьшился бы в шесть раз, но во столько же раз уменьшился бы и вес вытесняемой им воды; соотношение между ними было бы такое же, как на Земле, и пловец погружался бы в воду Луны ровно на столько же, на сколько погружается он у нас.

ускорение свободного падения на поверхности некоторых небесных тел, м/с2

Солнце   273,1

Меркурий  3,68—3,74

Венера   8,88

Земля   9,81

Луна   1,62

Церера   0,27

Марс   3,86

Юпитер   23,95

Сатурн   10,44

Уран   8,86

Нептун   11,09

Плутон   0,61

Как видно из таблицы, почти идентичное значение ускорения свободного падения присутствует на Венере и составляет 0,906 от земной.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):

Плутон – 43 Н

Меркурий - 260 Н

Марс - 270 Н

Сатурн -730 Н

Уран 620 Н

Венера - 622 Н

Земля - 786 Н

Нептун - 776 Н

Юпитер – 1677 Н

Как видим, Земля по напряжению силы тяжести занимает промежуточное положение между планетами-гигантами. На двух из них - Сатурне и Уране - сила тяжести несколько меньше, чем на Земле, а на двух других - Юпитере и Нептуне - больше. Сила тяжести на Юпитере составляет 2,535 g относительно земной. Правда, для Юпитера и Сатурна вес дан с учетом действия центробежной силы (они быстро вращаются). Последняя уменьшает вес тела на экваторе на несколько процентов.

На поверхности Венеры человек окажется почти на 10% легче, чем на Земле. Зато на Меркурии и на Марсе уменьшение веса произойдет в 2,6 раза. Что же касается Плутона, то на нем человек будет в 2,5 раза легче, чем на Луне, или в 15,5 раза легче, чем в земных условиях.

Самое близкое к нам небесное тело - Луна. Люди там уже побывали и убедились в том, что действительно ускорение свободного падения на Луне в 6 раз меньше земного.

А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 20000 Н и было бы мгновенно раздавлено собственной тяжестью.

Вывод:

Если нам предстоит космическое путешествие по планетам Солнечной системе, то нужно быть готовым к тому, что наш вес будет меняться. Сила притяжения также оказывает различные воздействия на живых существ. Попросту говоря, когда будут открыты другие обитаемые миры, мы увидим, что их обитатели сильно отличаются друг от друга в зависимости от массы их планет. К примеру, будь Луна обитаема, то ее населяли бы очень высокие и хрупкие существа, и наоборот, на планете массой с Юпитер жители были бы очень низкие, крепкие и массивные. А иначе на слабых конечностях в таких условиях попросту не выживешь при всем желании. Сила притяжения сыграет важную роль и при будущей колонизации того же Марса.

www.spishy-u-antoshki.ru

подготовить сообщение по теме сила тяжести на других планетах

 Ответ : Представим себе, что мы отправляемся в путешествие по Солнечной системе. Какова сила тяжести на других планетах? На каких мы будем легче, чем на Земле, а на каких тяжелее?

Пока мы еще не покинули Землю, проделаем такой опыт: мысленно опустимся на один из земных полюсов, а затем представим себе, что мы перенеслись на экватор. Интересно, изменился ли наш вес?

Известно, что вес любого тела определяется силой притяжения (силой тяжести). Она прямо пропорциональна массе планеты и обратно пропорциональна квадрату ее радиуса (об этом мы впервые узнали из школьного учебника физики). Следовательно, если бы наша Земля была строго шарообразна, то вес каждого предмета при перемещении по ее поверхности оставался бы неизменным.

Но Земля - не шар. Она сплюснута у полюсов и вытянута вдоль экватора. Экваториальный радиус Земли длиннее полярного на 21 км. Выходит, что сила земного притяжения действует на экваторе как бы издалека. Вот почему вес одного и того же тела в разных местах Земли неодинаков. Тяжелее всего предметы должны быть на земных полюсах и легче всего - на экваторе. Здесь они становятся легче на 1/190 по сравнению с их весом на полюсах. Конечно, обнаружить это изменение веса можно только с помощью пружинных весов. Небольшое уменьшение веса предметов на экваторе происходит также за счет центробежной силы, возникающей вследствие вращения Земли. Таким образом, вес взрослого человека, прибывшего с высоких полярных широт на экватор, уменьшится в общей сложности примерно на 0,5 кг.

Теперь уместно спросить: а как будет изменяться вес человека, путешествующего по планетам Солнечной системы?

Наша первая космическая станция - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53 : 9,31 = 0,38). Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70 кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса): 

Плутон 4,5 Меркурий 26,5 Марс 26,5 Сатурн 62,7 Уран 63,4 Венера 63,4 Земля 70,0 Нептун 79,6 Юпитер 161,2 Как видим, Земля по напряжению силы тяжести занимает промежуточное положение между планетами-гигантами. На двух из них - Сатурне и Уране - сила тяжести несколько меньше, чем на Земле, а на двух других - Юпитере и Нептуне - больше. Правда, для Юпитера и Сатурна вес дан с учетом действия центробежной силы (они быстро вращаются). Последняя уменьшает вес тела на экваторе на несколько процентов.

Следует заметить, что для планет-гигантов значения веса даны на уровне верхнего облачного слоя, а не на уровне твердой поверхности, как у земноподобных планет (Меркурия, Венеры, Земли, Марса) и у Плутона.

На поверхности Венеры человек окажется почти на 10% легче, чем на Земле. Зато на Меркурии и на Марсе уменьшение веса произойдет в 2,6 раза. Что же касается Плутона, то на нем человек будет в 2,5 раза легче, чем на Луне, или в 15,5 раза легче, чем в земных условиях.

А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 2 т и было бы мгновенно раздавлено собственной тяжестью. Впрочем, еще не достигнув Солнца, все превратилось бы в раскаленный газ. Другое дело - крошечные небесные тела, такие как спутники Марса и астероиды. На многих из них по легкости можно уподобиться... воробью!

Вполне понятно, что путешествовать по другим планетам человек может только в специальном герметичном скафандре, снабженном приборами системы жизнеобеспечения. Вес скафандра американских астронавтов, в котором они выходили на поверхность Луны, равен примерно весу взрослого человека. Поэтому приведенные нами значения веса космического путешественника на других планетах надо по меньшей мере удвоить. Только тогда мы получим весовые величины, близкие к действительным.

znanija.com

Информационный проект Сила тяжести на других планетах Выполнила ученица 7 класса моу «сош с. Березина Речка Саратовского района Саратовской области»

прямоугольник 15

Информационный проект

Сила тяжести на других планетах

Выполнила ученица 7 класса МОУ «СОШ с. Березина Речка Саратовского района Саратовской области» Байбекова Маша. 13 лет.

Руководитель учитель физики и информатики МОУ «СОШ с. Березина Речка Саратовского района Саратовской области» Васильева Елена Владимировна.

2012г.

Основополагающий вопрос

Представим себе, что мы отправляемся в путешествие по Солнечной системе. Какова сила тяжести на других планетах? На каких мы будем легче, чем на Земле, а на каких тяжелее?

Учебные вопросы:

  1. Что называется силой тяжести? Значение силы тяжести.
  2. Как определить силу тяжести? От чего зависит ее значение?
  3. Какие планеты образуют Солнечную систему? Чем они отличаются?
  4. Сила тяжести на различных планетах Солнечной системы.
  5. Вывод.

Что называется силой тяжести?

Из курса физики 7 класса мы знаем, что силой тяжести называется сила, с которой Земля притягивает различные тела.

Сила тяжести всегда направлена к центру планеты. На рисунке показано, что Земля притягивает мальчика и мяч с силами, направленными вниз, то есть к центру планеты. Направление «вниз» различно для различных мест на планете. Это будет справедливо и для других планет и космических тел. 

Сила тяжести сообщает телу ускорение, которое называется ускорением свободного падения и численно равно 9,8м/с2. Это значит, что любое тело, независимо от его массы при свободном падении (без сопротивления воздуха) изменяет свою скорость за каждую секунду падения на 9,8 м/с.

Благодаря притяжению к Земле течет вода в реках. Человек, подпрыгнув, опускается на Землю, потому что Земля притягивает его. Земля притягивает к себе все тела: Луну, воду морей и океанов, дома, спутники и т.п. Благодаря силе тяжести облик нашей планеты непрерывно меняется. Сходят с гор лавины, движутся ледники, обрушиваются камнепады, выпадают дожди, текут реки с холмов на равнины, образуются водопады и т.д.

Все живые существа на земле чувствуют ее притяжение. Растения также «чувствуют» действие и направление силы тяжести, из-за чего главный корень всегда растет вниз, к центру земли, а стебель вверх.

Земля и все остальные планеты, движущиеся вокруг Солнца, притягиваются к нему и друг к другу. Не только Земля притягивает к себе тела, но и эти тела притягивают к себе Землю. Притягивают друг друга и все тела на Земле. Например, притяжение со стороны Луны вызывает на Земле приливы и отливы воды, огромные массы которой поднимаются в океанах и морях дважды в сутки на высоту нескольких метров. Притягивают друг друга и все тела на Земле. Поэтому ВЗАИМНОЕ ПРИТЯЖЕНИЕ ВСЕХ ТЕЛ ВСЕЛЕННОЙ НАЗЫВАЕТСЯ ВСЕМИРНЫМ ТЯГОТЕНИЕМ.

^

Из учебника физики 7 класса узнаем, чтобы определить силу тяжести, действующую на тело любой массы, необходимо ускорение свободного падения умножить на массу этого тела.

,где m-масса тела, g – ускорение свободного падения.

Из формулы видно, что значение силы тяжести увеличивается с увеличением массы тела. Так же видно, что сила тяжести зависит также от величины ускорения свободного падения. Значит, делаем вывод: для тела неизменной массы значение силы тяжести меняется с изменение ускорения свободного падения.

Итак, пока мы еще не покинули Землю, проделаем такой опыт: мысленно опустимся на один из земных полюсов, а затем представим себе, что мы перенеслись на экватор. Интересно, изменился ли наш вес?

Иautoshape 3autoshape 6звестно, что вес любого тела определяется силой притяжения (силой тяжести). Она прямо пропорциональна массе планеты и обратно пропорциональна квадрату ее радиуса (об этом мы впервые узнали из школьного учебника физики). Следовательно, если бы наша Земля была строго шарообразна, то вес каждого предмета при перемещении по ее поверхности оставался бы неизменным.

Нautoshape 2autoshape 7о Земля - не шар. Она сплюснута у полюсов и вытянута вдоль экватора.

Экваториальный радиус Земли длиннее полярного на 21 км. Выходит, что сила земного притяжения действует на экваторе как бы издалека. Вот почему вес одного и того же тела в разных местах Земли неодинаков. Тяжелее всего предметы должны быть на земных полюсах и легче всего - на экваторе. Здесь они становятся легче на 1/190 по сравнению с их весом на полюсах. Конечно, обнаружить это изменение веса можно только с помощью пружинных весов. Небольшое уменьшение веса предметов на экваторе происходит также за счет центробежной силы, возникающей вследствие вращения Земли. Таким образом, вес взрослого человека, прибывшего с высоких полярных широт на экватор, уменьшится в общей сложности примерно на 5 Н.

Теперь уместно спросить: а как будет изменяться вес человека, путешествующего по планетам Солнечной системы?

^

Наша Солнечная система – лишь малая часть галактики Млечный Путь, в которой свыше 100 миллиардов звезд. Основная масса нашего «космического домика» приходится на Солнце – около 99,8%. Планетам досталось 0,13% вещества, а на остальные тела системы – 0,0003% массы.

Планеты издавна делились учеными на две группы. Первая – это планеты земного типа: Меркурий, Венера, Земля, Марс, с недавних пор – Плутон. Для них характерны относительно небольшие размеры, малое количество спутников и твердое состояние. Оставшиеся – Юпитер, Сатурн, Уран, Нептун – планеты-гиганты, состоящие из газообразного водорода и гелия. Все они движутся вокруг Солнца по эллиптическим орбитам, отклоняясь от заданной траектории, если рядом проходит планета-сосед.

^

Наша «первая космическая станция» - Марс. Сколько же человек будет весить на Марсе? Сделать такой расчет нетрудно. Для этого необходимо знать массу и радиус Марса.

Как известно, масса "красной планеты" в 9,31 раза меньше массы Земли, а радиус в 1,88 раза уступает радиусу земного шара. Следовательно, из-за действия первого фактора сила тяжести на поверхности Марса должна быть в 9,31 раза меньше, а из-за второго - в 3,53 раза больше, чем у нас (1,88 * 1,88 = 3,53). В конечном счете она составляет там немногим более 1/3 части земной силы тяжести (3,53 : 9,31 = 0,38). Таким же образом можно определить напряжение силы тяжести на любом небесном теле.

Теперь условимся, что на Земле космонавт-путешественник весит ровно 70кг. Тогда для других планет получим следующие значения веса (планеты расположены в порядке возрастания веса):

Плутон - 45 Н

Меркурий - 265 Н

Марс - 265 Н

Сатурн -627 Н

Уран 634 Н

Венера - 634 Н

Земля - 700 Н

Нептун - 796 Н

Юпитер – 1612 Н

Как видим, Земля по напряжению силы тяжести занимает промежуточное положение между планетами-гигантами. На двух из них - Сатурне и Уране - сила тяжести несколько меньше, чем на Земле, а на двух других - Юпитере и Нептуне - больше. Правда, для Юпитера и Сатурна вес дан с учетом действия центробежной силы (они быстро вращаются). Последняя уменьшает вес тела на экваторе на несколько процентов.

Следует заметить, что для планет-гигантов значения веса даны на уровне верхнего облачного слоя, а не на уровне твердой поверхности, как у земноподобных планет (Меркурия, Венеры, Земли, Марса) и у Плутона.

На поверхности Венеры человек окажется почти на 10% легче, чем на Земле. Зато на Меркурии и на Марсе уменьшение веса произойдет в 2,6 раза. Что же касается Плутона, то на нем человек будет в 2,5 раза легче, чем на Луне, или в 15,5 раза легче, чем в земных условиях.

А вот на Солнце гравитация (притяжение) в 28 раз сильнее, чем на Земле. Человеческое тело весило бы там 20000 Н и было бы мгновенно раздавлено собственной тяжестью. Впрочем, еще не достигнув Солнца, все превратилось бы в раскаленный газ. Другое дело - крошечные небесные тела, такие как спутники Марса и астероиды. На многих из них по легкости можно уподобиться... воробью.

Первый и самый большой астероид - Церера был открыт в 1801 г. Его радиус около 500 км, а масса примерно 1,2•1021 кг (т.е. в 5000 раз меньше, чем у Земли). Нетрудно подсчитать, что ускорение свободного падения на Церере примерно в 32 раза меньше, чем на Земле! Во столько же раз меньше там оказывается и вес любого тела. Поэтому космонавт, оказавшийся на Церере, смог бы поднять груз массой 1,5т.

На Церере, однако, пока еще никто не был. А вот на Луне люди уже побывали. Впервые это произошло летом 1969 г., когда космический корабль «Аполлон-11» доставил на наш естественный спутник трех американских астронавтов: Н. Армстронга, Э. Олдрина и М. Коллинза. «Конечно,- рассказал потом Армстронг,- в условиях лунного притяжения хочется прыгать вверх... Наибольшая высота прыжка составляла два метра - Олдрин прыгнул до третьей ступеньки лестницы лунной кабины. Падения не имели неприятных последствий. Скорость настолько мала, что нет оснований опасаться каких-либо травм». Ускорение свободного падения на Луне в 6 раз меньше, чем на Земле. Поэтому, прыгая вверх, человек поднимается там на высоту, в 6 раз большую, чем на Земле. Чтобы подпрыгнуть на Луне на 2 м, как это сделал Олдрин, требуется приложить такое же усилие, что и на Земле при прыжке на высоту 33 см.

Вполне понятно, что путешествовать по другим планетам человек может только в специальном герметичном скафандре, снабженном приборами системы жизнеобеспечения. Вес скафандра американских астронавтов, в котором они выходили на поверхность Луны, равен примерно весу взрослого человека. Поэтому приведенные нами значения веса космического путешественника на других планетах надо по меньшей мере удвоить. Только тогда мы получим весовые величины, близкие к действительным.

Вывод:

Если нам предстоит космическое путешествие по планетам Солнечной системе, то нужно быть готовым к тому, что наш вес будет меняться. Наглядно это изменение можно наблюдать на диаграмме:

Список использованной литературы:

  1. А.В. Перышкин. Физика.7 класс.
и ресурсов Интернет:
  1. http://www.fizika.ru/
  2. http://www.prosto-o-slognom.ru/astronomia/48.html
  3. http://www.edu.yar.ru/russian/projects/socnav/prep/phis001/kin/kin5.html
  4. http://ru.wikipedia.org/wiki/%D3%F1%EA%EE%F0%E5%ED%E8%E5_%F1%E2%EE%E1%EE%E4%ED%EE%E3%EE_%EF%E0%E4%E5%ED%E8%FF

refdt.ru


Смотрите также