Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Частная производная. Реферат производная


Реферат Производная и ее приложения

Реферат Производная и ее приложения - страница №1/5

Лицей информационных технологий

Реферат Производная и ее приложения

Выполнил: ученик 11А класса

Новиков А.

Проверила: Шекера Г.В.

г.Хабаровск

2004

Содержание

Введение……………………………………………………………………………………….…3

1. Понятие производной……………………………………………………....………………....4

2. Геометрический смысл производной…………………….………………….......……..4

3. Физический смысл производной……………………………………………………….…….5

4. Правила дифференцирования………………………………………………………….……..6

5. Производные высших порядков……………………………………………………….……..7

6. Изучение функции с помощью производной

6.1.Возрастание и убывание функции. Экстремум функции……………………………..8

6.2.Достаточные условия убывания и возрастания функции.

Достаточные условия экстремума функции………………..…………………...…….11

6.3 .Правило нахождения экстремума………………………………………………….....12

6.4.Точка перегиба графика функции………………………………………………...…...12

6.5.Общая схема исследования функции и построение ее графика……………………..15

6.5. Касательная и нормаль к плоской кривой…………………………..………………..15

7.Экономическое приложение производной.

7.1.Экономическая интерпретация производной………………………………...……….16

7.2. Применение производной в экономической теории...………………………..……..19

7.3. Использование производной для решения задач по экономической теории….…...21

8. Применение производной в физике…………………………………………………….…..23

9. Применение производной в алгебре

9.1. Применение производной к доказательству неравенств…………………………....25

9.2. Применение производной в доказательстве тождеств………………………….…...28

9.3. Применение производной для упрощения алгебраических

и тригонометрических выражений……………………………………………….……29

9.4.Разложение выражения на множители с помощью производной…………………...30

9.5. Применение производной в вопросах существования корней уравнений………....31

Заключение……………………………………………………………………………………...32

Список литературы……………………………………………………………………………..33

Введение Понятие функции является одним из основных понятии математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно.

Уже в 16 - 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики.

Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу аА поставлен в соответствие определенный элемент вВ. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием). Главное в этом определении: аА!bB. Под элементами множеств А и В понимаются при этом элементы произвольной природы.

В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней.

Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др.

Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин.

Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными.

В своей же работе я хочу подробнее остановится на приложениях производной.

1. Понятие производной

  При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

  Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f ' (x), называют дифференцированием и состоит он из следующих трех шагов:

  1) даем аргументу x приращение x и определяем соответствующее приращение функции y = f(x+x) -f(x);   2) составляем отношение

  3) считая x постоянным, а x 0, находим, который обозначаем через f ' (x), как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x, при котором мы переходим к пределу.

  Определение: Производной y ' =f ' (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен.   Таким образом, , или

  Заметим, что если при некотором значении x, например при x=a, отношение при x0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a) не имеет производной или не дифференцируема в точке x=a.

2. Геометрический смысл производной.

Рассмотрим график функции у = f (х), дифференцируемой в окрест­ностях точки x0

f(x)

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x0, f (х0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .

Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим или tg =f '(x0), так как -угол накло­на касательной к положительному направлению оси Ох , по определению производной. Но tg = k - угловой коэффициент каса­тельной, значит, k = tg = f '(x0).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x0.

3. Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени [t0; t0+ ∆t] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.

lim Vср (t) = (t0) - мгновенная скорость в момент времени t0, ∆t → 0.

а lim = ∆x/∆t = x'(t0) (по определению производной).

Итак, (t) =x'(t).

Физический смысл производной заключается в следующем: произ­водная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x'(t) - скорость,

a(f) = '(t) - ускорение, или

a(t) = x"(t).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ(t) - изменение угла от времени,

ω = φ'(t) - угловая скорость,

ε = φ'(t) - угловое ускорение, или ε = φ"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

x  [0; l], l - длина стержня,

р = m'(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω2x(t) = 0,

где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + ω2y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin(ωt + φ0) или у = Acos(ωt + φ0), где

А - амплитуда колебаний, ω - циклическая частота,

φ0 - начальная фаза.

следующая страница >>

umotnas.ru

Реферат

Производная и ее приложения

Выполнил: ученик 11А класса

Новиков А.

Проверила: Шекера Г.В.

г.Хабаровск

2004

Содержание

Введение……………………………………………………………………………………….…3

1. Понятие производной……………………………………………………....………………....4

2. Геометрический смысл производной…………………….………………….......……..4

3. Физический смысл производной……………………………………………………….…….5

4. Правила дифференцирования………………………………………………………….……..6

5. Производные высших порядков……………………………………………………….……..7

6. Изучение функции с помощью производной

6.1.Возрастание и убывание функции. Экстремум функции……………………………..8

6.2.Достаточные условия убывания и возрастания функции.

Достаточные условия экстремума функции………………..…………………...…….11

6.3 .Правило нахождения экстремума………………………………………………….....12

6.4.Точка перегиба графика функции………………………………………………...…...12

6.5.Общая схема исследования функции и построение ее графика……………………..15

6.5. Касательная и нормаль к плоской кривой…………………………..………………..15

7.Экономическое приложение производной.

7.1.Экономическая интерпретация производной………………………………...……….16

7.2. Применение производной в экономической теории...………………………..……..19

7.3. Использование производной для решения задач по экономической теории….…...21

8. Применение производной в физике…………………………………………………….…..23

9. Применение производной в алгебре

9.1. Применение производной к доказательству неравенств…………………………....25

9.2. Применение производной в доказательстве тождеств………………………….…...28

9.3. Применение производной для упрощения алгебраических

и тригонометрических выражений……………………………………………….……29

9.4.Разложение выражения на множители с помощью производной…………………...30

9.5. Применение производной в вопросах существования корней уравнений………....31

Заключение……………………………………………………………………………………...32

Список литературы……………………………………………………………………………..33

Введение

Понятие функции является одним из основных понятии математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно.

Уже в 16 - 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики.

Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу аА поставлен в соответствие определенный элемент вВ. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием). Главное в этом определении:аА!bB. Под элементами множеств А и В понимаются при этом элементы произвольной природы.

В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней.

Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др.

Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин.

Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными.

В своей же работе я хочу подробнее остановится на приложениях производной.

studfiles.net

Реферат Частная производная

скачать

Реферат на тему:

В математическом анализе, частная производная — одно из обобщений понятия производной на случай функции нескольких переменных.

В явном виде частная производная функции f определяется следующим образом:

График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz.

Сечения графика, изображенного выше, плоскостью y = 1

Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где dxf — частный дифференциал функции f по переменной x. Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).

Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции f в точке по координате xk равна производной по направлению , где единица стоит на k-ом месте.

Примеры

Объем конуса зависит от высоты и радиуса основания

Объём V конуса зависит от высоты h и радиуса r, согласно формуле

Частная производная объема V относительно радиуса r

которая показывает скорость, с которой изменяется объем конуса, если его радиус меняется, а его высота остается неизменной. Частная производная относительно h

которая показывает скорость, с которой изменяется объем конуса, если его высота меняется, а его радиус остается неизменным.

Полная производная V относительно r и h

и

Различие между полной и частной производной — устранение косвенных зависимостей между переменными в последней.

Если (по некоторым причинам) пропорции конуса остаются неизменными, то высота и радиус находятся в фиксированном отношении k,

Это дает полную производную относительно r:

Уравнения, в которые входят частные производные, называются дифференциальными уравнениями в частных производных и широко известны в физике, инженерии и других науках и прикладных дисциплинах.

www.wreferat.baza-referat.ru

Реферат - Производная функции - Биология

Лекция № 1

Доцент Ильич Г.К. ( кафедра мед. и биол. физики )

ОСНОВНЫЕ ПОНЯТИЯ ВЫСШЕЙ МАТЕМАТИКИ

Производная функции

Количественное описание сложных изменяющихся процессов жизнедеятельности с помощью элементарной математики невозможно, поскольку соответствующие математические величины, используемые для этой цели, должны сами обладать способностью к “движению”. Высшая математика, в отличие от элементарной, оперирует зависимостями и величинами, подверженными изменениям, происходящим по определенным законам. Величиной, определяющей темп изменения функциональных зависимостей в высшей математике, является производная функции. Для пояснения этого понятия рассмотрим рис.1, где графически представлена некоторая произвольная функциональная зависимость y = f (x).

Отметим на графике некоторые значения аргумента х1 и х2 , разница между которыми есть приращениеаргумента: Dx = х2_х1. Приращение функции: D y = y2 — y1. Если Dx ® 0, то для непрерывных функций и Dy ® 0. То, к чему при неограниченном убывании Dx стремится отношение зависит от конкретного вида функции и характеризует темп ее изменения.

Производной функции в данной точке называют предел отношения приращения функции к приращению аргумента при его неограниченном убывании. Обозначение производной функции одного аргумента: y’ или . Таким образом:

(1)

Производная функции имеет простой геометрический смысл. Из рис. 1 видно, что отношение где a — угол наклона секущейAB к оси абсцисс. Если же Dx неограниченно убывает (х2 стремится к х1), то секущая вырождается в касательную к графику функции в точке А, имеющую угол наклона к оси абсцисс a 0:

( 2 )

Таким образом, тангенс угла между касательной, проведенной к графику функции в данной точке, и осью абсцисс, числено равен значению производной функции в данной точке. В этом и состоит геометрический смысл производной.

Кфизическому смыслу производной подойдем из рассмотрения механического движения. Если за время Dt тело проходит путь DS, то средняя за это время скорость движения: Но на пути D S скорость может иметь различные мгновенные значения (vмгн), которые определяются как предел отношения DS к Dt при Dt®0 :

(3)

Следовательно, мгновенная скорость движения в данной точке представляет собой значение в данный момент времени производной от пути по времени.

Итак, производная имеет смысл скорости некоторого процесса.

Если рассматривается ускорение (а) механического движения, то мгновенное ускорение представляет собой первую производную от скорости или вторую производную от пути:

(4)

Таким образом, вторая производная имеет физический смысл ускорения.

Если некоторая величина у зависит от пространственной координаты х, то производная характеризует темп пространственного изменения у. Упрощенно, производные по пространственной координате называют градиентами.Поясним смысл градиента. Представим что некоторое вещество, аккумулируемое в биологической ткани, имеет неравномерное распределение концентрации С по глубине, характеризуемой координатойx (см.рис.2). Скорость изменения концентрации определяется производной, или градиентом концентрации. Градиент некоторой величины направлен в сторону ее возрастания. Градиент концентрации является движущей силой диффузии, заставляя молекулы вещества перемещаться в направлении, противоположном направлению градиента.

Перенос тепла в некотором направлении (теплообмен) осуществляется за счет наличия градиента температуры; движение заряженных частиц побуждается градиентом потенциалаи т. п. Таким образом, градиенты являются одной из первопричин обменных процессов, происходящих в биологических системах.

В заключение этого раздела отметим, что правила и приемы дифференцирования, применение производных для исследования функций (нахождение экстремумов функций) изучались в курсе средней школы и их предлагается повторить их самостоятельно.

www.ronl.ru

Реферат Производная Ли

скачать

Реферат на тему:

План:

    Введение
  • 1 Определения
    • 1.1 Аксиоматическое
    • 1.2 Через поток
  • 2 Выражения в координатах
  • 3 Производная Ли для тензорного поля в неголономном репере
  • 4 Свойства
  • 5 Физический смысл производной Ли
  • 6 Обобщения
    • 6.1 Естественные расслоения
    • 6.2 Производная Ли по формам
  • Литература

Введение

Производная Ли тензорного поля Q по направлению векторного поля X — главная линейная часть приращения тензорного поля Q при его преобразовании, которое индуцировано локальной однопараметрической группой диффеоморфизмов многообразия, порождённой полем X.

Обычно обозначается .

1. Определения

1.1. Аксиоматическое

Производная Ли полностью определяется следующими своими свойствами. Такое определение наиболее удобно для практических вычислений, но требует доказательства существования.

1.2. Через поток

Пусть Mn — n-мерное гладкое многообразие и X — векторное поле на Mn.

Рассмотрим поток по X, определяемый соотношением:

Обратное отображение к дифференциалу ,

однозначно продолжается до гомоморфизма ht алгебры тензоров над в алгебру тензоров над Tp. Таким образом произвольное тензорное поле Q, однопараметрическое семейство полей Qt = ht(Q). Производная Ли может быть определена как

2. Выражения в координатах

, где f — скаляр.

, где y — вектор, а yi — его компоненты.

, где ω — 1-форма, а ωi — её компоненты.

, где g — 2-форма (метрика), а gij — её компоненты.

3. Производная Ли для тензорного поля в неголономном репере

Пусть тензорное поле К типа (p, q) задано в неголономном репере {eα}, тогда его производная Ли вдоль векторного поля Х задаётся следующей формулой:

,

где (α) = (α1...αp),(β) = (β1...βq), и введены следующие обозначения:

,

 — объект неголономности.

4. Свойства

  • -линейно по X и по s. Здесь s — произвольное тензорное поле.
  • Производная Ли — дифференцирование на кольце тензорных полей.
  • На супералгебре внешних форм производная Ли является дифференцированием и однородным оператором степени 0.
  • Пусть v и u — векторные поля на многообразии, тогда
есть дифференцирование алгебры , поэтому существует векторное поле [v,u], называемое скобкой Ли векторных полей (также их скобкой Пуассона или коммутатор), для которого

5. Физический смысл производной Ли

Пусть векторное поле V(x,t) есть поле скоростей неинерциальной системы отсчёта относительно инерциальной системы отсчёта, то есть в каждой точке пространства x в каждый момент времени t определена скорость координатных сеток этих систем относительно друг друга. Тогда производная Ли вдоль векторного поля V(x,t) переносит производную по времени от каких-либо тензорных полей Q(x,t) из неинерциальной системы отсчёта в инерциальную, тем самым определяя инвариантную производную по времени от тензорных полей.

6. Обобщения

6.1. Естественные расслоения

Пусть F — естественное гладкое расслоение, то есть функтор, действующий из категории гладких многообразий в категорию расслоений над ними: . Произвольное векторное поле порождает однопараметрическую группу диффеморфизмов , продолжающуюся с помощью F на пространство расслоения F(M), то есть . Производная этой группы в нуле даёт векторное поле , являющееся продолжением X. Группа F(Γt) также позволяет определить производную Ли по X от произвольных сечений по такой же формуле, как и в классическом случае:

Отметим, что в общем случае производная Ли является элементом соответствующего вертикального расслоения VF(M), то есть ядра отображения , так как . Если F — векторное расслоение, то существует канонический изоморфизм . Оператор вертикального проектирования позволяет представить производную Ли как сечение исходного расслоения:

6.2. Производная Ли по формам

Другое обобщение основано на исследовании супералгебры Ли дифференцирований супералгебры внешних форм. Среди всех таких дифференцирований особенно выделяются т. н. алгебраические, то есть те, которые равны 0 на функциях. Любое такое дифференцирование имеет вид iK, где  — тангенциальнозначная форма, а оператор внутреннего дифференцирования iK определяется по формуле

Здесь Alt — операция альтернирования отображения по всем переменным. Производная Ли по векторнозначной форме K определяется через суперкоммутатор операторов:

Её значение определяется тем, что любое дифференцирование D супералгебры Λ * (M) однозначно представимо в виде , где K, S — некоторые векторнозначные формы. Кроме того, по формуле можно ввести скобку Фролиха-Ниенхойса тангенциальнозначных форм.

Литература

  • Ш. Кобаяси, К. Номидзу Основы дифференциальной геометрии. — 1981 Т. 1. — 344 с.
  • Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия: Методы и приложения. — 2-е, перераб.. — М.: Наука, 1986. — Т. 1. — 760 с.
  • Ivan Kolář, Peter W. Michor, Jan Slovák Natural operations in differential geometry. — 1-е изд. — Springer, 1993. — 434 с. — ISBN 978-3540562351

wreferat.baza-referat.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.