|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Реферат на тему Химия жизни. Реферат про химиюДоклад - Химия жизни - ХимияРабота на тему: «Химия жизни» 2004 План Введение Химический взгляд на природу, истоки и современное состояние. Предмет познания химической науки и ее структура Взаимосвязь химии и физики Взаимосвязь химии и биологии Заключение Литература Введение Современная химия представляет собой широкий комплекс наук, постепенно сложившийся в ходе ее длительного исторического развития. Практическое знакомство человека с химическими процессами восходит к глубокой древности. В течение многих столетий теоретическое объяснение химических процессов основывалось на натурфилософском учении об элементах-качествах. В модифицированном виде оно послужило основой для алхимии, возникшей примерно в III-IV вв. н.э. и стремившейся решить задачу превращения неблагородных металлов в благородные. Не добившись успеха в решении этой задачи, алхимики, тем не менее, выработали ряд приемов исследования веществ, открыли некоторые химические соединения, чем в определенной степени способствовали возникновению научной химии. Натурфилософские воззрения лежали также в основе возникшей в XVI в. ятрохимии (предшественницы медицинской химии), стремившейся найти в химических препаратах средства лечения многочисленных болезней. В средние века получили ускоренное развитие химические производства: металлургия, стеклоделие, изготовление красителей. Это способствовало выработке первых теоретических установок в развивавшемся химическом знании. Собственно научная химия ведет свое начало со второй половины XVII в., когда Р. Бойль и его единомышленники дали первое научное определение понятия «химический элемент». Важной вехой на пути создания научной химии стало открытие благодаря работам М.В. Ломоносова и А. Лавуазье, закона сохранения массы при химических реакциях. Важную роль в становлении химии как самостоятельной науки сыграло открытие в конце XVII — начале XIXвв. стехиометрических законов. Разработка химических воззрений в XIX в. началась с создания Д. Дальтоном основ химической атомистики. Вскоре А. Авогадро ввел понятие «молекула». Однако атомно-молекулярные представления утвердились в науке лишь в 60-х годах XIX в. В тот же период в познавательном прицеле химии заняла основополагающее место, наряду с составом, также структура веществ. Этому в решающей степени способствовало создание А.М. Бутлеровым теории химического строения. К числу наиболее значительных вех развития научной химии и всего естествознания принадлежит открытие Д.И. Менделеевым периодического закона химических элементов. В конце XIX — начале XX вв. к ведущим направлениям развития химии стало относиться изучение закономерностей химического процесса. Со второй половины XX в. в химии плодотворно развивается концепция, нацеленная на изучение возможностей использования в процессах получения целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем. Эволюционная химия обратилась к постижению путей получения наиболее высокоорганизованных химических систем, которые только возможны в настоящее время. В химии исторически сложились, таким образом, четыре уровня изучения веществ: с позиций их состава, строения, химического действия и самоорганизации. Тем не менее, специфика химии не может быть сведена только к исследованию веществ с позиций этого многоуровневого подхода. Наиболее специфичным для нее является постижение химизме взаимоотношений веществ. Причем осмысление феномена химизма, находит свое концентрированное выражение в современной трактовке предмета химии. Химический взгляд на природу, истоки и современное состояние. Химия — очень древняя наука. Существует несколько объяснений слова «химия». Согласно одной из имеющихся теорий, оно происходит от древнего названия Египта — Kham и, следовательно, должно означать «египетское искусство». Согласно другой теории, слово «химия» произошло от греческого слова cumoz (сок растения) и означает «искусство выделения соков». Этот сок может быть расплавленным металлом, так что при подобном расширенном толковании данного термина в него приходится включать и искусство металлургии. С химией тесно связаны элементы стихий древнегреческой натурфилософии, атомистика Левкиппа и Демокрита. Но, конечно, наибольший вклад в становление этой науки внесли египтяне. Имя первого из дошедших до нас химиков — Болос из Менда, жившего в дельте Нила на рубеже III и II вв. до н.э. К 300 г. н.э. египтянин Зосима написал энциклопедию, которая охватывала все собранные к тому времени знания по химии. Но химия, представленная в этом труде, еще не была наукой в полном смысле слова, а оставалась тесно связанной с древнеегипетской религией и не выходила в своем развитии за пределы формирования феноменологического уровня. В химии выявлялись свойства, устанавливались закономерности между ними, сущность же явлений подменялась их мистической интерпретацией. Химию (химиков) искореняли и преследовали древнеримские императоры, фанатики христианства: ученые изгонялись, книги их сжигались, сама наука запрещалась. Одни опасались, например, того, что химики занимались получением золота; вторые преследовали ученых за тесную связь химии с древнеегипетской религией, которая, с точки зрения христианства, была язычеством. Начиная с последних веков I тыс. до н.э. химия бурно развивалась в арабском мире, а в первой половине нынешнего тысячелетия она получила широкое распространение в Западной Европе. С одной стороны, развитие химии в этот период шло вслед за развитием техники, однако, с другой стороны, она оставалась тесно связанной с религиозно-философской мыслью. В тот период химия существовала главным образом как алхимия. В химии необходимо отметить, прежде всего, существование особого «химического взгляда» на природу, который не может быть сведен к физическому, несмотря на все успехи физической химии в нынешнем столетии. То есть у химии давно были обнаружены качества некоторого особого типа. Так, согласно известному химику А. А. Бутакову, химические реакции «нельзя объяснить только действием сил электрического притяжения и отталкивания. Их действием объясняется лишь физическая сторона химического процесса. Химическая форма движения материи представляет собой процессы изменения частиц вещества, которые, в конечном счете, определяются действием периодического закона». Подобного мнения придерживаются и многие другие ученые-химики. Известный российский физико-химик Н. Н. Семенов сводил основные отличия между физическим и химическим процессом к трем: «Истории системы, отсутствию мгновенных параметров для скоростей химических реакций, возможности пользоваться равновесными параметрами для физических процессов и невозможности — для химических». В химии хорошо используется подход индуктивный, гораздо менее продуктивным здесь оказался дедуктивный подход. При дедуктивном подходе вся совокупность известных естественно-научных фактов (не только химических, но и физических, биологических) представляется вытекающей из ряда основных законов. Такой подход, как правило, оказывается достаточно эффективным в физике и там, где могут быть использованы физические идеи (в химии). Индуктивный подход — это движение в обратном направлении, когда на основе химической фактологии выявляются более или менее общие закономерности (правила, законы), а затем уже создаются обобщенные модели, составляющие основу современной теоретической химии. Важнейшие особенности современной химии таковы. 1. В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия). 2. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия — закономерности поведения химических элементов в земной коре. Биогеохимия — это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский. Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам. 3. В химии появляются принципиально новые методы исследования (структурный рентгеновский анализ, масс-спектроскопия, радиоспектроскопия и др.). Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными: 1) введение в практику эфирного наркоза, а затем и других наркотических веществ; 2) использование антисептических средств для предупреждения инфекции; 3) получение новых, не имеющихся в природе аллопластических материалов-полимеров. В химии весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) — это органические соединения. В их основе лежат 18 элементов), и большее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство. Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение. В последнее время химия все чаще предпринимает штурм соседних с нею уровней структурной организации природы. Например, химия все более и более вторгается в биологию, пытаясь объяснить основы жизни. Предмет познания химической науки и ее структура Современная химия изучает превращения, при которых молекулы одного соединения обмениваются атомами с молекулами других соединений, распадаются на молекулы с меньшим числом атомов, а также вступают в химические реакции, в результате которых образуются новые вещества. Атомы претерпевают в химических процессах некоторые изменения лишь в наружных электронных оболочках, атомное ядро и внутренние электронные оболочки при этом не изменяются. При определении предмета химии нередко акцентируют внимание на том, что его составляют, прежде всего, соединения атомов и превращения этих соединений, происходящее с разрывом одних и образованием других межатомных связей. Различные химические науки отличаются тем, что они занимаются изучением либо различных классов соединений (такое различие положено в основу разграничения органической и неорганической химии), либо разных типов реакций (радиохимия, радиационная химия, каталитический синтез, химия полимеров), либо использованием разных методов исследования (физическая химия в ее различных направлениях). Отграничение одной химической дисциплины от другой, сохраняющее в нынешних условиях исторически сложившиеся разграничительные линии, имеет относительный характер. До конца XIX века химия в основном была целостной единой наукой. Внутреннее ее деление на органическую и неорганическую не нарушало этого единства. Но последовавшие вскоре многочисленные открытия, как в самой химии, так и в биологии, физике положили начало быстрой ее дифференциации. Современная химическая наука, опираясь в» прочные теоретические основы, непрерывно развивается вширь и вглубь. В частности, происходит открытие и изучение новых, качественно различных дискретных химических частиц. Так, еще в первой половине XIX века при изучении электролиза были обнаружены ионы — особые частицы, образованные из атомов и молекул, но электрически заряженные. Ионы являются структурными единицами многих кристаллов, кристаллических решеток металлов, они существуют в атмосфере, в растворах и т.д. В начале XX в. химики открыли радикалы как одну из активных форм химического вещества. Они образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, что связано с наличием одиночных (неспаренных) электронов, объясняющих их исключительную химическую активность. К особым формам химического вещества относятся также макромолекулы. Они состоят из сотен и тысяч атомов и вследствие этого приобретают в отличие от обычной молекулы качественно новые свойства. Характерный для новейшей химии, как и для всей науки XX в., процесс глубокой внутренней дифференциации в значительной степени связан с открытием этого качественного многообразия химических веществ. Их строение, превращения и свойства стали предметом изучения специальных разделов химии: электрохимии, химической кинетики, химии полимеров, химии комплексных соединений, коллоидной химии, химии высокомолекулярных соединений. Уже к началу XX в. внутри самой химии четко различаются общая и неорганическая химия, и органическая химия. Предметом изучения общей и тесно связанной с ней неорганической химии стали химические элементы, образуемые ими простейшие неорганические соединения и их общие законы (прежде всего Периодический закон Д.И. Менделеева). Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизученных и синтезу новых элементов с помощью ядерных реакций. Изучением их свойств, а также физико-химических основ и химических свойств радиоактивных изотопов, методикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX в. Органическая химия окончательно сложилась в самостоятельную науку во второй половине XIXв. Этому способствовало получение большого эмпирического и теоретического материала о соединениях углерода и его производных. Определяющим фактором для всех органических соединений являются особенности валентного состояния углерода — способность его атомов связываться между собой как одинарной, так и двойной, тройной связью в длинные линейные и разветвленные цепи. Благодаря бесконечному многообразию форм сцепления углеродных атомов, наличию изомерии и гомологических рядов почти во всех классах органических соединений возможности получения этих соединений практически безграничны. В XX в. многие разделы органической химии стали постепенно превращаться в большие, относительно самостоятельные ветви со своими объектами изучения. Так появились химия элементоорганических соединений, химия полимеров, химия высокомолекулярных соединений, химия антибиотиков, красителей, душистых соединений, фармакохимия и т.д. В конце XX в. возникает химия металлоорганических соединений, то есть соединений, содержащих одну (или более) прямую связь металла с углеродом. До окончания века были открыты органические соединения ртути, кадмия, цинка, свинца и др. В настоящее время получены углеродистые соединения со значительным содержанием не только металлов, но и неметаллов (фосфор, бор, кремний, мышьяк и т.д.). Теперь эту область химии стали называть химией элементоорганических соединений, она находится на стыке органической и неорганической химии. Самостоятельной областью химии является наука о методах определения состава вещества — аналитическая химия. Ее основная задача — определение химических элементов или их соединений, входящих в состав исследуемого вещества, — решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, эффективный постоянный контроль за ходом технологического процесса и качеством получаемых продуктов. Химия наших дней составляет одну из наиболее обширных областей человеческих знаний и играет исключительно важную роль в народном хозяйстве. Объекты и методы исследования химии настолько разнообразны, что многие ее разделы являются по существу самостоятельными научными дисциплинами. Современную химию принято подразделять в наиболее общем плане, по крайней мере, на 5 разделов: неорганическую, органическую, физическую, аналитическую и химию высокомолекулярных соединений. Однако четких границ между этими разделами не существует. Например, координационные и элементоорганические соединения представляют собой объекты, находящиеся в сфере исследований, как неорганической, так и органической химии. Развитие же этих разделов невозможно без широкого использования методов и представлений физической и аналитической химии. К важнейшим особенностям современной химии относятся: 1. Дифференциация основных разделов химии на отдельные, во многом самостоятельные научные дисциплины. Эта дифференциация основана на различии объектов и методов исследования. Так, на значительное число быстро развивающихся дисциплин подразделяется физическая химия. 2. Интеграция химии с другими науками. В результате этого процесса возникли биохимия, биоорганическая химия и молекулярная биология, изучающие химические процессы в живых организмах. На границе химии и геологии развивается геохимия, исследующая закономерности поведения химических элементов в земной коре. Задачи космохимии — изучение особенностей элементного состава космических тел (планет и метеоритов) и различных соединений, содержащихся в этих объектах. 3. Появление новых, главным образом, физико-химических в физических методов исследования (структурный рентгеновский анализ, масс-спектроскопия, методы радиоспектроскопии и др.) Взаимосвязь химии и физики Наряду с процессами дифференциации самой химической науки, в настоящее время идут в интеграционные процессы химии с другими отраслями естествознания. Особенно интенсивно развиваются взаимосвязи между физикой и химией. Этот процесс сопровождается возникновением все новых и новых смежных физико-химических отраслей знания. Вся история взаимодействия химии я физики полна примеров обмена идеями, объектами и методами исследования. На разных этапах своего развития физика снабжала химию понятиями в теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом, чем больше усложнялись химические исследования, тем больше аппаратура и методы расчетов физики проникали в химию. Необходимость измерения тепловых эффектов реакции, развитие спектрального и рентгеноструктурного анализа, изучение изотопов и радиоактивных химических элементов, кристаллических решеток вещества, молекулярных структур потребовали создания и привели к использованию сложнейших физических приборов эспектроскопов, масс-спектрографов, дифракционных решеток, электронных микроскопов и т.д. Развитие современной науки подтвердило глубокую связь между физикой и химией. Связь эта носит генетический характер, то есть образование атомов химических элементов, соединение их в молекулы вещества произошло на определенном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов материи, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Возникновение химической формы движения в природе вызвало дальнейшее развитие представлений об электромагнитном взаимодействии, изучаемом физикой. На основе периодического закона ныне осуществляется прогресс не только в химии, но и в ядерной физике, на границе которой возникли такие смешанные физико-химические теории, как химия изотопов, радиационная химия. Химия и физика изучают практически одни и те же объекты, но только каждая из них видит в этих объектах свою сторону, свой предмет изучения. Так, молекула является предметом изучения не только химии, но и молекулярной физики. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы, то последняя статистически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазы и обратно, явления, не связанные с изменением состава молекул и их внутреннего химического строения. Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах убедительно свидетельствуют о тесной связи химических и физических явлений. Так, энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии обычно в виде тепла и света, называются экзотермическими. Существуют также эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновременно с уменьшением внутренней энергии системы. В эндотермических реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль). Еще один пример. Частным случаем первого начала термодинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измерение почему-либо неосуществимо. С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказалось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней оболочки, Именно новейшая физика сумела решить такие вопросы химии, как природа химической связи, особенности химического строения молекул органических и неорганических соединений и т.д. В сфере соприкосновения физики и химии возник и успешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, которая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (открытие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролитической диссоциации) и т.д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия — это разносторонне разветвленная наука, тесно связывающая физику и химию. В самой физической химии к настоящему времени выделились и вполне сложились в качестве самостоятельных разделов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в самостоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с интенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической Химии — химия высоких энергий, радиационная химия (предметом ее изучения являются реакции, протекающие под действием ионизирующего излучения), химия изотопов. Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической химии. С возникновением физической химии изучение вещества стало осуществляться не только традиционными химическими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодинамики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, присущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.). Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (квантовая механика, электронная теория атомов и молекул) наука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химических элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи. В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обеспечило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия граничит, с одной стороны, с макроскопической физикой — термодинамикой, физикой сплошных сред, а с другой — с микрофизикой — статической физикой, квантовой механикой. Общеизвестно, сколь плодотворными эти контакты оказались для химии. Термодинамика породила химическую термодинамику — учение о химических равновесиях. Статическая физика легла в основу химической кинетики — учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Менделеева. Современная теория химического строения и реакционной способности — это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превращений. Еще одним свидетельством плодотворности влияния физики на химическую науку является все расширяющееся применение физических методов в химических исследованиях. Поразительный прогресс в этой области особенно отчет-диво виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область видимого и примыкающего к нему участков инфракрасного и ультрафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее информативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального метода изучения нестабильных промежуточных частиц — свободных радикалов. В коротковолновой области электромагнитных излучений возникла рентгеновская и гамма-резонансная спектроскопия, обязанная своим появлением открытию Мессбауэра. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии. Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры — уникальные по своей спектральной интенсивности источники — и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс — быстро развивающийся высокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность — это штучная регистрация атомов с помощью лазера — методика, основная на селективном возбуждении, позволяющая зарегистрировать в кювете всего несколько атомов посторонней при-Л0еи. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер. Сейчас трудно назвать область современной физики, которая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных частиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое поведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправдывает этот интерес. Оглядываясь на историю взаимоотношений физики и химии, мы видим, что физика играла важную, подчас решающую роль в развитии теоретических концепций и методов исследования в химии. Степень признания этой роли можно оценить, просмотрев, например, список лауреатов Нобелевской премии по химии. Не менее трети в этом списке — авторы крупнейших достижений в области физической химии. Среди них — те, кто открыл радиоактивность и изотопы (Резерфорд, М. Кюри, Содди, Астон, Жолио-Кюри и др.), заложил основы квантовой химии (Полинг и Малликен) и современной химической кинетики (Хиншелвуд и Семенов), развил новые физические методы (Дебай, Гейеровский, Эйген, Норриш и Портер, Герцберг). Наконец, следует иметь в виду и то решающее значение, которое начинает играть в развитии науки производительность труда ученого. Физические методы сыграли и продолжают играть в этом отношении в химии революционизирующую роль. Достаточно сравнить, например, время, которое затрачивал химик-органик на установление строения синтезированного соединения химическими средствами и которое он затрачивает теперь, владея арсеналом физических методов. Несомненно, что этот резерв применения достижений физики используется далеко не достаточно. Подведем некоторые итоги. Мы видим, что физика во все большем масштабе и все более плодотворно вторгается в химию. Физика вскрывает сущность качественных химических закономерностей, снабжает химию совершенными инструментами исследования. Растет относительный объем физической химии, и не видно причин, которые могут замедлить этот рост. Взаимосвязь химии и биологии Общеизвестно, что химия и биология долгое время шли каждая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма. Резкое укрепление взаимосвязи химии с биологией произошло в результате создания А.М. Бутлеровым теория химического строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось. Поступательное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере химических процессов в живых тканях, об обусловленности биологических функций химическими реакциями. Если посмотреть на обмен веществ в организме с чисто химической точки зрения, как это сделал А.И. Опарин, мы увидим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между добей во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен, к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды. Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связаны с определенными комплексами химических превращений. Значение химии среди наук, изучающих жизнь, исключительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых Кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов. Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистическим упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по сравнению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, возникшие на стыке биологии, химии и физики: биохимия — наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия — наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология. Крупнейшими достижениями этого процесса стали определение химических продуктов клеточного метаболизма (обмена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сделано открытие материальных основ регулятивного и наследственного молекулярного механизма, а также в значительной степени выяснено значение химических процессов» энергетике процессов клетки и вообще живых организмов. Ныне для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. На этом пути есть уже определенные достижения. Более столетия назад ученые поняли, что основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности. Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично-практического применения выделенных ферментов для ускорения некоторых химических реакций. Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма. Теория саморазвития элементарных открытых каталитических систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции. Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Саморазвитие, самоорганизация я самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов. Развивая эти взгляды, А.П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности. Практическим следствием теории саморазвития открытых каталитических систем является так называемая «нестационарная технология», то есть технология с меняющимися условиями реакции. Сегодня исследователи приходят к выводу, что стационарный режим, надежная стабилизация которого казалась залогом высокой эффективности промышленнoro процесса, является лишь частным случаем нестационарного режима. При этом обнаружено множество нестационарных режимов, способствующих интенсификации реакции. В настоящее время уже видны перспективы возникновения и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии. Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химическими, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей, использующих с большим КПД солнечный свет, превращая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности. Для освоения каталитического опыта живой природы и реализации полученных знаний в промышленном производстве химики наметили рад перспективных путей. Первый — развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа. Второй путь заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов характеризующихся высокой активностью и селективностью, иногда' почти такой же, как и у оригиналов, или с большей простотой строения. Правда, пока все же полученные модели не в состоянии заменить природные биокатализаторы живых систем. На данном этапе развития химических знании проблема эта решается чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время и быстро разрушается, поскольку является выделенным из целого, из клетки. Цельная клетка со всем ее ферментным аппаратом — более важный объект, чем одна, выделенная из нее деталь. Третий путь к освоению механизмов лаборатории живей природы связывается с достижениями химии иммобилизованных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции, которая и превращает их в гетерогенный катализатор и обеспечивает его стабильность и непрерывное действие. Четвертый путь в развитии исследований, ориентированных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи — изучением и освоением всего каталитического опыта живой природы, в том числе и формирования фермента, клетки и даже организма. Это ступень, на которой основы эволюционной химии как действенной науки с ее рабочими функциями. Ученые утверждают, что это движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем. Решение названной задачи займет важнейшее место в создании химии будущего. Заключение Современная химия представлена множеством различных направлений развития знаний о природе вещества и способах его преобразования. В то же время химия является не просто суммой знаний о веществах, а высоко упорядоченной, постоянно развивающейся системой знаний, имеющей свое место в ряду других естественных наук. Химия изучает качественное многообразие материальных носителей химических явлений, химической формы движения материи. Хотя структурно она пересекается в определенных областях и с физикой, и с биологией, и с другими естественными науками, но сохраняет при этом свою специфику. Одним из наиболее существенных объективных оснований выделения химии в качестве самостоятельной естественнонаучной дисциплины является признание специфичности химизма взаимоотношения веществ, проявляющегося, прежде всего, в комплексе сил и различных типов взаимодействий, обусловливающих существование двух- и многоатомных соединений. Этот комплекс принято характеризовать как химическую связь, возникающую либо разрывающуюся в ходе взаимодействия частиц атомного уровня организации материи. Для возникновения химической связи характерно значительное перераспределение электронной плотности по сравнению с простым положением электронной плотности несвязанных атомов или атомных фрагментов, сближенных на расстояние связи. Эта особенность наиболее точно отделяет химическую связь от разного рода проявлений межмолекулярных взаимодействий. Происходящее ныне неуклонное возрастание в рамках естествознания роли химии как науки сопровождается быстрым развитием фундаментальных, комплексных и прикладных исследований, ускоренной разработкой новых материалов с заданными свойствами и новых процессов в области технологии производства и переработки веществ. Литература 1. Большой энциклопедический словарь. Химия. М., 2001. 2. Грушевицкая T.T., Садохин А.П. Концепции современного естествознания. М., 1998. 3. Концепции современного естествознания. Под. ред. В.Н. Лавриненко, В.П. Ратникова. М., 1997. 4. Кузнецов В.И. Общая химия. Тенденции развития. М., 1989. 5. Кузнецов В.И., Идлис ГМ., Гутина В.Н. Естествознание. М., 1996. 6. Молин Ю.Н. О роли физики в химических исследования. Методологические и философские проблемы химии. Новосибирск, 1981. 7. Химия//Химический энциклопедический словарь. М., 1983. www.ronl.ru Доклад - Химия в повседневной жизниХимия в жизни человекаЗначение химии в жизни человека трудно переоценить. Приведём фундаментальные области, в которых химия оказывает своё созидательное воздействие на жизнь людей. 1. Возникновение и развитие жизни человека не возможно без химии. Именно химические процессы, многие тайны которых учёные ещё не раскрыли, ответственны за тот гигантский переход от неживой материи к простейшим одноклеточным, и далее к вершине современного эволюционного процесса — человеку. 2. Большинство материальных потребностей, возникающих в жизни человека, обслуживается природной химией или получает удовлетворение в результате использования в производстве химических процессов. 3. Даже возвышенные и гуманистические устремления людей в своей основе опираются на химию человеческого организма, и, в частности, сильно зависят от химических процессов в мозге человека. Конечно же, всё богатство и разнообразие жизни нельзя свести только к химии. Но наряду с физикой и психологией, химия как наука, представляет собой определяющий фактор развития человеческой цивилизации. Химия жизниНасколько сейчас известно, наша планета образовалась приблизительно 4.6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3.5 миллиарда лет. Уже 3.1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера Земли приобрела окислительный характер лишь 1.8-1.4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились На Земле приблизительно от миллиарда до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционным шагом, после зарождения самой жизни, было использование внеземного источника энергии, Солнца. В конечном итоге, именно это превратило жалкие ростки жизни, которые использовали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за её пределы. В настоящее время учёные придерживаются точки зрения, что зарождение жизни на Земле происходило в восстановительной атмосфере, которая состояла из аммиака, метана, воды и диоксида углерода, но не содержала свободного кислорода. Первые живые организмы получали энергию, разлагая молекулы небиологического происхождения с большой свободной энергией на меньшие молекулы без их окисления. Предполагается, что на ранней стадии существования Земли она имела восстановительную атмосферу, состоящую из таких газов как водород, метан, вода, аммиак и сероводород, но содержащую очень мало свободного кислорода или вообще его не имевшего. Свободный кислород разрушал бы органические соединения быстрее, чем они могли синтезироваться в результате естественно протекающих процессов (под воздействием электрического разряда, ультрафиолетового излучения, теплоты или естественной радиоактивности). В этих восстановительных условиях органические молекулы, которые образовались небиологическими способами, не могли разрушаться в результате окисления, как это происходит в наше время, а продолжали накапливаться в течении тысячелетий, до тех пор, пока, наконец, не появились компактные локализованные образования из химических веществ, которые можно уже считать живыми организмами. Появившиеся живые организмы могли поддерживать существование за счёт разрушения естественно образующихся органических соединений, поглощая их энергию. Но если бы это был единственный источник энергии, то жизнь на нашей планете была бы крайне ограниченной. К счастью, около 3 миллиардов лет назад появились важные соединения металлов с порфиринами, и это открыло путь к использованию совершенно нового источника энергии – солнечного света. Первым шагом, который поднял жизнь на Земле над ролью простого потребителя органических соединений, было включение в неё процессов координационной химии. По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии – фотосинтеза*, – который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоёмких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зелёных растений. Сегодня все живые организмы можно подразделить на две категории: те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Скорее всего, и родственные ей бактерии сегодня являются живыми ископаемыми, потомками тех древних способных к ферментации анаэробов, которые отступили в редкие анаэробные области мира, когда атмосфера в целом накопила большие количества свободного кислорода и приобрела окислительный характер. Поскольку организмы второй категории существуют за счёт поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на Земле. Общая реакция фотосинтеза в зелёных растениях обратна реакции сгорания глюкозы и проходит с поглощением значительного количества энергии. 6 CO2 + 6 h3 O --> C6 h22 O6 + 6 O2 Вода расщепляется на элементы, что создаёт источник атомов водорода для восстановления углекислого газа в глюкозу, а нежелательный газообразный кислород выделяется в атмосферу. Энергия, необходимая для осуществления этого в высшей степени несамопроизвольного процесса, обеспечивается солнечным светом. В наиболее древних формах бактериального фотосинтеза в качестве источника восстановительного водорода использовалась не вода, а сероводород, органические вещества или сам газообразный водород, но лёгкая доступность воды сделала этот источник наиболее удобным, и в настоящее время он используется всеми водорослями и зелёными растениями. Простейшими организмами, в которых осуществляется фотосинтез с высвобождением кислорода, являются сине-зелёные водоросли. Их правильнее обозначать современным названием цианобактерии, поскольку это, в самом деле бактерии, научившиеся добывать собственную пищу из углекислого газа, воды и солнечного света. К сожалению, фотосинтез приводит к высвобождению опасного побочного продукта, кислорода. Кислород был не только бесполезен для ранних организмов, он конкурировал с ними, окисляя естественно образующиеся органические соединения прежде, чем они могли быть окислены в процессе метаболизма этими организмами. Кислород представлял собой гораздо более эффективный «пожиратель» энергоёмких соединений, чем живая материя. Ещё хуже было то, что слой озона, который постепенно образовывался из кислорода в верхней части атмосферы, преграждал доступ ультрафиолетовому излучению Солнца и ещё более замедлял естественный синтез органических соединений. Со всех современных точек зрения, появление свободного кислорода в атмосфере представляло собой угрозу для жизни. Но, как часто случается, жизнь сумела обойти это препятствие и даже обратила его в преимущество. Отходами жизнедеятельности первичных простейших организмов были такие соединения, как молочная кислота и этанол. Эти вещества намного менее энергоёмки по сравнению с сахарами, но они способны высвобождать большое количество энергии, если полностью окисляются до СО2 и Н2 О. В результате эволюции возникли живые организмы, способные «фиксировать» опасный кислород в виде Н2 О и СО2, а взамен получать энергию сгорания того, что прежде было их отходами. Преимущества сжигания пищи с помощью кислорода оказались столь велики, что подавляющее большинство форм жизни – растения и животные – пользуются в настоящее время кислородным дыханием. Когда появились новые источники энергии, возникла новая проблема, связанная уже не с получением пищи или кислорода, а с транспортировкой кислорода в надлежащее место организма. Малые организмы могли обходиться простой диффузией газов через содержащиеся в них жидкости, но этого недостаточно для многоклеточных существ. Так перед эволюцией возникла очередная преграда. Выход из тупика в третий раз оказался возможен благодаря процессам координационной химии. Появились такие молекулы, состоящие из железа, порфирина и белка, в которых железо могло связывать молекулу кислорода, не окисляясь при этом. Кислород просто переносится в различные участки организма, чтобы высвободиться при надлежащих условиях – кислотности и недостатке кислорода. Одна из таких молекул, гемоглобин, переносит О2 в крови, а другая, миоглобин, получает и запасает (хранит) кислород в мышечных тканях до тех пор, пока он не понадобится в химических процессах. В результате появления миоглобина и гемоглобина были сняты ограничения на размеры живых организмов. Это привело к появлению разнообразных многоклеточных, и, в конечном итоге, человека. * Фотосинтез – это процесс преобразования энергии света в энергию химической связи получающихся веществ. ** Метаболизм – расщепление богатых энергией веществ и извлечение их энергии. Химия как зеркало жизни человека.Оглянитесь вокруг, и Вы увидите, что жизнь современного человека невозможна без химии. Мы используем химию при производстве пищевых продуктов. Мы передвигаемся на автомобилях, металл, резина и пластик которых сделаны с использованием химических процессов. Мы используем духи, туалетную воду, мыло и дезодоранты, производство которых немыслимо без химии. Есть даже мнение, что самое возвышенное чувство человека, любовь, это набор определённых химических реакций в организме. Такой подход к рассмотрению роли химии в жизни человека, является, на мой взгляд, упрощённым, и я предлагаю Вам его углубить и расширить, перейдя в совершенно новую плоскость оценки химии и её влияния на человеческое общество. Относительно недавно человек понял, что сознательное подражание природе в технике может дать великолепный результат. Скопировав крыло птицы, мы создали самолёт. Рассмотрев способ передвижения червя, получили гусеницы трактора. Внимательнее приглядевшись к движениям кожи дельфинов и акул, смогли значительно увеличить скорость торпеды, при её движении в воде. Таких примеров можно привести ещё много, а ещё больше их станет, если мы чаще будем применять этот подход. А что же химия? Неужели она, являясь на самом деле более «тонкой» и глубокой наукой, по сравнению с механикой макрообъектов, не даст нам никаких намёков и подсказок, рассмотрев которые, человек сделал бы очередной шаг в своём развитии. Оказывается, такие подсказки есть, просто их никто ещё не пытался найти и использовать. И оказалось, что эти подсказки касаются более высокой области, чем даваемые механикой. Мир людей богат и разнообразен, но всё же поведение каждого человека в отдельности, и устойчивых человеческих групп или общностей, можно свести к определённому набору качеств. И здесь мы можем провести аналогию между атомом и человеком. Действительно, хотя количество различных атомов и ограничено, они могут располагаться в молекулах совершенно различными способами и на самом деле взаимодействовать по-разному, в зависимости от того, с чем приходится вступать в реакцию. Таков и человек. Теперь дадим сравнение свойств атома (с точки зрения химии) и человека ( с точки зрения человеческих взаимоотношений). Самыми активными являются атомы щелочных металлов. Их отталкивающая защита из электронов мала и слаба, но зато они могут взаимодействовать практически со всеми химическими элементами. Человек такого типа, тоже может прекрасно общаться и уживаться с другими людьми. Но он потеряет при этом свою индивидуальность. Ведь и щелочные металлы не встречаются в чистом виде в природе, а находятся только в виде соединений. С другой стороны инертные газа создают вокруг себя непреодолимый барьер из восьми электронов, и надо создать особые условия, чтобы заставить их вступить в реакцию. Так и люди. Отгораживаясь от всего мира, человек или общество, теряет способность к изменениям и к развитию, потому что взаимодействие – это взаимное действие. В его процессе изменяются обе стороны. И наконец, идеал мира химических элементов – углерод. В этом элементе гармонично сочетаются защищённость (4 электрона) и открытость (4 вакансии). Причём распределение электронов может достаточно легко изменяться, не требуя больших энергетических затрат. Углерод способен образовать двойные и тройные связи, взаимодействуя с себе подобными. В поисках идеала человека мы должны использовать эту информацию. Проявляя в своём поведении разумный компромисс между отстаиванием своих интересов (защита) и учётом мнения оппонента, изменяя слегка свои подходы к решению проблем, как атом углерода в процессе реакций изменяет расположение своих электронов и вакансий, мы продвинемся в деле получения результатов значительно дальше, чем, если бы сохраняли свою позицию неизменной. С учётом того, что такой подход может быть применён большим количеством людей, то они, как одинаковые атомы углерода, смогут образовать прочные (двойные и тройные) связи. Тоже самое можно сказать и в отношении человеческих общностей (небольших групп, общественных объединений и целых государств). Развивая эту мысль можно предположить, что наиболее перспективным путём развития человечества является направление, при котором в обществе будет существовать большое разнообразие взглядов и мнений, будет разрешено законом значительное количество способов действия, но большинство людей будет обладать универсальностью, способностью понимать других людей и взаимодействовать с ними, схожей с универсальность атома углерода. При таких условиях жизнь общества будет гармоничной и стабильной. Пример водорода, в этом вопросе также очень показателен. Сократите сферу своего влияния (или уменьшите область своих запросов) и Вы, подобно атому водорода, сможете взаимодействовать и объединяться со значительно большим числом людей (элементов). Итак, резюмируя всё выше сказанное, отметим, что химия в жизни человека может стать путеводной звездой для гармоничного развития всего человеческого общества. Прикладные вопросы влияния химии на развитие жизни человека.В предыдущей главе мы осветили философский подход к оценке химии в жизни человека. Это был, так сказать общий взгляд. Здесь же мы рассмотрим роль химии и её влияние на жизнь человека с позиций стратегии. Если принять за главную цель существования человеческой цивилизации её гармоничное и всестороннее развитие, особенно в интеллектуальных вопросах, то встаёт вопрос, что на этом пути может сделать химия. Изучая поведение людей и особенно влияние на их поведение того, чем они питаются, можно сделать однозначное заключение. В натуральной здоровой пище содержатся вещества, которые могут не только повысить физическую отдачу организма, но и стимулировать его мозговую деятельность. Поэтому, применяя такую пищу в нужное время в нужных количествах, мы могли бы ускорить развитие человеческой цивилизации, не затрачивая на это больше ресурсов, чем сейчас. Такой подход является новой социальной инновацией, а, следовательно, роль химии в жизни человека возрастёт еще больше. Необходимо провести крупномасштабные научные исследования в этой области и применить их результаты в повседневной жизни. Ведь даже такое социальное зло, как алкоголизм можно победить, грамотно используя «пищевой вопрос» в отношении страдающих этим недугом людей. Скажу даже больше. Применение такого подхода в вопросах питания, находящихся в заключении людей, однозначно способно снизить уровень рецидива преступлений. Этот же метод можно применить и к планированию рождаемости. Конечно, в каждой из предложенных областей, мы не должны посягать на свободу выбора человека. Но учитывая, что — мы то, что мы едим – применение вышеупомянутых стратегий является вполне обоснованной альтернативой современным способам. А теперь о самой, на мой взгляд, решающей старатегии, которую необходимо внедрить. Эта страница является частью сайта посвящённого общей теории взаимодействий, новой альтернативной теории. Химические процессы, да и само строение атомов, в этой теории показаны простым человеческим языком и с применением анимации, сравните это взгляды с теми, которые Вы встречали в учебниках. И сделайте совй выбор. Возможно, он будет не в пользу общей теории взаимодействий, но одно можно сказать точно. Химия предстанет перед Вами как интересная, без разрывов и несоответствий во взглядах, без необоснованных постулатов, наука, в которой нет границ для творчества. Вы можете используя общую теорию взаимодействий понять многие, очень туманно объяснённые вопросы. Причём описания, сделанные мною Вам даже не придётся запоминать, они сами зафиксируются в вашей памяти, потому что просты и непротиворечивы. Правда сдавать на экзамене Вам придётся нечто другое. www.ronl.ru Реферат - Химия жизни - ХимияРабота на тему: «Химия жизни» 2004 План Введение Химический взгляд на природу, истоки и современное состояние. Предмет познания химической науки и ее структура Взаимосвязь химии и физики Взаимосвязь химии и биологии Заключение Литература Введение Современная химия представляет собой широкий комплекс наук, постепенно сложившийся в ходе ее длительного исторического развития. Практическое знакомство человека с химическими процессами восходит к глубокой древности. В течение многих столетий теоретическое объяснение химических процессов основывалось на натурфилософском учении об элементах-качествах. В модифицированном виде оно послужило основой для алхимии, возникшей примерно в III-IV вв. н.э. и стремившейся решить задачу превращения неблагородных металлов в благородные. Не добившись успеха в решении этой задачи, алхимики, тем не менее, выработали ряд приемов исследования веществ, открыли некоторые химические соединения, чем в определенной степени способствовали возникновению научной химии. Натурфилософские воззрения лежали также в основе возникшей в XVI в. ятрохимии (предшественницы медицинской химии), стремившейся найти в химических препаратах средства лечения многочисленных болезней. В средние века получили ускоренное развитие химические производства: металлургия, стеклоделие, изготовление красителей. Это способствовало выработке первых теоретических установок в развивавшемся химическом знании. Собственно научная химия ведет свое начало со второй половины XVII в., когда Р. Бойль и его единомышленники дали первое научное определение понятия «химический элемент». Важной вехой на пути создания научной химии стало открытие благодаря работам М.В. Ломоносова и А. Лавуазье, закона сохранения массы при химических реакциях. Важную роль в становлении химии как самостоятельной науки сыграло открытие в конце XVII — начале XIXвв. стехиометрических законов. Разработка химических воззрений в XIX в. началась с создания Д. Дальтоном основ химической атомистики. Вскоре А. Авогадро ввел понятие «молекула». Однако атомно-молекулярные представления утвердились в науке лишь в 60-х годах XIX в. В тот же период в познавательном прицеле химии заняла основополагающее место, наряду с составом, также структура веществ. Этому в решающей степени способствовало создание А.М. Бутлеровым теории химического строения. К числу наиболее значительных вех развития научной химии и всего естествознания принадлежит открытие Д.И. Менделеевым периодического закона химических элементов. В конце XIX — начале XX вв. к ведущим направлениям развития химии стало относиться изучение закономерностей химического процесса. Со второй половины XX в. в химии плодотворно развивается концепция, нацеленная на изучение возможностей использования в процессах получения целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем. Эволюционная химия обратилась к постижению путей получения наиболее высокоорганизованных химических систем, которые только возможны в настоящее время. В химии исторически сложились, таким образом, четыре уровня изучения веществ: с позиций их состава, строения, химического действия и самоорганизации. Тем не менее, специфика химии не может быть сведена только к исследованию веществ с позиций этого многоуровневого подхода. Наиболее специфичным для нее является постижение химизме взаимоотношений веществ. Причем осмысление феномена химизма, находит свое концентрированное выражение в современной трактовке предмета химии. Химический взгляд на природу, истоки и современное состояние. Химия — очень древняя наука. Существует несколько объяснений слова «химия». Согласно одной из имеющихся теорий, оно происходит от древнего названия Египта — Kham и, следовательно, должно означать «египетское искусство». Согласно другой теории, слово «химия» произошло от греческого слова cumoz (сок растения) и означает «искусство выделения соков». Этот сок может быть расплавленным металлом, так что при подобном расширенном толковании данного термина в него приходится включать и искусство металлургии. С химией тесно связаны элементы стихий древнегреческой натурфилософии, атомистика Левкиппа и Демокрита. Но, конечно, наибольший вклад в становление этой науки внесли египтяне. Имя первого из дошедших до нас химиков — Болос из Менда, жившего в дельте Нила на рубеже III и II вв. до н.э. К 300 г. н.э. египтянин Зосима написал энциклопедию, которая охватывала все собранные к тому времени знания по химии. Но химия, представленная в этом труде, еще не была наукой в полном смысле слова, а оставалась тесно связанной с древнеегипетской религией и не выходила в своем развитии за пределы формирования феноменологического уровня. В химии выявлялись свойства, устанавливались закономерности между ними, сущность же явлений подменялась их мистической интерпретацией. Химию (химиков) искореняли и преследовали древнеримские императоры, фанатики христианства: ученые изгонялись, книги их сжигались, сама наука запрещалась. Одни опасались, например, того, что химики занимались получением золота; вторые преследовали ученых за тесную связь химии с древнеегипетской религией, которая, с точки зрения христианства, была язычеством. Начиная с последних веков I тыс. до н.э. химия бурно развивалась в арабском мире, а в первой половине нынешнего тысячелетия она получила широкое распространение в Западной Европе. С одной стороны, развитие химии в этот период шло вслед за развитием техники, однако, с другой стороны, она оставалась тесно связанной с религиозно-философской мыслью. В тот период химия существовала главным образом как алхимия. В химии необходимо отметить, прежде всего, существование особого «химического взгляда» на природу, который не может быть сведен к физическому, несмотря на все успехи физической химии в нынешнем столетии. То есть у химии давно были обнаружены качества некоторого особого типа. Так, согласно известному химику А. А. Бутакову, химические реакции «нельзя объяснить только действием сил электрического притяжения и отталкивания. Их действием объясняется лишь физическая сторона химического процесса. Химическая форма движения материи представляет собой процессы изменения частиц вещества, которые, в конечном счете, определяются действием периодического закона». Подобного мнения придерживаются и многие другие ученые-химики. Известный российский физико-химик Н. Н. Семенов сводил основные отличия между физическим и химическим процессом к трем: «Истории системы, отсутствию мгновенных параметров для скоростей химических реакций, возможности пользоваться равновесными параметрами для физических процессов и невозможности — для химических». В химии хорошо используется подход индуктивный, гораздо менее продуктивным здесь оказался дедуктивный подход. При дедуктивном подходе вся совокупность известных естественно-научных фактов (не только химических, но и физических, биологических) представляется вытекающей из ряда основных законов. Такой подход, как правило, оказывается достаточно эффективным в физике и там, где могут быть использованы физические идеи (в химии). Индуктивный подход — это движение в обратном направлении, когда на основе химической фактологии выявляются более или менее общие закономерности (правила, законы), а затем уже создаются обобщенные модели, составляющие основу современной теоретической химии. Важнейшие особенности современной химии таковы. 1. В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия). 2. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия — закономерности поведения химических элементов в земной коре. Биогеохимия — это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский. Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам. 3. В химии появляются принципиально новые методы исследования (структурный рентгеновский анализ, масс-спектроскопия, радиоспектроскопия и др.). Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными: 1) введение в практику эфирного наркоза, а затем и других наркотических веществ; 2) использование антисептических средств для предупреждения инфекции; 3) получение новых, не имеющихся в природе аллопластических материалов-полимеров. В химии весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) — это органические соединения. В их основе лежат 18 элементов), и большее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство. Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение. В последнее время химия все чаще предпринимает штурм соседних с нею уровней структурной организации природы. Например, химия все более и более вторгается в биологию, пытаясь объяснить основы жизни. Предмет познания химической науки и ее структура Современная химия изучает превращения, при которых молекулы одного соединения обмениваются атомами с молекулами других соединений, распадаются на молекулы с меньшим числом атомов, а также вступают в химические реакции, в результате которых образуются новые вещества. Атомы претерпевают в химических процессах некоторые изменения лишь в наружных электронных оболочках, атомное ядро и внутренние электронные оболочки при этом не изменяются. При определении предмета химии нередко акцентируют внимание на том, что его составляют, прежде всего, соединения атомов и превращения этих соединений, происходящее с разрывом одних и образованием других межатомных связей. Различные химические науки отличаются тем, что они занимаются изучением либо различных классов соединений (такое различие положено в основу разграничения органической и неорганической химии), либо разных типов реакций (радиохимия, радиационная химия, каталитический синтез, химия полимеров), либо использованием разных методов исследования (физическая химия в ее различных направлениях). Отграничение одной химической дисциплины от другой, сохраняющее в нынешних условиях исторически сложившиеся разграничительные линии, имеет относительный характер. До конца XIX века химия в основном была целостной единой наукой. Внутреннее ее деление на органическую и неорганическую не нарушало этого единства. Но последовавшие вскоре многочисленные открытия, как в самой химии, так и в биологии, физике положили начало быстрой ее дифференциации. Современная химическая наука, опираясь в» прочные теоретические основы, непрерывно развивается вширь и вглубь. В частности, происходит открытие и изучение новых, качественно различных дискретных химических частиц. Так, еще в первой половине XIX века при изучении электролиза были обнаружены ионы — особые частицы, образованные из атомов и молекул, но электрически заряженные. Ионы являются структурными единицами многих кристаллов, кристаллических решеток металлов, они существуют в атмосфере, в растворах и т.д. В начале XX в. химики открыли радикалы как одну из активных форм химического вещества. Они образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, что связано с наличием одиночных (неспаренных) электронов, объясняющих их исключительную химическую активность. К особым формам химического вещества относятся также макромолекулы. Они состоят из сотен и тысяч атомов и вследствие этого приобретают в отличие от обычной молекулы качественно новые свойства. Характерный для новейшей химии, как и для всей науки XX в., процесс глубокой внутренней дифференциации в значительной степени связан с открытием этого качественного многообразия химических веществ. Их строение, превращения и свойства стали предметом изучения специальных разделов химии: электрохимии, химической кинетики, химии полимеров, химии комплексных соединений, коллоидной химии, химии высокомолекулярных соединений. Уже к началу XX в. внутри самой химии четко различаются общая и неорганическая химия, и органическая химия. Предметом изучения общей и тесно связанной с ней неорганической химии стали химические элементы, образуемые ими простейшие неорганические соединения и их общие законы (прежде всего Периодический закон Д.И. Менделеева). Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизученных и синтезу новых элементов с помощью ядерных реакций. Изучением их свойств, а также физико-химических основ и химических свойств радиоактивных изотопов, методикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX в. Органическая химия окончательно сложилась в самостоятельную науку во второй половине XIXв. Этому способствовало получение большого эмпирического и теоретического материала о соединениях углерода и его производных. Определяющим фактором для всех органических соединений являются особенности валентного состояния углерода — способность его атомов связываться между собой как одинарной, так и двойной, тройной связью в длинные линейные и разветвленные цепи. Благодаря бесконечному многообразию форм сцепления углеродных атомов, наличию изомерии и гомологических рядов почти во всех классах органических соединений возможности получения этих соединений практически безграничны. В XX в. многие разделы органической химии стали постепенно превращаться в большие, относительно самостоятельные ветви со своими объектами изучения. Так появились химия элементоорганических соединений, химия полимеров, химия высокомолекулярных соединений, химия антибиотиков, красителей, душистых соединений, фармакохимия и т.д. В конце XX в. возникает химия металлоорганических соединений, то есть соединений, содержащих одну (или более) прямую связь металла с углеродом. До окончания века были открыты органические соединения ртути, кадмия, цинка, свинца и др. В настоящее время получены углеродистые соединения со значительным содержанием не только металлов, но и неметаллов (фосфор, бор, кремний, мышьяк и т.д.). Теперь эту область химии стали называть химией элементоорганических соединений, она находится на стыке органической и неорганической химии. Самостоятельной областью химии является наука о методах определения состава вещества — аналитическая химия. Ее основная задача — определение химических элементов или их соединений, входящих в состав исследуемого вещества, — решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, эффективный постоянный контроль за ходом технологического процесса и качеством получаемых продуктов. Химия наших дней составляет одну из наиболее обширных областей человеческих знаний и играет исключительно важную роль в народном хозяйстве. Объекты и методы исследования химии настолько разнообразны, что многие ее разделы являются по существу самостоятельными научными дисциплинами. Современную химию принято подразделять в наиболее общем плане, по крайней мере, на 5 разделов: неорганическую, органическую, физическую, аналитическую и химию высокомолекулярных соединений. Однако четких границ между этими разделами не существует. Например, координационные и элементоорганические соединения представляют собой объекты, находящиеся в сфере исследований, как неорганической, так и органической химии. Развитие же этих разделов невозможно без широкого использования методов и представлений физической и аналитической химии. К важнейшим особенностям современной химии относятся: 1. Дифференциация основных разделов химии на отдельные, во многом самостоятельные научные дисциплины. Эта дифференциация основана на различии объектов и методов исследования. Так, на значительное число быстро развивающихся дисциплин подразделяется физическая химия. 2. Интеграция химии с другими науками. В результате этого процесса возникли биохимия, биоорганическая химия и молекулярная биология, изучающие химические процессы в живых организмах. На границе химии и геологии развивается геохимия, исследующая закономерности поведения химических элементов в земной коре. Задачи космохимии — изучение особенностей элементного состава космических тел (планет и метеоритов) и различных соединений, содержащихся в этих объектах. 3. Появление новых, главным образом, физико-химических в физических методов исследования (структурный рентгеновский анализ, масс-спектроскопия, методы радиоспектроскопии и др.) Взаимосвязь химии и физики Наряду с процессами дифференциации самой химической науки, в настоящее время идут в интеграционные процессы химии с другими отраслями естествознания. Особенно интенсивно развиваются взаимосвязи между физикой и химией. Этот процесс сопровождается возникновением все новых и новых смежных физико-химических отраслей знания. Вся история взаимодействия химии я физики полна примеров обмена идеями, объектами и методами исследования. На разных этапах своего развития физика снабжала химию понятиями в теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом, чем больше усложнялись химические исследования, тем больше аппаратура и методы расчетов физики проникали в химию. Необходимость измерения тепловых эффектов реакции, развитие спектрального и рентгеноструктурного анализа, изучение изотопов и радиоактивных химических элементов, кристаллических решеток вещества, молекулярных структур потребовали создания и привели к использованию сложнейших физических приборов эспектроскопов, масс-спектрографов, дифракционных решеток, электронных микроскопов и т.д. Развитие современной науки подтвердило глубокую связь между физикой и химией. Связь эта носит генетический характер, то есть образование атомов химических элементов, соединение их в молекулы вещества произошло на определенном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов материи, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Возникновение химической формы движения в природе вызвало дальнейшее развитие представлений об электромагнитном взаимодействии, изучаемом физикой. На основе периодического закона ныне осуществляется прогресс не только в химии, но и в ядерной физике, на границе которой возникли такие смешанные физико-химические теории, как химия изотопов, радиационная химия. Химия и физика изучают практически одни и те же объекты, но только каждая из них видит в этих объектах свою сторону, свой предмет изучения. Так, молекула является предметом изучения не только химии, но и молекулярной физики. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы, то последняя статистически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазы и обратно, явления, не связанные с изменением состава молекул и их внутреннего химического строения. Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах убедительно свидетельствуют о тесной связи химических и физических явлений. Так, энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии обычно в виде тепла и света, называются экзотермическими. Существуют также эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновременно с уменьшением внутренней энергии системы. В эндотермических реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль). Еще один пример. Частным случаем первого начала термодинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измерение почему-либо неосуществимо. С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказалось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней оболочки, Именно новейшая физика сумела решить такие вопросы химии, как природа химической связи, особенности химического строения молекул органических и неорганических соединений и т.д. В сфере соприкосновения физики и химии возник и успешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, которая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (открытие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролитической диссоциации) и т.д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия — это разносторонне разветвленная наука, тесно связывающая физику и химию. В самой физической химии к настоящему времени выделились и вполне сложились в качестве самостоятельных разделов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в самостоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с интенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической Химии — химия высоких энергий, радиационная химия (предметом ее изучения являются реакции, протекающие под действием ионизирующего излучения), химия изотопов. Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической химии. С возникновением физической химии изучение вещества стало осуществляться не только традиционными химическими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодинамики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, присущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.). Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (квантовая механика, электронная теория атомов и молекул) наука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химических элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи. В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обеспечило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия граничит, с одной стороны, с макроскопической физикой — термодинамикой, физикой сплошных сред, а с другой — с микрофизикой — статической физикой, квантовой механикой. Общеизвестно, сколь плодотворными эти контакты оказались для химии. Термодинамика породила химическую термодинамику — учение о химических равновесиях. Статическая физика легла в основу химической кинетики — учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Менделеева. Современная теория химического строения и реакционной способности — это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превращений. Еще одним свидетельством плодотворности влияния физики на химическую науку является все расширяющееся применение физических методов в химических исследованиях. Поразительный прогресс в этой области особенно отчет-диво виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область видимого и примыкающего к нему участков инфракрасного и ультрафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее информативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального метода изучения нестабильных промежуточных частиц — свободных радикалов. В коротковолновой области электромагнитных излучений возникла рентгеновская и гамма-резонансная спектроскопия, обязанная своим появлением открытию Мессбауэра. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии. Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры — уникальные по своей спектральной интенсивности источники — и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс — быстро развивающийся высокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность — это штучная регистрация атомов с помощью лазера — методика, основная на селективном возбуждении, позволяющая зарегистрировать в кювете всего несколько атомов посторонней при-Л0еи. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер. Сейчас трудно назвать область современной физики, которая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных частиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое поведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправдывает этот интерес. Оглядываясь на историю взаимоотношений физики и химии, мы видим, что физика играла важную, подчас решающую роль в развитии теоретических концепций и методов исследования в химии. Степень признания этой роли можно оценить, просмотрев, например, список лауреатов Нобелевской премии по химии. Не менее трети в этом списке — авторы крупнейших достижений в области физической химии. Среди них — те, кто открыл радиоактивность и изотопы (Резерфорд, М. Кюри, Содди, Астон, Жолио-Кюри и др.), заложил основы квантовой химии (Полинг и Малликен) и современной химической кинетики (Хиншелвуд и Семенов), развил новые физические методы (Дебай, Гейеровский, Эйген, Норриш и Портер, Герцберг). Наконец, следует иметь в виду и то решающее значение, которое начинает играть в развитии науки производительность труда ученого. Физические методы сыграли и продолжают играть в этом отношении в химии революционизирующую роль. Достаточно сравнить, например, время, которое затрачивал химик-органик на установление строения синтезированного соединения химическими средствами и которое он затрачивает теперь, владея арсеналом физических методов. Несомненно, что этот резерв применения достижений физики используется далеко не достаточно. Подведем некоторые итоги. Мы видим, что физика во все большем масштабе и все более плодотворно вторгается в химию. Физика вскрывает сущность качественных химических закономерностей, снабжает химию совершенными инструментами исследования. Растет относительный объем физической химии, и не видно причин, которые могут замедлить этот рост. Взаимосвязь химии и биологии Общеизвестно, что химия и биология долгое время шли каждая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма. Резкое укрепление взаимосвязи химии с биологией произошло в результате создания А.М. Бутлеровым теория химического строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось. Поступательное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере химических процессов в живых тканях, об обусловленности биологических функций химическими реакциями. Если посмотреть на обмен веществ в организме с чисто химической точки зрения, как это сделал А.И. Опарин, мы увидим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между добей во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен, к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды. Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связаны с определенными комплексами химических превращений. Значение химии среди наук, изучающих жизнь, исключительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых Кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов. Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистическим упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по сравнению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, возникшие на стыке биологии, химии и физики: биохимия — наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия — наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология. Крупнейшими достижениями этого процесса стали определение химических продуктов клеточного метаболизма (обмена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сделано открытие материальных основ регулятивного и наследственного молекулярного механизма, а также в значительной степени выяснено значение химических процессов» энергетике процессов клетки и вообще живых организмов. Ныне для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. На этом пути есть уже определенные достижения. Более столетия назад ученые поняли, что основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности. Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично-практического применения выделенных ферментов для ускорения некоторых химических реакций. Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма. Теория саморазвития элементарных открытых каталитических систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции. Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Саморазвитие, самоорганизация я самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов. Развивая эти взгляды, А.П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности. Практическим следствием теории саморазвития открытых каталитических систем является так называемая «нестационарная технология», то есть технология с меняющимися условиями реакции. Сегодня исследователи приходят к выводу, что стационарный режим, надежная стабилизация которого казалась залогом высокой эффективности промышленнoro процесса, является лишь частным случаем нестационарного режима. При этом обнаружено множество нестационарных режимов, способствующих интенсификации реакции. В настоящее время уже видны перспективы возникновения и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии. Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химическими, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей, использующих с большим КПД солнечный свет, превращая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности. Для освоения каталитического опыта живой природы и реализации полученных знаний в промышленном производстве химики наметили рад перспективных путей. Первый — развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа. Второй путь заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов характеризующихся высокой активностью и селективностью, иногда' почти такой же, как и у оригиналов, или с большей простотой строения. Правда, пока все же полученные модели не в состоянии заменить природные биокатализаторы живых систем. На данном этапе развития химических знании проблема эта решается чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время и быстро разрушается, поскольку является выделенным из целого, из клетки. Цельная клетка со всем ее ферментным аппаратом — более важный объект, чем одна, выделенная из нее деталь. Третий путь к освоению механизмов лаборатории живей природы связывается с достижениями химии иммобилизованных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции, которая и превращает их в гетерогенный катализатор и обеспечивает его стабильность и непрерывное действие. Четвертый путь в развитии исследований, ориентированных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи — изучением и освоением всего каталитического опыта живой природы, в том числе и формирования фермента, клетки и даже организма. Это ступень, на которой основы эволюционной химии как действенной науки с ее рабочими функциями. Ученые утверждают, что это движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем. Решение названной задачи займет важнейшее место в создании химии будущего. Заключение Современная химия представлена множеством различных направлений развития знаний о природе вещества и способах его преобразования. В то же время химия является не просто суммой знаний о веществах, а высоко упорядоченной, постоянно развивающейся системой знаний, имеющей свое место в ряду других естественных наук. Химия изучает качественное многообразие материальных носителей химических явлений, химической формы движения материи. Хотя структурно она пересекается в определенных областях и с физикой, и с биологией, и с другими естественными науками, но сохраняет при этом свою специфику. Одним из наиболее существенных объективных оснований выделения химии в качестве самостоятельной естественнонаучной дисциплины является признание специфичности химизма взаимоотношения веществ, проявляющегося, прежде всего, в комплексе сил и различных типов взаимодействий, обусловливающих существование двух- и многоатомных соединений. Этот комплекс принято характеризовать как химическую связь, возникающую либо разрывающуюся в ходе взаимодействия частиц атомного уровня организации материи. Для возникновения химической связи характерно значительное перераспределение электронной плотности по сравнению с простым положением электронной плотности несвязанных атомов или атомных фрагментов, сближенных на расстояние связи. Эта особенность наиболее точно отделяет химическую связь от разного рода проявлений межмолекулярных взаимодействий. Происходящее ныне неуклонное возрастание в рамках естествознания роли химии как науки сопровождается быстрым развитием фундаментальных, комплексных и прикладных исследований, ускоренной разработкой новых материалов с заданными свойствами и новых процессов в области технологии производства и переработки веществ. Литература 1. Большой энциклопедический словарь. Химия. М., 2001. 2. Грушевицкая T.T., Садохин А.П. Концепции современного естествознания. М., 1998. 3. Концепции современного естествознания. Под. ред. В.Н. Лавриненко, В.П. Ратникова. М., 1997. 4. Кузнецов В.И. Общая химия. Тенденции развития. М., 1989. 5. Кузнецов В.И., Идлис ГМ., Гутина В.Н. Естествознание. М., 1996. 6. Молин Ю.Н. О роли физики в химических исследования. Методологические и философские проблемы химии. Новосибирск, 1981. 7. Химия//Химический энциклопедический словарь. М., 1983. www.ronl.ru Реферат на тему Химия жизниРабота на тему: «Химия жизни»2004 План Введение Химический взгляд на природу, истоки и современное состояние. Предмет познания химической науки и ее структура Взаимосвязь химии и физики Взаимосвязь химии и биологии Заключение Литература Введение Современная химия представляет собой широкий комплекс наук, постепенно сложившийся в ходе ее длительного исторического развития. Практическое знакомство человека с химическими процессами восходит к глубокой древности. В течение многих столетий теоретическое объяснение химических процессов основывалось на натурфилософском учении об элементах-качествах. В модифицированном виде оно послужило основой для алхимии, возникшей примерно в III-IV вв. н.э. и стремившейся решить задачу превращения неблагородных металлов в благородные. Не добившись успеха в решении этой задачи, алхимики, тем не менее, выработали ряд приемов исследования веществ, открыли некоторые химические соединения, чем в определенной степени способствовали возникновению научной химии. Натурфилософские воззрения лежали также в основе возникшей в XVI в. ятрохимии (предшественницы медицинской химии), стремившейся найти в химических препаратах средства лечения многочисленных болезней. В средние века получили ускоренное развитие химические производства: металлургия, стеклоделие, изготовление красителей. Это способствовало выработке первых теоретических установок в развивавшемся химическом знании. Собственно научная химия ведет свое начало со второй половины XVII в., когда Р. Бойль и его единомышленники дали первое научное определение понятия «химический элемент». Важной вехой на пути создания научной химии стало открытие благодаря работам М.В. Ломоносова и А. Лавуазье, закона сохранения массы при химических реакциях. Важную роль в становлении химии как самостоятельной науки сыграло открытие в конце XVII — начале XIX вв. стехиометрических законов. Разработка химических воззрений в XIX в. началась с создания Д. Дальтоном основ химической атомистики. Вскоре А. Авогадро ввел понятие «молекула». Однако атомно-молекулярные представления утвердились в науке лишь в 60-х годах XIX в. В тот же период в познавательном прицеле химии заняла основополагающее место, наряду с составом, также структура веществ. Этому в решающей степени способствовало создание А.М. Бутлеровым теории химического строения. К числу наиболее значительных вех развития научной химии и всего естествознания принадлежит открытие Д.И. Менделеевым периодического закона химических элементов. В конце XIX — начале XX вв. к ведущим направлениям развития химии стало относиться изучение закономерностей химического процесса. Со второй половины XX в. в химии плодотворно развивается концепция, нацеленная на изучение возможностей использования в процессах получения целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем. Эволюционная химия обратилась к постижению путей получения наиболее высокоорганизованных химических систем, которые только возможны в настоящее время. В химии исторически сложились, таким образом, четыре уровня изучения веществ: с позиций их состава, строения, химического действия и самоорганизации. Тем не менее, специфика химии не может быть сведена только к исследованию веществ с позиций этого многоуровневого подхода. Наиболее специфичным для нее является постижение химизме взаимоотношений веществ. Причем осмысление феномена химизма, находит свое концентрированное выражение в современной трактовке предмета химии. Химический взгляд на природу, истоки и современное состояние. Химия — очень древняя наука. Существует несколько объяснений слова «химия». Согласно одной из имеющихся теорий, оно происходит от древнего названия Египта — Kham и, следовательно, должно означать «египетское искусство». Согласно другой теории, слово «химия» произошло от греческого слова cumoz (сок растения) и означает «искусство выделения соков». Этот сок может быть расплавленным металлом, так что при подобном расширенном толковании данного термина в него приходится включать и искусство металлургии. С химией тесно связаны элементы стихий древнегреческой натурфилософии, атомистика Левкиппа и Демокрита. Но, конечно, наибольший вклад в становление этой науки внесли египтяне. Имя первого из дошедших до нас химиков — Болос из Менда, жившего в дельте Нила на рубеже III и II вв. до н.э. К 300 г. н.э. египтянин Зосима написал энциклопедию, которая охватывала все собранные к тому времени знания по химии. Но химия, представленная в этом труде, еще не была наукой в полном смысле слова, а оставалась тесно связанной с древнеегипетской религией и не выходила в своем развитии за пределы формирования феноменологического уровня. В химии выявлялись свойства, устанавливались закономерности между ними, сущность же явлений подменялась их мистической интерпретацией. Химию (химиков) искореняли и преследовали древнеримские императоры, фанатики христианства: ученые изгонялись, книги их сжигались, сама наука запрещалась. Одни опасались, например, того, что химики занимались получением золота; вторые преследовали ученых за тесную связь химии с древнеегипетской религией, которая, с точки зрения христианства, была язычеством. Начиная с последних веков I тыс. до н.э. химия бурно развивалась в арабском мире, а в первой половине нынешнего тысячелетия она получила широкое распространение в Западной Европе. С одной стороны, развитие химии в этот период шло вслед за развитием техники, однако, с другой стороны, она оставалась тесно связанной с религиозно-философской мыслью. В тот период химия существовала главным образом как алхимия. В химии необходимо отметить, прежде всего, существование особого «химического взгляда» на природу, который не может быть сведен к физическому, несмотря на все успехи физической химии в нынешнем столетии. То есть у химии давно были обнаружены качества некоторого особого типа. Так, согласно известному химику А. А. Бутакову, химические реакции «нельзя объяснить только действием сил электрического притяжения и отталкивания. Их действием объясняется лишь физическая сторона химического процесса. Химическая форма движения материи представляет собой процессы изменения частиц вещества, которые, в конечном счете, определяются действием периодического закона». Подобного мнения придерживаются и многие другие ученые-химики. Известный российский физико-химик Н. Н. Семенов сводил основные отличия между физическим и химическим процессом к трем: «Истории системы, отсутствию мгновенных параметров для скоростей химических реакций, возможности пользоваться равновесными параметрами для физических процессов и невозможности — для химических». В химии хорошо используется подход индуктивный, гораздо менее продуктивным здесь оказался дедуктивный подход. При дедуктивном подходе вся совокупность известных естественно-научных фактов (не только химических, но и физических, биологических) представляется вытекающей из ряда основных законов. Такой подход, как правило, оказывается достаточно эффективным в физике и там, где могут быть использованы физические идеи (в химии). Индуктивный подход — это движение в обратном направлении, когда на основе химической фактологии выявляются более или менее общие закономерности (правила, законы), а затем уже создаются обобщенные модели, составляющие основу современной теоретической химии. Важнейшие особенности современной химии таковы. 1. В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия). 2. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия — закономерности поведения химических элементов в земной коре. Биогеохимия — это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский. Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам. 3. В химии появляются принципиально новые методы исследования (структурный рентгеновский анализ, масс-спектроскопия, радиоспектроскопия и др.). Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными: 1) введение в практику эфирного наркоза, а затем и других наркотических веществ; 2) использование антисептических средств для предупреждения инфекции; 3) получение новых, не имеющихся в природе аллопластических материалов-полимеров. В химии весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) — это органические соединения. В их основе лежат 18 элементов), и большее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство. Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение. В последнее время химия все чаще предпринимает штурм соседних с нею уровней структурной организации природы. Например, химия все более и более вторгается в биологию, пытаясь объяснить основы жизни. Предмет познания химической науки и ее структура Современная химия изучает превращения, при которых молекулы одного соединения обмениваются атомами с молекулами других соединений, распадаются на молекулы с меньшим числом атомов, а также вступают в химические реакции, в результате которых образуются новые вещества. Атомы претерпевают в химических процессах некоторые изменения лишь в наружных электронных оболочках, атомное ядро и внутренние электронные оболочки при этом не изменяются. При определении предмета химии нередко акцентируют внимание на том, что его составляют, прежде всего, соединения атомов и превращения этих соединений, происходящее с разрывом одних и образованием других межатомных связей. Различные химические науки отличаются тем, что они занимаются изучением либо различных классов соединений (такое различие положено в основу разграничения органической и неорганической химии), либо разных типов реакций (радиохимия, радиационная химия, каталитический синтез, химия полимеров), либо использованием разных методов исследования (физическая химия в ее различных направлениях). Отграничение одной химической дисциплины от другой, сохраняющее в нынешних условиях исторически сложившиеся разграничительные линии, имеет относительный характер. До конца XIX века химия в основном была целостной единой наукой. Внутреннее ее деление на органическую и неорганическую не нарушало этого единства. Но последовавшие вскоре многочисленные открытия, как в самой химии, так и в биологии, физике положили начало быстрой ее дифференциации. Современная химическая наука, опираясь в» прочные теоретические основы, непрерывно развивается вширь и вглубь. В частности, происходит открытие и изучение новых, качественно различных дискретных химических частиц. Так, еще в первой половине XIX века при изучении электролиза были обнаружены ионы — особые частицы, образованные из атомов и молекул, но электрически заряженные. Ионы являются структурными единицами многих кристаллов, кристаллических решеток металлов, они существуют в атмосфере, в растворах и т.д. В начале XX в. химики открыли радикалы как одну из активных форм химического вещества. Они образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, что связано с наличием одиночных (неспаренных) электронов, объясняющих их исключительную химическую активность. К особым формам химического вещества относятся также макромолекулы. Они состоят из сотен и тысяч атомов и вследствие этого приобретают в отличие от обычной молекулы качественно новые свойства. Характерный для новейшей химии, как и для всей науки XX в., процесс глубокой внутренней дифференциации в значительной степени связан с открытием этого качественного многообразия химических веществ. Их строение, превращения и свойства стали предметом изучения специальных разделов химии: электрохимии, химической кинетики, химии полимеров, химии комплексных соединений, коллоидной химии, химии высокомолекулярных соединений. Уже к началу XX в. внутри самой химии четко различаются общая и неорганическая химия, и органическая химия. Предметом изучения общей и тесно связанной с ней неорганической химии стали химические элементы, образуемые ими простейшие неорганические соединения и их общие законы (прежде всего Периодический закон Д.И. Менделеева). Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизученных и синтезу новых элементов с помощью ядерных реакций. Изучением их свойств, а также физико-химических основ и химических свойств радиоактивных изотопов, методикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX в. Органическая химия окончательно сложилась в самостоятельную науку во второй половине XIXв. Этому способствовало получение большого эмпирического и теоретического материала о соединениях углерода и его производных. Определяющим фактором для всех органических соединений являются особенности валентного состояния углерода — способность его атомов связываться между собой как одинарной, так и двойной, тройной связью в длинные линейные и разветвленные цепи. Благодаря бесконечному многообразию форм сцепления углеродных атомов, наличию изомерии и гомологических рядов почти во всех классах органических соединений возможности получения этих соединений практически безграничны. В XX в. многие разделы органической химии стали постепенно превращаться в большие, относительно самостоятельные ветви со своими объектами изучения. Так появились химия элементоорганических соединений, химия полимеров, химия высокомолекулярных соединений, химия антибиотиков, красителей, душистых соединений, фармакохимия и т.д. В конце XX в. возникает химия металлоорганических соединений, то есть соединений, содержащих одну (или более) прямую связь металла с углеродом. До окончания века были открыты органические соединения ртути, кадмия, цинка, свинца и др. В настоящее время получены углеродистые соединения со значительным содержанием не только металлов, но и неметаллов (фосфор, бор, кремний, мышьяк и т.д.). Теперь эту область химии стали называть химией элементоорганических соединений, она находится на стыке органической и неорганической химии. Самостоятельной областью химии является наука о методах определения состава вещества — аналитическая химия. Ее основная задача — определение химических элементов или их соединений, входящих в состав исследуемого вещества, — решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, эффективный постоянный контроль за ходом технологического процесса и качеством получаемых продуктов. Химия наших дней составляет одну из наиболее обширных областей человеческих знаний и играет исключительно важную роль в народном хозяйстве. Объекты и методы исследования химии настолько разнообразны, что многие ее разделы являются по существу самостоятельными научными дисциплинами. Современную химию принято подразделять в наиболее общем плане, по крайней мере, на 5 разделов: неорганическую, органическую, физическую, аналитическую и химию высокомолекулярных соединений. Однако четких границ между этими разделами не существует. Например, координационные и элементоорганические соединения представляют собой объекты, находящиеся в сфере исследований, как неорганической, так и органической химии. Развитие же этих разделов невозможно без широкого использования методов и представлений физической и аналитической химии. К важнейшим особенностям современной химии относятся: 1. Дифференциация основных разделов химии на отдельные, во многом самостоятельные научные дисциплины. Эта дифференциация основана на различии объектов и методов исследования. Так, на значительное число быстро развивающихся дисциплин подразделяется физическая химия. 2. Интеграция химии с другими науками. В результате этого процесса возникли биохимия, биоорганическая химия и молекулярная биология, изучающие химические процессы в живых организмах. На границе химии и геологии развивается геохимия, исследующая закономерности поведения химических элементов в земной коре. Задачи космохимии — изучение особенностей элементного состава космических тел (планет и метеоритов) и различных соединений, содержащихся в этих объектах. 3. Появление новых, главным образом, физико-химических в физических методов исследования (структурный рентгеновский анализ, масс-спектроскопия, методы радиоспектроскопии и др.) Взаимосвязь химии и физики Наряду с процессами дифференциации самой химической науки, в настоящее время идут в интеграционные процессы химии с другими отраслями естествознания. Особенно интенсивно развиваются взаимосвязи между физикой и химией. Этот процесс сопровождается возникновением все новых и новых смежных физико-химических отраслей знания. Вся история взаимодействия химии я физики полна примеров обмена идеями, объектами и методами исследования. На разных этапах своего развития физика снабжала химию понятиями в теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом, чем больше усложнялись химические исследования, тем больше аппаратура и методы расчетов физики проникали в химию. Необходимость измерения тепловых эффектов реакции, развитие спектрального и рентгеноструктурного анализа, изучение изотопов и радиоактивных химических элементов, кристаллических решеток вещества, молекулярных структур потребовали создания и привели к использованию сложнейших физических приборов эспектроскопов, масс-спектрографов, дифракционных решеток, электронных микроскопов и т.д. Развитие современной науки подтвердило глубокую связь между физикой и химией. Связь эта носит генетический характер, то есть образование атомов химических элементов, соединение их в молекулы вещества произошло на определенном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов материи, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Возникновение химической формы движения в природе вызвало дальнейшее развитие представлений об электромагнитном взаимодействии, изучаемом физикой. На основе периодического закона ныне осуществляется прогресс не только в химии, но и в ядерной физике, на границе которой возникли такие смешанные физико-химические теории, как химия изотопов, радиационная химия. Химия и физика изучают практически одни и те же объекты, но только каждая из них видит в этих объектах свою сторону, свой предмет изучения. Так, молекула является предметом изучения не только химии, но и молекулярной физики. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы, то последняя статистически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазы и обратно, явления, не связанные с изменением состава молекул и их внутреннего химического строения. Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах убедительно свидетельствуют о тесной связи химических и физических явлений. Так, энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии обычно в виде тепла и света, называются экзотермическими. Существуют также эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновременно с уменьшением внутренней энергии системы. В эндотермических реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль). Еще один пример. Частным случаем первого начала термодинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измерение почему-либо неосуществимо. С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказалось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней оболочки, Именно новейшая физика сумела решить такие вопросы химии, как природа химической связи, особенности химического строения молекул органических и неорганических соединений и т.д. В сфере соприкосновения физики и химии возник и успешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, которая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (открытие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролитической диссоциации) и т.д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия — это разносторонне разветвленная наука, тесно связывающая физику и химию. В самой физической химии к настоящему времени выделились и вполне сложились в качестве самостоятельных разделов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в самостоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с интенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической Химии — химия высоких энергий, радиационная химия (предметом ее изучения являются реакции, протекающие под действием ионизирующего излучения), химия изотопов. Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической химии. С возникновением физической химии изучение вещества стало осуществляться не только традиционными химическими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодинамики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, присущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.). Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (квантовая механика, электронная теория атомов и молекул) наука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химических элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи. В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обеспечило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия граничит, с одной стороны, с макроскопической физикой — термодинамикой, физикой сплошных сред, а с другой — с микрофизикой — статической физикой, квантовой механикой. Общеизвестно, сколь плодотворными эти контакты оказались для химии. Термодинамика породила химическую термодинамику — учение о химических равновесиях. Статическая физика легла в основу химической кинетики — учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Менделеева. Современная теория химического строения и реакционной способности — это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превращений. Еще одним свидетельством плодотворности влияния физики на химическую науку является все расширяющееся применение физических методов в химических исследованиях. Поразительный прогресс в этой области особенно отчет-диво виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область видимого и примыкающего к нему участков инфракрасного и ультрафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее информативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального метода изучения нестабильных промежуточных частиц - свободных радикалов. В коротковолновой области электромагнитных излучений возникла рентгеновская и гамма-резонансная спектроскопия, обязанная своим появлением открытию Мессбауэра. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии. Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры — уникальные по своей спектральной интенсивности источники — и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс — быстро развивающийся высокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность — это штучная регистрация атомов с помощью лазера — методика, основная на селективном возбуждении, позволяющая зарегистрировать в кювете всего несколько атомов посторонней при-Л0еи. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер. Сейчас трудно назвать область современной физики, которая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных частиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое поведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправдывает этот интерес. Оглядываясь на историю взаимоотношений физики и химии, мы видим, что физика играла важную, подчас решающую роль в развитии теоретических концепций и методов исследования в химии. Степень признания этой роли можно оценить, просмотрев, например, список лауреатов Нобелевской премии по химии. Не менее трети в этом списке — авторы крупнейших достижений в области физической химии. Среди них — те, кто открыл радиоактивность и изотопы (Резерфорд, М. Кюри, Содди, Астон, Жолио-Кюри и др.), заложил основы квантовой химии (Полинг и Малликен) и современной химической кинетики (Хиншелвуд и Семенов), развил новые физические методы (Дебай, Гейеровский, Эйген, Норриш и Портер, Герцберг). Наконец, следует иметь в виду и то решающее значение, которое начинает играть в развитии науки производительность труда ученого. Физические методы сыграли и продолжают играть в этом отношении в химии революционизирующую роль. Достаточно сравнить, например, время, которое затрачивал химик-органик на установление строения синтезированного соединения химическими средствами и которое он затрачивает теперь, владея арсеналом физических методов. Несомненно, что этот резерв применения достижений физики используется далеко не достаточно. Подведем некоторые итоги. Мы видим, что физика во все большем масштабе и все более плодотворно вторгается в химию. Физика вскрывает сущность качественных химических закономерностей, снабжает химию совершенными инструментами исследования. Растет относительный объем физической химии, и не видно причин, которые могут замедлить этот рост. Взаимосвязь химии и биологии Общеизвестно, что химия и биология долгое время шли каждая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма. Резкое укрепление взаимосвязи химии с биологией произошло в результате создания А.М. Бутлеровым теория химического строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось. Поступательное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере химических процессов в живых тканях, об обусловленности биологических функций химическими реакциями. Если посмотреть на обмен веществ в организме с чисто химической точки зрения, как это сделал А.И. Опарин, мы увидим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между добей во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен, к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды. Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связаны с определенными комплексами химических превращений. Значение химии среди наук, изучающих жизнь, исключительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых Кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов. Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистическим упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по сравнению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, возникшие на стыке биологии, химии и физики: биохимия — наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия — наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология. Крупнейшими достижениями этого процесса стали определение химических продуктов клеточного метаболизма (обмена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сделано открытие материальных основ регулятивного и наследственного молекулярного механизма, а также в значительной степени выяснено значение химических процессов» энергетике процессов клетки и вообще живых организмов. Ныне для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. На этом пути есть уже определенные достижения. Более столетия назад ученые поняли, что основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности. Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично-практического применения выделенных ферментов для ускорения некоторых химических реакций. Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма. Теория саморазвития элементарных открытых каталитических систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции. Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Саморазвитие, самоорганизация я самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов. Развивая эти взгляды, А.П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности. Практическим следствием теории саморазвития открытых каталитических систем является так называемая «нестационарная технология», то есть технология с меняющимися условиями реакции. Сегодня исследователи приходят к выводу, что стационарный режим, надежная стабилизация которого казалась залогом высокой эффективности промышленнoro процесса, является лишь частным случаем нестационарного режима. При этом обнаружено множество нестационарных режимов, способствующих интенсификации реакции. В настоящее время уже видны перспективы возникновения и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии. Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химическими, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей, использующих с большим КПД солнечный свет, превращая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности. Для освоения каталитического опыта живой природы и реализации полученных знаний в промышленном производстве химики наметили рад перспективных путей. Первый — развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа. Второй путь заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов характеризующихся высокой активностью и селективностью, иногда' почти такой же, как и у оригиналов, или с большей простотой строения. Правда, пока все же полученные модели не в состоянии заменить природные биокатализаторы живых систем. На данном этапе развития химических знании проблема эта решается чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время и быстро разрушается, поскольку является выделенным из целого, из клетки. Цельная клетка со всем ее ферментным аппаратом — более важный объект, чем одна, выделенная из нее деталь. Третий путь к освоению механизмов лаборатории живей природы связывается с достижениями химии иммобилизованных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции, которая и превращает их в гетерогенный катализатор и обеспечивает его стабильность и непрерывное действие. Четвертый путь в развитии исследований, ориентированных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи — изучением и освоением всего каталитического опыта живой природы, в том числе и формирования фермента, клетки и даже организма. Это ступень, на которой основы эволюционной химии как действенной науки с ее рабочими функциями. Ученые утверждают, что это движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем. Решение названной задачи займет важнейшее место в создании химии будущего. Заключение Современная химия представлена множеством различных направлений развития знаний о природе вещества и способах его преобразования. В то же время химия является не просто суммой знаний о веществах, а высоко упорядоченной, постоянно развивающейся системой знаний, имеющей свое место в ряду других естественных наук. Химия изучает качественное многообразие материальных носителей химических явлений, химической формы движения материи. Хотя структурно она пересекается в определенных областях и с физикой, и с биологией, и с другими естественными науками, но сохраняет при этом свою специфику. Одним из наиболее существенных объективных оснований выделения химии в качестве самостоятельной естественнонаучной дисциплины является признание специфичности химизма взаимоотношения веществ, проявляющегося, прежде всего, в комплексе сил и различных типов взаимодействий, обусловливающих существование двух- и многоатомных соединений. Этот комплекс принято характеризовать как химическую связь, возникающую либо разрывающуюся в ходе взаимодействия частиц атомного уровня организации материи. Для возникновения химической связи характерно значительное перераспределение электронной плотности по сравнению с простым положением электронной плотности несвязанных атомов или атомных фрагментов, сближенных на расстояние связи. Эта особенность наиболее точно отделяет химическую связь от разного рода проявлений межмолекулярных взаимодействий. Происходящее ныне неуклонное возрастание в рамках естествознания роли химии как науки сопровождается быстрым развитием фундаментальных, комплексных и прикладных исследований, ускоренной разработкой новых материалов с заданными свойствами и новых процессов в области технологии производства и переработки веществ. Литература 1. Большой энциклопедический словарь. Химия. М., 2001. 2. Грушевицкая T.T., Садохин А.П. Концепции современного естествознания. М., 1998. 3. Концепции современного естествознания. Под. ред. В.Н. Лаbukvasha.ru реферат по химииРеферат по химииВыполнил: Андреев Артур.Главную подгруппу IV группы периодической системы Д. И. Менделеева образуют пять элементов - углерод, кремний, германий, олово и свинец. В связи с тем, что от углерода к свинцу радиус атома увеличивается, размеры атомов возрастают, способность к присоединению электронов, а следовательно, и неметаллические свойства будут ослабевать, легкость же отдачи электронов - возрастать. Уже у германия проявляются металлические свойства, а у олова и у свинца они преобладают над неметаллическими. Таким образом, углерод и кремний относят к неметаллам, германий причисляют как к металлам, так и к неметаллам, а олово и свинец - металлы.Германий по внешнему виду похож на металлы, но хрупок. Как и кремний, германий принадлежит к полупроводникам, т. е. к веществам, занимающим промежуточное положение между непроводниками электрического тока, или изоляторами (многие неметаллы), и проводниками (металлы). В качестве полупроводника германий широко применяется в радиоэлектронике. Простые вещества, образованные оловом и свинцом- следующими элементами подгруппы, проявляют уже все типичные свойства металлов: металлический блеск, высокую электрическую проводимость и теплопроводность, пластичность. Как правило, олово и свинец образуют соединения, в которых они проявляют степени окисления +2 и +4. На внешнем энергетическом уровне атомов элементов главной подгруппы IV группы содержатся четыре электрона: два спаренных s-электрона и два неспаренных р-электрона. Поэтому при образовании соединений атомы этих элементов могут или отдавать все четыре электрона, проявляя высшую степень окисления +4, или принимать четыре электрона, проявляя при этом степень окисления -4. Среди элементов IV группы наибольшее значение имеют углерод, входящий в состав всех живых организмов, и кремний - важнейший элемент земной коры. Двухвалентные соединения для кремния менее характерны, чем для углерода. Это связано с меньшим значением энергии возбуждения атомов кремния благодаря большей удаленности наружных электронов от ядра. При обычных условиях углерод и кремний очень инертны и практически не взаимодействуют ни с какими простыми и сложными веществами. При обычных условиях углерод и кремний очень инертны и практически не взаимодействуют ни с какими простыми и сложными веществами. Исключение составляет аморфный кремний, реагирующий с фтором. При нагревании углерод и кремний взаимодействуют с галогенами, с элементами подгруппы серы, азотом, водородом и многими металлами. В последнем случае образуются соединения, называемые карбидами и силицидами. С углеродом и кремнием взаимодействуют лишь некоторые кислоты, являющиеся сильными окислителями. Например, в присутствии окислителей (KClO3, MnO2) аморфный углерод растворяется в концентрированных азотной и серной кислотах при нагревании. Кремний же растворяется лишь в смеси азотной и плавиковой кислот: 3Si + 18HF + 4HNO3 = 3h3SiF6 + 4NO + 8Н2О Щелочи переводят кремний в соли кремниевой кислоты с выделением водорода: Si + 2КОН + h3O= К2Si03 + 2Н2↑↑ С водой углерод и кремний реагируют лишь при высоких температурах: С + Н2О →→←← СО + Н2 Si + ЗН2О = Н2SiO3 + 2Н2 Первая из этих реакций имеет большое практическое значение. Она лежит в основе процесса газификации твердого топлива. Углерод в отличие от кремния непосредственно взаимодействует с водородом: С + 2Н2 = СН4 Реакция осуществляется при нагревании в присутствии катализатора (мелкий раздробленный никель). Продукт взаимодействия — метан — является первым членом ряда предельных углеводородов, состав которых выражается формулой Cnh3n+2. Аналогично углероду кремний тоже образует с водородом соединения, но они менее устойчивы. Надежно идентифицированы только шесть низших гомологов предельного ряда. Их называют силанами. Простейший представитель моносилан Sih5 имеет строение, аналогичное СН4. Силаны - крайне реакционноспособные соединения, воспламеняющиеся на воздухе. Низкая прочность связи Si—Si (ΔΔH = -220 кДж/моль) по сравнению со связью С—С (ΔΔH = -340 кДж/моль) обусловила возможность образования лишь ограниченного числа силанов по сравнению с углеводородами. Склонность углерода к образованию полимерных цепей объясняет то обстоятельство, что он в обычных условиях тверд, нелетуч и химически инертен. При нагревании на воздухе углерод и кремний сгорают с образованием оксидов. Однако процессы окисления идут по-разному. При недостатке кислорода углерод образует оксид углерода (II), а при избытке — оксид углерода (IV). Кремний с кислородом во всех случаях образует оксид кремния (IV). Оксид кремния (II) может быть получен лишь косвенным путем: Si + SiO2 = 2SiO. В природе кремнезем(SiO2) встречается в виде включений в граниты и другие породы. Такие включения заметны на осколках породы, они напоминают кусочки оплавленного стекла. Освобождаясь при выветривании породы, они скапливаются в руслах рек в виде белого песка. Встречается оксид кремния(IV) и в виде прекрасных кристаллов кварца размером, иногда превышающим человеческий рост. Советские ученые и инженеры разработали методы, позволяющие искусственно выращивать кристаллы кварца длиной до 1,5-2 м. При плавлении аморфный кварц размягчается постепенно и также постепенно при охлаждении затвердевает. Это облегчает изготовление из кварца изделий, например химической посуды. Кварц очень мало расширяется при нагревании. Поэтому кварцевую посуду можно, раскалив добела, бросить в холодную воду, и она не растрескается. Оксид кремния (IV) практически нерастворим в воде. Соответствующая ему кремниевая кислота получается вытеснением ее из растворов солей другими кислотами, в том числе и угольной. Обратите внимание, что в растворе угольная кислота вытесняет кремниевую из ее солей, а при прокаливании происходит обратное явление. Первый процесс обусловлен тем, что кремниевая кислота более слабая, чем угольная. Второй же процесс объясняется меньшей летучестью оксида кремния (IV). Высшие солеобразующие оксиды углерода и кремния довольно сильно отличаются по свойствам. Оксид углерода (IV) - газ, который конденсируется лишь при сильном охлаждении, образуя кристаллическую массу, а оксид кремния (IV), напротив, кристаллическое вещество, встречающееся в природе в виде минерала кварца. Оксид углерода (IV) растворяется в воде (1:1 по объему), причем он частично взаимодействует с ней, образуя угольную кислоту: СО2 + Н2О →→←← Н2СО3 Оксид углерода(II) не реагирует ни с водой, ни с растворами щелочей и кислот. Подобно оксиду азота(II) NO, он относится к несолеобразующим оксидам. Оксид углерода(II) получается при взаимодействии оксида углерода(IV) с сильно раскаленным углем: С + СО2 = 2CO - 160 кДж В этом можно убедиться, заглянув в хорошо растопленную печь. Над раскаленными добела углями вспыхивают голубые огоньки. Это пламя оксида углерода(II), сгорающего в воздухе, поступающем через открытую дверцу печи. Когда угли несколько остывают, голубые огоньки исчезают: реакция между углем и оксидом углерода(IV) прекратилась и оксид углерода(II) не образуется. Теперь понятно, почему сильно раскаленный уголь сгорает синим пламенем, а слабо раскаленный - без пламени. Оксид углерода(II) содержится в некоторых видах газообразного топлива, в частности генераторном газе. Оксид углерода(IV) образуется в природе при дыхании животных и растений, при гниении органических остатков в почве, при пожарах. Оксид углерода(IV) тяжелее атмосферного воздуха и поэтому может скапливаться в опасных концентрациях в погребах и колодцах. В угольных шахтах из-за медленного окисления угля содержание углекислого газа также выше, чем на открытом воздухе. Служба охраны труда следит за тем, чтобы оно не превышало установленной нормы (30 мг/м3). Для растений углекислый газ служит источником углерода, и обогащение им воздуха в парниках и теплицах приводит к повышению урожая. Оксид углерода(IV) применяют также для газирования воды и напитков, жидким CO2 заряжают огнетушители. Твердый оксид углерода(IV) под названием сухого льда применяют для охлаждения продуктов. Преимущество сухого льда перед обыкновенным заключается в том, что он поддерживает в окружающем пространстве значительно более низкую температуру и испаряется, не переходя в жидкое состояние. Растворяясь в воде оксид углерода(IV) почти не соединяется с нею. Его гидроксид - угольная кислота Н2СО3 - существует лишь в момент образования, она практически нацело разлагается на углекислый газ и воду: Н2СО3 = Н2О + СО2 Учитывая, что угольная кислота является двухосновной, равновесие между различными формами молекул и ионов в водном растворе оксида углерода (IV) можно выразить уравнением: Н2О + СО2 →→←← Н2СО3 →→←← H+ + НСО3- →→←← 2H+ + CO32- . При нагревании оксид углерода (IV) улетучивается, и равновесие смещается влево, а при прибавлении щелочи происходит связывание ионов Н+ и смещение равновесия вправо. Угольная кислота слабая. В водном растворе соли угольной кислоты гидролизуются. Растворы средних солей карбонатов обладают сильной щелочной реакцией: CO32- + h3O = HCO3- + OH- Наиболее распространен в природе карбонат кальция(известняк, мрамор, мел и т.д.). Залежи пород, содержащих карбонат кальция , особенно известняка, встречаются довольно часто. Поэтому одной из задач краеведческой работы в районах с кислыми почвами должны быть поиски месторождений известняка. Из искусственно получаемых карбонатов большое значение имеет карбонат натрия Na2CO3. Безводный карбонат натрия известен под названием кальцинированной соды, а кристаллогидрат Na2CO3*10h3O - кристаллической соды. Соду применяют для производства мыла, стекла, а в быту для стирки белья. При насыщении раствора соды углекислым газом она переходит в гидрокарбонат натрия NaHCO3. Гидрокарбонат натрия продают в аптеках и продовольственных магазинах под названием питьевой соды. Ее принимают внутрь при изжоге, вызванной избытком в желудочном соке соляной кислоты. Питьевую соду применяют в кондитерском деле и хлебопечении. При нагревании она разлагается с выделением углекислого газа и паров воды: 2NaHCO3 = Na2CO3 + h3O + СО2 Поэтому питьевую соду вводят в состав хлебопекарных порошков, добавляемых к тесту. Такое тесто подходит без применения дрожжей и заквасок, наполняясь пузырьками углекислого газа, и выпеченный из него продукт получается пористым и мягким.Аллотропные видоизменения углерода.Рис.1 Модель решетки алмаза. Углерод существует в трех аллотропных модификациях: алмаз, графит и карбин. Две основные разновидности углерода - графит и алмаз - существенно отличаются по свойствам. Мягкий графит имеет слоистое строение (рис. 2).Все атомы углерода находятся здесь в состоянии sp2-гибридизации: каждый из них образует три ковалентные связи с соседними атомами, причем углы между направлениями связи равны 120°. Графит электропроводен и хорошо раскалывается по плоскости. В обычных условиях графит и является наиболее устойчивой модификацией. Переход графита в алмаз возможен при очень высоких давлениях (порядка 125000 атм) и температурах (около 3000 °С). Однако исследование этого процесса сначала с теоретических позиций, а затем экспериментальным путем показало, что в присутствии катализаторов (железо, платина) графит превращается в алмаз уже при давлении 60000—80000 атм и температуре 1400—1600 °С. В настоящее время налажено производство искусственных алмазов для технических целей, причем размеры их обычно колеблются от 0,5 до 4 мм; в отдельных случаях удается получить и большие экземпляры. Структура алмаза (рис. 1) типично тетраэдрическая; атомы углерода прочно соединены за счет перекрытия sp3-орбиталей. Хотя в обычных условиях алмаз нестабилен, но практически он может сохраняться неопределенно долгое время. При сильном накаливании алмаза происходит его постепенная графитизация.Физические свойства алмаза и графита.
Размеры мировой добычи алмазов очень незначительны - гораздо меньше, чем благородных металлов - золота и платины. Из алмазов делают наконечники буров для сверления твердых горных пород. Также алмазы применяют для резки стекла и в виде «алмазного инструмента»(резцы, сверла, шлифовальные круги). Алмазным порошком шлифуют бриллианты и твердые сорта стали. Самый крупный из когда-либо найденных алмазов весит 602 г, имеет длину 11 см, ширину 5 см, высоту 6 см. Этот алмаз был найден в 1905 г и носит имя «Кэллиан». Один из самых крохотных в мире граненых алмазов, весом всего лишь 0,25 мг(в 4000 раз легче копеечной монетки), демонстрировался на всемирной выставке в Брюсселе. Несмотря на ничтожный вес и размер - зернышко объемом 0,07 мм3 ,- искусные руки гранильщика нанесли на нем на нем 57 граней, рассмотреть которые можно только под микроскопом. Рис.2 Модель решетки графита. В 1967 г. Б.В. Дерягин и Д.В. Федосеев вырастили на грани алмаза нитеобразный кристалл («алмазные усы»). Рост происходил при высокой температуре, причем источником углерода служил метан; за четыре часа кристаллическая нить вырастала на 1 мм, что, вообще говоря, очень много для процессов такого рода. Большая часть образцов аморфного угля состоит из искаженных кристаллов графита. Характерное расположение атомов углерода по углам шестиугольника при этом сохраняется. В решетках графита часто встречаются разнообразные дефекты структуры, как структурные, так и химические, связанные с захватом ионов и атомов. В решетку графита могут внедряться (А. Убеллоде, Ф. Льюис) атомы бора, кислорода, серы и т. п., образующие связи между слоями и влияющие на проводимость графита. Графит образует своеобразные химические соединения, в которых присоединяющиеся частицы размещаются между плоскостями, занятыми атомами углерода. При нагревании графита в парах щелочных металлов получаются легко окисляющиеся соединения. Так, при 400 °С калий образует соединение C8K. Состав соединений сильно зависит от температуры и изменяется в широких пределах. Известны соединения графита с рубидием, цезием; для натрия и лития четких результатов пока нет; натрий, по-видимому, дает соединение C64Na фиолетового цвета. Графит дает также соединения с металлами, аммиаком и аминами типа MeC12(Nh4)2. Решетка графита во всех случаях расширяется при образовании соединений, и межплоскостное расстояние достигает 0,66 нм, а для метиламинового комплекса лития даже до 0,69 нм. Получены соединения: C9Br, C5CI, C8CI, CF. Тифлон (CF) серого цвета, изолятор, не похож на другие соединения типа соединений «внедрения». Предполагается образование в нем ковалентных связей фтор - углерод. Графит раньше применялся как пишущее средство. С XIX века и по сей день используют графитовые электроды в металлургии и химической промышленности, например в производстве алюминия: металл осаждается на графитовом катоде. Сейчас нашли применение графитизированные стали, то есть стали с добавлением монокристаллов графита. Эти стали используют при изготовлении коленчатых валов, поршней и других деталей, где особенно важна высокая прочность и твердость материала. Графит играет важную роль в электротехнической промышленности и атомной энергетике, где его используют в качестве замедлителя нейтронов. С помощью графитовых стержней регулируют скорость реакции в атомных котлах. Способность графита расщепляться на чешуйки позволяет делать на его основе смазочные вещества. Графит - прекрасный проводник теплоты, при этом он может выдержать значительные температуры до 3000 °С и выше. К тому же он химически довольно стоек. Эти свойства нашли применение в производстве графитовых теплообменников и в ракетной технике(для изготовления рулей и сопловых аппаратов. Третья модификация - карбин- была открыта в начале 1960-х годов. Карбин представляет собой порошок глубокого черного цвета с вкраплением более крупных частиц. Электроны в атоме углерода в карбине имеют sp-гибридизацию, т.е. это цепочечный полимер, который встречается в виде двух форм. Оказалось, что карбин - самая термодинамически устойчивая форма элементарного углерода. В тех условиях, при которых графит переходит в алмаз за 30 минут, карбин не изменяется и после 15 часов выдержки. Тогда же, в начале 1960-х годов, был открыт и так называемый зеркальный углерод, имеющий, как и графит, слоистое строение, но связи между слоями здесь не слабые межмолекулярные, как в графите, а химические, более прочные. Одна из важнейших особенностей зеркального углерода (кроме твердости, стойкости к высоким температурам и т. д.) - его биологическая совместимость с живыми тканями.Адсорбция.Свободный углерод (в виде, например, древесного угля) не только нелетуч, но и неплавок. Поэтому в таком угле сохраняется тонкопористое строение древесины, все тончайшие каналы, по которым в дереве перемещались растворы минеральных солей. Если измерить поверхность всех частиц, находящихся в угольном порошке массой 1 г, или всех пор и каналов в 1 г древесного угля, получится площадь во много десятков и даже сотен квадратных метров. Поместим в колбу, содержащую воздух с примесью оксида азота (IV), кусочки угля или всыплем в нее толченый уголь. Бурая окраска газа исчезнет: оксид азота (IV) поглотится углем. Нагреем уголь, и оксид азота (IV) в колбе появится вновь. Взболтаем с угольным порошком раствор лакмуса. Окраска раствора тоже исчезнет, лакмус поглотится углем. Удержание углем и другими твердыми веществами на своей поверхности газа или растворенного вещества называется адсорбцией. Чем больше пористость угля, тем больше газа или растворенного вещества он может поглотить, или адсорбировать. Для увеличения пористости угля его активируют повторным нагреванием без доступа воздуха. В результате удаляются остатки продуктов, закупоривающие капилляры в угле. Уголь адсорбирует все газы, включая инертные, но неодинаково. В частности, чем легче сжижается газ, тем сильнее он адсорбируется. Адсорбированный углем газ можно извлечь из него, нагревая уголь. Этим пользуются для регенерации угля, то есть возвращения ему способности к адсорбции. Уголь применяют в производстве сахара и спирта для очистки их от примесей. В аптеках активированный уголь продают в виде таблеток под названием «карболен». Их принимают внутрь для удаления из желудка растворенных вредных веществ. Активированный уголь используют в фильтрующих противогазах для защиты дыхательных путей от вредных примесей воздуха. baza-referat.ru |
|
|||||||||||||||||||||||||||||||||||||||||||||
|
|