Реферат: Солнечный ветер. Реферат по физике на тему ветры


Реферат Ветер

скачать

Реферат на тему:

План:

Введение

Ветроуказатель — простейшее устройство для определения скорости и направления ветра, использующееся на аэродромах.

Ве́тер — поток воздуха в горизонтальном направлении. На Земле ветер является потоком воздуха, который движется преимущественно в горизонтальном направлении; на других планетах он является потоком свойственным этим планетам атмосферных газов. Сильнейшие ветры Солнечной системы наблюдаются на Нептуне и Сатурне. Солнечный ветер является потоком разряженных газов от звезды, а планетарный ветер является потоком газов, отвечающих за дегазацию планетарной атмосферы в космическое пространство. Ветры как правило классифицируют по масштабам, скорости, видам сил, которые их вызывают, местам распространения и воздействию на окружающую среду.

В метеорологии ветры классифицируют, в первую очередь, по их силе, продолжительности и направлению, откуда этот ветер дует. Таким образом, порывами принято считать кратковременные (несколько секунд) и сильные перемещения воздуха. Сильные ветры средней продолжительности (примерно 1 минута) называются шквалами. Названия более продолжительных ветров зависят от силы, например, такими названиями являются бриз, буря, шторм, ураган, тайфун. Продолжительность ветра также сильно варьируется: некоторые грозы могут длиться несколько минут, бриз, который зависит от разницы нагрева особенностей рельефа на протяжении суток, длится несколько часов, глобальные ветры, вызванные сезонными изменениями температуры — муссоны — имеют продолжительность несколько месяцев, тогда как глобальные ветры, вызванные разницей в температуре на разных широтах и силой Кориолиса, дуют постоянно и называются пассаты. Муссоны и пассаты являются ветрами, из которых слагается общая и местная циркуляция атмосферы.

Ветры всегда влияли на человеческую цивилизацию, они вдохновляли на мифологические рассказы, влияли на исторические действия, расширяли диапазон торговли, культурного развития и войн, поставляли энергию для разнообразных механизмов производства энергии и отдыха. Благодаря парусным суднам, которые плыли за счет ветра, впервые появилась возможность преодолевать большие расстояния по морям и океанам. Воздушные шары, которые тоже двигались с помощью ветра, впервые позволили отправляться в воздушные путешествия, а современные летательные аппараты используют ветер для увеличения подъемной силы и экономии топлива. Однако, ветры могут быть и небезопасными, так градиентные колебания ветра могут вызвать потерю контроля над самолетом, быстрые ветры, а также вызванные ими большие волны, на больших водоемах часто приводят к разрушению штучных построек, а в некоторых случаях ветры способны увеличивать масштабы пожара.

Панорама эоловых столбов в национальном парке Брайс каньон (Юта).

Ветры могут влиять и на формирование рельефа, вызывая эоловые отложения, которые формируют различные виды грунтов (например, лес) или эрозию. Они могут переносить пески и пыль из пустынь на большие расстояния. Ветры разносят семена растений и помогают передвижению летающих животных, которые приводят к расширению видов на новой территории. Связанные с ветром явления разнообразными способами влияют на живую природу.

Российский ГОСТ под ветром понимает поток воздуха, движущийся относительно земной поверхности со скоростью свыше 0,6 м/с [1].

Ветер возникает в результате неравномерного распределения атмосферного давления и направлен от зоны высокого давления к зоне низкого давления. Вследствие непрерывного изменения давления во времени и пространстве скорость и направление ветра постоянно меняются. С высотой скорость ветра меняется из-за убывания силы трения.

Для визуальной оценки скорости ветра служит шкала Бофорта. Метеорологическое направление ветра указывается азимутом точки, откуда дует ветер; тогда как аэронавигационное[2] направление ветра — куда дует, таким образом значения различаются на 180°. Многолетние наблюдения за направлением и силой ветра изображают в виде графика — розы ветров.

В ряде случаев важным является не само направление ветра, а положение объекта относительно него. Так, при охоте на животное с острым нюхом к нему подходят с подветренной стороны[3] — во избежание распространения запаха от охотника в сторону животного.

Вертикальное движение воздуха называется восходящим или нисходящим потоком.

1. Причины

Ветер вызывается разницей между давлениями между двумя разными воздушными областями. Если существует ненулевой барический градиент, то ветер движется с ускорением от зоны высокого давления в зону с низким давлением. На планете, которая вращается, к этому градиенту прибавляется сила Кориолиса. Таким образом, главными факторами, которые образуют циркуляцию атмосферы в глобальном масштабе, является разница в нагреве воздуха и солнечным ветром между экваториальными и полярными районами, которые вызывают разницу в температуре и, соответственно, плотности потоков воздуха, а в свою очередь и разницу в давлении (а также силы Кориолиса). В результате действия этих факторов, движение воздуха в средних широтах в приповерхностной области вплотную к ветру приводит к образованию геострофического ветра и его движению, направленного практически параллельно изобарам[4].

Важным фактором, который говорит о перемещениях воздуха, является его трение об поверхность, которая задерживает это движение и заставляет воздух двигаться в сторону зон с низким давлением[5]. Кроме того, локальные барьеры и локальные градиенты температуры поверхности способны создавать местные ветры. Разница между реальным и геострофическим ветром называется агеострофическим ветром. Он отвечает за создание хаотичных вихревых процессов, таких как циклоны и антициклоны[6]. В то время как направление приповерхностных в тропических и полярных районах определяется преимущественно эффектами глобальной циркуляции атмосферы, которые в умеренных широтах обычно слабые и циклоны вместе с антициклонами заменяют друг друга и изменяют свое направление каждые несколько дней.

2. Виды ветров

Местные ветры:

2.1. Тропические ветры

Циркуляционные процессы, приводящие к ветрообразованию.

Пассатами называется приповерхностная часть ячейки Хадли — преимущественные приповерхностные ветры, которые дуют в тропических районах Земли в западном направлении, приближаясь к экватору[7], то есть северо-восточные ветры в Северном полушарии, а юго-восточные в Южном[8]. Постоянное движение пассатов приводит к перемешиванию воздушных масс Земли, что может проявляться в больших масштабах: например, пассаты, дующие над Атлантическим океаном, способны переносить пыль из африканских пустынь до Вест-Индии и некоторых районов Северной Америки[9].

Муссоны являются сезонными ветрами, которые длятся несколько месяцев каждого года в тропических районах. Этот термин возник на территории Британской Индии и близлежащих стран как название сезонных ветров, которые дуют с Индийского океана и Аравийского моря на северо-восток, принося региону значительные количества осадков[10]. Их движение в направлении полюсов вызвано образованием районов низкого давления в результате нагрева тропических районов в летние месяцы, то есть Азии, Африки и Северной Америки с мая по июль и в Австралии в декабре[11][12].

Пассаты и муссоны являются главными факторами, приводящими к образованию тропических циклонов над океанами Земли[13].

2.2. Западные ветры умеренного пояса

Карта Гольфстрима, созданная Бенджамином Франклином.

На умеренных широтах, то есть между 30 и 65 градусами северной и южной широты, доминируют западные ветры[14][15], приповерхностная часть ячейки Феррела (англ.), точнее юго-западные ветры в Северном полушарии и северо-западные в Южном полушарии[8]. Эти ветры самые сильные зимой, когда давление около полюсов наименьшее, и самые слабые летом[16].

Вместе с пассатами преимущественные западные ветры позволяют воздушным суднам переплывать океаны. Также, из-за усиления этих ветров рядом с западным побережьем океанов обоих полушарий, они приводят к образованию сильных морских течений[17][18][19], которые переносят теплые тропические воды по направлению к полюсам. Доминирующие западные ветры вообще сильнейшие в Южном полушарии, где меньше суши, которая задерживает ветер, и особенно сильны в полосе «ревущих сороковых» (между 40 и 50 градусами южной широты)[20].

2.3. Восточные ветры полярных районов

Восточные ветры полярных районов, приповерхностная часть полярных ячеек (англ.), преимущественно являются сухими ветрами, которые дуют от приполярных зон высокого давления и движутся к районам с низким давлением вдоль полярного фронта. Эти ветры обычно слабее и менее регулярные, чем западные ветры умеренных широт[21]. Из-за малого количества солнечного тепла, воздух в полярных районах охлаждается и опускается вниз, создавая районы высокого давления и выталкивая приполярный воздух в направлении более высоких широт[22]. Этот воздух в результате воздействия Кориолисовой силы поворачивается в сторону запада, образуя северо-восточные ветры в Северном полушарии и юго-восточные — в Южном.

2.4. Морские и континентальные бризы

А: морской бриз (возникает в дневное время) и B: континентальный бриз (возникает ночью).

Важными эффектами образования преимущественных ветров в прибрежных районах является морской и континентальный бризы. Море (или меньший водоем) нагревается медленнее суши за счет большей теплоемкости воды[23]. Более теплый (а поэтому и более легкий) воздух над сушей поднимается вверх, создавая зоны пониженного давления. В результате образуется перепад давления между сушей и морем, который обычно составляет 0,002 атм. Благодаря этому перепаду давления прохладный воздух над морем движется к суше, создавая прохладный морской бриз на побережье. Из-за отсутствия более сильных ветров, скорость морского бриза пропорциональна разнице температур. При наличии со стороны суши ветра со скоростью более 4 м/с, морской бриз обычно не образуется.

Ночью, благодаря меньшей теплоемкости, суша охлаждается быстрее моря, и морской бриз останавливается. Когда температура суши падает ниже температуры поверхности водоема, то возникает обратный перепад давления, вызывающий (в случае отсутствия сильного ветра со стороны моря) континентальный бриз, который дует с суши на море[24].

3. Глобальные эффекты ветрообразования

Карта пассатов и западных ветров умеренного пояса.

В большинстве районов Земли преобладают ветры, которые дуют в определенном направлении. Около полюсов обычно доминируют восточные ветры, а в умеренных широтах — западные, в то время как в тропиках превалируют снова восточные ветры. На границах между этими поясами (полярный фронт и субтропический хребет) находятся зоны покоя, где доминирующие ветры практически отсутствуют. В этих зонах движение ветра преимущественно вертикально, из-за чего возникают зоны повышенной влажности (рядом с полярным фронтом) или пустыни (вблизи субтропического хребта)[25].

4. Локальные эффекты ветрообразования

Важнейшие местные ветры на Земле.

Локальные эффекты ветрообразования создаются в зависимости от локальных географических объектов. Одним из таких эффектов является перепад температур между не очень отдаленными друг от друга площадями, что могло быть вызвано разными коэффициентами поглощения солнечного света или различной теплоемкостью поверхности. Последний эффект сильнее всего проявляет себя между сушей и водой и вызывает бриз. Другой локальной причиной является наличие гор, которые выступают в роли барьера для воздуха.

5. Использование энергии ветра

Кинетическая энергия ветра используется для выработки электрической энергии с помощью аппаратов, называемых ветрогенераторами.

Примечания

  1. ГОСТ 26883-86 - protect.gost.ru/v.aspx?control=8&baseC=6&page=26&month=4&year=2008&search=термины и определения&RegNum=1&DocOnPageCount=15&id=134195
  2. Авиационная метеорология: метеорологические элементы и явления погоды, определяющие условия полёта - fsdm.ru/text/meteo/meteo01.doc
  3. Подветренная сторона — сторона, противоположная той, на которую дует ветер
  4. Geostrophic wind - amsglossary.allenpress.com/glossary/search?id=geostrophic-wind1  (англ.). Glossary of Meteorology. American Meteorological Society (2009).
  5. Origin of Wind - www.srh.noaa.gov/jetstream//synoptic/wind.htm  (англ.). National Weather Service (2010-01-05).
  6. Ageostrophic wind - amsglossary.allenpress.com/glossary/search?p=1&query=geostrophic wind&submit=Search  (англ.). American Meteorological Society (2009).
  7. Trade winds - amsglossary.allenpress.com/glossary/search?id=trade-winds1  (англ.). Glossary of Meteorology. American Meteorological Society (2000).
  8. ↑ 12Ralph S. Tarr, Frank M. McMurry Advanced geography - books.google.com/books?id=OLMXAAAAIAAJ. — W.W. Shannon & State Printing, 1909. — 649 с.
  9. Called A Major Factor Affecting Southeast U.S. Air Quality - www.sciencedaily.com/releases/1999/07/990714073433.htm  (англ.). Science News. Science daily (1999).
  10. Monsoon - amsglossary.allenpress.com/glossary/search?p=1&query=monsoon&submit=Search  (англ.). Glossary of Meteorology. American Meteorological Society (2009).
  11. Chapter II: Monsoon-2004: Onset, Advancement and Circulation Features - www.ncmrwf.gov.in/Chapter-II.pdf  (англ.) (pdf). National Centre for Medium Range Forecasting (23 октября 2004).
  12. Monsoon - www.abc.net.au/storm/monsoon/print.htm  (англ.). Australian Broadcasting Corporation (2000).
  13. JTWC Forecasting Philosophies - www.nrlmry.navy.mil/forecaster_handbooks/Philippines2/Forecasters Handbook for the Philippine Islands and Surrounding Waters Typhoon Forecasting.3.pdf  (англ.) (pdf). Joint Typhoon Warning Center. United States Navy (2006).
  14. Westerlies - amsglossary.allenpress.com/glossary/search?id=westerlies1  (англ.). Glossary of Meteorology. American Meteorological Society (2009).
  15. Sue Ferguson Climatology of the Interior Columbia River Basin - www.icbemp.gov/science/ferguson_42.pdf  (англ.). Interior Columbia Basin Ecosystem Management Project (2001).
  16. Halldór Björnsson Global circulation - andvari.vedur.is/~halldor/HB/Met210old/GlobCirc.html  (англ.). Veðurstofu Íslands (2005).
  17. National Environmental Satellite, Data, and Information Service Investigating the Gulf Stream - www.science-house.org/nesdis/gulf/background.html  (англ.). North Carolina State University (2009).
  18. The North Atlantic Drift Current - oceancurrents.rsmas.miami.edu/atlantic/north-atlantic-drift.html  (англ.). The National Oceanographic Partnership Program (2003).
  19. Polar Lows / Erik A. Rasmussen, John Turner. — Cambridge University Press, 2003. — С. 68.
  20. Stuart H. Walker The sailor's wind. — W.W. Norton, 1998. — 362 с. — ISBN 0393045552, 9780393045550
  21. Polar easterlies - amsglossary.allenpress.com/glossary/search?p=1&query=polar easterlies&submit=Search  (англ.). Glossary of Meteorology. American Meteorological Society (2009).
  22. Michael Ritter Global scale circulation - www.uwsp.edu/geO/faculty/ritter/geog101/textbook/circulation/global_scale_circulation.html  (англ.). University of Wisconsin–Stevens Point (2008).
  23. Dr. Steve Ackerman Sea and Land Breezes - cimss.ssec.wisc.edu/wxwise/seabrz.html  (англ.). University of Wisconsin (1995).
  24. The Sea Breeze - www.srh.weather.gov/srh/jetstream/ocean/seabreezes.htm  (англ.). JetStream: An Online School For Weather. National Weather Service (2008).
  25. Michael A. Mares Encyclopedia of Deserts - books.google.com/books?id=g3CbqZtaF4oC&pg=PA121&lpg=PA121&dq=desert formation high pressure&hl=ru#v=onepage&q=desert formation high pressure&f=false. — Oklahoma Museum of Natural History, 1999. — 654 с. — ISBN 9780806131467

wreferat.baza-referat.ru

Доклад о ветре | Kratkoe.com

Небольшой доклад о ветре для учеников может быть представлен по физике.  Сообщения о ветре лучше пересказать, чтобы получить высший бал.

Доклад о ветре

Ветер — что это?

Мы знаем, что Солн­це греет Землю нерав­но­мер­но: в одном месте теп­лее, а в дру­гом – хо­лод­нее. Массы хо­лод­но­го воз­ду­ха пе­ре­ме­ща­ют­ся туда, где теп­лее, ведь там, где сол­неч­но­го тепла было боль­ше, воз­дух на­грел­ся, стал легче и под­нял­ся вверх. Пе­ре­ме­ще­ние над по­верх­но­стью земли теп­ло­го и хо­лод­но­го воз­ду­ха на­зы­ва­ет­ся вет­ром.

 

Дви­же­ние теп­ло­го и хо­лод­но­го воз­ду­ха на Земле бес­пре­рыв­но, потому и ветра дуют постоянно.

 Чем боль­ше раз­ни­ца тем­пе­ра­тур в раз­лич­ных об­ла­стях зем­но­го шара, тем быст­рее пе­ре­ме­ща­ют­ся воз­душ­ные массы, тем силь­нее дует ветер. Для без­опас­но­сти жизни и об­лег­че­ния ве­де­ния хо­зяй­ства че­ло­ве­ку важно знать на­прав­ле­ние ветра. Если ветер дует из арк­ти­че­ской зоны, то при­но­сит холод, а если из эк­ва­то­ри­аль­ной – тепло.

Су­ще­ству­ет спе­ци­аль­ный при­бор, с по­мо­щью ко­то­ро­го опре­де­ля­ет­ся на­прав­ле­ние ветра – флю­гер.

На ме­тео­ро­ло­ги­че­ских стан­ци­ях за на­прав­ле­ни­ем ветра сле­дят с по­мо­щью флю­ге­ра, ко­то­рый уста­нав­ли­ва­ет­ся на вы­со­те 10 м. Он со­сто­ит из лег­кой ме­тал­ли­че­ской пла­сти­ны, ко­то­рая вра­ща­ет­ся во­круг своей оси в опре­де­лен­ную сто­ро­ну, ука­зы­ва­ю­щую на­прав­ле­ние ветра. Ветер по­лу­ча­ет на­зва­ние по той сто­роне света, от­ку­да он дует: с се­ве­ра – се­вер­ный, с юга – южный.

Для опре­де­ле­ния силы ветра тоже есть спе­ци­аль­ный при­бор – ане­мо­метр: чем силь­нее дует ветер, тем быст­рее кру­тит­ся вер­туш­ка при­бо­ра.

Разновидности ветра

Ветер бы­ва­ет раз­ной силы: сла­бый, уме­рен­ный, силь­ный.

Роль ветра в жизни человека

Ветер – это яв­ле­ние при­ро­ды, но он очень по­мо­га­ет че­ло­ве­ку. Ветер гонит об­ла­ка над зем­лей, и в раз­ных ме­стах вы­па­да­ют дождь, снег, град. От го­ро­дов ветер уно­сит за­гряз­нен­ный воз­дух, а при­но­сит све­жий воз­дух с полей, лесов и лугов. Вы­су­ши­ва­ет до­ро­ги, на­ду­ва­ет па­ру­са ко­раб­лей, вра­ща­ет кры­лья вет­ря­ных мель­ниц, раз­но­сит се­ме­на и пыль­цу рас­те­ний.

 

Че­ло­век давно на­учил­ся ис­поль­зо­вать энер­гию ветра: вет­ря­ная мель­ни­ца – это при­мер пре­об­ра­зо­ва­ния энер­гии ветра в ме­ха­ни­че­скую энер­гию. Но сей­час хо­зяй­ствен­ная и бы­то­вая де­я­тель­ность че­ло­ве­ка тесно свя­за­на с элек­три­че­ством, по­это­му для по­лу­че­ния элек­три­че­ской энер­гии из энер­гии ветра был со­здан вет­ро­ге­не­ра­тор. Энер­гия ветра – это воз­об­нов­ля­е­мый вид энер­гии, так как она яв­ля­ет­ся след­стви­ем де­я­тель­но­сти Солн­ца. Вет­ро­энер­ге­ти­ка яв­ля­ет­ся бурно раз­ви­ва­ю­щей­ся от­рас­лью.

 

Виды сильных ветров

Но вре­ме­на­ми ветер до­сти­га­ет огром­ной силы, он на­зы­ва­ет­ся ура­га­ном. Такой ветер ло­ма­ет де­ре­вья, сно­сит крыши домов, об­ры­ва­ет про­во­да, под­ни­ма­ет вы­со­кие волны. Силь­ный ветер на море на­зы­ва­ет­ся штор­мо­вым.

Смерч или тор­на­до– чрез­вы­чай­но силь­ный ат­мо­сфер­ный вихрь, где ветер об­ра­ща­ет­ся во­круг оси по спи­ра­ли. При­ни­ма­ет форму стол­ба диа­мет­ром от де­сят­ков до несколь­ких сотен мет­ров и су­ще­ству­ет от несколь­ких минут до несколь­ких часов.

Наи­бо­лее часто (несколь­ко де­сят­ков слу­ча­ев в год) смер­чи на­блю­да­ют­ся в Аллее тор­на­до в США – в по­ло­се от се­вер­но­го Те­ха­са до Айовы. Здесь наи­бо­лее зна­чи­тель­на раз­ни­ца тем­пе­ра­тур между хо­лод­ны­ми и тёп­лы­ми воз­душ­ны­ми мас­са­ми. В Рос­сии смер­чи чаще на­блю­да­ют­ся в ев­ро­пей­ской части, осо­бен­но в цен­траль­ной по­ло­се и на юге, од­на­ко не более 1-2 раз за несколь­ко лет. Серия смер­чей в ав­гу­сте 2002 года в рай­оне Но­во­рос­сий­ска вы­зва­ла ги­бель около 60 че­ло­век и на­нес­ла зна­чи­тель­ный ма­те­ри­аль­ный ущерб.

Буран – это силь­ный ветер с боль­шим ко­ли­че­ством снеж­ных масс, со­про­вож­да­ю­щий­ся пло­хой ви­ди­мо­стью на до­ро­гах и на любой дру­гой мест­но­сти.

Су­хо­вей – ветер с вы­со­кой тем­пе­ра­ту­рой и низ­кой от­но­си­тель­ной влаж­но­стью воз­ду­ха в сте­пях, по­лу­пу­сты­нях и пу­сты­нях.

Этот доклад о ветрах могут использовать ученика 3, 4 , 5 класса.

kratkoe.com

Доклад - Солнечный ветер - Физика

Новосибирский государственный технический университет.

Реферат по курсу «спец. главы физики»

тема:

«Солнечный ветер».

Выполнил: Цаплин В.Б.

Факультет: РЭФ

Группа: РФ 1-92

Новосибирск 2000.

Содержание.

Введение

3

Немного теории, связанной с теоретическим предсказанием солнечного ветра

3

Представления об однородном истечении плазмы из солнечной короны.

5

Однородно и стационарно ли вытекает солнечный ветер с поверхности Солнца?

7

Как изменяются характеристики солнечного ветра с удалением от Солнца?

9

Спокойный солнечный ветер.

9

Высокоскоростной солнечный ветер

11

Рекуррентные потоки

11

Спорадические высокоскоростные потоки.

12

Заключение

14

Введение.

Прошло 40 лет с тех пор, как американский физик Е.Паркер [1] теоретически предсказал явление, которое получило название «солнечный ветер» и которое через пару лет было подтверждено экспериментально группой советского ученого К. Грингауза при помощи приборов, установленных на космических аппаратах «Луна-2» и «Луна-3». Солнечный ветер представляет собой поток полностью ионизированной водородной плазмы, то есть газа, состоящего из электронов и протонов примерно одинаковой плотности (условие квазинейтральности), который с большой сверхзвуковой скоростью движется от Солнца. На орбите Земли (1 а.е. от Солнца) скорость этого потока равна примерно 400-500 км/с, концентрация протонов (или электронов) 10-20 частиц в кубическом сантиметре, а их температура примерно 100 000 К. (температура электронов несколько выше).

Кроме электронов и протонов в межпланетном пространстве были обнаружены альфа-частицы (порядка нескольких процентов), небольшое количество более тяжелых частиц, а также магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (g=10-5 Гс.).

Как показывают наблюдения, выполненные на борту космических спутников Земли и других космических аппаратах с высоким апогеем орбиты, межпланетное пространство заполнено чрезвычайно активной средой – плазмой солнечного ветра. Солнечный ветер зарождается в верхних слоях атмосферы Солнца, и его основные параметры определяются соответствующими параметрами солнечной атмосферы. Однако связь между физическими характеристиками солнечного ветра вблизи орбиты Земли и физическими явлениями в атмосфере Солнца оказывается чрезвычайно сложной, и, кроме того, меняется в зависимости от солнечной активности–и конкретной ситуации на Солнце. Поэтому для простоты описания предполагается, что наблюдаемый солнечный ветер состоит из трех компонент [9]:

1. Спокойный солнечный ветер, – постоянно существующий поток солнечной плазмы, заполняющий все межпланетное пространство вплоть до границ гелиосферы (50 – 200 а.е.)

2. Квазистационарные высокоскоростные потоки солнечной плазмы, ответственные за рекуррентные геомагнитные возмущения

3. Спорадические высокоскоростные потоки – относительно кратковременные, чрезвычайно неоднородные и сложные по структуре образования, ответственные за спорадические геомагнитные возмущения.

Немного теории, связанной с теоретическим предсказанием солнечного ветра.

В течение не столь уж длительной истории теоретической астрофизики считалось, что все атмосферы звезд находятся в гидростатическом равновесии, то есть в состоянии, когда сила гравитационного притяжения звезды уравновешивается силой, связанной с градиентом давления ее в атмосфере (с изменением давления на единицу расстояния r от центра звезды). Математически это можно представить в виде:

Если распределение температуры T в атмосфере задано, то из уравнения равновесия (1) и уравнения состояния идеального газа.

получается так называемая барометрическая формула, которая в частном случае постоянной температуры T будет иметь вид

Из формулы (3) видно, что при r®¥ то есть на очень больших расстояниях от звезды давление p стремится к конечному пределу, который зависит от p0.

Поскольку считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние описывалось формулами, аналогичными формулам (1)-(3).Учитывая необычное и до конца еще непонятное явление резкого возрастания температуры примерно от 10 000 градусов на поверхности Солнца до 1 000 000 градусов в солнечной короне, Чепмен [2] развил теорию статической солнечной короны, которая должна была плавно переходить в межзвездную среду, окружающую Солнечную систему.

Однако в своей работе [1] Паркер обратил внимание на то, что давление на бесконечности, получаемое из формулы (3) для статической короны, оказывается почти на порядок величины больше значения давления, которое оценивалось для межзвездного газа на основе наблюдений. Чтобы устранить это расхождение, Паркер предложил, что солнечная корона не находится в состоянии статического равновесия, а непрерывно расширяется в окружающую Солнце межпланетную среду. При этом вместо уравнения (1) он предложил использовать гидродинамическое уравнение движения вида

где в системе координат, связанной с Солнцем, величина V представляет собой радиальную скорость движения плазмы. Под M подразумевается масса Солнца.

При заданном распределении температуры T система уравнений (2) и (4) имеет решения представленные на рис.1.

На этом рисунке через a обозначена скорость звука, r* — расстояние от начала координат, на котором скорость газа равна скорости звука (V = a). Очевидно, что только кривые 1 и 2 на рис1. имеют физический смысл для проблемы истечения газа из Солнца, поскольку кривые 3 и 4 имеют неединственные значения скорости в каждой точке, а кривые 5 и 6 соответствуют очень большим скоростям в солнечной атмосфере, что не наблюдается в телескопы. Паркер проанализировал условия, при которых в природе осуществляется решение, соответствующее кривой 1. Он показал, что для согласования давления, получаемого из такого решения, с давлением в межзвездной среде наиболее реален случай перехода газа от дозвукового течения (при r < r* ) к сверхзвуковому (при r > r* ), и назвал такое течение солнечным ветром.

История экспериментов в космическом пространстве блестяще доказала правильность представлений Паркера о солнечном ветре. Подробный материал о теории солнечного ветра можно найти, например, в монографии [5].

Представления об однородном истечении плазмы из солнечной короны.

Из одномерных уравнений газовой динамики можно получить известный результат: при отсутствии массовых сил сферически – симметричное течение газа от точечного источника может быть всюду либо дозвуковым, либо сверхзвуковым. Присутствие в уравнении (4) гравитационной силы (правая часть) приводит к тому, что появляются решения типа кривой 1 на рис.1., то есть с переходом через скорость звука.

Проведем аналогию с классическим течением в сопле Лаваля, которое представляет собой основу всех сверхзвуковых реактивных двигателей. Схематически это течение показано на рис.2. В бак 1, называемый ресивером, с очень маленькой скоростью подается газ, нагретый до очень высокой температуры (внутренняя энергия газа много больше кинетической энергии направленного движения). Путем геометрического сжатия канала газ ускоряется в области 2 (дозвуковое течение) до тех пор, пока его скорость не достигнет скорости звука. Для дальнейшего его ускорения необходимо канал расширять (область 3 сверхзвукового течения). Во всей области течения ускорение газа происходит за счет его адиабатического (без подвода тепла) охлаждения (внутренняя энергия хаотического движения переходит в энергию направленного движения).

В рассматриваемой проблеме образования солнечного ветра роль ресивера играет солнечная корона, а роль стенок сопла Лаваля – гравитационная сила солнечного происхождения. Согласно теории Паркера, переход через скорость звука должен происходить где-то на расстоянии в несколько солнечных радиусов. Однако анализ получаемых в теории решений показал, что температуры солнечной короны недостаточно, чтобы ее газ мог ускориться до сверхзвуковых скоростей, как это имеет место в теории сопла Лаваля. Должен существовать какой-то дополнительный источник энергии. Таким источником в настоящее время считается диссипация всегда присутствующих в солнечном ветре волновых движений (плазменная турбулентность), накладывающихся на среднее течение, а само течение уже не является адиабатическим. (см. Спокойный солнечный ветер) Количественный пример таких процессов еще требует дальнейшего исследования. Интересно, что наземные телескопы обнаруживают на поверхности Солнца магнитные поля. Средняя величина их магнитной индукции B оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например в пятнах, магнитное поле может быть на порядок больше. Поскольку плазма является хорошим проводником электричества, то естественно, что солнечные потоки и магнитные поля взаимодействуют с ее потоками от Солнца. В этом случае чисто газодинамическая теория дает неполное описание рассматриваемого явления. Влияние магнитного поля на течение солнечного ветра можно рассмотреть в рамках магнитной гидродинамики. К чему же это приводит? Согласно пионерской в этом направлении работе [6] (см. также [5]), магнитное поле приводит к появлению пондемоторной силы j x B, которая направлена в перпендикулярном к радиальному направлении. В результате у солнечного ветра появляется тангенциальная компонента скорости. Эта компонента почти на два порядка меньше, радиальной, однако она играет существенную роль в выносе из Солнца момента количества движения. Предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и других звезд, у которых обнаружен «звездный ветер». В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения их него плазмы открывает возможность пересмотра этой гипотезы.

Также можно отметить, что измерения среднего магнитного поля в районе орбиты Земли показали, что его величина и направление хорошо описываются формулами полученными из более простых рассмотрений Паркером ([6]).

В формулах (5), описывающих паркеровскую спираль Архимеда для межпланетного магнитного поля в плоскости солнечного экватора, почти совпадающей с плоскостью эклиптики, величины Br, Bj — радиальная и азимутальная компоненты вектора магнитной индукции, W — угловая скорость вращения Солнца, V – радиальная скорость солнечного ветра, индекс 0 относится к точке солнечной короны, в которой величина магнитного поля известна.

Однородно и стационарно ли вытекает сол++нечный ветер с поверхности Солнца?

Рассмотренное ранее представление об истечении плазмы из солнечной короны исходит из предположения о том, что солнечная корона является однородной и стационарной, то есть ее температура и плотность не зависят от солнечной долготы и времени. В этом случае солнечный ветер можно рассматривать как сферически – симметричное (зависящее только от гелиоцентрического расстояния) стационарное течение. До 1990 года все космические аппараты летали вблизи солнечной эклиптики, что не позволяло прямыми методами измерений проверить степень зависимости параметров солнечного ветра от солнечной широты. Косвенные же наблюдения отклонения хвостов комет, пролетавших вне плоскости эклиптики, указывали на то, что в первом приближении такой зависимости нет. Однако измерения в плоскости эклиптики показали, что в межпланетном пространстве могут существовать так называемые секторные структуры с различными параметрами солнечного ветра и различным направлением магнитного поля. Такие структуры вращаются вместе с Солнцем и явно указывают на то, что они являются следствием аналогичной структуры в солнечной атмосфере, параметры которой зависят от доготы. Качественно четырехсекторная структура показана на рис.3.

Вывод же о независимости солнечного ветра по широте на основании кометных наблюдений не был достаточно надежным из-за сложности их инерпритации, а наблюдения солнечной короны показывали, что она неоднородна и по широте и по долготе, а также подвержена сильным временным изменениям, связанным с 11 – летним циклом солнечной активности, так и с различными нестационарными процессами с более коротким временным интервалом. (например со вспышками)

Ситуация резко изменилась с запуском Европейским космическим агентством в октябре 1990 года космического аппарата «Улисс», основной целью которого является исследование межпланетной плазмы вне плоскости солнечной эклиптики. Эти исследования начались в феврале 1992 года, когда, используя гравитационное поле Юпитера, аппарат вышел из эклиптической плоскости и направился сначала к областям южного полюса Солнца (май – сентябрь 1994), а затем к областям со стороны северного полюса (май – сентябрь 1995). Большинство полученных результатов сейчас тщательно исследуется, но уже можно сделать некоторые выводы о зависимости параметров солнечного ветра от солнечной широты (большое число научных сообщений по этим проблемам помещено в американском журнале «Science», 1995, volume 268, May 19).

В частности, оказалось, что скорость солнечного ветра возрастает, а плотность резко уменьшается с гелиографической широтой. Измеренная, например, на аппарате «Улисс» скорость солнечного ветра изменилась от 450 км/с в плоскости эклиптики примерно до 700 км/с на – 75о солнечной широты. Надо, однако, отметить что степень различия параметров солнечного ветра в плоскости эклиптики и вне ее зависит от цикла солнечной активности.

Вспышки на Солнце и разные скорости истечения плазмы из разных областей его поверхности приводят к тому, что в межпланетном пространстве образуются ударные волны, которые характеризуются резким скачком скорости, плотности и температуры. Качественно такой механизм их образования показан на рис.4.

Когда быстрый поток догоняет медленный, то в месте их соприкосновения возникает произвольный разрыв параметров, на котором не выполняются законы сохранения массы, импульса и энергии. Такой разрыв не может существовать в природе и распадается, в частности на две ударные волны и тангенциальный разрыв (на последнем нормальная компонента скорости непрерывны), как это показано на рис.4, а для вспышечного процесса на Солнце и на рис.4, б в том случае, когда более быстрый поток от одной области солнечной короны догоняет более медленный, вытекающий из другой. Ударные волны и тангенциальные разрывы, изображенные на рис.4, сносятся солнечным ветром на большие гелиоцентрические расстояния и регулярно регистрируются космическими аппаратами.

Как изменяются характеристики солнечного ветра с удалением от Солнца?

Как видно из уравнения (4), изменение скорости солнечного ветра определяется двумя силами: силой солнечной гравитации и силой, связанной с изменением давления. Расчеты показывают, что на больших расстояниях от Солнца (практически уже с 1а.е.) давление почти не изменяется по величине, то есть его изменение очень мало, и сила, связанная с давлением, практически отсутствует. Сила гравитации убывает как квадрат расстояния от Солнца и тоже мала на достаточно больших гелиоцентрических расстояниях. Поскольку обе силы становятся очень малы, то, согласно теории, скорость солнечного ветра становится почти постоянной и при этом значительно превосходит звуковую (как говорят течение гиперзвуковое). Американские космические аппараты «Вояджер – 1 и –2 » и «Пионер – 10 и –11 », запущенные еще в 70-х годах и находящиеся сейчас на расстоянии от Солнца в несколько десятков астрономических единиц, экспериментально подтвердили теоретические предсказания о солнечном ветре. В частности, его скорость оказалась в среднем почти постоянной, а плотность r убывает как 1/r2 в соответствии с уравнением сохранения массы для сферически – симметричного случая:

Температура же не следует адиабатическому закону, что означает существование каких-то источников тепла. Такими источниками могут быть упоминавшаяся ранее диссипация волн или нейтральные атомы водорода, проникающие из межзвездной среды в Солнечную систему. ([8])

Очевидно, что скорость солнечного ветра не может быть до бесконечности постоянной, как это следует из уравнения газовой динамики (см., например рис.1.), поскольку Солнечная система окружена межзвездным газом с конечным давлением. Поэтому солнечный ветер на больших расстояниях от Солнца должен тормозиться газом межзвездной среды. Эта проблема подробно рассмотрена в [8]. Здесь только отметим, что плавное торможение газодинамического потока от сверхзвуковых до дозвуковых, например, в сопле Лаваля (рис.2.), путем сужения канала невозможно: обязательно должен образоваться скачок параметров газа в виде ударной волны. Аналогичная ситуация может возникнуть и в солнечном ветре. Торможение солнечного ветра из-за противодавления межзвездной среды должно происходить через ударную волну (Termination shock, или TS). Ее положение сильно зависит от параметров межзвездной среды. Согласно теоретическим расчетам, ударная волна TS находится на расстоянии 80 – 100 а.е. от Солнца [8], что позволяет в ближайшие несколько лет детектировать ее измерительными приборами, установленными на космических аппаратах «Вояджер».

Спокойный солнечный ветер.

Согласно современным представлениям, энергия в недрах Солнца вырабатывается в ходе процессов ядерного синтеза:

где e+ — означает позитрон, n- нейтрино, g — g- квант. В результате перечисленных процессов 1,0078 г водорода переходит в 1,0000 г гелия, а оставшаяся масса переходит кинетическую энергию частиц и энергию радиации. Скорость выделения энергии в ходе реакций протон – протонного цикла определяется выражением:

где r — плотность солнечного вещества, Х – относительное содержание в нем ядер водорода и Т – температура. Принимая во внимание, что как плотность вещества, так и его температура возрастают к центру Солнца, можно сказать, что около 99% солнечной энергии генерируется в ядре Солнца с радиусом Rc =0.25Ro .

Известно, что в звездах типа Солнца теплопроводность играет незначительную роль, так что произведенная в недрах Солнца энергия передается к его поверхности в основном путем радиационного переноса, то есть в результате ее поглощения и последующего переизлучения [10].

Однако радиационный перенос солнечной энергии становится малоэффективным в верхних слоях Солнца. Дело в том, что по мере уменьшения температуры солнечного вещества степень его ионизации уменьшается и присутствие в нем нейтральных атомов водорода заметно снижает его прозрачность. Это, в свою очередь, приводит к еще более быстрому уменьшению температуры Солнца с расстоянием от центра, вследствие чего любой элементарный объем солнечного вещества, всплывающий из недр Солнца, обладает большей температурой меньшей плотностью, чем окружающая плазма, что приводит к развитию так называемой конвективной неустойчивости. Условия ее возбуждения уверенно выполняются в поверхностных слоях Солнца r > 0.86Ro [10], где энергия переносится главным образом в форме тепловой энергии плазмы, заключенной в элементах вещества, поднимающихся из недр Солнца. Развитие интенсивной турбулентности в поверхностных слоях Солнца не только обеспечивает перенос энергии к его поверхности, но и приводит к развитию явлений, играющих ключевую роль в солнечно-земной физике. Прежде всего развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн. Распространяясь в атмосфере Солнца, где плотность плазмы быстро уменьшается с высотой, звуковые волны трансформируются в ударные. Они эффективно поглощаются веществом, в результате чего температура последнего увеличивается, достигая величины (1-3) 106 в солнечной короне. При этом значительная часть протонов в короне Солнца не может удерживаться его гравитационным полем, что приводит в непрерывному расширению короны в космическое пространство, то есть к генерации солнечного ветра.

Высокоскоростной солнечный ветер.

Как видно из данных, представленных в табл.1, высокоскоростной ветер характеризуется повышенной скоростью (около 700 км/с), пониженной плотностью плазмы (n=4 см-3 ) и повышенной ионной температурой. Однако, прежде чем обсуждать возможные источники этих потоков, напомним, что существуют по меньшей мере два рода таких потоков: рекуррентные и магнитные.

Рекуррентные потоки.

Рекуррентные потоки высокоскоростного солнечного ветра отличаются прежде всего тем, что существуют в течение многих месяцев, регулярно появляясь в окрестностях Земли примерно через 27 дней (период оборота Солнца), что свидетельствует об относительно большом времени жизни их источников. В течение многих лет происхождение этих потоков оставалось загадкой, поскольку им не соответствовали какие-либо видимые особенности на поверхности Солнца. Однако в настоящее время можно считать доказанным, что обсуждаемые потоки зарождаются на Солнце в области так называемых дыр.

Корональные дыры отчетливо видны на фотографиях солнца, полученных с космических аппаратов, в рентгеновском и крайнем ультрафиолетовым диапазонах солнечного излучения. (см.рис.6.), где они фиксируются как обширные области пониженной (в несколько раз) интенсивности излучения, простирающиеся от полярных широт до экватора или даже в противоположное полушарие. Протяженность корональных дыр по долготе составляет 30о -90о. Соответственно время прохождения корональной дыры через центральный меридиан Солнца (вследствие вращения последнего) составляет 4 – 6 суток, что вполне согласуется с длительностью существования соответствующих высокоскоростных потоков в окрестностях Земли [9]. Пониженная интенсивность рентгеновского излучения в области корональных дыр может определяться как пониженной плотностью плазмы в этих областях, так и ее пониженной температурой. Действительно, наземные наблюдения короны во время солнечных затмений показывают, что в короне существуют, особенно в высоких широтах, области с относительно низкой плотностью плазмы. В то же время и температура плазмы в области корональных дыр составляет около 0,8*106 К, что существенно ниже температуры спокойной короны и плотность плазмы в корональной дыре составляет 0,25 плотности спокойной короны.

Таким образом, корональные дыры действительно представляют собой области пониженной плотности и температуры плазмы. Чем вызываются указанные особенности короны в этих областях, не совсем ясно. В связи с этим обращает на себя внимание то, что корональные дыры, как правило, совпадают с областями униполярного магнитного поля с квазирадиальными или слегка расходящимися силовыми линиями [11]. Открытые силовые линии магнитного поля не препятствуют радиальному расширению корональной плазмы, что может объяснить пониженную плотность последней в области дыр и увеличение скорости генерируемого в них солнечного ветра. Вместе с тем увеличение скорости солнечного ветра, обусловленное благоприятной конфигурацией силовых линий магнитного поля, не может компенсировать ее уменьшения, связанного с низкой температурой плазмы в рассматриваемых областях и для объяснения появления высокоскоростных потоков приходится предположить наличие в корональных дырах мощного источника МГД – волн. К сожалению, прямых подтверждений существования таких волн в области корональных дыр пока не получено.

Спорадические высокоскоростные потоки.

Второй тип высокоскоростных потоков в солнечном ветре – это кратковременные (время пробега мимо Земли t=1 – 2 суток), часто чрезвычайно интенсивные (скорость солнечного ветра до 1200 км/с) потоки, имеющие весьма большую долготную протяженность. Двигаясь в межпланетном пространстве, заполненным плазмой относительно медленного спокойного солнечного ветра, высокоскоростной поток как бы сгребает эту плазму, в результате чего перед его фронтом образуется движущаяся вместе с ним отошедшая ударная волна. Пространство между фронтом потока и фронтом отошедшей ударной волны заполнено плотной (несколько десятков частиц в 1 см3 ) и горячей плазмой.

Ранее предполагалось, что спорадические потоки в солнечном потоке обусловлены солнечными вспышками [9] и подобными явлениями. Однако в последнее время мнение на этот счет изменилось, и большинство исследователей, в особенности зарубежных, придерживается точки зрения, согласно которой спорадические высокоскоростные потоки в солнечном ветре обусловлены так называемыми выбросами.

Корональные выбросы, наиболее отчетливо наблюдаемые вблизи лимба Солнца, представляют собой некоторые относительно протяженные плазменные образования, движущиеся в короне Солнца вверх от ее основания. Вывод о том, что спорадические потоки в солнечном ветре связаны именно с корональными выбросами (или СМЕ), а не со вспышками, основан на следующих экспериментальных фактах:

1. Несмотря на статически значимую связь между спорадическими потоками и солнечными вспышками, однозначная связь между ними отсутствует, то есть, с одной стороны, наблюдаются вспышки, не вызывающие ударных волн, и, с другой – наблюдаются высокоскоростные потоки, не предваряемые вспышками.

2. Солнечные вспышки непосредственно не связаны с корональными выбросами.

Связь между межпланетными ударными волнами, корональными выбросами и солнечными вспышками детально исследовалась N.Sheeley и др. (1985), которые, в частности, показали, что 72% ударных волн, наблюдающихся на борту космического аппарата «Helios -1», были связаны с большими низкоширотными корональными выбросами. В то же время лишь 52% тех же ударных волн были связаны с солнечными вспышками.

В результате подробного анализа этих данных удалось показать [12,13], что если исключить из списка ударные волны, наблюдаемые за лимбом Солнца, то число волн, связанных со вспышками, возрастает до 85%, то есть, связь ударных волн со вспышками оказывается ничуть не хуже, чем с корональными выбросами. Кроме того, как показали Harrison и др.(1990), корональные выбросы (со скоростью порядка 1000 км/с), с которыми обычно связана межпланетная ударная волна, начинают свое движение в короне одновременно с началом вспышки.

Таким образом, вывод о непричастности солнечных вспышек к межпланетным ударным волнам представляется не совсем убедительным, и мы по-прежнему будем считать солнечные вспышки одним из основных источников высокоскоростных потоков в солнечном ветре.

Что касается механизма генерации самих вспышек (и, естественно, связанных с ними потоков), то наиболее популярной в настоящее время является предложенная в 1964 году Петчеком модель вспышки, основанная на гипотезе о магнитном пересоединении [14]. Развитие солнечной вспышки в рамках модели Петчека представлено на рис.7.

В этой модели силовые линии магнитного поля активной области оказываются, начиная с некоторого уровня, разорванными и образуют две силовые трубки с антипараллельными полями, разделенными токовым слоем. В некоторый момент из-за развития ионно-звуковой или ионно-циклотронной неустойчивости проводимость плазмы в некоторой точке 1 (рис.7, а) в плазменном слое резко падает, в результате чего токовый слой разрывается и силовые линии магнитного поля пересоединяются. Магнитная энергия быстро переходит в кинетическую и тепловую энергию

Плазмы и происходят интенсивный разогрев и ускорение плазмы (рис.7, б). Ускоренные частицы, двигаясь вдоль открытых силовых линий магнитного поля, покидают хромосферу и выбрасываются в межпланетное пространство (рис.5, в). При этом движущиеся вверх энергичные электроны, проходя через корону и взаимодействуя с ней, могут вызвать всплески радиоизлучения. Частота радиоизлучения вследствие уменьшения концентрации фоновой плазмы быстро уменьшается по мере движения электронов вверх (что соответствует так называемым всплескам радиоизлучения III типа)

Частицы, движущиеся вдоль силовых линий магнитного поля к Солнцу, нагревают плазму в нижней хромосфере и фотосфере, вызывая увеличение яркости водородных эмиссий и образование высокотемпературного коронального облака. Плазма, ускоряемая в направлении от Солнца, формирует высокоскоростной поток и связанную с ним ударную волну.

Заключение.

Суперпозиция описанных выше потоков солнечной плазмы и их взаимодействие создают ту сложную и непрерывно изменяющуюся систему, которая называется солнечным ветром.

Из рассмотренного выше можно сделать заключение, что солнечный ветер – это физическое явление, которое представляет не только чисто академический интерес, связанный с изучением процессов в плазме, находящейся в естественных условиях космического пространства, но и фактор, который необходимо учитывать при изучении процессов, происходящих в окрестности нашей планеты Земли, что в конце концов, влияет на нашу жизнь. Это обусловлено тем, что высокоскоростные потоки солнечного ветра, обтекая землю, влияют на ее магнитосферу, которая непосредственно связана с более низкими слоями атмосферы. Такое влияние в сильной степени зависит от процессов, происходящих на Солнце, поскольку они связаны с зарождением самого солнечного ветра. Таким образом, солнечный ветер является хорошим индикатором для изучения важных для практической деятельности человека солнечно – земных связей. Однако это уже другая область научных исследований, которая в данной работе не рассматривается.

Литература.

1. Parker E. // Astophys.J. 1958. V. 128. №3.

2. Chapman S .//J.Atmos. Terr. Phys.1959. V.15.№1/2.

3. Chamberlain J. //Astrophys. J. 1961. V.133. №2.

4. Грингауз К.И., Безруких В.В., Озеров В.Д., Рыбчинский Р.Е. // Докл. АН СССР. 1960. Т.131 №6.

5. Баранов В.Б., Краснобаев К.В., Гидродинамическая теория космической плазмы. М.: Наука, 1977.

6. Weber E., Davis L. //Astrophys. J. 1967.V.148. №1. Pt.1.

7. Паркер Е. Динамические процессы в межпланетной среде. М.: Мир, 1965.

8. Баранов В.Б. Влияние межзвездной среды на строение гелиосферы // Соросовский Образовательный Журнал. 1996. №11. С.73-79.

9. Хундхаузен А. Расширение короны и солнечный ветер. М.: Мир, 1976. 302 с.

10. Гибсон Э. Спокойное Солнце.М.: Мир,1977, 408 с.

11. Коваленко В.А. Солнечный ветер. М.: Наука, 1983,272 с.

12. Pudovkin M.I. // J. Geophys.Res. 1995 V.100.№ A5. P7917

13. Pudovkin M.I. // Rept.Prog.in Phys.1995. V58. №9.P.929.

14. Пудовкин М.И., Семенов В.С. Теория пересоединения и взаимодействия солнечного ветра с магнитосферой Земли. М.: Наука, 1985.126 с.

www.ronl.ru

Реферат - Солнечный ветер - Физика

Новосибирский государственный технический университет.

Реферат по курсу «спец. главы физики»

тема:

«Солнечный ветер».

Выполнил: Цаплин В.Б.

Факультет: РЭФ

Группа: РФ 1-92

Новосибирск 2000.

Содержание.

Введение

3

Немного теории, связанной с теоретическим предсказанием солнечного ветра

3

Представления об однородном истечении плазмы из солнечной короны.

5

Однородно и стационарно ли вытекает солнечный ветер с поверхности Солнца?

7

Как изменяются характеристики солнечного ветра с удалением от Солнца?

9

Спокойный солнечный ветер.

9

Высокоскоростной солнечный ветер

11

Рекуррентные потоки

11

Спорадические высокоскоростные потоки.

12

Заключение

14

Введение.

Прошло 40 лет с тех пор, как американский физик Е.Паркер [1] теоретически предсказал явление, которое получило название «солнечный ветер» и которое через пару лет было подтверждено экспериментально группой советского ученого К. Грингауза при помощи приборов, установленных на космических аппаратах «Луна-2» и «Луна-3». Солнечный ветер представляет собой поток полностью ионизированной водородной плазмы, то есть газа, состоящего из электронов и протонов примерно одинаковой плотности (условие квазинейтральности), который с большой сверхзвуковой скоростью движется от Солнца. На орбите Земли (1 а.е. от Солнца) скорость этого потока равна примерно 400-500 км/с, концентрация протонов (или электронов) 10-20 частиц в кубическом сантиметре, а их температура примерно 100 000 К. (температура электронов несколько выше).

Кроме электронов и протонов в межпланетном пространстве были обнаружены альфа-частицы (порядка нескольких процентов), небольшое количество более тяжелых частиц, а также магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (g=10-5 Гс.).

Как показывают наблюдения, выполненные на борту космических спутников Земли и других космических аппаратах с высоким апогеем орбиты, межпланетное пространство заполнено чрезвычайно активной средой – плазмой солнечного ветра. Солнечный ветер зарождается в верхних слоях атмосферы Солнца, и его основные параметры определяются соответствующими параметрами солнечной атмосферы. Однако связь между физическими характеристиками солнечного ветра вблизи орбиты Земли и физическими явлениями в атмосфере Солнца оказывается чрезвычайно сложной, и, кроме того, меняется в зависимости от солнечной активности–и конкретной ситуации на Солнце. Поэтому для простоты описания предполагается, что наблюдаемый солнечный ветер состоит из трех компонент [9]:

1. Спокойный солнечный ветер, – постоянно существующий поток солнечной плазмы, заполняющий все межпланетное пространство вплоть до границ гелиосферы (50 – 200 а.е.)

2. Квазистационарные высокоскоростные потоки солнечной плазмы, ответственные за рекуррентные геомагнитные возмущения

3. Спорадические высокоскоростные потоки – относительно кратковременные, чрезвычайно неоднородные и сложные по структуре образования, ответственные за спорадические геомагнитные возмущения.

Немного теории, связанной с теоретическим предсказанием солнечного ветра.

В течение не столь уж длительной истории теоретической астрофизики считалось, что все атмосферы звезд находятся в гидростатическом равновесии, то есть в состоянии, когда сила гравитационного притяжения звезды уравновешивается силой, связанной с градиентом давления ее в атмосфере (с изменением давления на единицу расстояния r от центра звезды). Математически это можно представить в виде:

Если распределение температуры T в атмосфере задано, то из уравнения равновесия (1) и уравнения состояния идеального газа.

получается так называемая барометрическая формула, которая в частном случае постоянной температуры T будет иметь вид

Из формулы (3) видно, что при r®¥ то есть на очень больших расстояниях от звезды давление p стремится к конечному пределу, который зависит от p0.

Поскольку считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние описывалось формулами, аналогичными формулам (1)-(3).Учитывая необычное и до конца еще непонятное явление резкого возрастания температуры примерно от 10 000 градусов на поверхности Солнца до 1 000 000 градусов в солнечной короне, Чепмен [2] развил теорию статической солнечной короны, которая должна была плавно переходить в межзвездную среду, окружающую Солнечную систему.

Однако в своей работе [1] Паркер обратил внимание на то, что давление на бесконечности, получаемое из формулы (3) для статической короны, оказывается почти на порядок величины больше значения давления, которое оценивалось для межзвездного газа на основе наблюдений. Чтобы устранить это расхождение, Паркер предложил, что солнечная корона не находится в состоянии статического равновесия, а непрерывно расширяется в окружающую Солнце межпланетную среду. При этом вместо уравнения (1) он предложил использовать гидродинамическое уравнение движения вида

где в системе координат, связанной с Солнцем, величина V представляет собой радиальную скорость движения плазмы. Под M подразумевается масса Солнца.

При заданном распределении температуры T система уравнений (2) и (4) имеет решения представленные на рис.1.

На этом рисунке через a обозначена скорость звука, r* — расстояние от начала координат, на котором скорость газа равна скорости звука (V = a). Очевидно, что только кривые 1 и 2 на рис1. имеют физический смысл для проблемы истечения газа из Солнца, поскольку кривые 3 и 4 имеют неединственные значения скорости в каждой точке, а кривые 5 и 6 соответствуют очень большим скоростям в солнечной атмосфере, что не наблюдается в телескопы. Паркер проанализировал условия, при которых в природе осуществляется решение, соответствующее кривой 1. Он показал, что для согласования давления, получаемого из такого решения, с давлением в межзвездной среде наиболее реален случай перехода газа от дозвукового течения (при r < r* ) к сверхзвуковому (при r > r* ), и назвал такое течение солнечным ветром.

История экспериментов в космическом пространстве блестяще доказала правильность представлений Паркера о солнечном ветре. Подробный материал о теории солнечного ветра можно найти, например, в монографии [5].

Представления об однородном истечении плазмы из солнечной короны.

Из одномерных уравнений газовой динамики можно получить известный результат: при отсутствии массовых сил сферически – симметричное течение газа от точечного источника может быть всюду либо дозвуковым, либо сверхзвуковым. Присутствие в уравнении (4) гравитационной силы (правая часть) приводит к тому, что появляются решения типа кривой 1 на рис.1., то есть с переходом через скорость звука.

Проведем аналогию с классическим течением в сопле Лаваля, которое представляет собой основу всех сверхзвуковых реактивных двигателей. Схематически это течение показано на рис.2. В бак 1, называемый ресивером, с очень маленькой скоростью подается газ, нагретый до очень высокой температуры (внутренняя энергия газа много больше кинетической энергии направленного движения). Путем геометрического сжатия канала газ ускоряется в области 2 (дозвуковое течение) до тех пор, пока его скорость не достигнет скорости звука. Для дальнейшего его ускорения необходимо канал расширять (область 3 сверхзвукового течения). Во всей области течения ускорение газа происходит за счет его адиабатического (без подвода тепла) охлаждения (внутренняя энергия хаотического движения переходит в энергию направленного движения).

В рассматриваемой проблеме образования солнечного ветра роль ресивера играет солнечная корона, а роль стенок сопла Лаваля – гравитационная сила солнечного происхождения. Согласно теории Паркера, переход через скорость звука должен происходить где-то на расстоянии в несколько солнечных радиусов. Однако анализ получаемых в теории решений показал, что температуры солнечной короны недостаточно, чтобы ее газ мог ускориться до сверхзвуковых скоростей, как это имеет место в теории сопла Лаваля. Должен существовать какой-то дополнительный источник энергии. Таким источником в настоящее время считается диссипация всегда присутствующих в солнечном ветре волновых движений (плазменная турбулентность), накладывающихся на среднее течение, а само течение уже не является адиабатическим. (см. Спокойный солнечный ветер) Количественный пример таких процессов еще требует дальнейшего исследования. Интересно, что наземные телескопы обнаруживают на поверхности Солнца магнитные поля. Средняя величина их магнитной индукции B оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например в пятнах, магнитное поле может быть на порядок больше. Поскольку плазма является хорошим проводником электричества, то естественно, что солнечные потоки и магнитные поля взаимодействуют с ее потоками от Солнца. В этом случае чисто газодинамическая теория дает неполное описание рассматриваемого явления. Влияние магнитного поля на течение солнечного ветра можно рассмотреть в рамках магнитной гидродинамики. К чему же это приводит? Согласно пионерской в этом направлении работе [6] (см. также [5]), магнитное поле приводит к появлению пондемоторной силы j x B, которая направлена в перпендикулярном к радиальному направлении. В результате у солнечного ветра появляется тангенциальная компонента скорости. Эта компонента почти на два порядка меньше, радиальной, однако она играет существенную роль в выносе из Солнца момента количества движения. Предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и других звезд, у которых обнаружен «звездный ветер». В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения их него плазмы открывает возможность пересмотра этой гипотезы.

Также можно отметить, что измерения среднего магнитного поля в районе орбиты Земли показали, что его величина и направление хорошо описываются формулами полученными из более простых рассмотрений Паркером ([6]).

В формулах (5), описывающих паркеровскую спираль Архимеда для межпланетного магнитного поля в плоскости солнечного экватора, почти совпадающей с плоскостью эклиптики, величины Br, Bj — радиальная и азимутальная компоненты вектора магнитной индукции, W — угловая скорость вращения Солнца, V – радиальная скорость солнечного ветра, индекс 0 относится к точке солнечной короны, в которой величина магнитного поля известна.

Однородно и стационарно ли вытекает сол++нечный ветер с поверхности Солнца?

Рассмотренное ранее представление об истечении плазмы из солнечной короны исходит из предположения о том, что солнечная корона является однородной и стационарной, то есть ее температура и плотность не зависят от солнечной долготы и времени. В этом случае солнечный ветер можно рассматривать как сферически – симметричное (зависящее только от гелиоцентрического расстояния) стационарное течение. До 1990 года все космические аппараты летали вблизи солнечной эклиптики, что не позволяло прямыми методами измерений проверить степень зависимости параметров солнечного ветра от солнечной широты. Косвенные же наблюдения отклонения хвостов комет, пролетавших вне плоскости эклиптики, указывали на то, что в первом приближении такой зависимости нет. Однако измерения в плоскости эклиптики показали, что в межпланетном пространстве могут существовать так называемые секторные структуры с различными параметрами солнечного ветра и различным направлением магнитного поля. Такие структуры вращаются вместе с Солнцем и явно указывают на то, что они являются следствием аналогичной структуры в солнечной атмосфере, параметры которой зависят от доготы. Качественно четырехсекторная структура показана на рис.3.

Вывод же о независимости солнечного ветра по широте на основании кометных наблюдений не был достаточно надежным из-за сложности их инерпритации, а наблюдения солнечной короны показывали, что она неоднородна и по широте и по долготе, а также подвержена сильным временным изменениям, связанным с 11 – летним циклом солнечной активности, так и с различными нестационарными процессами с более коротким временным интервалом. (например со вспышками)

Ситуация резко изменилась с запуском Европейским космическим агентством в октябре 1990 года космического аппарата «Улисс», основной целью которого является исследование межпланетной плазмы вне плоскости солнечной эклиптики. Эти исследования начались в феврале 1992 года, когда, используя гравитационное поле Юпитера, аппарат вышел из эклиптической плоскости и направился сначала к областям южного полюса Солнца (май – сентябрь 1994), а затем к областям со стороны северного полюса (май – сентябрь 1995). Большинство полученных результатов сейчас тщательно исследуется, но уже можно сделать некоторые выводы о зависимости параметров солнечного ветра от солнечной широты (большое число научных сообщений по этим проблемам помещено в американском журнале «Science», 1995, volume 268, May 19).

В частности, оказалось, что скорость солнечного ветра возрастает, а плотность резко уменьшается с гелиографической широтой. Измеренная, например, на аппарате «Улисс» скорость солнечного ветра изменилась от 450 км/с в плоскости эклиптики примерно до 700 км/с на – 75о солнечной широты. Надо, однако, отметить что степень различия параметров солнечного ветра в плоскости эклиптики и вне ее зависит от цикла солнечной активности.

Вспышки на Солнце и разные скорости истечения плазмы из разных областей его поверхности приводят к тому, что в межпланетном пространстве образуются ударные волны, которые характеризуются резким скачком скорости, плотности и температуры. Качественно такой механизм их образования показан на рис.4.

Когда быстрый поток догоняет медленный, то в месте их соприкосновения возникает произвольный разрыв параметров, на котором не выполняются законы сохранения массы, импульса и энергии. Такой разрыв не может существовать в природе и распадается, в частности на две ударные волны и тангенциальный разрыв (на последнем нормальная компонента скорости непрерывны), как это показано на рис.4, а для вспышечного процесса на Солнце и на рис.4, б в том случае, когда более быстрый поток от одной области солнечной короны догоняет более медленный, вытекающий из другой. Ударные волны и тангенциальные разрывы, изображенные на рис.4, сносятся солнечным ветром на большие гелиоцентрические расстояния и регулярно регистрируются космическими аппаратами.

Как изменяются характеристики солнечного ветра с удалением от Солнца?

Как видно из уравнения (4), изменение скорости солнечного ветра определяется двумя силами: силой солнечной гравитации и силой, связанной с изменением давления. Расчеты показывают, что на больших расстояниях от Солнца (практически уже с 1а.е.) давление почти не изменяется по величине, то есть его изменение очень мало, и сила, связанная с давлением, практически отсутствует. Сила гравитации убывает как квадрат расстояния от Солнца и тоже мала на достаточно больших гелиоцентрических расстояниях. Поскольку обе силы становятся очень малы, то, согласно теории, скорость солнечного ветра становится почти постоянной и при этом значительно превосходит звуковую (как говорят течение гиперзвуковое). Американские космические аппараты «Вояджер – 1 и –2 » и «Пионер – 10 и –11 », запущенные еще в 70-х годах и находящиеся сейчас на расстоянии от Солнца в несколько десятков астрономических единиц, экспериментально подтвердили теоретические предсказания о солнечном ветре. В частности, его скорость оказалась в среднем почти постоянной, а плотность r убывает как 1/r2 в соответствии с уравнением сохранения массы для сферически – симметричного случая:

Температура же не следует адиабатическому закону, что означает существование каких-то источников тепла. Такими источниками могут быть упоминавшаяся ранее диссипация волн или нейтральные атомы водорода, проникающие из межзвездной среды в Солнечную систему. ([8])

Очевидно, что скорость солнечного ветра не может быть до бесконечности постоянной, как это следует из уравнения газовой динамики (см., например рис.1.), поскольку Солнечная система окружена межзвездным газом с конечным давлением. Поэтому солнечный ветер на больших расстояниях от Солнца должен тормозиться газом межзвездной среды. Эта проблема подробно рассмотрена в [8]. Здесь только отметим, что плавное торможение газодинамического потока от сверхзвуковых до дозвуковых, например, в сопле Лаваля (рис.2.), путем сужения канала невозможно: обязательно должен образоваться скачок параметров газа в виде ударной волны. Аналогичная ситуация может возникнуть и в солнечном ветре. Торможение солнечного ветра из-за противодавления межзвездной среды должно происходить через ударную волну (Termination shock, или TS). Ее положение сильно зависит от параметров межзвездной среды. Согласно теоретическим расчетам, ударная волна TS находится на расстоянии 80 – 100 а.е. от Солнца [8], что позволяет в ближайшие несколько лет детектировать ее измерительными приборами, установленными на космических аппаратах «Вояджер».

Спокойный солнечный ветер.

Согласно современным представлениям, энергия в недрах Солнца вырабатывается в ходе процессов ядерного синтеза:

где e+ — означает позитрон, n- нейтрино, g — g- квант. В результате перечисленных процессов 1,0078 г водорода переходит в 1,0000 г гелия, а оставшаяся масса переходит кинетическую энергию частиц и энергию радиации. Скорость выделения энергии в ходе реакций протон – протонного цикла определяется выражением:

где r — плотность солнечного вещества, Х – относительное содержание в нем ядер водорода и Т – температура. Принимая во внимание, что как плотность вещества, так и его температура возрастают к центру Солнца, можно сказать, что около 99% солнечной энергии генерируется в ядре Солнца с радиусом Rc =0.25Ro .

Известно, что в звездах типа Солнца теплопроводность играет незначительную роль, так что произведенная в недрах Солнца энергия передается к его поверхности в основном путем радиационного переноса, то есть в результате ее поглощения и последующего переизлучения [10].

Однако радиационный перенос солнечной энергии становится малоэффективным в верхних слоях Солнца. Дело в том, что по мере уменьшения температуры солнечного вещества степень его ионизации уменьшается и присутствие в нем нейтральных атомов водорода заметно снижает его прозрачность. Это, в свою очередь, приводит к еще более быстрому уменьшению температуры Солнца с расстоянием от центра, вследствие чего любой элементарный объем солнечного вещества, всплывающий из недр Солнца, обладает большей температурой меньшей плотностью, чем окружающая плазма, что приводит к развитию так называемой конвективной неустойчивости. Условия ее возбуждения уверенно выполняются в поверхностных слоях Солнца r > 0.86Ro [10], где энергия переносится главным образом в форме тепловой энергии плазмы, заключенной в элементах вещества, поднимающихся из недр Солнца. Развитие интенсивной турбулентности в поверхностных слоях Солнца не только обеспечивает перенос энергии к его поверхности, но и приводит к развитию явлений, играющих ключевую роль в солнечно-земной физике. Прежде всего развитие конвективной турбулентности в плазме сопровождается генерацией интенсивных магнитозвуковых волн. Распространяясь в атмосфере Солнца, где плотность плазмы быстро уменьшается с высотой, звуковые волны трансформируются в ударные. Они эффективно поглощаются веществом, в результате чего температура последнего увеличивается, достигая величины (1-3) 106 в солнечной короне. При этом значительная часть протонов в короне Солнца не может удерживаться его гравитационным полем, что приводит в непрерывному расширению короны в космическое пространство, то есть к генерации солнечного ветра.

Высокоскоростной солнечный ветер.

Как видно из данных, представленных в табл.1, высокоскоростной ветер характеризуется повышенной скоростью (около 700 км/с), пониженной плотностью плазмы (n=4 см-3 ) и повышенной ионной температурой. Однако, прежде чем обсуждать возможные источники этих потоков, напомним, что существуют по меньшей мере два рода таких потоков: рекуррентные и магнитные.

Рекуррентные потоки.

Рекуррентные потоки высокоскоростного солнечного ветра отличаются прежде всего тем, что существуют в течение многих месяцев, регулярно появляясь в окрестностях Земли примерно через 27 дней (период оборота Солнца), что свидетельствует об относительно большом времени жизни их источников. В течение многих лет происхождение этих потоков оставалось загадкой, поскольку им не соответствовали какие-либо видимые особенности на поверхности Солнца. Однако в настоящее время можно считать доказанным, что обсуждаемые потоки зарождаются на Солнце в области так называемых дыр.

Корональные дыры отчетливо видны на фотографиях солнца, полученных с космических аппаратов, в рентгеновском и крайнем ультрафиолетовым диапазонах солнечного излучения. (см.рис.6.), где они фиксируются как обширные области пониженной (в несколько раз) интенсивности излучения, простирающиеся от полярных широт до экватора или даже в противоположное полушарие. Протяженность корональных дыр по долготе составляет 30о -90о. Соответственно время прохождения корональной дыры через центральный меридиан Солнца (вследствие вращения последнего) составляет 4 – 6 суток, что вполне согласуется с длительностью существования соответствующих высокоскоростных потоков в окрестностях Земли [9]. Пониженная интенсивность рентгеновского излучения в области корональных дыр может определяться как пониженной плотностью плазмы в этих областях, так и ее пониженной температурой. Действительно, наземные наблюдения короны во время солнечных затмений показывают, что в короне существуют, особенно в высоких широтах, области с относительно низкой плотностью плазмы. В то же время и температура плазмы в области корональных дыр составляет около 0,8*106 К, что существенно ниже температуры спокойной короны и плотность плазмы в корональной дыре составляет 0,25 плотности спокойной короны.

Таким образом, корональные дыры действительно представляют собой области пониженной плотности и температуры плазмы. Чем вызываются указанные особенности короны в этих областях, не совсем ясно. В связи с этим обращает на себя внимание то, что корональные дыры, как правило, совпадают с областями униполярного магнитного поля с квазирадиальными или слегка расходящимися силовыми линиями [11]. Открытые силовые линии магнитного поля не препятствуют радиальному расширению корональной плазмы, что может объяснить пониженную плотность последней в области дыр и увеличение скорости генерируемого в них солнечного ветра. Вместе с тем увеличение скорости солнечного ветра, обусловленное благоприятной конфигурацией силовых линий магнитного поля, не может компенсировать ее уменьшения, связанного с низкой температурой плазмы в рассматриваемых областях и для объяснения появления высокоскоростных потоков приходится предположить наличие в корональных дырах мощного источника МГД – волн. К сожалению, прямых подтверждений существования таких волн в области корональных дыр пока не получено.

Спорадические высокоскоростные потоки.

Второй тип высокоскоростных потоков в солнечном ветре – это кратковременные (время пробега мимо Земли t=1 – 2 суток), часто чрезвычайно интенсивные (скорость солнечного ветра до 1200 км/с) потоки, имеющие весьма большую долготную протяженность. Двигаясь в межпланетном пространстве, заполненным плазмой относительно медленного спокойного солнечного ветра, высокоскоростной поток как бы сгребает эту плазму, в результате чего перед его фронтом образуется движущаяся вместе с ним отошедшая ударная волна. Пространство между фронтом потока и фронтом отошедшей ударной волны заполнено плотной (несколько десятков частиц в 1 см3 ) и горячей плазмой.

Ранее предполагалось, что спорадические потоки в солнечном потоке обусловлены солнечными вспышками [9] и подобными явлениями. Однако в последнее время мнение на этот счет изменилось, и большинство исследователей, в особенности зарубежных, придерживается точки зрения, согласно которой спорадические высокоскоростные потоки в солнечном ветре обусловлены так называемыми выбросами.

Корональные выбросы, наиболее отчетливо наблюдаемые вблизи лимба Солнца, представляют собой некоторые относительно протяженные плазменные образования, движущиеся в короне Солнца вверх от ее основания. Вывод о том, что спорадические потоки в солнечном ветре связаны именно с корональными выбросами (или СМЕ), а не со вспышками, основан на следующих экспериментальных фактах:

1. Несмотря на статически значимую связь между спорадическими потоками и солнечными вспышками, однозначная связь между ними отсутствует, то есть, с одной стороны, наблюдаются вспышки, не вызывающие ударных волн, и, с другой – наблюдаются высокоскоростные потоки, не предваряемые вспышками.

2. Солнечные вспышки непосредственно не связаны с корональными выбросами.

Связь между межпланетными ударными волнами, корональными выбросами и солнечными вспышками детально исследовалась N.Sheeley и др. (1985), которые, в частности, показали, что 72% ударных волн, наблюдающихся на борту космического аппарата «Helios -1», были связаны с большими низкоширотными корональными выбросами. В то же время лишь 52% тех же ударных волн были связаны с солнечными вспышками.

В результате подробного анализа этих данных удалось показать [12,13], что если исключить из списка ударные волны, наблюдаемые за лимбом Солнца, то число волн, связанных со вспышками, возрастает до 85%, то есть, связь ударных волн со вспышками оказывается ничуть не хуже, чем с корональными выбросами. Кроме того, как показали Harrison и др.(1990), корональные выбросы (со скоростью порядка 1000 км/с), с которыми обычно связана межпланетная ударная волна, начинают свое движение в короне одновременно с началом вспышки.

Таким образом, вывод о непричастности солнечных вспышек к межпланетным ударным волнам представляется не совсем убедительным, и мы по-прежнему будем считать солнечные вспышки одним из основных источников высокоскоростных потоков в солнечном ветре.

Что касается механизма генерации самих вспышек (и, естественно, связанных с ними потоков), то наиболее популярной в настоящее время является предложенная в 1964 году Петчеком модель вспышки, основанная на гипотезе о магнитном пересоединении [14]. Развитие солнечной вспышки в рамках модели Петчека представлено на рис.7.

В этой модели силовые линии магнитного поля активной области оказываются, начиная с некоторого уровня, разорванными и образуют две силовые трубки с антипараллельными полями, разделенными токовым слоем. В некоторый момент из-за развития ионно-звуковой или ионно-циклотронной неустойчивости проводимость плазмы в некоторой точке 1 (рис.7, а) в плазменном слое резко падает, в результате чего токовый слой разрывается и силовые линии магнитного поля пересоединяются. Магнитная энергия быстро переходит в кинетическую и тепловую энергию

Плазмы и происходят интенсивный разогрев и ускорение плазмы (рис.7, б). Ускоренные частицы, двигаясь вдоль открытых силовых линий магнитного поля, покидают хромосферу и выбрасываются в межпланетное пространство (рис.5, в). При этом движущиеся вверх энергичные электроны, проходя через корону и взаимодействуя с ней, могут вызвать всплески радиоизлучения. Частота радиоизлучения вследствие уменьшения концентрации фоновой плазмы быстро уменьшается по мере движения электронов вверх (что соответствует так называемым всплескам радиоизлучения III типа)

Частицы, движущиеся вдоль силовых линий магнитного поля к Солнцу, нагревают плазму в нижней хромосфере и фотосфере, вызывая увеличение яркости водородных эмиссий и образование высокотемпературного коронального облака. Плазма, ускоряемая в направлении от Солнца, формирует высокоскоростной поток и связанную с ним ударную волну.

Заключение.

Суперпозиция описанных выше потоков солнечной плазмы и их взаимодействие создают ту сложную и непрерывно изменяющуюся систему, которая называется солнечным ветром.

Из рассмотренного выше можно сделать заключение, что солнечный ветер – это физическое явление, которое представляет не только чисто академический интерес, связанный с изучением процессов в плазме, находящейся в естественных условиях космического пространства, но и фактор, который необходимо учитывать при изучении процессов, происходящих в окрестности нашей планеты Земли, что в конце концов, влияет на нашу жизнь. Это обусловлено тем, что высокоскоростные потоки солнечного ветра, обтекая землю, влияют на ее магнитосферу, которая непосредственно связана с более низкими слоями атмосферы. Такое влияние в сильной степени зависит от процессов, происходящих на Солнце, поскольку они связаны с зарождением самого солнечного ветра. Таким образом, солнечный ветер является хорошим индикатором для изучения важных для практической деятельности человека солнечно – земных связей. Однако это уже другая область научных исследований, которая в данной работе не рассматривается.

Литература.

1. Parker E. // Astophys.J. 1958. V. 128. №3.

2. Chapman S .//J.Atmos. Terr. Phys.1959. V.15.№1/2.

3. Chamberlain J. //Astrophys. J. 1961. V.133. №2.

4. Грингауз К.И., Безруких В.В., Озеров В.Д., Рыбчинский Р.Е. // Докл. АН СССР. 1960. Т.131 №6.

5. Баранов В.Б., Краснобаев К.В., Гидродинамическая теория космической плазмы. М.: Наука, 1977.

6. Weber E., Davis L. //Astrophys. J. 1967.V.148. №1. Pt.1.

7. Паркер Е. Динамические процессы в межпланетной среде. М.: Мир, 1965.

8. Баранов В.Б. Влияние межзвездной среды на строение гелиосферы // Соросовский Образовательный Журнал. 1996. №11. С.73-79.

9. Хундхаузен А. Расширение короны и солнечный ветер. М.: Мир, 1976. 302 с.

10. Гибсон Э. Спокойное Солнце.М.: Мир,1977, 408 с.

11. Коваленко В.А. Солнечный ветер. М.: Наука, 1983,272 с.

12. Pudovkin M.I. // J. Geophys.Res. 1995 V.100.№ A5. P7917

13. Pudovkin M.I. // Rept.Prog.in Phys.1995. V58. №9.P.929.

14. Пудовкин М.И., Семенов В.С. Теория пересоединения и взаимодействия солнечного ветра с магнитосферой Земли. М.: Наука, 1985.126 с.

www.ronl.ru

Ветер — это, что такое, какие, определение, значение, доклад, реферат, конспект, сообщение, вики — WikiWhat

Образование ветров и их виды

Ветер дует всегда из мест с большим давлением возду­ха в те места, где атмосферное давление меньше.

Бризы

Бризы (франц. «брисе» — лёгкий ветер) — это ветры, дующие днём с моря на сушу, ночью с суши на море.

Поверхность земли нагревается неравно­мерно. В летний день, например, поверхность суши нагревается сильнее. От нагревания воздух расширяется и становится легче. Часть нагретого воздуха поднимается вверх, а более холодный с моря начинает перемещаться в сторону суши. Такой ветер называют дневным бризом (рис. 113). Если в это время измерить атмосферное давление над су­шей и над морем, то окажется, что над сушей оно будет меньше.

Если же измерить атмосферное давление вечером, то оно бу­дет меньше над морем, так как вода в море ночью более тёплая, а от неё нагревается и воздух. Значит, ночной бриз будет дуть с суши на море (рис. 114).

Тропические ветры

Измерение ветра

Для того чтобы правильно предсказать погоду, очень важно знать направление и силу ветра. Северный ветер приносит похолодание, южный — потепление, ветер с моря не­сёт влагу, из засушливых областей дуют сухие ветры.

Направление ветра

Называют ветер по той стороне горизонта, куда он дует: если ветер подул с северо-запада, то говорят, что он северо-западный, если с юго-запада — юго-западный.

Определение направления ветра

Направление ветра можно определить по развевающемуся флажку, по направлению дыма, идущего из труб, но более точно это можно сделать с помощью флюгера (голл. «флюгер» — крыло) — прибора для определения направления и силы ветра.

Стрелка флюгера (она называется флюгарка) свободно вра­щается на стержне и острым концом всегда бывает направлена против ветра. Ниже стрелки прикреплены неподвижно восемь стерженьков — указателей основных и промежуточных сторон горизонта.

Сила ветра

Сила ветра не всё время бывает одина­ковой. В одни дни ветер бывает едва заметен, в другие — та­кой сильный, что того и гляди деревья с корнем выворотит. На­блюдения показали, что если между двумя местами на земном шаре разница в давлении небольшая, то ветер будет слабый. Если же разница в давлении большая, то ветер будет сильный.

Значит, чем больше разность давления между двумя сосед­ними участками земной поверхности, тем быстрее передвигается воздух от места с большим давлением в место с меньшим дав­лением, тем сильнее будет ветер.

Определение силы ветра

Вместе со стрелкой флюгера вращается и рамка, укреплённая выше флюгарки. В этой рамке свободно висит металлическая пластинка, прикреплённая за верхний конец. Чем сильнее ветер, тем больше отклоняется пластинка от своего обычного положе­ния. По отклонению пластинки и судят о силе ветра. Силу и скорость ветра можно определить приблизительно (рис. 115).

Построение розы ветров

Для того чтобы составить розу ветров (рис 117), необходимо сначала начертить схему, показывающую основные и промежуточные стороны горизонта. Начиная от центра, отложите на линии пока­зывающей направление на север столько от­резков по полсантиметра, сколько в исследуемом промежутке дней, когда дули северные ветры, затем на линии, показывающей направление на северо-восток, отложите столько таких же отрезков, сколько было северо-восточных ветров. То же самое сделайте на всех направлениях. Теперь соедините концы получившихся отрезков на каждом направлении, и у вас получится чер­тёж, по которому сразу можно определить, какие ветры преобладали в этот промежуток времени. Материал с сайта http://wikiwhat.ru

Ветер играет важную роль в на­шей жизни. Если бы не было ветра, тучи разражались бы дож­дём в том месте, где они возникли. Над океанами, где влаги и так более чем достаточно, не прекращались бы ливни, а на сушу не выпадало бы ни капли дождя. Это ветер приносит живитель­ную влагу на поля и леса, благодаря ветру не пересыхают реки и озёра. А тёплые океанические течения? Они своим происхожде­нием также обязаны ветру. Ветер очищает воздух, которым мы дышим. Отработанные газы от автомобильных двигателей, дым от заводов и фабрик, углекислый газ, выделяемый при дыхании человеком и многими другими живыми организмами, — всё это сильно загрязняет воздух. Ветер уносит этот загрязнённый воз­дух, а взамен его приносит чистый.

Ветряные двигатели

С давних времён человек начал использовать силу ветра. В древнем Египте уже были ветряные двигатели для размола зерна и для подъёма воды из Нила на поля. На парусных судах отважные мореплаватели совершали далёкие путешествия.

В засушливых областях ветряные двигатели приводят в дви­жение насосы, которые подают воду на поля, а там, где мест­ность заболочена, ветродвигатели помогают её осушать (рис. 116).

Широко используются ветродвига­тели на станциях полярников, зимующих на островах Северного Ле­довитого океана и в Антарктиде. Не­смотря на суровые морозы, ветродви­гатели работают там безотказно. Они всегда дают полярникам свет и тепло, питают током их радиоустановки.

Картинки (фото, рисунки)

На этой странице материал по темам: Вопросы к этой статье:

wikiwhat.ru

Реферат - Ветер - Наука и техника

Многие любят зефир — такой он легкий, воздушный, сладкий. Не случайно кондитеры дали своему изделию это имя, взятое из древнегреческих мифов. Греки так называли бога западного ветра.

Бога этого они очень чтили, ведь легкая, освежающая воздушная струя несла на раскаленные солнцем земли влагу, прохладу, она ласкала и навевала спокойствие. Совсем иначе видели греки бога северного ветра — Борея. Это длинноволосый, бородатый, могучий великан, живущий в темных горных пещерах и налетающий без жалости и пощады. Бога южного ветра Нота называли не иначе как быстрым. В легендах и сказках разных народов ветры имеют имена и человеческое обличье: ведь люди и ветры живут на одной планете и встречаются каждый день.

От того, как поведет себя ветер, порой зависит и человеческая жизнь, а не раз ветры вмешивались в ход истории. Вот один такой случай. Конец 16-го в. Испания построила огромные корабли, создала целый флот — «Непобедимую Армаду», чтобы стать полновластной хозяйкой на морских просторах Атлантики. Главный враг испанского короля — Англия, и «Непобедимая Армада» из 128 кораблей, на борту которых 2400 пушек, 8 тыс. матросов и 19 тыс. солдат, направляется к британским берегам, чтобы сокрушить державу-соперницу. Бои испанцам не удались, 20 кораблей потеряно, и флот отходит восвояси, потрепанный, но еще очень сильный. И вдруг страшный ветер поднимает волну за волной, и один за другим тонут корабли… Так не стало «Непобедимой Армады», а с ее гибелью Испания перестает быть хозяйкой морей. Во многих странах помнят страшные разрушения, которые нанес ветер. Наверное, самая большая катастрофа по вине ветра произошла в 1970 г., когда ураган погубил на нескольких островах в дельте реки Ганг почти все население. Число погибших — 1 млн. человек! Торнадо, цунами, тайфун, ураган, смерч — все это названия ветров, несущих людям разрушения и смерть. Скорость таких ветров огромна: при урагане воздушная масса за каждую секунду преодолевает 30метровую дистанцию, а в центре вихря — скорость, как у реактивного самолета. Крыши домов, деревья, животные, люди, окажись они в зоне такого ветра, уносятся в воздух, как пушинки, и потом сбрасываются с огромной высоты на землю. Зная суровый нрав разрушительных ветров, люди давно стремились заранее предугадать их визиты. Еще в 900-м г. в некоторых европейских странах на церквях и городских башнях появились флюгеры — крутящиеся на шарнире петушки, флажки, фигурки людей из металла, по которым можно сразу узнать, откуда дует ветер.

В 1667 г. Роберт Хук изобрел прибор для измерения скорости ветра—анемометр. Уже в нашем веке научились узнавать скорость ветра, посылая за облака воздушные шары с анемометрами. С ветрами люди с давних пор не только враждуют, но и дружат. Ветер — незаменимый помощник средневекового мельника, моряка, воина. А в Голландии уже в 18-м в. при помощи ветряных мельниц откачивали воду, заливавшую поля. Приспособили для своих целей ветры и азиатские торговцы, которым морской путь обходился дешевле, чем сухопутный. Они использовали муссоны — ветры, которые дуют над просторами Индийского океана попеременно: то в одном направлении, то в другом. Такие ветры постоянны, они позволяют несколько месяцев плыть под парусами в одну сторону, а при смене ветра — возвращаться домой опять же под ровным попутным ветром.

Самая протяженная торговая трасса с применением муссонов в качестве «двигателей» установилась много веков назад от Персидского залива до Китая. Путь занимал 120 дней. С ожиданием попутного ветра— 180 дней. По такому маршруту нужно было двигаться, строго соблюдая график.

На какое-то время ветры как двигатели были забыты, уж слишком много сулили успехи машин, работающих на топливе. Но сейчас снова строятся электростанции, работающие на ветре, разрабатываются другие проекты, в которых ветер используется на благо человека. Ведь чтобы поднялся ветер, не нужны какие-то человеческие усилия. Он возникает всякий раз, как в одном месте атмосферное давление больше, чем в другом. Из той области, где давление больше (а виной тому главным образом разность температур в атмосфере), воздух перемещается туда, где давление меньше. Вы можете легко создать ветер сами. Надуйте воздушный шарик. Внутри него давление стало большим, чем вокруг. Теперь развяжите нитку. Воздух из шарика с шумом устремится наружу. Вот и ветер получился. А что было бы, если бы ветров не стало? Можно много нафантазировать смешных и грустных историй по поводу этого «если».

Но есть и реальные факты, иной раз заставляющие задуматься. Вот один из них. Несколько лет назад замер ветер в Мехико — городе, где живут 20 млн. человек. Дышать стало нечем, и люди буквально падали от головокружения. Детей не выпускали на улицу, чтобы они не отравились загрязненным воздухом. Запретили движение почти всех машин, остановили многие производства… Пришедший ветер спас город от гибели. У ветра есть еще одна забота: удерживать на высоте воздушных змеев. Не только дети их любят запускать. Воздушные змеи стали непременными участниками карнавалов и народных гуляний, предприниматели помещают на них рекламу своих товаров. А народ майори в Новой Зеландии использует воздушных змеев для того, чтобы знать, что их ждет. Если змей висит над деревней, значит, дела идут хорошо. Если ветер унес его, значит, быть беде, и все идут искать свой воздушный талисман, куда бы он ни залетел. Другие народы иначе читают знаки, подаваемые ветром. Корейцы рады, если змей улетает неведомо куда. Такой змей летит с «почтой»: на бумажках каждый пишет о своих печалях и бедах, прикрепляет к змею, а потом перерезает бечевку. И летят, по поверью, горести прочь от людей.

www.ronl.ru

Направление и сила ветра (определение и зависимость). Флюгер | География. Реферат, доклад, сообщение, краткое содержание, лекция, шпаргалка, конспект, ГДЗ, тест

Раздел:

Климатология, метеорология

Направление ветра можно определить, например, по направ­лению дыма из трубы. Но лучше воспользоваться прибором — флюгером. Стрелка флюгера (флюгарка), вращаясь, показывает острым концом направление, откуда дует ветер. Ниже стрелки прочно закреплены восемь горизонтальных стержней, показы­вающих основные и промежуточные стороны горизонта. По сторонам горизонта определяют направление ветра. Например, если ветер дует с юга, его называют южным.

С помощью флюгера определяют также силу ветра (в баллах) и его скорость (м/с). Выше флюгарки находится вращающаяся рамка, к которой свободно прикреплена металлическая плас­тинка. Чем сильнее ветер, тем больше отклоняется пластинка. Соотношение силы и скорости показано в таблице.

От чего зависят сила и скорость ветра? Почему бывает безвет­ренная погода, а иногда — ветер вырывает деревья с корнем? По наблюдениям, это зависит от разницы давления между участками поверхности Земли, где возникает ветер. Чем больше эта разница, тем больше сила и скорость ветра.

Таблица. Соотношение скорости и силы ветра Материал с сайта http://worldofschool.ru

Скорость ветра, м/с Сила ветра по шкале Бофорта, баллы Ветер Действие ветра
0 0 Штиль Дым поднимается вверх
1 1 Тихий Дым немного отклоняется. Шелестят листья на деревьях. Зажжённая списка не гаснет, но пламя заметно отклоняется
2-3 2 Легкий Качаются тонкие ветви деревьев, пламя спички гаснет
4-5 3 Слабый Заметно качаются небольшие ветви деревьев. Покрывается лёгкими волнами поверхность воды
6-8 4 Умеренный Качаются ветви деревьев
9-10 5 Свежий Едва заметно наклоняются тонкие и средние деревья
11-12 6 Сильный Качаются средние по толщине стволы де­ревьев. Ветер свистит в ушах
13-15 7 Крепкий Гудят телефонные провода. На гребнях волн появляется пена
16-18 8 Очень крепкий Гнутся большие деревья. Ломаются тонкие ветви
19-21 9 Шторм Ветер разрушает дымоходы и срывает черепи­цу с крыш. Ломаются большие деревья
22-25 10 Сильный шторм Ветер срывает крыши с домов, вырывает с корнем деревья
26-29 11 Жёсткий шторм Ветер вызывает сильные разрушения
Свыше 29 12 Ураган Ветер является причиной значительных опусто­шений
На этой странице материал по темам: Вопросы по этому материалу:

worldofschool.ru


Смотрите также