Элементарная биохимия
Биохимия - это сокращенное название биологической химии.
Давайте дадим определение, итак биохимия — это биологическая наука, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения и связь этих превращений с деятельностью органов и тканей. Совокупность процессов, неразрывно связанных с жизнедеятельностью, принято называть обменом веществ.
Самое значимое влияние на все науки в целом оказала именно биохимия.
Даже самые смелые прогнозисты не могли предположить, что достижения биологии (как в познавательном, так и в практическом плане) настолько превзойдут их прогнозы.
И то, что для нас сегодня обыденно совсем недавно было фантастикой.
Сейчас уже ученые могут проникнуть до составляющих в живой материи (надмолекулярных комплексов).
Исследование носителей жизнедеятельности (это нуклеиновые кислоты и белки) выходит на новый, более качественный, уровень.
Теперь совсем по-другому смотрят на такие проблемы как механизм хранения, передачи и реализации наследственной информации, преобразования материи и энергии в клетке, иммунитета, передачи нервных импульсов и восприятия клеткой сигналов и воздействий внешней среды, принципы гуморальной регуляции и многое другое.
Иным стало и изучение разнообразных регуляторов процессов, протекающих в клетках и тканях, гормонов, нейропептидов, простагландинов и т. п.
Были обнаружены совершенно новые проблемы, в которых фундаментальные познавательные задачи оказались сближенными с практическим приложением необычайно высокой эффективности. О чем может идти речь? О функционировании ферментов? Раскрытии механизмов фотосинтеза? Зрения? Нервной регуляции? А может о деятельности мозга? Или защиты от инфекций? И многого другого, включая важнейшую проблему манипулирования с генетическим материалом.
К чему это привело? К тому, что за совсем мизерный срок (по вселенским меркам) — двадцать пять лет, сущность биологии (ее структура) претерпела глобальные изменения.
Появление новых методов в химии и дальнейшее внедрение их в биологию содействовало тому, что формирующаяся биохимия оказалась среди биологических наук наилучшим образом подготовленной для разгадки тайн функционирования клетки.
Как раз благодаря этому она поднялась на качественно новый уровень, и уже не “служанки физиологии”. А представляет собой самостоятельную, методологически необычайно важную область биологии.
При помощи биохимии были найдены многие интересующие человека вопросы. Достижения биохимии в свое время помогли таким наукам как цитологии и генетике. Прогресс зависел от развития биохимических методик и концепций.
Как известно состав живых организмов не ограничивается водой, минеральными элементами, липидами и углеводами, в них входят еще ряд наиболее сложных органических соединений: белки и их комплексы с рядом других биополимеров (например, нуклеиновыми кислотами).
Была выявлена возможность спонтанного объединения большого числа белковых молекул с образованием сложных надмолекулярных структур. Таким примером может служить белковый чехол хвоста фага, некоторые клеточные организмы и т. д.
Что это дало? Разумный вопрос. Во-первых, это дало возможность ввести понятие о само собирающихся системах. Во-вторых, такого рода исследования предоставляют возможность решить проблемы образования сложнейших надмолекулярных структур, которые обладают признаками и свойствами живой материи, из высокомолекулярных органических соединений, возникших некогда в природе абиогенным путём.
В самостоятельную науку биохимия выделилась на рубеже 19 и 20 вв.
Вопросы, которые сейчас прерогатива биохимии раньше рассматривались органической химией и физиологией. Органическая химия, изучающая углеродистые соединения вообще, занимается, в частности, анализом и синтезом тех химических соединений, которые входят в состав живой ткани. Физиология же наряду с изучением жизненных функций изучает и химические процессы, лежащие в основе жизнедеятельности. Таким образом, биохимия является продуктом развития этих наук и её можно подразделить на две части: статическую (или структурную) и динамическую. Статическая биохимия занимается изучением природных органических веществ, их анализом и синтезом, тогда как динамическая биохимия изучает всю совокупность химических превращений тех или иных органических соединений в процессе жизнедеятельности. Динамическая биохимия, таким образом, стоит ближе к физиологии и медицине, чем к органической химии. Этим и объясняется то, что вначале биохимия называлась физиологической (или медицинской) химией.
Как всякая быстро развивающаяся наука, биохимия вскоре после своего возникновения начала делится на ряд обособленных дисциплин: биохимия человека и животных, биохимия растений, биохимия микробов (микроорганизмов) и ряд других, поскольку, несмотря на биохимическое единство всего живого, в животных и растительных организмах существуют и коренные различия в характере обмена веществ. В первую очередь это касается процессов ассимиляции. Растения, в отличие от животных организмов, обладают способностью использовать для построения своего тела такие простые химические вещества, как углекислый газ, вода, соли азотной и азотистой кислот, аммиак и др. При этом процесс построения клеток растений требует для своего осуществления притока энергии извне в форме солнечного света. Использование этой энергии первично осуществляют зелёные аутотрофные организмы (растения, простейшие, ряд бактерий), которые в свою очередь сами служат пищей для всех остальных так называемых гетеротрофных организмов (в том числе и человека), населяющих биосферу. Таким образом, выделение биохимии растений в особую дисциплину является обоснованным как с теоретической, так и с практической сторон.
Развитие ряда отраслей промышленности и сельского хозяйства (переработка сырья растительного и животного происхождения, приготовление пищевых продуктов, изготовление витаминных и гормональных препаратов, антибиотиков и т.д.) привело к выделению в особый раздел технической биохимии.
При изучении химизма различных микроорганизмов исследователи столкнулись с целым рядом специфических веществ и процессов, представляющих большой научно-практический интерес (антибиотики микробного и грибкового происхождения, различные виды брожений, имеющие промышленное значение, образование белковых веществ из углеводов и простейших азотистых соединений и т. д.). Все эти вопросы рассматривают в биохимии микроорганизмов.
В 20 веке возникла как особая дисциплина биохимия вирусов.
Потребностями клинической медицины было вызвано появление клинической биохимии.
Из других разделов биохимии, которые обычно рассматриваются как достаточно обособленные дисциплины, имеющие свои задачи и специфические методы исследования, следует назвать: эволюционную и сравнительную биохимию (биохимические процессы и химический состав организмов на различных стадиях их эволюционного развития), энзимология (структура и функции ферментов, кинетика ферментативных реакций), биохимию витаминов, гормонов, радиационную биохимию, квантовую биохимию (сопоставление свойств, функций и путей превращения биологически важных соединений с их электронными характеристиками, полученными с помощью квантово-химических расчётов).
Особенно перспективным оказалось изучение структуры и функции белков и нуклеиновых кислот на молекулярном уровне. Этот круг вопросов изучается науками, возникшими на стыках биохимии с биологией и генетикой.
История развития биохимии.
Можно выделить основные этапы развития биохимической науки.
Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям. В 16-17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков, считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии – немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчёркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины. Ятрохимики ввели в медицинскую практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в “соках” живого тела особых начал, так называемых “ферментов”, участвующих в разнообразных химических превращениях.
В 17-18 вв. работали такие выдающиеся учёные как М.В. Ломоносов и А. Лавуазье, открывшие и утвердившие в науке закон сохранения материи (массы). Лавуазье внёс важнейший вклад в развитие не только химии, но и в изучение биологических процессов. Развивая более ранние наблюдения Майова, он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 века было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков.
Крупными событиями второй половины 18 века стали исследования Р.Реомюра и Л.Спалланцани по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных и птиц на различные виды пищи (главным образом мясо) и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии (учение о ферментах), однако, обычно связывают с именами К.С. Кирхгофа, а также Пейена и Персо, впервые изучивших действие на крахмал фермента амилазы in vitro.
Важную роль сыграли работы Пристли и особенно Ингенхауса, открывших явление фотосинтеза (конец 18 века).
На рубеже 18 и 19 вв. были проведены и другие фундаментальные исследования в области сравнительной биохимии; тогда же было установлено существование круговорота веществ в природе.
Успехи статической биохимии с самого начала были неразрывно связаны с развитием органической химии.
Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле (1742-1786 гг.). Он выделил и описал свойства целого ряда природных соединений – молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И.Берцелиуса и Ю.Либиха, закончившиеся разработкой в начале 19 века методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества. Достигнутые успехи – синтез в 1828 году мочевины, уксусной кислоты (1844 г.), жиров (1850 г.), углеводов (1861 г.) – имели особенно большое значение, так как показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Во второй половине 18 – начале 19 века были проведены и другие важные исследования: из мочевых камней была выделена мочевая кислота, из желчи – холестерин, из меда – глюкоза и фруктоза, из листьев зеленых растений – пигмент хлорофилл, в составе мышц был открыт креатин. Было показано существование особой группы органических соединений – растительных алкалоидов, нашедших позднее применение в медицинской практике. Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты: глицин и лейцин.
Во Франции в лаборатории К. Бернара в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление. В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя и других были изучены структура и свойства белков, а также продуктов их гидролиза, в том числе и ферментативного.
В связи с описанием дрожжевых клеток (1836-1838гг.) начали активно изучать процесс брожения (Либих, Пастер и др.). Вопреки мнению Либиха, рассматривавшего процесс брожения как чисто химический, протекающий с обязательным участием кислорода, Л. Пастер установил возможность существования анаэробиоза, то есть жизни в отсутствии воздуха, за счет энергии брожения. Бухнеру удалось получить из дрожжевых клеток бесклеточный сок, способный, подобно живым дрожжам, сбраживать сахар с образованием спирта и углекислоты.
Накопление большого количества сведений относительно химического состава растительных и животных организмов и химических процессов, протекающих в них, привело к необходимости систематизации и обобщений в области биохимии. Первой работы в этом плане был учебник Зимона (1842). Очевидно, именно с этого времени термин “биологическая (физиологическая) химия” утвердился в науке. В России первый учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 году. Периодическая литература по биологической химии регулярно начала выходить с 1873 года в Германии. Позднее биохимические журналы начали издаваться во многих странах мира на английском, французском, русском и других языках. Во второй половине 19 века на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической химии.
Подлинный расцвет биохимии наступил в 20 веке. В самом начале его была сформулирована и экспериментально обоснована полипептидная теория строения белков (Э. Фишер 1901-1902гг.). Позднее был разработан ряд аналитических методов, позволяющих изучить аминокислотный состав белка (хроматография, рентгеноструктурный анализ, метод изотопной индикации, цитоспектрофотометрия, электронная микроскопия). Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков. Синтезируется ряд важных белковых веществ.
Выдающееся значение имели работы Л. Полинга, В. Виньо, Ф. Сэнгера, С. Мура, Д. Филлипса, Дж. Нортропа, М. М. Шемякина, Ф. Штрауба и др.
Блестящие работы Чаргаффа, Дж. Уотсона и Ф. Крика завершаются выяснением структуры ДНК (дезоксирибонуклеиновой кислоты). Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез ДНК и РНК. Решается (1962 и последующие годы) одна из центральных проблем современной биохимии – расшифровывается РНК – аминокислотный код. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки.
Ранее классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. Детальному изучению подвергаются особенности процесса азотистого обмена у растений. Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности. Детально исследуются продукты распада гемоглобина, расшифровываются пути образования гема.
Выдающиеся успехи достигнуты в расшифровке структуры важнейших углеводов и механизмов углеводного обмена. Подробно выяснено превращение углеводов в пищеварительном тракте под влиянием пищеварительных ферментов и кишечных микроорганизмов. Выясняются биохимические механизмы нарушения углеводного обмена (диабет, галактоземия, гликогенозы и др.), связанные с наследственными дефектами соответствующих ферментативных систем.
Достигнуты успехи в расшифровке структуры липидов: фосфолипидов, цереброзидов, ганглеозидов. Создается теория b -окисления жирных кислот. Разработаны современные представления о путях окисления и синтеза жирных кислот и сложных липидов. Значительный прогресс достигнут при изучении механизма биологического окисления, тканевого дыхания. Разработаны методы количественного определения целого ряда биохимических компонентов крови и тканей.
В. А. Энгельгардтом, а также Липманном было введено понятие о “богатых энергией” фосфорных соединениях, в частности АТФ, в макроэргических связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании.
20 век ознаменовался расшифровкой химического строения всех известных в настоящее время витаминов. Вводятся международные единицы витаминов, устанавливаются потребности в витаминах человека и животных, создается витаминная промышленность.
Не менее значительные успехи достигнуты в области биохимии гормонов. Получены первые данные о механизме действия гормонов на обмен веществ. Расшифрован механизм регуляции функций эндокринных желёз по принципу обратной связи.
Возникает новое направление в биохимии – нейрохимия. Установлены особенности в химическом составе нервной ткани. Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении нервных заболеваний. Широко используются, особенно в сельском хозяйстве ингибиторы холинэстеразы (медиатора, действующего на нервные окончания) для борьбы с насекомыми-вредителями.
Важные результаты получены при изучении состава и свойств крови: изучена дыхательная функция крови в норме и при ряде патологических состояний; выяснен механизм переноса кислорода от лёгких к тканям и углекислоты от тканей к лёгким; уточнены и расшифрованы представления о механизме свёртывания крови, изучены факторы, при врождённом отсутствии которых в крови наблюдаются различные формы гемофилии.
В развитии современной биохимии важную роль сыграла разработка ряда специальных методов исследования: изотопной индикации, дифференциального центрифугирования, спектрофотометрии, электронного парамагнитного резонанса и др.
Характеристика основных разделов элементарной биохимии.
Белки
В настоящее время установлено, что в живой природе не существует небелковых организмов.
Белки – это высокомолекулярные полимерные соединения, образующие при гидролизе аминокислоты. В организме животных белков содержится до 40-50 % и более на сухую массу, у растений до 20-35%.Разнообразны и очень важны функции белков.
Строительная, структурная функция. Белки образуют основу протоплазмы любой живой клетки, в комплексе с липидами они являются основным структурным материалом всех клеточных мембран, всех органелл.
Каталитическая функция. Практически все биохимические реакции катализируются белками-ферментами.
Двигательная функция. Любые формы движения в живой природе (работа мышц, движение ресничек и жгутиков у простейших) осуществляются белковыми структурами клеток.
Транспортная функция. Белок крови гемоглобин транспортирует кислород от легких к тканям и органам. Есть белки крови, транспортирующие липиды, железо, стероидные гормоны. Перенос многих веществ через клеточные мембраны осуществляют особые белки-переносчики.
Защитная функция. Важнейшие факторы иммунитета – антитела и система комплемента являются белками. Процесс свертывания крови, защищающий организм от чрезмерной кровопотери происходит с участием белков фибриногена, тромбина и других факторов свертывания, тоже являющихся белками. Внутренние стенки пищевода, желудка выстланы защитным слоем слизистых белков – муцинов. Основу кожи, предохраняющей тело от многих внешних воздействий, составляет белок коллаген.
Гормональная функция. Ряд гормонов по своему строению относится к белкам (инсулин) или пептидам (АКТГ, окситоцин, вазопрессин).
Опорная функция. Сухожилия, суставные сочленения, кости скелета образованы в значительной степени белками.
Запасная функция. Белки способны образовывать запасные отложения (овальбумин яиц, казеин молока, многие белки семян).
Белки имеют большое народнохозяйственное значение. Белки являются основными компонентами пищи человека и животных. Многие заболевания связаны с хроническим белковым голоданием. Технология многих производств основана на переработке белков, Изменении их свойств.
Структурными элементами белков являются аминокислоты.
Аминокислоты можно рассматривать как производные карбоновых кислот, в которых один из водородов углеродной цепи замещен на группу Nh3.
Строение белковой молекулы. Аминокислоты соединяются друг с другом ковалентной пептидной или амидной связью. Образование ее происходит за счет аминогруппы (Nh3)одной аминокислоты и карбоксильной (СООН) группы другой с выделением молекулы воды.
Структура молекулы белка имеет четыре уровня. Первичная структура белковой молекулы это порядок чередования аминокислот в полипептидной цепи. Вторичная структура – это упорядоченное пространственное расположение отдельных участков полипептидной цепи, она образуется за счет замыкания водородных связей между пептидными группами. Третичная структура описывает пространственную укладку всей молекулы белка. В поддержании третичной структуры белка, ее закреплении принимают участие различные типы связей (ковалентные, ионные, водородные и гидрофобные взаимодействия). Под четвертичной структурой понимают способ взаимного расположения в пространстве отдельных полипептидных цепей в молекуле, характер связей между ними.
Все белки принято делить на две группы: простые, или протеины (состоят только из аминокислот), и сложные (в их молекуле помимо белковой части содержится и небелковая, простетическая): хромопротеины, липопротеины, нуклеопротеины и т. д.
Ферменты
Ферменты, или энзимы, - это катализаторы белковой природы, образующиеся и функционирующие во всех живых организмах.
Являясь катализаторами – веществами, ускоряющими реакции, ферменты имеют ряд общих свойств с химическими, небиологическими катализаторами.
Для ферментов характерны и специфические свойства, отличающие их от химических катализаторов, выражающих их химическую природу.
При ферментативных реакциях в отличие от неферментативных наблюдаются лишь незначительные побочные процессы, для ферментативных реакций характерен почти 100% выход продуктов.
Согласно классификации, все ферменты разделяются на шесть классов в соответствии с характером катализируемых ими реакций.
Ферментативные препараты находят широкое применение в различных отраслях промышленности. В хлебопекарном производстве для ускорения гидролиза крахмала и улучшения качества теста используют амилазы. При приготовлении детской пищи с целью облегчения переваривания углеводов и белков исходные продукты обрабатываются амилазой и протеиназами. Специфические протеиназы используют в виноделии, в кожевенной промышленности, при производстве синтетических моющих средств. Ферменты используют как лекарственные средства: пепсин, трипсин, химотрипсин, лидаза, стрептокиназа…
Нуклеиновые кислоты
Нуклеиновые кислоты – это сложные соединения, состоящие из пуринового или пиримидинового азотистого основания, моносахарида пентозы (рибозы или дезоксирибозы) и фосфорной кислоты.
Нуклеиновые кислоты – важнейший компонент всех живых организмов, всех живых клеток. С участием нуклеиновых кислот происходит образование белков. Каждый живой организм содержит свои специфические белки, которыми он отличается то других организмов. Информация, определяющая особенности структуры белков, “записана” в ДНК и передается в ряду поколений молекулами ДНК. Все нуклеиновые кислоты делятся на два типа в зависимости от того, какой моносахарид входит в их состав; рибонуклеиновая кислота (РНК) содержит рибозу, дезоксирибонуклеиновая кислота (ДНК) содержит дезоксирибозу.
Пуриновые и пиримидиновые азотистые основания, входящие в состав нуклеиновых кислот, являются производными ароматических, гетероциклических соединений – пурина и пиримидина. Среди пуриновых азотистых оснований главную роль играют аденин (А) и гуанин (Г), а среди пиримидиновых оснований – цитозин (Ц), урацил (У), тимин (Т). В состав ДНК входят аденин, цитозин, гуанин, тимин; в РНК вместо тимина присутствует урацил.
ДНК подобно белкам имеет первичную, вторичную и третичную структуру. Хромосомы животных, бактерий, вирусов содержат по одной непрерывной ДНК-спирали огромной длины по сравнению с размерами ядра. Более 99% ДНК клетки находится в ее ядре и около 1% в цитоплазме. Наследственная информация передается с помощью уникальной последовательности участков ядерной ДНК.
Содержащиеся в клетке РНК различаются размером, составом, функциями и локализацией. В цитоплазме содержится РНК нескольких видов: транспортная РНК (тРНК), информационная РНК (иРНК), рибосомная РНК (рРНК). В ядре локализована ядерная РНК (яРНК), количество которой составляет от 4 до 10% от суммарной клеточной РНК.
Синтез РНК, ДНК и белка очень сложные, взаимосвязанные процессы, которыми вплотную занимается такая наука, как генная инженерия. Основная задача генной инженерии – получение молекул ДНК in vitro, их размножение и введение в организм с целью получения новых наследственных свойств.
Углеводы
Углеводами называют альдегиды и кетоны многоатомных спиртов и полимеры этих соединений. В биосфере углеводов больше, чем всех других органических соединений вместе взятых. В растительном мире на их долю приходится 80-90% из расчета на сухое вещество. В животном организме углеводов содержится около 2% массы тела, но значение их одинаково велико для всех живых организмов, о чем свидетельствуют те важные функции, которые они выполняют.
Углеводы подразделяют на моносахариды, олигосахариды и полисахариды.
К моносахаридам относятся углеводы и их производные, которые не способны расщепляться без потери основных углеводных свойств.
Олигосахариды гидролизуются с образованием небольшого числа моносахаридов (от 2 до 10).
Полисахариды (гликаны) представляют собой высокомолекулярные полимеры моносахаридов и их производных. Число остатков моносахаридных единиц в них от 10 до нескольких тысяч.
Образование углеводов происходит в растениях в процессе фотосинтеза и в микроорганизмах в процессе хемосинтеза.
Человек и животные не способны к первичному биосинтезу углеводов из неорганических веществ, они могут лишь образовывать их в процессе глюконеогенеза из других органических веществ (органических кислот, жиров, аминокислот), но главным источником углеводов является пища. Углеводы составляют существенную часть рациона человека и многих животных. На их долю приходится 60-70% общей суммы калорий пищи человека. Углеводы всасываются через слизистую оболочку кишечника только в виде моносахаридов. Для расщепления и переваривания крупных полисахаридов в пищеварительном тракте имеются десятки различных ферментных систем. В результате последовательного воздействия ферментов углеводы превращаются в моносахариды, они хорошо всасываются через кишечную стенку в кровь и разносятся по организму для выполнения своих функций.
Липиды
Липидами называются неоднородные в химическом отношении вещества, общим свойством которых является хорошая растворимость в неполярных органических растворителях: эфире, ацетоне, хлороформе, бензоле и т. п. По своему химизму липиды, в большинстве случаев, представляют собой сложные эфиры высших жирных кислот с глицерином или некоторыми другими спиртами специфического строения. В составе ряда липидов кроме этих компонентов встречаются фосфорная кислота, азотистые основания, или углеводы. В экстракте, полученном при обработке животных или растительных тканей органическими растворителями, присутствуют обычно высшие и полициклические спирты, жирорастворимые витамины, которые некоторые авторы также относят к классу липидов.
Липиды могут быть классифицированы следующим образом:
Функции этого класса соединений важны и разнообразны.
1. Прежде всего, липиды в виде комплекса с белками являются структурными элементами мембран клеток и клеточных органелл. В связи с этим они определяют транспорт веществ в клетки и участвуют в ряде других процессов, связанных с функционированием мембран.
2. Липиды служат также энергетическим материалом для организма. При окислении 1 г жира выделяется 39 кДж энергии, т. е. В 2 раза больше, чем при расщеплении 1 г углеводов. Одновременно липиды являются запасными веществами, в форме которых депонируется метаболическое топливо. Определенное исключение в этом отношении составляют бактерии: у большинства из них накопление энергии осуществляется в нелипидной форме (гликоген) и только 9у некоторых видов – в форме поли-3-гидроксимасляной кислоты.
3. В связи с хорошо выраженными термоизоляционными свойствами липиды сохраняют тепло в организме, особенно у морских и полярных животных, выполняя тем самым защитную функцию. В виде жировой прокладки предохраняют тело и органы животных от механического повреждения, служат жировой смазкой для кожи. Восковой налет на листьях и плодах растений защищает от избыточного испарения и проникновения микроорганизмов. Липидные компоненты бактерий в значительной мере определяют их чувствительность или резистентность к антибиотикам. Некоторые из липидов имеют отношение к иммунитету (Гликолипиды).
4. Регуляторной активностью обладают простагландины, полипреноловые коферменты – переносчики. От свойств и структуры мембранных липидов во многом зависит активность мембраносвязанных ферментов, особенности протекания процессов окислительного фосфорилирования.
5. Будучи важнейшими компонентами нервных тканей, гликолипиды оказывают существенное влияние на функционирование нервной системы.
Липиды - важная составная часть пищи. Взрослому человеку требуется от 70 до 145 г жира в сутки в зависимости от трудовой деятельности, пола, климатических условий. Причем необходимы как животные, так и растительные жиры. Липиды являются высокоэнергетическими веществами, поэтому за их счет удовлетворяется 25-30% потребности человеческого организма в энергетическом материале. Кроме того, в составе животных жиров в организм поступают жирорастворимые витамины А, Д, К, Е, растительные жиры богаты непредельными жирными кислотами (витамин F), являющимися предшественниками простагландинов, исходным материалом для синтеза организмом фосфолипидов и других веществ.
Переваривание жира начинается в желудке, где находится фермент липаза. Основное расщепление липидов происходит в кишечнике, в первую очередь в двенадцатиперстной кишке под воздействием фермента поджелудочной железы липазы и желчи, поступающей из желчного пузыря. В результате ферментативного воздействия образуется очень тонкая жировая эмульсия, диаметр частиц которой не превышает 0,5 мкм. Такие эмульгированные жиры способны самостоятельно проходить через стенку кишечника и попадать в лимфатическую систему.
Витамины
Витамины – низкомолекулярные органические соединения, которые, присутствуя в пище в небольших количествах, являются незаменимыми ее компонентами, обеспечивают нормальное протекание биохимических и физиологических процессов путем участия в регуляции метаболизма. Витамины не включаются в структуру тканей человека и животных и не используются в качестве источника энергии.
Многие витамины представляют собой исходный материал для биосинтеза коферментов и простетических групп ферментов. В этом состоит одна из основных причин необходимости витаминов для нормального протекания обменных процессов.
Витамины делят на:
Для характеристики обеспеченности организма каким-либо витамином принято различать три ее формы: авитаминоз, гиповитаминоз, гипервитаминоз. Первый термин применяют в отношении комплекса симптомов, развивающихся в результате достаточно длительного, полного или почти полного отсутствия одного из витаминов. Под гиповитаминозом понимают состояние, характеризующее частичную, но уже проявившуюся специфическим образом недостаточность витамина. Гипервитаминоз – комплекс патофизиологических и биохимических нарушений, возникающих вследствие длительного избыточного введения в организм любого из витаминов.
Каждый гиповитаминоз имеет свои характерные симптомы. Например, недостаток витамина А вызывает снижение зрения в темноте (гемералопию) и сухость роговицы (ксерофтальмию). Гиповитаминоз Д вызывает рахит. При авитаминозе К появляются подкожные и внутримышечные кровоизлияния. Недостаточность витаминов группы В проявляется в нарушении функции нервной системы различного характера, анемии, болезнях кожи, замедлении роста и др. Основные симптомы С-витаминной недостаточности: ломкость кровеносных капилляров, общая слабость, утомляемость, цинга.
Элементарная биохимия изучает вышеописанные вещества, их взаимные превращения, биосинтез, роль в обмене веществ, регуляции метаболизма, значение для народного хозяйства, возможности их использования в промышленности.
Значимость биохимии как науки.
Сейчас уже не возможно представить не одну науку, которая бы не обходилась без достижений биохимии.
Значение биологической химии нельзя не учитывать. Она имеет как научное, так и практическое значение.
Фармацевтическая промышленность использует результаты биохимических исследований для производства различных препаратов: Витаминов, ферментов, кровоостанавливающих лекарств, антибиотиков и т. д.
В сельском хозяйстве биохимию используют для борьбы с насекомыми-вредителями, для создания удобрений, для селекции сортов растений и пород животных.
В генетике только благодаря использованию биохимических процессов и реакций возможно выделение генов, расшифровка генетического кода, воздействие на патологические гены с целью борьбы с генетическими заболеваниями.
В пищевой промышленность используют достижения биохимии для производства легко усваиваемого детского питания, для обработки продуктов, подлежащих консервированию, для производства кисломолочных продуктов (ферменты в производстве сыра).
Также биохимию использует такая наука как радиология. Есть даже отдельная наука – радиационная биохимия. Она изучает изменения обмена веществ, возникающие в организме при действии на него ионизирующего излучения.
Воздействие радиации на организм может вызвать биохимические процессы. Эти процессы могут привести к развитию лучевой болезни, рака, лейкозов, врождённых пороков развития у детей, бесплодия и ряд других заболеваний.
Соответственно можно полагать, что биохимия имеет большее влияние в медицине.
В современной практике врачи проводят биохимические исследования крови, мочи, желудочного сока, спинномозговой жидкости и др.
Теперь можно ставить диагноз сразу же после биохимических исследований, например, по таким заболеваниям как гепатита, почечной недостаточности, анемии, мочекаменной болезни, сахарного диабета и многих других.
Опираясь на изменения биохимических показателей, врачи назначают и корректируют дозы лекарственных средств. Что конечно же дает более быстрые результаты в борьбе с заболеванием.
Перспективы развития биохимии.
Уровень и методы нынешней медицины определяет биохимия. Так же, возможно, эта наука определяет и ее возможный дальнейший прогресс.
Приоритетной задачей биохимии и молекулярной биологии является полная расшифровка и корректировка дефектов генетического аппарата.
Еще одной из приоритетных задач является овладение механизмом регуляции считки генетической информации, закодированной в ДНК, и дальнейшей расшифровки на молекулярном уровне механизма клеточной дифференцировки в онтогенезе. Есть еще одна проблема, это терапия ряда вирусных заболеваний (например, лейкоза). Эта проблема будет оставаться проблемой, пока не будет полностью ясен механизм взаимодействия вирусов (таких как онкогенных) с инфицируемой клеткой. В данное время множество лабораторий по всему миру занято этой проблемой.
Список литературы.
referat.store
ГБОУ ВПО Волгоградский государственный медицинский университет Минздравсоцразвития России
Кафедра теоретической биохимии с курсом клинической биохимии
Реферат
на тему:«Особенности функционирования олигомерных белков на примере гемоглобина».
Подготовила:
Студентка МБФ304
Музыко Е. А.
Проверила:
Дудченко Г. П.
Волгоград 2012
Олигомерные белки проявляют свойства, отсутствующие у мономерных белков. Влияние четвертичной структуры на функциональные свойства белка можно рассмотреть, сравнивая строение и функции двух родственных гемсодержащих белков: миоглобина и гемоглобина. Оба белка имеют общее эволюционное происхождение, сходную конформацию отдельных полипептидных цепей и сходную функцию (участвуют в транспорте кислорода), но миоглобин - мономерный белок, а гемоглобин - тетрамер. Наличие четвертичной структуры у гемоглобина придаёт этому белку свойства, отсутствующие у миоглобина.
Миоглобин содержит небелковую часть (гем) и белковую часть (апомиоглобин).
Гем - молекула, имеющая структуру циклического тетрапиррола, где 4 пиррольных кольца соединены метиленовыми мостиками и содержат 4 метильные, 2 винильные и 2 пропионатные боковые цепи. Эта органическая часть гема называется протопорфирином. Возможны 15 вариантов расположения боковых цепей, но в составе гемопротеинов присутствует только один изомер, называемый протопорфирин IX. В геме 4 атома азота пиррольных колец протопорфирина IX связаны четырьмя координационными связями с Fe2+, находящимся в центре молекулы (рис.1).
Апомиоглобин - белковая часть миоглобина; первичная структура представлена последовательностью из 153 аминокислот, которые во вторичной структуре уложены в 8 а-спиралей. а-Спирали обозначают латинскими буквами от А до Н, начиная с N-конца полипептидной цепи, и содержат от 7 до 23 аминокислот. Третичная структура имеет вид компактной глобулы, образованной за счёт петель и поворотов в области неспирализованных участков белка. Внутренняя часть молекулы почти целиком состоит из гидрофобных радикалов, за исключением двух остатков Гис, располагающихся в активном центре.
Связывание гема с апомиоглобином.
Гем - специфический лиганд апомиоглобина, присоединяющийся к белковой части в углублении между двумя а-спиралями F и Е. Центр связывания с гемом образован преимущественно гидрофобными остатками аминокислот, окружающими гидрофобные пиррольные кольца гема. Две боковые группы пропионовых кислот, ионизированные при физиологических значениях рН, выступают на поверхности молекулы.
В активный центр апомиоглобина кроме гидрофобных аминокислот входят также 2 остатка Гис (Гис64 и Гис93 или Гис Е7 и Гис F8), играющие важную роль в функционировании белка. Они расположены по разные стороны от плоскости гема и входят в состав спиралей F и Е, между которыми располагается гем. Атом железа в геме может образовывать 6 координационных связей, 4 из которых удерживают Fe2+ в центре протопорфирина IX (соединяя его с атомами азота пиррольных колец), а 5-я связь возникает между Fe2+ и атомом азота имидазольного кольца Гис F8 (рис.2).
Гис Е7 хотя и не связан с гемом, но необходим для правильной ориентации и присоединения другого лиганда - О2 к миоглобину.
Аминокислотное окружение гема создаёт условия для довольно прочного, но обратимого связывания О2 с Fe2+ миоглобина. Гидрофобные остатки аминокислот, окружающие гем, препятствуют проникновению в центр связывания миоглобина воды и окислению Fe2+ в Fe3+. Трёхвалентное железо в составе гема не способно присоединять О2.
Структура и функции гемоглобина.
Гемоглобины -белки, находящиеся в эритроцитах человека и позвоночных животных. Эти белки выполняют 2 важные функции:
-перенос О2 из лёгких к периферическим тканям;
-участие в переносе СО2 и протонов из периферических тканей в лёгкие для последующего выведения из организма.
Кровь ежедневно должна переносить из лёгких в ткани около 600 л О2. Так как О2 плохо растворим в воде, то практически весь кислород в крови связан с гемоглобином эритроцитов. От способности гемоглобина насыщаться О2 в лёгких и относительно легко отдавать его в капиллярах тканей зависят количество получаемого тканями О2 и интенсивность метаболизма. С другой стороны, О2 - сильный окислитель, избыток поступления О2 в ткани может привести к повреждению молекул и нарушению структуры и функций клеток. Поэтому важнейшая характеристика гемоглобина - его способность регулировать сродство к О2 в зависимости от тканевых условий.
Гемоглобины относят к гемопротеинам, но они имеют четвертичную структуру (состоят из 4 полипептидных цепей), благодаря которой возникает возможность регуляции их функций.
Гемоглобины человека.
Различают несколько видов гемоглобина человека. Рассмотрим строение гемоглобина А.
Конформация отдельных протомеров гемоглобина удивительно напоминает конформацию миоглобина, несмотря на то, что в первичной структуре их полипептидных цепей идентичны только 24 аминокислотных остатка. Протомеры гемоглобина, так же как и апомиоглобин, состоят из 8 спиралей, свёрнутых в плотную глобулярную структуру, содержащую внутреннее гидрофобное ядро и "карман" для связывания гема. Соединение гема с глобином (белковой частью) аналогично таковому у миоглобина - гидрофобное окружение гема, за исключением 2 остатков Гис Е7 и Гис F8 (рис.3). Однако тетрамерная структура гемоглобина представляет собой более сложный структурно-функциональный комплекс, чем миоглобин.
Роль гистидина E7 в функционировании миоглобина и гемоглобина.
Гем имеет высокое сродство к оксиду углерода (СО). В водной среде свободный от белковой части гем связывается с СО в 25 000 раз сильнее, чем О2. Высокая степень сродства гема к СО по сравнению с О2 объясняется разным пространственным расположением комплексов Fe2+ гема с СО и О2 (рис.3, А).
В комплексе Fe2+ гема с СО атомы Fe2+, углерода и кислорода расположены на одной прямой, а в комплексе Fe2+ гема с О2 атомы железа и кислорода расположены под углом, что отражает их оптимальное пространственное расположение.
В миоглобине и гемоглобине над Fe2+ в области присоединения О2 расположен Гис Е7, нарушающий оптимальное расположение СО в центре связывания белков и ослабляющий его взаимодействие с гемом. Напротив, тот же Гис Е7 создаёт оптимальные условия для связывания О2 (рис.3, Б). В результате сродство гема к СО в белках всего в 200 раз превышает его сродство к О2.
Снижение сродства гемсодержащих белков к СО имеет важное биологическое значение. СО образуется в небольших количествах при катаболизме некоторых веществ, в частности гема. Этот эндогенно образующийся СО блокирует около 1% гемсодержащих белков. Если бы сродство тема к СО не уменьшалось под влиянием белкового окружения, эндогенный оксид углерода мог бы вызывать серьёзные отравления.
Четвертичная структура гемоглобина.
Четыре полипептидные цепи, соединённые вместе, образуют почти правильную форму шара, где каждая а-цепь контактирует с двумя в-цепями (рис.4).
Так как в области контакта между а1- и в1-, а также между а2- и в2-цепями находится много гидрофобных радикалов, то между этими полипептидными цепями формируется сильное соединение за счёт возникновения в первую очередь гидрофобных, а также ионных и водородных связей. В результате образуются димеры а1в1, и а2в2. Между этими димерами в тетрамерной молекуле гемоглобина возникают в основном полярные (ионные и водородные) связи, поэтому при изменении рН среды в кислую или щелочную сторону в первую очередь разрушаются связи между димерами. Кроме того, димеры способны легко перемещаться относительно друг друга.
Так как поверхность протомеров неровная, полипептидные цепи в центральной области не могут плотно прилегать друг к другу, в результате в центре формируется "центральная полость", проходящая сквозь всю молекулу гемоглобина.
Связывание гемоглобина с О2 в лёгких и его диссоциация из комплекса в тканях.
Основная функция гемоглобина - доставка О2 от лёгких к тканям. Олигомерная структура гемоглобина обеспечивает быстрое насыщение его кислородом в лёгких (образование оксигемоглобина - Нb(О2)4), возможность отщепления кислорода от гемоглобина в капиллярах тканей при относительно высоком парциальном давлении О2, а также возможность регуляции сродства гемоглобина к О2 в зависимости от потребностей тканей в кислороде.
Кооперативные изменения конформации протомеров .
О2 связывается с протомерами гемоглобина через Fe2+ , который соединён с четырьмя атомами азота пиррольных колец тема и атомом азота Гис F8 белковой части протомера. Связывание О2 с оставшейся свободной координационной связью Fe2+ происходит по другую сторону от плоскости гема в области Гис Е7 (аналогично тому, как это происходит у миоглобина). Гис Е7 не взаимодействует с О2, но обеспечивает оптимальные условия для его связывания (рис.4).
В дезоксигемоглобине благодаря ковалентной связи с белковой частью атом Fe2+ выступает из плоскости гема в направлении Гис F8. Присоединение О2 к атому Fe2+ одного протомера вызывает его перемещение в плоскость гема, за ним перемещаются остаток Гис F8 и полипептидная цепь, в состав которой он входит. Так как протомер связан с остальными протомерами, а белки обладают конформационной лабильностью, происходит изменение конформации всего белка. Конформационные изменения, произошедшие в других протомерах, облегчают присоединение следующей молекулы О2, что вызывает новые конформационные изменения в белке и ускорение связывания следующей молекулы О2. Четвёртая молекула О2 присоединяется к гемоглобину в 300 раз легче, чем первая молекула (рис. 6).
Изменение конформации (а следовательно и функциональных свойств) всех протомеров олигомерного белка при присоединении лиганда только к одному из них носит название кооперативных изменений конформации протомеров.
Аналогичным образом в тканях диссоциация каждой молекулы О2 изменяет конформацию всех протомеров и облегчает отщепление последующих молекул О2.
2,3-Бифосфоглицерат - аллостертеский регулятор сродства гемоглобина к О2 .
2,3-Бифосфоглицерат (БФГ) - вещество, синтезируемое в эритроцитах из промежуточного продукта окисления глюкозы 1,3-бифосфоглицерата.
2,3-Бифосфоглицерат
Бисфосфоглицерат в капиллярах тканей, связываясь с дезоксигемоглобином, облегчает диссоциацию О2 из оксигенированного НЬ.В центре тетрамерной молекулы гемоглобина находится полость. Ее образуют аминокислотные остатки всех 4 протомеров (рис.4).
В молекуле дезоксигемоглобина по сравнению с оксигемоглобином имеются дополнительные ионные связи, соединяющие протомеры. Вследствие этого размеры центральной полости меняются: увеличиваются в дезоксигемоглобине и уменьшаются в оксигемоглобине.
Центральная полость является местом присоединения 2,3-бисфосфоглицерата (2,3-БФГ) к гемоглобину (рис.7). Из-за различия в размерах центральной полости 2,3-БФГ может присоединяться только к дезоксигемоглобину.
2,3-БФГ присоединяется к гемоглобину в ином по сравнению с О2 участке. Такой лиганд называется аллостерическим. Центр, где связывается аллостерический лиганд, называется аллостерическим центром.
Регуляторные свойства олигомерного белка гемоглобина.
Таким образом, олигомерный белок гемоглобин, в отличие от мономерного родственного белка миоглобина, способен присоединять к специфическим участкам 4 различных лиганда: О2, Н+, СО2 и БФГ. Все эти лиганды присоединяются к пространственно разобщённым участкам, но конформационные изменения белка в месте присоединения одного лиганда передаются на весь олигомерный белок и изменяют сродство к нему других лигандов. Так, количество поступающего в ткани О2 зависит не только от парциального давления О2, но и концентрации аллостерических лигандов, что увеличивает возможность регуляции функций гемоглобина. Следовательно, благодаря воздействию регуляторных лигандов олигомерные белки способны приспосабливать свою конформацию и фунцию к изменениям, происходящим в окружающей среде.
Приложение.
Рис. 1. Строение гема, входящего в состав миоглобина и гемоглобина.
Рис. 2. Расположение гема в активном центре апомиоглобина и протомеров апогемоглобина.
Рис. 3. Пространственное расположение СО и О2, связанных со свободным гемом (А) и гемом в составе гемоглобина или миоглобина (Б).
Рис. 4. Строение гемоглобина.
Рис. 5. Изменение прложения Fe2+ и белковой части гемоглобина при присоединении О2.
Рис.6. Кооперативные изменения конформации протомеров гемоглобина при присоединении О2.
Рис. 7. Взаимодействие 2,3-бифосфоглицерата с аминокислотными остатками центральной полости дезоксигемоглобина.
Литература.
Биохимия: Учебник/ Под. ред. Е. С. Северина.- М.:-ГЭОТАР-МЕД, 2003.- с.45-53.
Р.Марри, Д.Греннер, П.Мейес, В.Родуэлл. Биохимия человека: В 2-х томах. Т.1.Пер. с англ.:-М.: Мир, 1993. – с.52.
http://idoktor.info/biohimiya/stroenie-svoistva-i-funktsii-belkov
studfiles.net
В головном мозгуво время мышечной деятельности усиливается энергетический обмен, что выражается в увеличении потребления мозгом глюкозы и кислорода из крови, повышении скорости обновления гликогена и фосфолипидов, усилении распада белков и накоплении аммиака. Мозг, как и сердце, снабжается энергией за счет аэробных процессов. При работе большой мощности либо при очень продолжительной работе может снижаться запас макроэргических фосфатов в нервных клетках,чтоявляется одним из факторов развития утомления.
Биохимические изменения, происходящиев скелетных мышцахво время работы, обычно определяют по содержанию продуктов метаболизма мышц в крови, моче, выдыхаемом воздухе либо непосредственнов : ышцах (см. главу 24).
Вкачестве показателя интенсивности и емкости аэробныхмеханизмов энергообеспечения часто используется величина максимального потребления кислорода. Степень вовлечения гликолиза в энергетическое обеспечение мышц можно оценить путем измерения в первые минуты восстанов- ения после работы содержания молочной кислоты в крови, акреатинфосфокиназной реакции — по содержанию в крови продуктов распадаКрФ— креатина и креатинина.Овключении жиров в энергетическиереакцииможно судить по содержанию в крови свободных жирных кислотикетоновых тел. По показателям кислотно-щелочного равновесияможносделать вывод о способности организма противостоять неблагоприятному действию кислотных продуктов анаэробного обмена и т. п.
Однако содержание промежуточных продуктов обмена в крови зависит т скорости их образования в клетках, диффузии через клеточные мембра- з1, а также от потребления их различными тканями. Поэтому один и тот же указатель изменения в мышечных клетках, измеренный в крови или •эчени, будет отражать изменения в тканях с разной степенью точности, ак, о скорости мобилизации углеводных запасов печени свидетельствует
содержание глюкозы в крови. В начале работы, а также пр^Пфатковремен- ной мощной работе концентрация глюкозы в крови, как правило, повышается, что свидетельствует о повышении скорости мобилизации гликогена и незначительном использовании глюкозы мышцами. При работе в условиях устойчивого состояния ее содержание в крови близко к уровню покоя, так как скорость поступления в кровь и скорость ее использования мышцами примерно одинаковы. При длительной работе концентрация глюкозы в крови может быть ниже уровня покоя, поскольку снижаются запасы гликогена печени и скорость его мобилизации, а потребность тканей в глюкозе продолжает оставаться высокой.
При интенсивной гликолитической работе в мышцах резко увеличивается содержание молочной кислоты. Она способна быстро диффундировать из работающих мышц в кровь, где ее уровень резко повышается, а окисление во время напряженной работы протекает с относительно малой скоростью, поэтому содержание молочной кислоты в крови в определенной степени отражает скорость образования ее в скелетных мышцах. В состоянии покоя концентрация молочной кислоты в крови составляет 1,1— 2,2 ммоль ■ л-1 (0,1—0,2 г • л-1).
При выполнении легкой и умеренно тяжелой работы (с уровнем кислородного запроса около 50 % МПК) прирост концентрации молочной кислоты в крови невелик (до 0,4—0,5 г ■ л"1), а при выполнении продолжительных упражнений (с уровнем кислородного запроса 50—85 % МПК) — возрастает до 1—1,5 г ■ л-1. Концентрация молочной кислоты значительно возрастает в первые 2—10 мин работы, а затем либо остается на прежнем уровне, либо снижается. Таким образом, максимальная концентрация молочной кислоты в крови наблюдается до тех пор, пока не установилось устойчивое состояние, создающее условия для аэробного ее окисления.
При выполнении упражнений с уровнем кислородного запроса более 85 % МПК концентрация молочной кислоты в крови постоянно увеличивается до максимальных значений. Концентрация молочной кислоты, которая не причиняет вреда организму хорошо тренированного человека, составляет 2—2,5 г ■ л-1 в крови. Дальнейшее увеличение концентрации молочной кислоты оказывает неблагоприятное воздействие на организм и тормозит процесс гликолиза.
Молочная кислота — сильная кислота, образующая при диссоциации значительное количество водородных ионов. Часть их может быть связана буферными системами клеток и крови, при этом в крови главную роль играет бикарбонатный, а в клетках — белковый буфер. Когда емкость буферных систем исчерпывается, происходит сдвиг активной среды в кислую сторону. В закислении среды участвуют и такие кислоты, как угольная фосфорная, пировиноградная и др. Однако роль молочной кислоты в этог.' процессе наиболее значительна. Между концентрацией молочной кислоть и величиной рН крови существует выраженная обратно пропорциональная зависимость. Как видно из рис. 147, максимальное значение концентрации молочной кислоты в крови в условиях напряженной мышечной деятельности достигает 20—25 ммоль ■ л'1 и более, а значение рН снижается от 7,4 в состоянии покоя до 6,9—6,8.
Снижение величины рН более чем на 0,2 по сравнению с уровнем покоя вызывает уменьшение активности многих ферментов, и в первую очередь фосфофруктокиназы, контролирующей ключевую реакцию глико-
<img width=«307» height=«258» src=«ref-2_1224834847-6884.coolpic» alt=«D:\Олег\Лесгафт\Биохимия\media\image295.png» v:shapes=«Рисунок_x0020_7»>
Рис.147
Взаимосвязь между изменениями значения рН и концентрации лактата в крови при напряженной мышечной работе
лиза, поэтому общая скорость гликолиза снижается. Закисление среды организма приводит также к нарушению деятельности нервных клетоки развитию в них охранительного торможения, ухудшению передачи возбуж- дения с нерва на мышцу, снижению АТФ-азной активности миозина и па- дению скорости расщепления АТФ. Высокая концентрация молочной кис- лоты в мышечных волокнах вызывает повышение в них осмотического дав- ления, ведущего к набуханию их, сдавливанию нервных окончаний, в ре- зультате чего могут возникать боли в мышцах. Многие спортсмены могут вынести снижение рН крови до 6,8 и даже 6,5 (при изнеможении), однако при этом наблюдаются тошнота, головокружение и сильные боли в мыш- цах. Сдвиг величины рН крови в щелочную сторону возможен до 7,6, что организм переносит без резких нарушений обменных процессов.
Избыток молочной кислоты в крови связывается бикарбонатным буфе- ром, в частности его щелочным компонентом (ЫаНС03):
+ НСОз + СНОНСОО" + Н+— + СНзСНОНСОО" + НгСОз
XX
со2 + н2о
В результате такого взаимодействия образуется так называемый из- быток неметаболической углекислоты, которая не связана с процессами биологического окисления. Она быстро распадается на С02 иН20. Опре- деляя долю неметаболического С02 в выдыхаемом воздухе, можно доста- точно точно оценить степень усиления гликолитического процесса в рабо- тающих мышцах.
Существует определенное соотношение между количеством выделен- ного углекислого газа (УС02) и потребляемого кислорода (1/02), что назы- ваютдыхательным коэффициентом (ДК = 1/С02 / У02), который зависит от природы окисляемого энергетического субстрата. При окислении углеводов дыхательный коэффициент равен 1,0 (6С02 / 602 = 1,0), при окислении жиров — 0,70, при окислении белков — 0,80, а при сбалансированной бел- ково-углеводно-жировой диете — около 0,75. Таким образом, по величине дыхательного коэффициента можно судить о характере окисляемых веществ и протекании окислительного процесса. Однако при напряженной мышечной работе дыхательный коэффициент может быть выше 1, что связано с появлением избытка молочной кислоты, увеличивающей образование и выделение С02.
Мышечная работа вызывает изменение содержания в крови белков и продуктов их распада. Отмечается увеличение содержания белков в плазме крови (в частности, белков-ферментов) за счет их выхода из работающих мышц, а также изменяется соотношение между различными белками крови, увеличивается количество продуктов белкового распада — аминокислот, поступающих из мышечных клеток и печени, аммиака, мочевины. Изменения белкового обмена зависят от длительности работы. Так, при кратковременной работе выход белков из тканей в кровь незначителен, а при длительной работе, когда проницаемость клеточных мембран сильно изменяется, белок может проникать через клеточные мембраны почек и появляться в моче. Уровень аммиака особенно возрастает в случае, когда не устанавливается устойчивое состояние метаболизма, а также при длительной утомительной мышечной нагрузке. Длительная работа приводит также к увеличению содержания в крови мочевины.4) Показать значение экспресс-методов биохимическом контроле в оценке функционального состояния спортсмена
Немаловажное значение в биохимическом обследовании имеют используемые методы определения показателей метаболизма, их точность и достоверность.
В настоящее время в практике спорта широко применяются лабораторные экспресс-методы определения многих (около 60) различных биохимических
показателей в плазме крови с использованием портативного прибора
швейцарской фирмы «Доктор Ланге» или других фирм. К экспресс-методам определения функционального состояния спортсменов относится также предложенный академиком В.Г. Шахба-зовым новый метод определения
энергетического состояния человека, в основу которого положены изменения
биоэлектрических свойств ядер эпителиальных клеток в зависимости от
физиологического состояния организма. Данный метод позволяет выявить нарушение гомеостаза организма, состояние утомления и другие изменения при мышечной деятельности.
Контроль за функциональным состоянием организма в условиях учебно-
тренировочного сбора можно осуществлять с помощью специальных
диагностических экспресс-наборов для биохимического анализа мочи и крови.
Основаны они на способности определенного вещества (глюкозы, белка,
витамина С, кетоновых тел, мочевины, гемоглобина, нитратов и др.)
реагировать с нанесенными на индикаторную полоску реактивами и изменять
окраску. Обычно наносится капля исследуемой мочи на индикаторную полоску
«Глюкотеста», «Пентафана», «Меди-теста» или других диагностических тестов
и через 1 мин ее окраска сравнивается с индикаторной шкалой, прилагаемой
к набору.
Одни и те же биохимические методы и показатели могут быть использованы
для решения различных задач. Так, например, определение содержания
лактата в крови используется при оценке уровня тренированности,
направленности и эффективности применяемого упражнения, а также при
отборе лиц для занятий отдельными видами спорта.
В зависимости от решаемых задач изменяются условия проведения
биохимических исследований. Поскольку многие биохимические показатели у
тренированного и не тренированного организма в состоянии относительного
покоя существенно не различаются, для выявления их особенностей проводят
обследование в состоянии покоя утром натощак (физиологическая норма), в
динамике физической нагрузки либо сразу после нее, а также в разные
При обследовании спортсменов применяются различные типы тестирующих
физических нагрузок, которые могут быть стандартными и максимальными
(предельными).
5. Дать биохимическую характеристику заллинга Заллинг – это подвид спортивного туризма (дист. — пешеходные), проводящийся исключительно в закрытых помещениях, подписанный отдельным документом Росспорта.
Эти дистанции находятся примерно в таком промежуточном интервале 1,5-4 мин. Анаэробный процесс. Гликоген
Глюкоза Креатин <img width=«160» height=«52» src=«ref-2_1224841731-3016.coolpic» alt=«image254» v:shapes=«Рисунок_x0020_40»>
продолжение --PAGE_BREAK--
www.ronl.ru
Федеральное агентство по образованию Российский химико-технологический университет им. Д.И. Менделеева «УТВЕРЖДАЮ» Ректор РХТУ им. Д.И. Менделеева В.А. Колесников 2008 г УЧЕБНАЯ ПРОГРАММА Химия биологически
ПодробнееОтложенные задания (30) Вставьте в текст «ДНК» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность
ПодробнееВВЕДЕНИЕ В БИОХИМИЮ. Биохимия как наука о веществах, входящих в состав живой природы, и их превращениях, лежащих в основе жизненных явлений. Предмет и методы биохимии. История становления науки. Разделы
ПодробнееОглавление От автора ОБЩАЯ ХИМИЯ Глава 1. Основные понятия, определения и законы химии 1.1. Вещество, его физические и химические свойства 1.2. Физические и химические явления 1.3. Закон сохранения массы
Подробнее1. К автотрофным организмам относят 1) мукор 2) дрожжи 3) пеницилл 4) хлореллу ТЕМА «Энергетический обмен» 2. В процессе пиноцитоза происходит поглощение 1) жидкости 2) газов 3) твердых веществ 4) комочков
ПодробнееУчебно-тематический план курса 10 класса Календарно-тематическое планирование уроков химии (10 класс, профильный уровень, 105 часов; 3 ч/нед.) п.п. Наименование разделов и тем курса I Введение (9 часов)
ПодробнееПрограммы испытаний по химии Предмет и задачи химии. Место химии среди естественных наук. Атомно-молекулярное учение. Молекулы. Атомы. Постоянство состава вещества. относительная атомная и относительная
ПодробнееГруппа Ф.И.О. Билет 1 1. Какие из перечисленных макромолекул обладают какими-либо общими характеристиками: ДНК, РНК, белки, углеводы, липиды? Укажите, какие именно общие свойства Вы выделяете для каждого
ПодробнееМуниципальное автономное общеобразовательное учреждение г. Калининграда гимназия 32 РАБОЧАЯ ПРОГРАММА ПЕДАГОГА Федосеевой Натальи Петровны Ф.И.О. Элективного курса биологии для 10-в класса_ Предмет, класс
Подробнеегчр ' Государственное бюджетное образовательное учреждение высшего профессионального образования «Рязанский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения
ПодробнееПРОГРАММА ПО ХИМИИ Объем требований 1. Предмет и задачи химии. Явления химические и физические. Взаимосвязь химии с другими естественными дисциплинами. 2. Основные положения атомно-молекулярного учения.
ПодробнееМИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОКУЗНЕЦКИЙ ИНСТИТУТ (ФИЛИАЛ) ФГБОУ ВПО «КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет Естественно-географический Кафедра Биологии и методики
ПодробнееПояснительная записка Рабочая программа по химии составлена на основе: федерального компонента государственного образовательного стандарта среднего (полного) общего образования. М.: «Просвещение» 2004,
ПодробнееГОРМОНЫ. ОБМЕН УГЛЕВОДОВ ВОПРОСЫ 1. Общая характеристика углеводов организма человека. Их классификация, структура отдельных представителей. 2. Протеогликаны и гликопротеины как углеводно-белковые комплексы.
ПодробнееСодержание Предисловие редактора... 3 Введение... 5 Часть I. ОСНОВЫ ОБЩЕЙ ХИМИИ Раздел 1. Основные понятия и законы химии 1.1. Определение и предмет химии...9 1.2. Первоначальные сведения о строении атомов.
Подробнее1. Цели и задачи дисциплины: Цель дисциплины сформировать у студентов знания об использовании в промышленности физико-химических принципов работы живой клетки, ознакомить с методами и технологиями производства
ПодробнееОглавление От автора ТЕОРЕТИЧЕСКАЯ ХИМИЯ Тема 1. Основные понятия и определения химии 1.1. Атом, ион, химический элемент, молекула 1.2. Вещество. Явления физические и химические. Простые и сложные вещества.
ПодробнееМИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ Агрономический факультет Кафедра химии и биохимии Очное отделение РАБОЧАЯ ПРОГРАММА по дисциплине
ПодробнееМИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет биологический ПРОГРАММА
ПодробнееГосударственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный медицинский университет» Министерства здравоохранения Российской федерации Общая
ПодробнееПримерное тематическое планирование Базовый уровень образования 10 класс (2 ч в неделю, всего 70 ч; из них) урока Дата Название темы Название урока Характеристика основных видов деятельности ученика (на
ПодробнееОсновные генетические механизмы Тренинг «Использование методики Xpert MTB/RIF», г.душанбе, 29 июля 2 августа 2013 г. Презентация подготовлена в рамках проекта USAID «Посилення контролю за туберкульозом
Подробнееdocplayer.ru
Государственное бюджетное общеобразовательное учреждение
высшего профессионального образования
«Тихоокеанский государственный медицинский университет»
Министерства здравоохранения Российской Федерации
Кафедра общей и биологической химии
Зав. кафедрой
к.х.н. Иванова Н.С.
ПНЖК – незаменимые факторы питания
Работу выполнил
студент 2 курса,
201 группы, л/ф
Передериева Н.Е.
Научный руководитель
Андреева И.В.
Владивосток 2015г.
Полиненасыщенные жирные кислоты (ПНЖК), принадлежащие к числу незаменимых факторов питания, стали предметом значительного внимания исследователей и врачей как в нашей стране, так и за рубежом. За последние десятилетия накоплены данные, указывающие на важную роль этих соединений в нормальном развитии и поддержании баланса между физиологическими и патологическими процессами в организме.
В тканях человека встречается около 70-и жирных кислот. Жирные кислоты разделяют на две большие группы: насыщенные и ненасыщенные. Ненасыщенные жирные кислоты имеют одну (мононенасыщенные) или несколько (полиненасыщенные) двойных связей. В зависимости от положения двойной связи по отношению к последнему углеродному атому метильной группы ненасыщенных жирных кислот, обозначаемому греческой буквой ω (иногда латинской буквой n), различают несколько основных семейств ненасыщенных жирных кислот: омега -9, омега -6 и омега -3 (таблица). Человек может синтезировать ПНЖК ряда олеиновой кислоты (ω-9) путём комбинирования реакций элонгации (удлинения) и десатурации (образования ненасыщенных связей). Например, из омега-9 олеиновой кислоты (С18:1) животные клетки могут синтезировать 5,8,11-эйкозатриеновую кислоту (С20: 3, ω-9). При недостатке незаменимых ПНЖК синтез этой эйкозатриеновой кислоты увеличивается и повышается её содержание в тканях. Среди ненасыщенных жирных кислот в организме не могут синтезироваться омега-3 и омега-6 жирные кислоты в связи с отсутствием ферментной системы, которая могла бы катализировать образование двойной связи в положении ω-6 или любом другом положении, близко расположенном к ω-концу. Так, в организме не могут синтезироваться линолевая кислота и α-линоленовая кислота (АЛК). Они относятся к незаменимым жирным кислотам и должны поступать с пищей.
Выделяют два класса эссенциальных (незаменимых) полиненасыщенных жирных кислот: омега-3 и омега-6.
К полиненасыщенным жирным кислотам ω-6 относится линолевая кислота (С18: 2, ω-6), которая в организме может превращаться в арахидоновую кислоту (С20: 4, ω-6). Арахидоновая кислота (АК) является незаменимой в организме только при недостатке линолевой кислоты.
Арахидоновая кислота
Линолевая кислота
Арахидоновая кислота
α-Линоленовая кислота
Эйкозапентаеновая кислота
Докозагексаеновая кислота
Наиболее важными полиненасыщенными жирными кислотами класса ω-3 являются альфа-линоленовая кислота (С18:3, ω-3), из которой в клетках могут синтезироваться длинноцепочечные ПНЖК ω-3: эйкозапентаеновая кислота (С20: 5, ω-3) и докозагексаеновая кислота (С22:6, ω-3) с эффективностью около 5 % у мужчин и немного более высокой эффективностью у женщин. Возможности синтеза докозагексаеновой кислоты (ДГК) и эйкозапентаеновой кислоты (ЭПК) в организме весьма ограничены, поэтому они должны поступать из экзогенных источников. При старении организма и некоторых болезнях способность синтезировать ДГК и ЭПК полностью утрачивается. Кроме того, необходимо учитывать, что реакции удлинения цепи и десатурации ω-3 и ω-6 жирных кислот катализируются одними и теми же ферментами, а жирные кислоты конкурируют в этих реакциях за ферменты. Поэтому избыток жирных кислот одного семейства, например арахидоновой кислоты (С20: 4, ω-6), будет подавлять синтез соответствующей кислоты другого семейства, например эйкозапентаеновой (С20: 5, ω-3). Этот эффект подчёркивает важность сбалансированного состава ПНЖК омега-3 и омега-6 в пищевом рационе. Таким образом, накопление длинноцепочечных ЭПК и ДГК в тканях является наиболее эффективным, когда они поступают непосредственно из пищи, или когда конкурирующие количества омега-6 аналогов являются низкими.
Природными источниками ПНЖК являются растительные масла из завязи пшеницы, семени льна, рыжиковое масло, горчичное масло, масло подсолнечника, соевых бобов, арахиса, а также грецкий орех, миндаль, семечки подсолнуха, рыбий жир и рыба жирных и полужирных видов (лосось, макрель, сельдь, сардины, скумбрия, форель, тунец и другие), печень трески и моллюски.
Основным пищевым источником ПНЖК ряда омега-6 являются растительные масла. Омега-6 жирные кислоты синтезируют большинство растений, которые растут на суше. Главным пищевым источником ПНЖК ряда омега-3 являются жирные сорта холодноводных рыб и рыбий жир, а также такие растительные масла, как льняное, перилловое, соевое и рапсовое.
Внимание исследователей к жирнокислотному составу потребляемого с пищей жира было впервые привлечено в середине 70-х годов прошлого века, когда в эпидемиологических исследованиях была показана низкая распространённость заболеваний, связанных с атеросклерозом, у эскимосов Гренландии и в 10 раз меньшая их смертность от инфаркта миокарда, чем у жителей Дании и Северной Америки, несмотря на то, что потребление жира и холестерина у всех этих популяций было одинаково высоким. Разница была в составе жирных кислот. У датчан потребление насыщенных жирных кислот и ПНЖК омега-6 было в 2 раза выше, чем у эскимосов. Эскимосы потребляли в 5-10 раз больше длинноцепочечных ПНЖК омега-3: ЭПК и ДГК. Дальнейшие экспериментальные и клинические исследования подтвердили антиатерогенный эффект ПНЖК омега-3. Установлено, что ПНЖК омега-3 уменьшают содержание в крови атерогенных липопротеинов (липопротеинов низкой и очень низкой плотности). Подтверждено кардиопротекторное и антиаритмическое действие (свободные ЭПК и ДГК в мембранах клеток сердца ингибируют ионные каналы) ПНЖК омега-3. В последнее время проведены исследования, показывающие иммунозащитное действие омега-3 жирных кислот. В последних научных открытиях было обнаружено, что омега-3 жирные кислоты могут блокировать рост опухолей.
ПНЖК омега-3 были известны как необходимые факторы для нормального роста с 1930-х годов. ДГК наряду с ЭПК – пищевые компоненты нормального развития детей и долгожительства. Растущий организм нуждается в пластическом материале для своего роста и развития и наиболее чувствителен к дефициту полиненасыщенных жирных кислот. ПНЖК входят в состав структурных липидов, в том числе в состав фосфолипидов клеточных мембран. Они являются регуляторами фазового состояния мембран клеток. Увеличение ПНЖК омега-3 в биомембранах приводит к увеличению их жидкостности, снижает вязкость мембран и улучшает функции интегральных белков. С возрастом содержание ПНЖК омега-3 в мембранах клеток снижается. Эйкозапентаеновая кислота входит в состав липидов большинства тканей. Докозагексаеновая кислота является важным компонентом мембран клеток ЦНС, накапливается в синапсах, фоторецепторах, сперматозоидах и является жизненно необходимой для их функций. Проведенные научные исследования подтвердили, что ПНЖК омега-3 требуются для нормального функционирования мозга.
Кроме структурной функции, такие ПНЖК как арахидоновая кислота и эйкозапентаеновая кислота являются предшественниками группы высокоактивных веществ, называемых эйкозаноидами (рис.2). К ним относятся простагландины, простациклины, тромбоксаны и лейкотриены, широко распространённые в тканях организма. Соотношение ПНЖК омега-3 и омега-6 непосредственно влияет на тип синтезируемых организмом эйкозаноидов.
Эйкозаноиды, синтезируемые из ПНЖК омега-6, главным образом арахидоновой кислоты, – так называемая вторая серия простаноидов: простагландины (PGI2, PGD2, PGE2, PGF2), тромбоксан A2 (TXA2), а также лейкотриены четвёртой серии. Они обладают провоспалительными, вазоконстрикторными и проагрегантными свойствами, обеспечивая защитные реакции организма – воспаление и остановку кровотечения. Эйкозаноиды, синтезируемые из ПНЖК омега-3, в основном из эйкозапентаеновой кислоты (третья серия простагландинов и пятая серия лейкотриенов), характеризуются противовоспалительным и антитромботическим действием в противовес биологическим эффектам метаболитам арахидоновой кислоты. Таким образом, в условиях патологического состояния человеку предпочтительны метаболиты ЭПК. Самым простым способом снижения синтеза омега-6 эйкозаноидов было признано потребление большего количества ПНЖК омега-3. Введение с пищей ЭПК и ДГК блокирует синтез эйкозаноидов как из арахидоновой кислоты, так и из эндогенной эйкозатриеновой кислоты (ω9). Вместе с тем, если из рациона питания здорового человека полностью исключить АК, то это принесёт только отрицательный результат, поскольку метаболиты ЭПК не выполняют в полной мере те функции, которые выполняют метаболиты АК. Подтверждением тому являются результаты эпидемиологических исследований: жители приморских районов, питающиеся исключительно продуктами моря, не болеют атеросклерозом, но у них повышенная кровоточивость и пониженное кровяное давление.
Для здорового человека достаточно соблюдать правильное питание. Промышленная переработка жиров и масел в значительной мере снизила содержание незаменимых жирных кислот в нашем питании. В пищевом рационе на долю незаменимых жирных кислот должно приходится (по калорийности) не менее 1-2 % от общей потребности организма в калориях. Оптимальное соотношение в пище ω-3:ω-6 жирных кислот составляет 1:4. Минздрав России рекомендует 1 г АЛК/ ЭПК/ ДГК в сутки для адекватного потребления. Минимальная суточная потребность человека в линолевой кислоте составляет 2-6 г, но эта потребность увеличивается пропорционально доле поступающих в организм насыщенных жиров. Одним из способов получения адекватного количества ЭПК и ДГК является употребление жирной морской рыбы. Например, типичная порция рыбы (85 г) может содержать от 0,2 до 1,8 г ЭПК/ ДГК. Американские эксперты рекомендуют употреблять две порции рыбы в неделю.
При определённых патологиях важным является повышенный приём ω-3 жирных кислот, которые могут быть в виде биологически активных добавок или лекарственных препаратов.
Для получения максимальной пользы от ПНЖК, следует соблюдать правила хранения (защита от кислорода воздуха и других окислителей, от прямых солнечных лучей) и употреблять их в необходимых количествах. Потребление избыточных количеств ПНЖК может привести к нарушению прооксидантно-антиоксидантного гомеостаза организма. Все ПНЖК подвержены процессу переокисления, и при недостатке естественных антиоксидантов это ведёт к образованию свободных радикалов со сдвигами в сторону повышения атерогенности и канцерогенеза. Необходимым условием является наличие в препаратах, содержащих ПНЖК, естественных антиоксидантов в физиологических дозах. Например, таким антиоксидантом служит витамин Е, который имеется в рыбе и морепродуктах.
5
studfiles.net
Механизмы физиол. действия ПРОСТАГЛАНДИНЫ разнообразны. Л. взаи-мод. со специфический рецепторами цитоплазматических мембран, что приводит к изменению (увеличению или уменьшению) концентрации внутриклеточных циклический нуклеотидов (например, циклический аденозинмонофосфата), способны проникать через мембраны (включая гематоэнцефалич. барьер) и связываться С внутриклеточными компонентами, влияя, например, на синтез ДНК. Нек-рыс ПРОСТАГЛАНДИНЫ индуцируют перенос катионов через биологическое мембраны, изменяя физиол. состояние клетоколо
Полный химический синтез ПРОСТАГЛАНДИНЫ основан на стереоспецифический конденсации промежуточные продуктов, содержащих фрагменты молекулы ПРОСТАГЛАНДИНЫ Так, PGE2 с выходом 78% можно синтезировать по схеме:
Последняя стадия в получении PGE2-снятие защитных групп. Комбинируя промежуточные продукты, получают разнообразные аналоги ПРОСТАГЛАНДИНЫ, обладающие большей стабильностью, эффективностью и селективностью действия, чем природные.
Для количественное определения ПРОСТАГЛАНДИНЫ, тромбоксанов и их метаболитов в биологическое образцах обычно используют хроматографию (тонкослойную, газо-жидкостную и высокоэффективную жидкостную) и масс-спектрометрию. Наиб. точность определения достигается сочетанием методов газо-жидкост-ной или высокоэффективной жидкостной хроматографии с масс-спектрометрией.
Препараты ПРОСТАГЛАНДИНЫ и их производных используют в эксперим. и клинич. медицине для прерывания беременности и для родовспоможения, терапии язвы желудка, бронхиальной астмы и некоторых сердечно-сосудистых заболеваний, коррекции гемостаза, как антикоагулянты при операциях с искусств. кровообращением и при гемодиализе. Некоторые производные ПРОСТАГЛАНДИНЫ используют для синхронизации полового цикла при искусств. осеменении в ветеринарии.
4
Простагландиновая регуляция процессов гемостаза и тромбообразования
Простагландины синтезируются практически во всех органах и тканях, но не накапливаются в них, а образуются по мере необходимости под действием различных нейрогенных, физических, химических и других стимулов. В этом процессе участвует многокомпонентная система, условно называемая простагландин-синте-тазой, которая катализирует превращение полиненасыщенных эссенциальных жирных кислот в эндоперекиси и последующую изомеризацию эндоперекисей в простагландины. Ферментативная трансформация эссенциальных жирных кислот была доказана в 1964 г. двумя группами исследователей: P. van Dorp и соавт. в Голландии и В. Sarauelsson и соавт. в Швеции. Простагландин-синтетаза обнаружена почти во всех органах и тканях человека и животных, в том числе в микросомальной фракции клеток крови (тромбоцитов и лейкоцитов) и сосудистой стенки.
Простагландины представляют собой местные гормоны, играющие роль регуляторов клеточного метаболизма и функциональной активности тех клеток, в которых они образуются. Тип, количество синтезируемых простагландинов и характер их биологического действия значительно варьируют в зависимости от вида ткани, а также действия многих внутриклеточных и внеклеточных факторов (концентрация ионов, активность ферментов, напряжение кислорода и др.).В огромном количестве публикаций, в том числе монографий и исчерпывающих обзорах, посвященных простаглаидйнам, детально освещены вопросы синтеза, метаболизма и биологической функции простагландинов различных классов. Гораздо меньше внимания до последнего времени уделялось вопросам проста-гландиновой регуляции процессов гемостаза и тромбообразования. Между тем высокая биологическая активность этих веществ и широкое распространение в органах и тканях, в том числе в тромбоцитах и сосудистой стенке, а также ферментов, синтезирующих и метаболизирующих простагландины, позволили предполагать их активное участие и в этих процессах.
За 16 лет, прошедших с тех пор, как впервые были идентифицированы PGEi и PGFia и охарактеризована их химическая структура [Bergstrom S. et al., 1963], предпринимались многочисленные попытки установить биологическую роль отдельных про-стагландинов в процессах гемостаза и тромбообразования. Основанием к этому служили классические работы J. Kloeze и соавт. (1967), впервые показавших способность PGE и PGD влиять на функцию тромбоцитов. В опытах J. Kloeze и соавт. (1967), а позже J. Smith и соавт. (1974), D. Mills, D. Macfarlane (1974), «Г. Gordon, D. Mclntyre (1975) было доказано ингибирующее действие PGEi и PGD2 на ADP-агрегацию и коллагеновую агрегацию тромбоцитов. PGEi, в 2 раза более активный, чем PGD2, ингибитор агрегации тромбоцитов в богатой тромбоцитами плазме-(БТП) человека, оказался менее активным в БТП кролика [Smith J. et al., 1974]. PGD2 —сильный ингибитор агрегации тромбоцитов у человека (в 5 раз более активный, чем PGEi), оказался неэффективным в отношении тромбоцитов крыс и хомячков. In vivo отмечены кратковременное увеличение времени кровотечения и свертывания цельной крови и ингибирование агрегации тромбоцитов под влиянием локального или внутривенного введения PGEi it PGD2 у человека и некоторых видов животных (собак, кроликов, крыс). При непрерывном внутривенном введении кроликам в дозе 10 мкг/мг в минуту PGEi значительно увеличивал время кровотечения, ингибировал адгезию и агрегацшо тромбоцитов. Ингибирующее агрегацию тромбоцитов действие PGEi и PGD2 связывали со снижением уровня цАМР в тромбоцитах. PGEi оказался также активным стимулятором сокращения гладких мышц у кроликов и морских свинок и вазодилятатором у крыс и собак [Weeks J. et al., 1969]. Сообщалось также о тормозящем действии PGEi и PGD2 на ретракцию кровяного сгустка [Kloeze J., 1970; Murer E., 1971].
Другие простагландины оказались менее активными: PGE2, хотя и усиливал агрегирующий эффект других агентов, сам агрегацию не вызывал, a PGFi был вообще неактивен в отношении тромбоцитов человека и многих видов животных.
Совсем не изучено взаимодействие простагландинов с плазменными белками, участвующими в процессе свертывания крови, и их роль во внутреннем и внешнем механизмах свертывающего каскада. Имеются отдельные сообщения [Fr.adl D., Reeve E., 1973; Carlson Т. et al., 1977] о повышении уровня фибриногена под. влиянием PGEi, в результате, по-видимому, усиления его синтеза в печени, однако механизм действия неясен. О влиянии простагландинов на другие плазменные коагуляционные белки пока ничего не известно.
Кратковременный эффект, вызываемый одними простагланди-нами и связанный с их быстрой инактивацией в легочной циркуляции [Ferreira S., Vane J., 1967], и неактивность других долгое время не привлекали серьезного внимания исследователей к утому механизму регуляции функции тромбоцитов. Интерес к системе простагландинов и ее участию в процессах гемостаза и тромбообразования значительно возрос в связи с изучением особенностей ферментативных превращений арахидоновой кислоты в тромбоцитах и стенке сосудов и открытием в последние годы трех новых классов простагландинов, высокоактивных промежуточных продуктов метаболизма этой кислоты — циклических эн-доперекисей, тромбоксанов и простациклина.Эти открытия оказали революционизирующее воздействие на дальнейшее развитие коагулолопш и явились стимулом для интенсивного изучения физиологической роли отдельных метаболитов арахидоновой кислоты, их влияния на функцию тромбоцитов и взаимодействие с эндотелием сосудов, роли в образовании гемостатической пробки и тромбообразовании.
Как стало известно в последние годы, основное значение в реакциях тромбоцитарно-сосудистого гемостаза имеют продукты ме-, таболизма арахидоновой кислоты, синтезируемые в тромбоцитах и стенке кровеносных сосудов под действием комплекса ферментов (простагландин-синтетазы). Арахидоновая кислота-эссенци-альная полиненасыщенная жирная кислота — присутствует в неактивном эстерифицированном виде в фосфолипидном пуле мембраны тромбоцитов, где она образуется либо из пищевой лино-леиновой кислоты, либо из другой полиненасыщенной жирной кислоты — дигомо-у-линоленовой (ДГЛК) путем ее десатурации в печени. Хотя ДГЛК и сама может служить субстратом для образования моноеновых простагландинов (Ei, Dj, F2a), в тромбоцитах преобладает синтез диеновых простагландинов (Е2, D2, F2a, а также циклических эндоперекисей, PGG2 и PGh3, и тромбоксанов (ТХА2 и ТХВ2) — метаболитов арахидоновой кислоты,.содержание которой в фосфолипидном пуле тромбоцитов значительно преобладает над уровнем ДГЛК (18 и 0,6% соответственно, т. ё. в 30 раз больше) [Burch J., Majeras Ph., 1979].
В опытах in vitro арахидоновая кислота оказывает выраженное агрегирующее действие на тромбоциты, а в системах in vivo в эксперименте вызывает тромбообразование в микрососудах при внутривенном введении. В организме арахидоновая кислота, находящаяся в связанном виде в фосфолипидном пуле клеточных мембран, высвобождается при активации клеточных липаз мембраны тромбоцитов и прежде всего фосфолипазы А2, активируемой тромбином и другими стимуляторами тромбоцитов. Свободная арахидоновая кислота подвергается дальнейшему метаболизму при участии двух ферментов: липоксигеназы и циклооксигеназы. Эти два механизма, независимые друг от друга, ингибируются различными ингибиторами и ведут к образованию разных по структуре и биологической функции продуктов. Циклооксигеназа присутствует во всех органах и тканях, тогда как липоксигеназа обнаружена пока только в тромбоцитах, лейкоцитах и легочной ткани [Hamberg M., Samuelsson J., 1974; Nugteren D., 1975].
В процессе липоксигеназного метаболизма образуется ряд гидроперекисей НРЕТЕ—12Ь-гидроперокси-5,8,10, 14-эйко-затетраеновая кислота и ее конечный продукт — НЕТЕ — 12Ь-гид-рокси-10,14-эйкозатетраеновая кислота. Недавно выделено еще несколько метаболитов лнпоксигеназного механизма: 8, 9, 13-три-гидрокси-10, 14-эйкозадиеновая кислота; 8,11,12-тригидрокси-9,14-эйкозадиеновая кислота; 8,11,12-тригидрокси-5,9,14-эйкоза-триеновая кислота (THETE) [Brayant R., Bailley J., 1979]. Физиологическое значение этих продуктов пока не известно. Получены некоторые доказательства хемотаксической функции НЕТЕ по отношению к полгшорфноядерным лейкоцитам [Go-etzl E. et al., 1977]. Предполагают также, что НРЕТЕ может функционировать как ингибитор тромбоксан-синтетазы (возможный обратный механизм регуляции тромбоксанов) [Turner S, et al., 1975].
5
Интракавернозные инъекции
Интракавернозные инъекции являются сравнительно молодым методом лечения эректильной дисфункции (импотенции). Основоположником этого метода лечения является сосудистый хирург Р. Вираг (R.Virag), который в 1982 году впервые стал применять инъекции папаверина в половой член.
Метод быстро нашел сторонников и вскоре с целью коррекции эрекции стал применяться другой сосудорасширяющий препарат - фентоламин. К сожалению, значительное количество осложнений интракавернозных инъекций (приапизм, фиброз кавернозных тел) заставили большинство врачей отказаться от их введения.
В настоящее время для интракавернозных инъекций используются простогландины Е (препарат Эдекс). Впервые простогландины были обнаружены как вещества, синтезируемые предстательной железой. По имени этой железы (prostate gland) они и получили свое название. Позже выяснилось, что простогландины вырабатываются не только в предстательной железе.
Простогландины обладают сосудорасширяющим действием. При введении в кавернозные тела полового члена они вызывают расширение мышечных клеток кавернозных тел, расширяют кровеносные сосуды. В результате приток крови усиливается и возникает эрекция.
Достоинствами интракавернозной терапии является высокая эффективность. Для возникновения эрекции необязательна эротическая стимуляция.
6
Простагландины ( ПГ ) представляют собой ненасыщенные жирные кислоты с 20 углеродными атомами, окружающими скелет молекулы простаноевой кислоты. Различают четыре серии натуральных простагландинов: Е, F, А и В. Особый интерес в репродуктивной физиологии представляют соединения серии Е и F. Синтез простагландинов F2 и Е2 из ненасыщенных жирных кислот был осуществлен S. Bergstrom ct al. (1964) и DA Van Dorpet al. (1964), после чего эти вещества начали использоваться в клинике. Позже S. Bergstrom et al. были удостоены Нобелевской премии за синтез простагландинов и фундаментальные исследования в этой области. В настоящее время доказана роль ПГ в наступлении родов. Установлено следующее: 1) уровень ПГ в амниотической жидкости, в материнской крови, моче и тканях матки в родах возрастает; 2) простагландины ПГF2а и ПГЕ2, введенные в любые сроки беременности, приводят к сокращению миомет-рия и вызывают аборт или роды; 3) простагланднны эффективны для вызывания родов при введении их per os , в амниотическую жидкость, внутривенно, экстраовулярно; 4) введение ингибиторов синтеза ПГ ведет к пролонгированию беременности и удлинению родового процесса; 5) введение ингибиторов синтеза ПГ эффективно при лечении преждевременных родов; 6) простагландины могут использоваться как утеротропины.
Источником образования простагландинов является арахидоновая кислота.
Знание механизма синтеза простагландинов в тканях является источником для понимания процесса родов. Биосинтез простагландинов осуществляется в различных тканях: простациклин ПЦ2 синтезируется в миометрии, Е2 — в амнионе и хорионе, ПГF2a — в децидуальной ткани. Нет четких доказательств увеличения скорости образования ПГ во внутриматочных тканях до начала родов. Тогда как в родах имеется резкое возрастание концентрации ПГ Е2 и ПГ F2 амниотической жидкости. Возрастает также концентрация метаболитов ПГ F2, а именно 13-14 дсгидро-15 кето-ПГ F2 амниотической жидкости, крови и моче. С другой стороны нет четкого доказательства возрастания уровня ПГЕ2 (или метаболитов) в материнской крови (Mitchell M. D., 1988). ПГ F2 может продуцироваться в децидуальной оболочке и в миометрии, по не в плодных оболочках, однако возрастание концентрации ПГ F2 и его метаболитов во время родов отмечено в амниотической жидкости, крови матери и моче. Важно подчеркнуть, что амниотическая жидкость способствует сохранению простагландинов. Так, период полураспада ПГ F2 и Е2 в крови составляет 6- 8 мин, тогда как в амниотической жидкости он колеблется от 4 до 6 часов. Существует гипотеза, что децидуальная активность синхронна с началом родов. Во время родов в амниотической жидкости аккумулируются биологически активные вещества, а именно, арахидоновая кислота, простагландины, цитокины. Концентрация арахидоновой кислоты в амниотической жидкости в родах возрастает в 5-10 раз. Действие простагландинов осуществляется через фосфолипазу А2 или аденилатциклазпую систему, увеличивается количество рецепторов к ПГ Е2 и ПГ F2, а также возрастают концентрации гликозаминглнканов. Установлено, что ПГ Е2 в 10 раз активнее, чем ПГ F2a, что обусловлено количеством рецепторов, В возникновении родовой деятельности простагландины Е и F играют важную роль. Механизм действия их на сократительную деятельность матки изучен недостаточно. Полагают, что механизм стимулирующего действия на матку реализуется деполяризацией клеточных мембран и освобождением ионов кальция (Са2+), что ведет к активации киназой легкой цепи миозина, фосфорилированию миозина и взаимодействию фосфорилированного миозина и актина (Carsten M.E., Miller J.D., 1983), а возможно, их прямым стимулирующим влиянием на гипофиз, в результате усиливается синтез окситоцина (Gillespie Л., 1973). Установлено, что при сочетанном применении ПГЕ2 или ПГ F2 с окситоцином эффективность действия смеси выше, чем одного простагландина. Установлено, что манипуляции с плодными оболочками при влагалищном исследовании (отслаивание, введение баллона), амниотомия, манипуляции с шейкой матки способствуют выработке ПГ F2 и его метаболитов (Mitchell M.D., 197G; Mortimer G. et al., 1985; Mc Colgin S.W. et al., 1993) Синтез простагландинов увеличивается и при прижатии плодных оболочек головкой плода. Их концентрация в передних водах выше, чем в задних.
7
Простагландины в фармакологии
Применение в медицине нашли первые же открытые простагландины E2 и F2 , даже при их непомерной стоимости. Их стали применять для стимуляции родовой деятельности и прерывания беременности. Всемирная организация здравоохранения создала даже специальную Программу по применению простагландинов для медицинского прерывания беременности, планируя таким образом регулировать рождаемость. Дороговизна существовавших тогда коммерческих простагландинов (их получали биологическим путем) побудила к поискам новых природных источников. Такой источник был найден, им оказался горгониевый коралл Plexaura homomalla. Совсем недавно значительные количества простагландинов обнаружены в камбии и почках некоторых древесных пород.
8
Действие простагландинов на гипофиз
Это действие впервые начал изучать Зор и его сотрудники, показавших, что инкубация половинок гипофизов крыс с ПГ-Е приводит к увеличению содержания цАМФ. Максимальный прирост, более чем в 20 раз, наблюдается при дозе 20 мкг/мл , тогда как при минимально эффективная доза ПГ-Е1 равняется 0,1 мкг/мл. ПГ-F, ПГ-В и ПГ-А не активны. Позднее эти данные были подтверждены другими исследователями, показавшими также, что накопление цАМФ под влиянием простагландинов обусловлено активацией аденилциклазы и сопровождается повышенным освобождением из гипофиза ЛГ, СТГ, ТТГ и АКТГ. 7-окса-13-простиноевая кислота, ингибитор действия простагландинов, подавляет стимулирующее влияние ПГ-Е1 на образование цАМФ и СТГ, а также снижает освобождение ТТГ в ответ на синтетический рилизинг-фактор. Активация освобождения гипофизарных гормонов под влиянием простагландинов наблюдается и в условиях «ин виво».
Действие простагландинов на надпочечники
В опытах «ин виво» было установлено, что ПГ-Е при внутривенном введении в дозах 0,125-4,0 мкг на 100 г вызывает увеличение содержания кортикостерона в периферической крови и надпочечниках крыс при одновременном снижении в последних холестерина и аскорбиновой кислоты. ПГ-F и ПГ-А были неактивны. Отсутствие действия ПГ-Е1 у гипофизэктомированных и у получавших морфий крыс позволяет предполагать, что изменение функциональной активности надпочечников опосредовано через стимуляцию гипофиза и гипоталамуса. Возможность такого действия простагландинов доказана экспериментально. Вместе с тем в опытах «ин виво» была показана возможность и непосредственного действия простагландинов на надпочечники. Так ПГ-Е2 увеличивал эндогенное образование кортикостерона при инкубации декапсулированных суперфузированных половинок надпочечников крыс. Действие ПГ-Е2 на стероидогенез оказалось сходным с действием АКТГ, но было более кратковременным. В надпочечниках, полученных от гипофизэктомированных крыс в отдалённые сроки после операции (ч/з 12 час. и позднее), стимулирующего действия простагландинов не проявлялось. В срезах бычьих надпочечников ПГ-Е1 и ПГ-Е2 на 50-100% увеличивали образование альдостерона, кортикостерона и кортизола. Одновременно наблюдалось повышение содержания цАМФ ПГ-А и ПГ-F были неактивны. Пуромицин и отсутствие в среде Са2+ подавляло действие ПГ-Е.
Действие простагландинов на щитовидную железу
В щитовидной железе различных животных и в том числе человека, простагландины имитируют многообразные биологические эффекты ТТГ. Простагландины, особенно ПГ-Е, стимулирует образование коллоида, окисление глюкозы, связывания йода с белком. Так же как и ТТГ простагландины увеличивают в щитовидной железе содержание цАМФ, активируя аденилциклазу.
Характеризуя действие простагландинов в некоторых неэндокринных органах, прежде всего следует отметить влияние их на сокращение гладкомышечной ткани различных органов: матки, яйцевод, желудочно кишечного тракта, бронхов, кровеносных сосудов, сердца и др. На гладкой мускулатуре отчетливо проявляется одна из характерных особенностей простагландинов: зависимость направленности действия от строения и дозы соединения, от состояния ткани, условий постановки опытов. Так ПГ-Е1 и ПГ-Е2 стимулируют сокращение проксимальных участков фаллопиевых труб женщин и расслабляют дистальные. «Ин витро» ПГ-Е и ПГ-В снижают амплитуду и частоту сокращений полосок небеременной матки и усиливают подвижность беременной матки. «Ин виво» все простагландины, в том числе и ПГ-Е, оказывают только стимулирующее действие. Способность простагландинов влиять на сократительную активность матки легла в основу их использования в акушерстве для стимуляции родовой деятельности и искусственного прерывания беременности.
Так же простагландины применяют для подавления секреции желудочного сока, образованию пепсина и соляной кислоты.
Показано участие простагландинов в воспалительном процессе. В очаге воспаления у животных и человека обнаружено повышенное образование простагландинов, подавляемое индометацином и аспирином.
ПГ-Е и ПГ-А у человека и животных проявляют выраженное антигипертензивное действие. Снижение давления под влиянием простагландинов происходит как в результате их периферического сосудорасширяющего действия, так и вследствие изменения деятельности почек. У лиц с гипертонией обнаружено достоверное уменьшение содержания ПГ-А в плазме крови.
9
Список использованной литературы:
http://otherreferats.allbest.ru/biology/00128085_0.html
http://www.womanill.ru/anatomiya/71.html
http://www.nedug.ru/library
http://www.ximicat.com/info.php?id=4592
http://www.bibliotekar.ru/428/7.htm
studfiles.net