|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Платоновы тела. Реферат платоновы телаПлатоновы тела — рефератИркутский государственный технический университет
РЕФЕРАТ тема: «Платоновы тела»
Выполнил студент группы ЭЛ-10-1: Каменский А.
Проверила преподаватель начертательной геометрии: Воронина Е.Ю. Иркутск 2010
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
ПЛАТОНОВЫ ТЕЛА – ПРАВИЛЬНЫЕ МНОГОГРАННИКИ 4 1.1. Пять правильных многогранников 5 1.2. Доказательство существования только пяти правильных многогранников 9
СПИСОК ЛИТЕРАТУРЫ 11
ВВЕДЕНИЕ Влияние знаменитого греческого мыслителя Платона, жившего с 428 по 348 г.г. до н.э., оказало огромное влияние на многие науки, в том числе и на геометрию. «Платоновыми телами» называют правильные многогранники. Они играли в учении Платона важную роль. Тетраэдр символизировал огонь, куб – землю, октаэдр – воздух, икосаэдр – воду, а додекаэдр – символизировал все мироздание – Вселенную, его по латыни стали называть quinta essentia («пятая сущность»). Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб - монокристалл поваренной соли, октаэдр - монокристалл алюмокалиевых квасцов. Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита. Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры двенадцати граней додекаэдра.В реферате я приведу описание Платоновых тел, доказательство того, что существует пять и только пять правильных многогранников, рассмотрю какие фигуры можно построить на основе тел Платона.
ТЕЛА ПЛАТОНА – ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
Многогранники - тела, ограниченные плоскими многоугольниками, они окружают нас повсюду: ведь самая популярная форма современного здания, радиоприемника, телевизора, шкафа – параллелепипед. Среди разнообразных форм многогранников выделяют правильные многогранники. ПРАВИЛЬНЫЙ МНОГОГРАННИК - это выпуклый многогранник, все грани которого являются равными правильными многоугольниками и в каждой вершине сходится одинаковое количество таких многоугольников. В правильном многограннике все ребра, все плоские углы и все двугранные углы равны между собой. Правильных многогранников пять: тетраэдр (четырёхгранник), составленный из четырёх правильных треугольников, куб или гексаэдр (шестигранник), составленный из шести квадратов, октаэдр (восьмигранник), составленный из восьми правильных треугольников, икосаэдр (двадцатигранник), составленный из двадцати правильных треугольников, и загадочный додекаэдр (двенадцатигранник), составленный из двенадцати правильных пятиугольников. Интересен «закон взаимности» для правильных многогранников. Если соединить отрезками центры соседних граней правильного многогранника, то эти отрезки станут рёбрами другого правильного многогранника: у куба - октаэдр, а у октаэдра - куб; у икосаэдра - додекаэдр, а у додекаэдра -икосаэдр; а у тетраэдра - снова тетраэдр. Правильные многогранники привлекают совершенством своих форм, полной симметричностью, что дало возможность венгерскому инженеру Эрне Рубику создать свой знаменитый «кубик Рубика», а затем и аналогичные головоломки из остальных Платоновых тел.
1.1. Пять правильных многогранников
Тетраэдр – правильный многогранник, поверхность которого состоит из четырех правильных треугольников. Имеет 4 вершины и 6 ребер. В каждой вершине сходится 3 ребра (рис.1).
Рис. 1
Октаэдр – правильный многогранник, поверхность которого состоит из 8 правильных треугольников. Имеет 6 вершин, 12 ребер. В каждой вершине сходится по 4 ребра (рис.3).
Рис. 3
Додекаэдр – правильный многогранник, все грани которого являются правильными пятиугольниками. Имеет 12 граней, 20 вершин и 30 рёбер. (рис.4).
Рис. 4
Икосаэдр – правильный многогранник, поверхность которого состоит из 20 правильных треугольников. Имеет 12 вершин, 30 ребер. В каждой вершине сходится по 5 ребер (рис.5).
Рис. 5 Куб или правильный гексаэдр – правильный многогранник. Все грани квадраты. Имеет 6 граней, 8 вершин, 12 ребер. Существует лишь один тип правильного многогранника, грани которого являются квадратами (рис.2).
Рис. 2
В эпоху Возрождения учёный Иоганн Кеплер называл куб "родителем" всех правильных многогранников. На основе куба он смог построить все другие виды правильных многогранников. Если провести в противоположных гранях куба скрещивающиеся диагонали, то их концы окажутся вершинами тетраэдра (рис. 7), а вершины октаэдра – это центры граней куба (рис. 6). Полученные многоугольники действительно правильные, так как их грани – правильные треугольники. Равенство же двугранных углов следует из того, что при повороте куба ребро многогранника можно перевести в любое другое. Для того чтобы построить икосаэдр, на каждой грани куба нужно построить отрезок так, чтобы он был параллелен двум сторонам своей грани и перпендикулярен таким же отрезкам на соседних гранях. Середина его должна совпадать с центром грани. Соединим концы этих отрезков между собой, и мы получим двадцатигранник, грани которого – треугольники, и при каждой вершине их пять. Правильный додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен - ведь правильных многоугольников на плоскости бесконечно много!
Рис. 6 Рис. 7
1.2. Доказательство существования только пяти правильных многогранников.
Выясним, из каких многоугольников можно составить поверхность правильного многогранника. Т.к. многогранник должен иметь не менее трех граней и сумма плоских углов при вершине правильного многоугольника (грани многогранного угла) должна быть не больше 360 градусов, такими многоугольниками могут быть только правильный треугольник (угол при вершине 60 градусов), квадрат (90 градусов), правильный пятиугольник (108 градусов). Значит, только из этих видов правильных многоугольников может быть образована поверхность правильного многогранника. В тетраэдре в каждой вершине сходятся три ребра, иными словами, каждая вершина окружена тремя треугольниками. Если развернуть эти треугольники на плоскость, можно подсчитать, сколько градусов содержит полученный при этом их общий угол. Поскольку внутренний угол равностороннего треугольника равен 60 градусам, три таких угла дадут в сумме 3 x 60 = 180 градусов. Если мы приложим к нему ещё один равносторонний треугольник, то получим в сумме 240 градусов. Но в таком случае мы придём к развёртке вершины октаэдра. Добавление ещё одного треугольника даёт 300 градусов, и мы получаем развёртку вершины икосаэдра. Наконец, добавление шестого треугольника даёт полный угол в 360 градусов – и мы сразу убеждаемся, что он не может соответствовать никакой вершине многогранника. Перейдём к квадратам. Естественно, что наименьшее их число равно трём. Три по 90 градусов дают в сумме 270 градусов; так получается вершина куба. Добавляя ещё один квадрат, мы приходим к полному углу в 360 градусов. Следовательно, существует только один тип правильного многогранника, грани которого являются квадратами. Для пятиугольников минимальное число граней – три – даёт нам вершину додекаэдра; если же мы возьмём более трёх пентаграмм, то суммарный угол даже превзойдёт 360 градусов.Для шестиугольников уже и минимальное их число – три – слишком велико: три раза по 120 градусов сразу 360 градусов. Поэтому правильного многогранника с шестиугольными гранями не существует. Тем более не подходят правильные многоугольники с числом сторон, большим шести.Таким образом, мы убеждаемся, что может существовать лишь пять правильных многогранников.
СПИСОК ЛИТЕРАТУРЫ
6. "Большая Энциклопедия Кирилла и Мефодия 2004" referat911.ru Читать реферат по математике: "Платоновы тела"(Назад) (Cкачать работу) Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме! Выполнил ученик 10 «А» класса Сергиевский Илья Существуют пять уникальных форм, имеющих первостепенное значение для понимания как сакральной, так и обычной геометрии. Они называются Платоновыми телами, хотя задолго до Платона ими пользовался Пифагор, назвав их идеальными геометрическими телами. Любое Платоново тело имеет некоторые особые характеристики. Во-первых, все грани такого тела равны по размерам. Например, куб, самое известное из всех Платоновых тел, имеет каждую грань в виде квадрата, и все они — одного размера. Во-вторых, ребра Платонова тела — одной длины: все ребра куба одинаковы. В-третьих, внутренние углы между его смежными гранями равны. У куба такой угол равен 90 градусам. В-четвертых, каждое из Платоновых тел может быть вписано в сферу, каждой своей вершиной касаясь поверхности этой сферы. Есть только четыре формы помимо куба (А), отвечающие всем этим характеристикам: тетраэдр — В (тетра означает «четыре»), имеющий четыре грани в виде равносторонних треугольников; октаэдр — С (окта означает «восемь»), восемь граней которого — равносторонние треугольники одинакового размера; икосаэдр — D; додекаэдр — Е. Последние два Платоновых тела несколько сложнее. Икосаэдр имеет 20 граней, представленных равносторонними треугольниками. Додекаэдр (додека — это «двенадцать») имеет 12 граней в виде правильных пятиугольников. На самом деле есть изначальная форма — это сфера, с которой все начинается, которую считают шестым телом. Древние алхимики и считали, что эти шесть форм связаны с определёнными элементами (см. рисунок): куб – земля, тетраэдр – огонь, октаэдр — воздух, икосаэдр — вода, додекаэдр – эфир (эфир, прана и тахионная энергия — одно и то же; они распространяются повсюду и находятся в любой точке пространства – времени - измерения). А сфера - пустота. Эти шесть элементов являются строительными камнями Вселенной. Они создают качества Вселенной. Шесть элементов — первичных форм, как они представлены вписанными в сферы, — можно соотнести с тремя столбами, соответствующими Древу Жизни и трем первичным энергиям Вселенной. Слева — мужской столб, справа — женский, центральный столб, творящий, — это дитя. Или, если обратиться к веществу Вселенной, получится протон слева, электрон справа и нейтрон в центре. Левый столб, содержащий тетраэдр и куб, — это мужской компонент сознания, левое полушарие мозга. Поверхности этих многогранников — треугольники или квадраты. Центральный столб — это мозолистое тело, соединяющее левое и правое полушария. Правый столб, содержащий додекаэдр и икосаэдр, — это женский компонент сознания, правое полушарие мозга, а поверхности многогранников — треугольники и пятиугольники. Эти три столба символизируют состояние земного сознания. Левый столб свидетельствует о том, что мужская часть сознания Земли уже создана, а правый — что сейчас заканчивается создание женского компонента, необходимого для целостности и равновесия. Куб. Куб отличается от других Платоновых тел одной особенностью, которой нет ни у кого, кроме сферы: куб и сфера могут совершенно вмещать в себя четыре других Платоновых тела и друг друга, охватывая их своей поверхностью. В то время как сфера — это Мать, самая важная женская форма, куб — Отец, самая важная мужская форма. Во всей реальности сфера и куб — две самые важные формы, они почти всегда доминируют, когда речь идет о первоначальных связях в творении. Символически куб идентичен квадрату — четверке, числу материи, числу четырех элементов. Куб — это идеальная стабильность, устойчивое основание — символ самой земли. Поэтому часто монархи (например египетские фараоны) изображаются сидящими на кубическом камне, символе устойчивости их царства. Куб — квадрат в трех измерениях, каждая грань которого имеет те же характеристики, что и остальные, поэтому он стал эмблемой правды. В иконографии часто используется какпостамент для аллегорических фигур Правды и Истории. Согласно преданию народа майя, Древо Жизни выросло из куба. Как в иудаизме, так и в исламе куб являет собой центр веры. Паломники в Мекке обходят вокруг кубического сооружения Каабы, наиболее почитаемой мусульманской святыни. Развертка куба в пространство представляет собой крест, и если христианские церкви обычно строятся так, что имеют в плане форму креста, то это именно потому, что крест — развертка в плоскость кубического камня: церковь должна представлять собой утверждение религии Христа на земле на долгие времена. Куб, являясь полностью закрытой фигурой, символизирует ограничение. Поэтому порожденный разверткой куба крест также обозначает ограничение, страдание. Тетраэдр. Эта фигура состоит из четырех правильных треугольников. Если развернуть их на плоскости, они образуют равносторонний треугольник — символ Бога. Как и равносторонний треугольник, тетраэдр представляет собой воплощение самой гармонии и равновесия. Угловые же точки куба, как и квадрата, находятся на разных расстояниях друг от друга, а это значит, что в этих фигурах есть постоянное напряжение. Октаэдр. Собственно говоря, октаэдр является «двойником» куба: если соединить центры смежных граней куба, то получится октаэдр. Додекаэдр и икосаэдр. Додекаэдр — настолько сакральная форма, что во времена Пифагора, если бы кто-то произнес это слово вне пифагорейской школы, его убили бы на месте. Двумястами годами позже, когда жил Платон, он уже мог говорить о нем, но очень осторожно. «Это отчасти объяснялось тем, что с додекаэдром связывали пятый элемент — эфир, или прану. В алхимии обычно речь идет только о четырех элементах: огне, земле, воздухе и воде, а о пране говорится редко, потому что она считается очень сакральной. Другая причина в том, что в те времена тщательно скрывалось древнее знание, согласно которому додекаэдр близок к внешнему краю энергетического поля человека и является высшей формой сознания... Додекаэдр — это конечная точка геометрии, и он очень важен. На микроскопическом уровне додекаэдр и икосаэдр — это взаимосвязанные параметры ДНК, план-карта всей жизни» (Друнвало Мелхиседек).Если соединить центры граней додекаэдра прямыми линиями, то получится икосаэдр. Соединив центры граней икосаэдра, снова получим додекаэдр. Многие многогранники имеют «двойников». Вообще многогранник — одна из трехмерных геометрических фигур. Во все времена им предавали магическое значение. referat.co Платоновы ТелаПлатоновы Тела
Каждый, изучавший священную геометрию или даже просто обычную геометрию, знает, что существуют пять уникальных форм, и для понимания как священной, так и обычной геометрии они являются решающими. Их именуют Платоновыми телами (Рис.6-15>). Платоново тело определяется некоторыми характеристиками. Прежде всего, все грани его имеют одинаковый размер. Например, куб, самое известное из Платоновых тел, имеет каждой своей гранью квадрат, и все его грани - одинакового размера. Второе, все рёбра Платонового тела имеют одинаковую длину; все рёбра куба – одной длины. Третьее: все внутренние углы между гранями имеют одинаковую величину. В случае куба, этот угол равен 90 градусам. И четвёртое: если Платоново тело поместить внутрь сферы (правильной формы), то все вершины его будут касаться поверхности сферы. Таким определениям, кроме куба (А), отвечают только четыре формы, обладающие всеми этими характеристиками. Вторым будет тетраэдр (В) (тетра означает «четыре») –это полиэдр, имеющий четыре грани, все - равносторонние треугольники, одинаковую длину рёбер и одинаковый угол, и – все вершины касаются поверхности сферы. Другая простая форма – это октаэдр (С) (окта значит «восемь»), все восемь граней представляют собой равносторонние треугольники одинакового размера, длина рёбер и углов одинакова, и все вершины касаются поверхности сферы. Остальные два Платоновых тела немного сложнее. Один называется икосаэдром (D) - значит, он имеет 20 граней, имеющих вид равносторонних треугольников при одинаковой длине рёбер и углов; все его вершины тоже касаются поверхности сферы. Последний называется пентагональным додeкаэдром (Е) (додэка - это 12), гранями которого являются 12 пентагонов (пятиугольники) при одинаковой длине рёбер и одинаковых углах; все его вершины касаются поверхности сферы. Если вы – инженер или архитектор, то вы изучали эти пять форм в колледже, хотя бы поверхностно, потому что они являются базовыми структурами. Их источник: Куб МетатронаЕсли вы изучаете священную геометрию, то неважно, какую вы раскроете книгу: она покажет вам пять Платоновых тел, потому что они являются азбукой священной геометрии. Но если вы прочитаете все эти книги – a я прочитал их почти что все – и спросите специалистов: «Откуда берутся Платоновы тела? Каков их источник?», то почти каждый скажет, что он не знает. Дело в том, что происходят эти пять Платоновых тел из первой информационной системы Плода Жизни. Сокрытые в линиях Куба Метатрона (см. Рис.6-14>), все эти пять форм там существуют. При разглядывании Куба Метатрона вы смотрите на все пять Платоновых тел одновременно. Чтобы увидеть каждое из них лучше, вам нужно проделать заново тот трюк, где вы стирали некоторые из линий. Стерев все линии за исключением нескольких определённых, вы получите этот куб (Рис.6-16 >). Ну что, видите куб? В действительности, это куб внутри куба. Некоторые из линий проведены пунктиром, потому что они оказываются за передними гранями. Они невидимы, если куб становится сплошным, непрозрачным телом. Вот непрозрачная форма большего куба (Рис.6-16а>). (Убедитесь в том, что вы его видите, потому что увидеть следующие фигуры по мере нашего продвижения будет всё труднее и труднее). Стирая некоторые линии и соединяя другие центры (Рис.6-17>), вы получаете два вставленных друг в друга тетраэдра, которые образуют звёздный тетраэдр. Как и в случае с кубом, на самом деле вы получаете два звёздных тетраэдра, один в другом. Вот сплошная форма большего звёздного тетраэдра (Рис.6-17а>). Рис.6-18> – это октаэдр внутри другого октаэдра, хотя вы смотрите на них под определённым особым углом. Рис.6-18а> – непрозрачная версия большего октаэдра. Рис.6-19> – один икосаэдр внутри другого, и Рис.6-19а> – непрозрачная версия большего из них. Это становится как-то проще, если вы рассматриваете его таким образом. Это - трёхмерные объекты, исходящие из тринадцати кругов Плода Жизни. Это картина Суламифь Вулфинг – Христос-Младенец внутри икосаэдра (Рис.6-20>), что очень соответствует истине, поскольку икосаэдр, как вы сейчас увидите, представляет воду, а Христос был крещён в воде, начале нового сознания. Это пятая и последняя форма – два пентагональных додекаэдра, один в другом (Рис.6-21>) (здесь для простоты показан только внутренний додекаэдр). Рис. 21 – это сплошная форма. Как мы видели, все пять Платоновых тел могут быть обнаружены в Кубе Метатрона (Рис.6-22>). Недостающие линииКогда я искал последнее Платоново тело в Кубе Метатрона, додекаэдр, у меня ушло на это около двадцати лет. После того, как ангелы сказали: «Они все тут внутри», я начал смотреть, но никак не мог найти додэкаедр. Наконец, однажды один ученик сказал мне: «Эй, Друнвало, ты забыл некоторые линии Куба Метатрона.» Когда он показал их, я посмотрел и сказал: «Ты прав, я забыл». Я думал, что я соединил все центры между собой, но некоторые я, оказывается, забыл. Не удивительно, что я не мог найти этот додекаэдр, потому что его определяли эти недостающие линии! Более двадцати лет я был убеждён, что у меня были проведены все линии, в то время, как у меня их не было. Это одна из больших проблем науки, когда считается, что задача разрешена; затем она двигается дальше и использует эту информацию для дальнейших своих построений. Сейчас, например, наука имеет такого же рода проблему вокруг тел, падающих в вакууме. Всегда считалось, что они падают с одинаковой скоростью, и многое в нашей передовой науке основывается на этом фундаментальном «законе». Было доказано, что это не так, но наука этим всё равно продолжает пользоваться. Вращающийся шар падает значительно быстрее, чем невращающийся. Когда-то наступит день научной расплаты. Когда я был женат на Макки, она тоже была очень увлечена священной геометрией. Её работа для меня очень интересна, потому что она представляет женский аспект, там действуют пентагональные энергии правого полушария мозга. Она показывает, как эмоции, цвета и формы - все взаимосвязаны. В действительности она нашла додекаэдр в Кубе Метатрона прежде, чем это сделал я. Она взяла его и сделала нечто такое, до чего я бы никогда не додумался. Видите ли, Куб Метатрона обычно рисуется на плоской поверхности, но в самом деле это трёхмерная форма. Так, однажды я держал в руках это трёхмерную форму и пытался найти там додэкаедр, а Макки сказала: «Дай-ка, я взгляну на эту штуку». Она взяла трёхмерную форму и провернула его на угол пропорции f (phi ratio). (О чём мы ещё не говорили, так это то, что пропорция (ratio) Золотой Середины, именуемая также пропорцией f (phi ratio), равняется точно 1,618) . Вращение формы таким образом было чем-то, до чего я бы никогда не додумался. Проделав это, она обрисовала отбрасываемую этой формой тень и получила такое изображение (Рис.6-23>). Макки сначала сама создала это, а затем передала мне. Центр тут находится в пентагоне А. Затем, если вы возьмёте пять пентагонов, выходящих из А (пентагоны В) и ещё по одному пентагону, выходящему из каждого из этих пяти (пентагоны С), вы получаете развёрнутый додекаэдр. Я подумал: «Вау, я впервые нахожу тут вообще какой-то додэкаедр.» Она проделала это за три дня. Я никак не мог найти его целых двенадцать лет. Однажды мы почти целый день провели за разглядыванием этой картинки. Она была потрясающа, потому что все до единой линии на этой картинке соответствуют пропорции Золотой Середины. И всюду тут – трёхмерные прямоугольники Золотой Середины. Один есть в точке Е, где два ромба, сверху и снизу, являются верхом и низом трёхмерного прямоугольника Золотой Середины, а пунктирные линии являются его рёбрами. Это поразительная штука. Я сказал: «Я не знаю, что это такое, но это, вероятно, очень важно». Так, мы отложили это, чтобы поразмыслить потом. Квази-кристаллыПозже я узнал о совершенно новой науке. Эта новая наука полностью изменит мир технологии. При использовании новой технологии металлурги наверняка смогут создать металл в десять раз твёрже алмаза, если вы можете себе такое вообразить. Он будет невероятно прочным. Долгое время при исследовании металлов для того, чтобы увидеть, где расположены атомы, пользовались методом, именуемым рентгеновской дифракцией. Скоро я покажу фотографию рентгеновской дифракции. Обнаружились некие особые модели, определяющие существование только каких-то определённых атомных структур. Казалось, что это-то и всё, что можно узнать, потому что это было всё, что возможно было обнаружить. Это ограничило возможность изготовления металлов. Затем, в журнале «Scientific American» проходила игра, которая основывалась на модели Пенроуза. Был такой британский математик и релятивист, Роджер Пенроуз (Roger Penrose), вычислявший, как уложить черепицу, плитки которой имеют форму пентагона, так, чтобы она полностью покрывала плоскую поверхность. Полностью покрыть плоскую поверхность черепицей в форме только лишь пентагонов невозможно – заставить это работать нет никакой возможности. Тогда он предложил две формы ромба, являющиеся производными от пентагона, и, используя эти две формы, ему удавалось создать множество различных моделей, покрывающих плоскую поверхность. В восьмидесятых годах журнал «Scientific American» предложил игру, суть которой сводилась к тому, чтобы сложить уже эти данные модели в новые формы; впоследствии это дало возможность учёным-металлургам, наблюдавшим за игрой, предположить существование чего-то нового в физике. В конце концов, они обнаружили новую модель атомной решётки. Она существовала всегда; они просто её обнаружили. Эти модели решёток теперь именуются квази-кристаллами; это новое явление (1991). Через металлы они вычисляют, какие формы и модели возможны. Учёные находят способы использования этих форм и моделей для изготовления новых металлических изделий. Я готов биться об заклад, что модель, которую получила Макки из Куба Метатрона, является самой замечательной из всех, и что любая модель Пенроуза является её производной. Почему? Потому, что она вся подчинена закону Золотого Сечения, она основная – она произошла непосредственно из основной модели в Кубе Метатрона. Хотя это не моё дело, но когда-нибудь, вероятно, я определю, так ли это. Я вижу, что вместо того, чтобы использовать две модели Пенроуза и пентагон, тут используется только одна из этих моделей и пентагон (Я как раз подумал, что я предложил бы этот вариант). То, что происходит в этой новой науке сейчас, интересно. Новейшая информация: Согласно данным Девида Эдейра (David Adair), NАSА только что изготовила в космосе металл, который в 500 раз прочнее титана, лёгок, как пена и прозрачен, как стекло. Основан ли он на этих законах? По мере того, как будут разворачиваться события в этой книге, вы обнаружите, что священная геометрия может в подробностях объяснить любой, какой бы то ни было, предмет. Не существует ни единого явления, которое вы могли бы произнести своим голосом, чтобы оно не могло бы быть описано целиком, полностью и в совершенстве, с учётом всего возможного знания, священной геометрией. (Мы различаем понятия «знание» и «мудрость»: мудрость нуждается в опыте). Однако же, более важная цель этого труда заключается в напомнинании вам того, что вы сами имеете потенциал живого поля Мер-Ка-Ба вокруг своего тела и в том, чтобы научить вас, как его использовать. Я буду постоянно подходить к местам, где я отклоняюсь ко всякого рода корням и ветвям и говорю на всевозможные мыслимые и немыслимые темы. Но я всегда буду возвращаться назад в колею, потому что я веду всё в одном определённом направлении, к Мер-Ка-Ба, световому телу человека. Много лет я провёл в изучении священной геометрии, и уверен, что можно узнать всё, что вообще узнать возможно, всё что угодно о любом предмете, стоит только сосредоточить своё внимание на сокрытой за этим предметом геометрии. Всё, что необходимо, это компас и линейка – вам даже компьютер не нужен, хотя, он помогает. Всё знание вы уже имеете внутри себя, и всё, что вам нужно сделать, это раскрыть его. Вы просто исследуете карту движения духа в Великой Пустоте, вот и всё. Вы можете разгадать тайну любого предмета. Подведём итог: первая информационная система выходит из Плода Жизни через Куб Метатрона. Соединением центров всех сфер вы получаете пять фигур – в действительности шесть, потому что ещё есть центральная сфера, с которой всё начиналось. Так, вы имеете шесть первоначальных форм – тетраэдр, куб, октаэдр, икосаэдр, додекаэдр и сфера. Новейшая информация: В 1998 году мы начинаем развивать ещё одну новую науку: нанотехнологию. Мы создали микроскопические «машины», способные входить внутрь металла или кристаллических матриц и перестраивать атомы. В 1996 или 1997 годах в Европе при использовании нанотехнологии был создан алмаз из графита. Это алмаз размером около трёх футов в поперечнике, и он – настоящий. Когда соединятся наука о квази-кристаллах и нанотехнология, то наше представление о жизни тоже изменится. Взгляните на конец 1800-ых годов по сревнению с сегодняшним днём. Платоновы тела и ЭлементыТакие древние алхимики и великие души, как Пифагор, отец Греции, считали, что каждая из этих шести фигур представляет собой модель соответствующего элемента (Рис.6-24>). Тетраэдр считался моделью элемента огня, куб – земли, октаэдр – воздуха, икосаэдр – воды, и додекаэдр – эфира. (Эфир, прана и энергия тахиона) – всё это одно и то же; оно распространено всюду и доступно в любой точке пространства/времени/измерения. Это великая тайна технологии нулевой точки. И сфера представляет Пустоту. Эти шесть элементов являются строительными кирпичиками вселенной. Они создают качества вселенной. В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир или прана, потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаедральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Я могу сказать это потому, что человеческое тело является голограммой вселенной и содержит в себе те же самые основы и законы. Двенадцать созвездий зодиака входят сюда же. Додекаэдр есть завершающая фигура геометрии и она очень важна. На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, планами, по которым построена вся жизнь. Можно соотнести три столбика на этом изображении (Рис.6-24>) с Древом Жизни и тремя первичными энергиями вселенной: мужской (слева), женской (справа) и детской (в центре). Либо же, если вы вникаете непосредственно в структуру вселенной, то имеете протон слева, электрон справа и нейтрон посередине. Этот центральный столбик, который является созидающим, есть младенец. Помните, чтобы начать процесс выхода из Пустоты, мы шли от октаэдра к сфере. Это начало процесса созидания, и обнаруживается оно в младенце, или центральном столбике. Левый столбик, содержащий тетраэдр и куб, представляет мужскую составляющую сознания, левое полушарие мозга. Гранями этих полигонов являются треугольники или квадраты. Центральный столбик – это мозолистое тело (corpus callosum), соединяющее левую и правую стороны. Правый столбик, содержащий додекаэдр и икосаэдр представляет женскую составляющую сознания, правое полушарие мозга, и грани этих полигонов составлены из треугольников и пентагонов. Таким образом, полигоны слева имеют трёх- и четырёхрёберные грани, а формы справа имеют трёх- и пятирёберные грани. Говоря языком Земного сознания, правый столбик является недостающей составляющей. Мы создали мужскую (левую) сторону Земного сознания, и теперь, для достижения целостности и равновесия, мы завершаем создание женской составляющей. Правая сторона связана также с Христовым сознанием или сознанием единства. Додекаэдр является основной формой сетки Христова сознания вокруг Земли. Две формы правого столбика представляют собой друг относительно друга то, что именуется парными фигурами, то есть, если вы соедините центры граней додекаэдра прямыми линиями, то получите икосаэдр, если же вы соедините центры икосаэдра, то получите опять додекаэдр. Многие многогранники имеют пары. Священные 72В книге Дан Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру. Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК. Уже определено, что в основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи. Этот угол в 72 градуса, вращающийся в нашей ДНК, связан с планом/назначением Великого Белого Братства. Как вам, быть может, известно, с Великим Белым Братством связано 72 ордена. Многие говорят о 72 ангельских орденах, а Иудеи упоминают 72 названия Бога. Причина, почему именно 72, имеет отношение к строению Платоновых тел, что связано также с сеткой Христова сознания вокруг Земли. Если взять два тетраэдра и наложить их друг на друга (но в различных положениях), то получится звёздный тетраэдр, который при рассмотрении под определённым углом будет выглядеть никак иначе, как куб (Рис.6-25>). Вы можете увидеть, как они взаимосвязаны. Таким же образом можно сложить вместе пять тетраэдров и получить икосаэдральный колпачок (Рис.6-26). Если создать двенадцать икосаэдральных колпачков и наложить по одному на каждую грань додекаэдра (на создание додекаэдра потребуется 5 раз 12 или 60 тетраэдров), то это будет звёздный – stellated – додекаэдр, потому что каждая его вершина оказывается точно над центром каждой грани додекаэдра. Парная ему фигура будет составлена из 12 вершин в центре каждой грани додекаэдра и окажется икосаэдром. Эти 60 тетраэдров плюс 12 точек в центрах составят в сумме 72 – опять число орденов, связанных с Белым Братством. Братство в действительности действует через физические взаимоотношения этой звёздной формы додекаэдра/икосаэдра, которая является основой сетки Христова сознания вокруг мира. Иными словами, Братство предпринимает попытки выявления сознания правого полушария мозга планеты. Первоначальный орден был Альфой и Омегой – Орден Мелхизедек, который был основан Мачивентой Мелхизедек (Machiventa Melchizedek) около 200200 лет назад. С тех пор были основаны другие ордена, всего 71. Самый молодой – это Братство Семи Лучей в Перу/Боливия, семьдесят второй орден. Каждый из 72 орденов имеет ритм жизни, подобный синусоиде, где некоторые из них проявляются в течение какого-то отрезка времени, затем на некоторое время исчезают. У них есть биоритмы точно также, как имеет их человеческое тело. Цикл Ордена Розенкрейцеров, например, составляет столетие. Они проявляются на сто лет, затем на следующие сто лет исчезают совершенно – они буквально исчезают с лица Земли. Спустя сто лет, они опять появляются в этом мире и действуют в течение следующих ста лет. Все они находятся в различных циклах и все действуют сообща ради достижения одной цели – вернуть Христово сознание назад на эту планету, чтобы восстановить эту утраченную женскую составляющую сознания и привести к равновесию левое и правое полушарие мозга планеты. Есть другой способ рассмотрения этого явления, коорый действительно необычен. Я к этому подойду, когда мы будем говорить об Англии. Использование бомб и понимание основной модели творенияВопрос: Что происходит с элементами, когда взрывают атомную бомбу? Что касается элементов – они превращаются в энергию и другие элементы. Но дело не только в этом. Имеются бомбы двух видов: распада и расплава - термоядерные. Распад расщепляет материю на части, а термоядерная реакция сплавляет её воедино. Со сплавлением воедино всё в порядке – относительно этого никто не жалуется. Все известные солнца во вселенной представляют собой термоядерные реакторы. Я отдаю себе отчёт в том, что произносимое мною сейчас ещё не признано наукой, но - разрывание материи на части здесь, на Земле, воздействует на соответствующую область во внешнем космосе – как вверху, так и внизу. Иными словами, микрокосмос и макрокосмос взаимосвязаны. Вот почему реакция распада находится вне закона во всей вселенной. Взрывание атомных бомб вызывает также чудовищное нарушение равновесия на Земле. Например, если принять во внимание, что созидание уравновешивает землю, воздух, огонь, воду и эфир, то атомная бомба становится причиной проявления огромного количества огня на одном месте. Это приводит к нарушению равновесия и Земля должна на это отреагировать. Если вылить на город 80 биллионов тонн воды, это тоже будет неуравновешенной ситуацией. Если только где-то оказывается слишком много воздуха, слишком много воды, слишком много чего бы то ни было, то это нарушает равновесие. Алхимия есть знание о том, как все эти явления удерживать в равновесии. Если вы понимаете значение этих геометрических фигур и знаете их взаимоотношения, то вы можете создать то, что хотите. Вся идея заключается в понимании лежащей в основе карты. Помните, карта показывает путь, которым дух движется в Пустоте. Если вы знаете лежащую в основе карту, тогда вы обладаете знанием и пониманием, необходимым для сотворчества с Богом. Рис.6-27> показывает взаимоотношения всех этих фигур. Каждая вершина связана со следующей и все они находятся в определённых математических соотношениях, связанных с пропорцией f (phi ratio). gorodnaneve.com |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|