Реферат по теме
«Устройство персонального компьютера»
Выполнил: Рожнятовский Олег Всеволодович, Маркетинг 1-2
12 октября 1999 г.
Содержание
I История развития персональнх компьютера 3_
II Структура ПК 8
а) Основные устройства 8_
б) Процессоры 8
в) Контролеры 10
в) Память ROM, RAM 11
г) Жесткий диск 14
III Периферийные устройства ПК 15
а) Мониторы 15
б) Устройства ввода 16
в) ВЗУ 18
г) Привод CD-ROM 20
IV Принтеры, сканеры 22
V Сети 25
VI Маркетинг 25
VII Заключение 26
VIII Библиография 27
I История развития персональных компьютеров
Как был изобретен компьютер. Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Многие тысячи лет назад для счета использовались счетные палочки, камешки и т.д. Более 1500 лет тому назад (а может быть и значительно раньше) для облегчения вычислений стали использоваться счеты.
В 1642 г. Блез Паскаль изобрел устройство, механически выполняющее сложение чисел, а в 1673 г. Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия. Начиная с XIX в. арифмометры получили очень широкое применение. На них выполняли даже очень сложные расчеты, например расчеты баллистических таблиц для артиллерийских стрельб. Существовала и специальная профессия — счетчик — человек, работающий с арифмометром, быстро и точно соблюдающий определенную последовательность инструкций (такую последовательность инструкций впоследствии стали называть программой). Но многие расчеты производились очень медленно — даже десятки счетчиков должны были работать по нескольку недель и месяцев. Причина проста-— при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограничена.
В первой половине XIX в. английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство — Аналитическую машину, которая должна была выполнять вычисления без участия человека. Для этого она должна была уметь исполнять программы, вводимые с помощью перфокарт (карт из плотной бумаги с информацией, наносимой с помощью отверстий, они в то время уже широко употреблялись в ткацких станках), и иметь «склад» для запоминания данных и промежуточных результатов (в современной терминологии — память). Бэббидж не смог довести до конца работу по созданию Аналитической машины — она оказалась слишком сложной для техники того времени. Однако он разработал все основные идеи, и в 1943 г. американец Говард Эйкен с помощью работ Бэббиджа на основе техники XX в. — электромеханических реле — смог построить на одном из предприятий фирмы IBM такую машину под названием «Марк—1». Бще раньше идеи Бэббиджа были переоткрыты немецким инженером Конрадом Цузе, который в 1941 г. построил аналогичную машину.
К этому времени потребность в автоматизации вычислений (в том числе для военных нужд — баллистики, криптографии и т.д.) стала настолько велика, что над созданием машин типа построенных Эйке-ном и Цузе одновременно работало несколько групп исследователей. Начиная с 1943 г. группа специалистов под руководством Джона Мочли и Преспера Экерта в США начала конструировать подобную машину уже на основе электронных ламп, а не реле. Их машина, названная ENIAC, работала в тысячу раз быстрее, чем Марк—1, однако для задания ее программы приходилось в течение нескольких часов или даже нескольких дней подсоединять нужным образом провода. Чтобы упростить процесс задания программ, Мочли и Экерт стали конструировать новую машину, которая могла бы хранить программу в своей, памяти. В 1945 г. к работе был привлечен знаменитый математик Джон фон Неймав, который подготовил доклад об этой машине. Доклад был разослан многим ученым и получил широкую известность, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров.
Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г. английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 г. Джон фон Нейман. Расскажем поэтому об этих принципах.
Как появились персональные компьютеры. Компьютеры 40-х и 50-х годов были очень большими устройствами — огромные залы были заставлены шкафами с электронным оборудованием. Все это стоило очень дорого, поэтому компьютеры были доступны только крупным компаниям и учреждениям. Однако в борьбе за покупателей фирмы, производившие компьютеры и электронное оборудование для них, стремились сделать свою продукцию быстрее, компактнее и дешевле. Благодаря достижениям современной технологии на этом пути были достигнуты поистине впечатляющие результаты.
Первый шаг к уменьшению размеров компьютеров стал возможен с изобретением в 1948 г. транзисторов — миниатюрных электронных приборов, которые смогли заменить в компьютерах электронные лампы. В середине 50-х годов были найдены очень дешевые способы производства транзисторов, и во второй половине 50-х годов появились компьютеры, основанные на транзисторах. Они были в сотни раз меньше ламповых компьютеров такой же производительности. Единственная часть компьютера, где транзисторы не смогли заменить электронные лампы, — это блоки памяти, но там вместо ламп стали использовать изобретенные к тому времени схемы памяти на магйит-ных сердечниках. К середине 60-х годов появились и значительно более компактные внешние устройства для компьютеров, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP—8 размером с холодильник и стоимостью 20 тыс. дол. Но к тому времени был подготовлен еще один шаг к миниатюризации компьютеров — были изобретены интегральные схемы.
До появления интегральных схем транзисторы изготовлялись по отдельности, и при сборке схем их приходилось соединять и спаивать вручную. В 1958 г. Джек Килби придумал, как на одной пластине полупроводника получить несколько транзисторов. В 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел более совершенный метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами. В ( дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год. В 1968 г. фирма Burroughs выпустила первый компьютер на интегральных схемах, а в 1970 г. фирма Intel начала продавать интегральные схемы памяти.
В том же году был сделан еще один важный шаг на пути к персональному компьютеру — Маршиан Эдвард Хофф из той же фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ. Так появился первый микропроцессор Intel-4004, который был выпущен в продажу в конце 1970 г. Конечно, возможности Intel—4004 были куда скромнее, чем у центрального процессора большой ЭВМ, — он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших ЭВМ обрабатывали 16 или 32 бита одновременно). Но в 1973 г. фирма Intel выпустила 8-битовый микропроцессор Intel—8008, а в 1974 г. — его усовершенствованную версию Intel—8080, которая до конца 70-х годов стала стандартом для микрокомпьютерной индустрии.
Вначале эти микропроцессоры использовались только электронщиками-любителями и в различных специализированных устройствах. Но в 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel—8008 компьютера, т.е. устройства, выполняющего те же функции, что и большая ЭВМ. В начале 1975 г. появился первый коммерчески распространяемый компьютер Альтаир-8800, построенный на основе микропроцессора Intel-8080. Этот компьютер, разработанный фирмой МГГ8, продавался по цене около 500 дол. Хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом. В первые же месяцы было продано несколько тысяч комплектов машины. Покупатели этого компьютера снабжали его дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т.д. Вскоре эти устройства стали выпускаться другими фирмами. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это также способствовало популярности компьютеров.
Успех фирмы MITS заставил многие фирмы также заняться производством персональных компьютеров. Появилось и несколько журналов, посвященных персональным компьютерам. Компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Росту объема продаж весьма способствовали многочисленные полезные программы, разработанные для деловых применений. Появились и коммерчески распространяемые программы, например программа для редактирования текстов WordStar и табличный процессор VisiCalc (соответственно 1978 и 1979 гг.). Эти (и многие другие) программы сделали для делового мира покупку компьютеров весьма выгодным вложением денег: с их помощью стало возможно значительно эффективнее выполнять бухгалтерские расчеты, составлять документы и т.д. В результате оказалось, что для многих организаций необходимые им расчеты стало возможно выполнять не на больших ЭВМ или мини-ЭВМ, а на персональных компьютерах, что значительно дешевле.
Появление IBM PC
Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) — ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров.
Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание компьютера всего лишь как мелкий эксперимент — что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не констру-
ировать персональный компьютер «с нуля», а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.
Прежде всего в качестве основного микропроцессора компьютера был выбран новейший тогда 16-разрядный микропроцессор Intel—8088. Его использование позволило значительно увеличить потенциальные возможности компьютера, так как новый микропроцессор позволял работать с 1 Мбайтом памяти, а все имевшиеся тогда компьютеры были ограничены 64 Кбайтами. В компьютере были использованы и другие комплектующие различных фирм, а его программное обеспечение было поручено разработать небольшой фирме Microsoft.
В августе 1981 г. новый компьютер под названием IBM PC (читается — Ай-Би-Эм Пи-Си) был официально представлен публике и вскоре после этого он приобрел большую популярность у пользователей. Через один-два года компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров. Фактически IBM PC стал стандартом персонального компьютера. Сейчас такие компьютеры («совместимые с IBM PC») составляют около 90% всех производимых в мире персональных компьютеров.
II Структура ПК
а) Основные устройства
Из каких же основных элементов состоит современный ПК? Наиболее “весомой” частью любого компьютера является системный блок. Внутри него расположены блок питания, плата с центральным процессором (ЦП), видеоадаптер, жесткий диск, дисководы гибких дисков и другие устройства ввода/вывода информации. Зачастую видеоадаптер и контроллеры ввода/ вывода размещены прямо на плате ЦП. В системном блоке могут размещаться средства мультимедиа: звуковая плата и устройство чтения оптических дисков — CD-ROM. Кроме того, в понятие “компьютер” входит клавиатура, мышь и монитор.
б) Микропроцессоры и системные шины
В IBM РС-совместимых компьютерах используются только микропроцессоры Intel или их клоны, имеющие подобную архитектуру.
Шины. С основными устройствами компьютера микропроцессор связан через так называемую системную шину. По этой шине осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами. Как правило, подключение дополнительных устройств к системной шине производится через разъемы расширения.
Для подключения плат расширения на системной шине компьютеров на базе микропроцессора i8088 (IBM РС и IBM РС/ХТ) используются 62-контактные разъемы. В частности, эта системная шина включает 8 линий данных и 20 адресных линий, которые ограничивают адресное пространство компьютера пределом в
1 Мбайт. В компьютерах PC/AT286 впервые стала применяться новая системная шина ISA (Industry Standart Architecture), по которой можно было передавать параллельно уже 16 разрядов данных, а благодаря 24 адресным линиям напрямую обращаться к 16 Мбайтам системной памяти. Эта системная шина отличается от предыдущей наличием дополнительного З6-контактного разъема для соответствующих плат расширения. Компьютеры на базе микропроцессоров i80386/486 стали применять специальные шины для памяти, что позволило максимально использовать ее быстродействие. Тем не менее некоторые устройства, подключаемые через разъемы расширения системной шины, не могут достичь скорости обмена, сравнимой с микропроцессором. В основном это касается работы с контролерами накопителей и видеоадаптерами. Для решения этой проблемы, стали использовать так называемые локальные (local) шины, которые непосредственно связывают микропроцессор с контролерами этих периферийных устройств. В недалеком прошлом использовались две стандартные локальные шины: VL-bus (VESA Local-bus) и PCI (Peripheral Component Interconnect). Сейчас практически все новые выпускаемые шины – AGP(Advanced Graphic Port) Для подключения устройств к таким шинам на системной плате компьютера имеются специальные разъемы.
Процессор. Является основным компонентом любого ПК.Осуществляет выполнение программ, работающих на компьютере, и управляет работой остальных устройств компьютера. Скорость его работы во многом определяет быстродействие компьютера. В 1ВМ РС используются микропроцессоры, разработанные фирмой Intel, а иногда — совместимые с ними микропроцессоры других фирм.
Характеристики микропроцессоров . Микропроцессоры отличаются друг от друга двмя характеристиками: типом (моделью) и тактовой частотой. Наиболее распространены модели Intel—80486, Pentium, Pentium MMX и Pentium II, они приведены в порядке возрастания производительности и цены. Одинаковые модели микропроцессоров могут иметь разную тактовую частоту — чем выше тактовая частота, тем выше производительность и цена микропроцессора.
Тактовая частота указывает, сколько элементарных операций (тактов) микропроцессор выполняет в одну секунду. Тактовая частота измеряется в мегагерцах (МГц). Следует заметить, что разные модели микропроцессоров выполняют одни и те же операции (например, сложение или умножение) за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций. Поэтому, например, микропроцессор Intel-80386 работает раза в два быстрее Intel-80286 с такой же тактовой частотой.
В настоящее время наиболее распространены процессоры фирмы Intel, хотя ЦП других фирм (AMD, Cyrix) составляют им достойную конкуренцию. В настоящее время выпускаются процессоры серии Pentium II, Pentium III и Pentium Celeron. В то же время в России имеется огромный парк устапевших процессоров 486 и Pentium.
в) Контролеры
Все устройства на системной шине микропроцессор рассматривает либо как адресуемую память, либо как порты ввода-вывода. Вообще говоря, под портом понимают некую схему сопряжения, которая обычно включает в себя один или несколько регистров ввода-вывода (особых ячеек памяти).
О совершении некоего события микропроцессор может узнать по сигналу, называемому прерыванием. При этом исполнение текущей последовательности команд приостанавливается (прерывается), а вместо нее начинает выполняться другая последовательность, соответствующая данному прерыванию. Обычно прерывания подразделяются на аппаратные, логические и программные.
Аппаратные прерывания (IRQ) передаются по специальным линиям системной шины и связаны с запросами от внешних устройств (например, нажатие клавиши на клавиатуре). Логические прерывания возникают при работе самого микропроцессора (например, деление на ноль), а программные инициируются выполняемой программой и обычно используются для вызова специальных подпрограмм.
В первых компьютерах IBM PC использовалась микросхема контролера прерываний i8259 (Interrupt Controller), которая имеет восемь входов для сигналов прерываний (IRQ0-IRQ7). Как известно, в одно и то же время микропроцессор может обслуживать только одно событие и в выборе данного события ему помогает контролер прерываний, который устанавливает для каждого из своих входов определенный уровень важности — приоритет. Наивысший приоритет имеет линия запроса прерывания IRQ0, а наименьший — IRQ7, то есть приоритет убывает в порядке возрастания номера линии. В IBM PC/AT восьми линий прерывания стало уже недостаточно и их количество было увеличено до 15. В первых моделях для этого использовалось каскадное включение двух микросхем i8259. Оно осуществлялось путем подсоединения выхода второго контролера ко входу IRQ2 первого.
Важно для понимания здесь следующее. Линии прерывания IRQ8 — IRQ15 (то есть входы второго контролера) имеют приоритет ниже чем IRQ1, но выше IRQ3.
В режиме прямого доступа (DMA, Direct Memory Access) периферийное устройство связано с оперативной памятью непосредственно, а не через внутренние регистры микропроцессора. Наиболее эффективной такая передача данных бывает в ситуациях, когда требуется высокая скорость обмена для
большого количества информации. Для инициализации процесса прямого доступа на системной шине используются соответствующие сигналы.
В компьютерах, совместимых с IBM РС и PC/XT, для организации прямого доступа в память используется одна 4-канальная микросхема DMA i8237, канал 0 которой предназначен для регенерации динамической памяти. Каналы 2 и 3 служат для управления высокоскоростной передачей данных между дисководами гибких дисков, винчестером и оперативной памятью соответственно.
IBM PC/AT-совместимые компьютеры имеют 7 каналов прямого доступа к памяти. В первых компьютерах это достигалось каскадным включением двух микросхем i8237, как и в случае контролеров прерываний.
г) Память Rom , Ram
Все персональные компьютеры используют три вида памяти: оперативную, постоянную и внешнюю (различные накопители). Оперативная память предназначена для хранения переменной информации, так как она допускает изменение своего содержимого в ходе выполнения микропроцессором
соответствующих операций. Поскольку в любой момент времени доступ может осуществляться к произвольно выбранной ячейке, то этот вид памяти называют также памятью с произвольной выборкой — RAM (Random Access Memory).
Все программы, в том числе и игровые, выполняются именно в оперативной памяти. Постоянная память обычно содержит такую информацию, которая не должна меняться в течение длительного времени. Постоянная память имеет собственное название — ROM (Read Only Memory), которое указывает на то, что ею обеспечиваются только режимы считывания и хранения.
Логическая организация памяти. Как известно, используемый в IBM РС, PC/XT микропроцессор i8088 через свои 20 адресных шин предоставляет доступ всего к 1-Мбайтному пространству памяти. Первые 640 Кбайт адресуемого пространства в IBM РС-совместимых компьютерах называют обычно стандартной памятью (conventional memory). Оставшиеся 384 Кбайта зарезервированы для системного использования и носят название памяти в верхних адресах (UMB, Upper Memory Blocks, High DOS Memory или UM Area — UMA).Эта область памяти резервируется под размещение системной ROM BIOS (Read Only Memory Basic Input Output System), под видеопамять и ROM-память дополнительных адаптеров.
Дополнительная ( expanded ) память. Почти на всех персональных компьютерах область памяти UMB редко оказывается заполненной полностью. Пустует, как правило, область расширения системного ROM BIOS или часть видеопамяти и области под дополнительные
модули ROM. На этом и базируется спецификация дополнительной памяти EMS (Ехpanded Memory Specification), впервые разработанная фирмами Lotus Development, Intel и Microsoft (поэтому называемая иногда LIM-cпeцификацией). Эта спецификация позволяет использовать оперативную память свыше стандартных 640 Кбайт для прикладных программ. Принцип использования дополнительной памяти основан на переключении блоков (страниц) памяти. В области UMB, между видеобуфером и системным RGM BIOS, выделяется незанятое 64-Кбайтное «окно», которое разбито на страницы. Программные и аппаратные средства позволяют отображать любой сегмент дополнительной памяти в любую из выделенных страниц «окна(TM). Хотя микропроцессор всегда обращается к данным, хранимым в „окне“ (адрес ниже 1 Мбайта), адреса этих данных могут быть смещены в дополнительной памяти относительно „окна“ на несколько мегабайт В компьютерах на процессоре i8088 для реализации дополнительной памяти должны применяться специальные платы с аппаратной поддержкой „подкачки“ блоков (страниц) памяти и соответствующий программный драйвер. Разумеется, платы дополнительной памяти могут устанавливаться и в компьютер на базе процессоров i80286 и выше модули ROM. На этом и базируется спецификация дополнительной памяти EMS (Ехpanded Memory Specification), впервые разработанная фирмами Lotus Development, Intel и Microsoft (поэтому называемая иногда LIM-cпeцификацией). Эта спецификация позволяет использовать оперативную память свыше стандартных 640 Кбайт для прикладных программ. Принцип использования дополнительной памяти основан на переключении блоков (страниц) памяти. В области UMB, между видеобуфером и системным RGM BIOS, выделяется незанятое 64-Кбайтное „окно“, которое разбито на страницы. Программные и аппаратные средства позволяют отображать любой сегмент дополнительной памяти в любую из выделенных страниц „окна”. Хотя микропроцессор всегда обращается к данным, хранимым в “окне» (адрес ниже 1 Мбайта), адреса этих данных могут быть смещены в дополнительной памяти относительно «окна» на несколько
В компьютерах на процессоре i8088 для реализации дополнительной памяти должны применяться специальные платы с аппаратной поддержкой «подкачки» блоков (страниц) памяти и соответствующий программный драйвер. Разумеется, платы дополнительной памяти могут устанавливаться и в компьютер на базе процессоров i80286 и выше.
Расширенная ( extended ) память. Компьютеры, использующие процессор l80286 с 24-разрядными адресными шинами, физически могут адресовать 16 Мбайт, а в случае процессоров i80386/486 — 4 Гбайта памяти. Такая возможность имеется только для защищенного режима работы процессора, который операционная система MS-DOS не поддерживает. Расширенная память (extended) располагается выше области адресов 1 Мбайт (не надо путать 1 Мбайт ОЗУ и 1 Мбайт адресного пространства). Для работы с расширенной памятью микропроцессор должен переходить из реального в защищенный режим и обратно. В отличие от l80286 микропроцессоры i80386/486 выполняют эту операцию достаточно просто, именно поэтому для них в составе MS-DOS имеется специальный драйвер — менеджер памяти ЕММ386.
Кстати, при наличии соответствующего драйвера расширенную память можно эмулировать как дополнительную. Аппаратную поддержку в этом случае должен обеспечивать микропроцессор не ниже i80386 или вспомогательный набор специальных микросхем (например, наборы NEAT фирмы Chips and Technologies). Следует заметить, что многие платы памяти, поддерживающие стандарт LIM/EMS, могут использоваться также и в качестве расширенной памяти.
Кэш-память. Кэш-память предназначена для согласования скорости работы сравнительно медленных устройств, таких, например как динамическая память с быстрым микропроцессором. Использование кэш-памяти позволяет избежать циклов ожидания в его работе, которые снижают производительность всей системы.
С помощью кэш-памяти обычно делается попытка согласовать также работу внешних устройств, например, различных накопителей, и микропроцессора. Соответствующий контролер кэш-памяти должен заботиться о том, чтобы команды и данные, которые будут необходимы микропроцессору в определенный момент времени, именно к этому моменту оказывались в кэш-памяти.
д) Жесткий диск
Накопители на жёстком диске (винчестеры) предназначены для постоянного хранения информации, используемой при работе с компьютером: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования и т.д.
Ёмкость диска. Для пользователя накопители не жёстком диске отличаются друг от друга прежде всего своей ёмкостью, т.е. тем, сколько информации помещается на диске. Сейчас компьютеры в основном оснащаются винчестерами от 520 Мбайт и более. Компьютеры работающие как файл серверы могут оснащаться винчестером 4 — 8 Мбайт и не одним.
Скорость работы диска. Скорость работы диска характеризуется двумя показателями:
1) Временем доступа к данным на диске.
2) Скоростью чтения и записи данных на диск.
Эти характеристики соотносятся друг с другом приблизительно так же, как время разгона и максимальная скорость автомобиля. При чтении или записи коротких блоков данных, расположенных в разных участках диска,
скорость работы определяется временем доступа к данным — подобно тому, как при движении автомобиля по городу в час пик с постоянными разгонами и торможениями не так уж важна максимальная скорость, развиваемая автомобилем. Зато при чтении или записи данных (в десятки и сотни килобайт) файлов гораздо важнее пропускная способность тракта обмена с диском — точно также, как при движении автомобиля по скоростному шоссе важнее скорость автомобиля, чем время разгона.
Следует заметить, что время доступа и скорость чтения — записи зависят не только от самого дисковода, но от параметров всего тракта обмена с диском: от быстродействия контроллера диска, системной шины и основного микропроцессора компьютера.
III Периферийные устройства ПК
а) Мониторы
Монитор ( дисплей ) компьютера IBM PC предназначен для вывода на экран текстовой и графической информации. Мониторы бывают цветными и монохромными. Они могут работать в одном из двух режимов: текстовом или графическом.
Текстовый режим. В текстовом режиме экран монитора условно разбивается на отдельные участки — знакоместа, чаще всего на 25 строк по 80 символов ( знакомест ). В каждое знакоместо может быть введён один из 256 заранее символов. В число этих символов входят большие и малые латинские буквы, цифры, определённые символы, а также псевдографические символы, используемые для вывода на экран таблиц и диаграмм, построения рамок вокруг участков экрана и так далее.
В число символов, изображаемых на экране в текстовом режиме,
могут входить и символы кириллицы. На цветных мониторах каждому знакоместу может соответствовать свой цвет символа и фона, что позволяет выводить красивые цветные надписи на экран.
На монохромных мониторах для выделения отдельных частей текста и участков экрана используется повышенная яркость символов, подчёркивание и т. д.
Графический режим. Графический режим предназначен для вывода на экран графиков, рисунков и так далее. Разумеется в этом режиме можно выводить и текстовую информацию в виде различных надписей, причём эти надписи могут иметь произвольный шрифт, размер и др.
В графическом режиме экран состоит из точек, каждая из которых может быть тёмной или светлой на монохромных мониторах и одного или нескольких цветов — на цветном. Количество точек на экране называется разрешающей способностью монитора в данном режиме. Следует заметить что разрешающая способность не зависит от размеров экрана монитора.
Часто используемые мониторы. Наиболее широкое распространение на компьютерах IBM PC получили мониторы типа MDA, CGA, Herkules, EGA и VGA.
В настоящее время мониторы MDA и CGA практически не используются, так как они не обладают надлежащей разрешающей способностью, что приводит к быстрому утомлению глаз. Кроме того, они не имеют программной загрузки шрифтов символов, поэтому для изображения букв кириллицы приходится заменять микросхемы, хранящие шрифты символов.
В основном на компьютерах используют мониторы SVGA, что позволяет добиться нужного качества изображения.
б) Устройства ввода
Клавиатура. Как известно, клавиатура является пока основным устройством ввода информации в компьютер. В техническом аспекте это устройство представляет собой совокупность механических датчиков, воспринимающих давление на клавиши и замыкающих тем или иным способом определённую электрическую цепь.
Надо сказать, что эволюция клавиатур для IBM PC не была недолгой. Сначала использовались 83-х клавишные клавиатуры затем вместе с АТ появилась 84-х клавишная. Подовляющее большинство современных IBM PC совместимых используют расширенную клавиатуру. Основные улучшения по сравнению с АТ-клавиатурой касается общего числа (101 и выше ) и расположения клавиш. Наиболее стандартным является расположение QWERTY: порядка 60 клавиш с буквами, цифрами, знаками пунктуации и другими символами и ещё около 40 функциональных клавиш.
Устройство клавиатур. В настоящее время наиболее распространены два вида клавиатур: с механическим и мембранным переключателями. В первом случае датчик представляет из себя традиционный механизм с контактами из специального сплава. Несмотря на то что эта технология используется уже несколько десятилетий, фирмы- производители постоянно работают над её модификацией и улучшением. Стоит отметить, что в клавиатурах известных фирм контакты переключателей позолоченные, что значительно улучшает электрическую проводимость.
Технология, основанная на мембранных переключателях, считается более прогрессивной, хотя особых преимуществ не даёт.
Мыши и трекболы. Мыши и трекболы являются координаторными устройствами ввода информации в компьютер. Разумеется полностью заменить клавиатуру они не могут. В основном эти устройства имеют две три кнопки управления. Не секрет что своей популярностью мышь обязана распространению графического интерфейса и в основном компании «Microsoft».
Устройство мыши. Как известно, первая мышь каталась на двух колесиках, которые были связаны с осями переменных резисторов. Перемещение такой мыши было прямо пропорционально изменению сопротивления переменных рези- сторов. В дальнейшем конструкция перетерпела значительные изменения. Ролики были перенесены внутрь корпуса, а с поверхностью стал соприкасаться твёрдый резиновый шарик.
Можно выделить 3 способа подключения мыши. Самыми распространёнными являются подключения через последователь- ный порт. Менее распространены мыши с шинным интерфейсом, для подключения которых требуется специальный интерфейс или,
«мышиный» порт.
Третьей разновидностью можно считать мыши в стиле PS/2,
которые использовались в компьютерах аналогичной серии, а в настоящее время являются стандартом де-факто для портативных компьютеров. Для их подключения используется разъём miniDIN 6.
Физически каждая мышь имеет на хвосте разъём типа DB-9. В некоторых случаях в комплекте есть переходник на DB-25.
Современные мыши имеют обычно оптимальное аппаратное разрешение 400 cpi. Когда фирмы декларируют разрешение на уровне 1800 cpi, то речь, видимо идёт о программном разрешении.
Устройство трекболов. Трекбол, вообще говоря, представляет из себя «перевёрнутую» мышь, у трекбола приводится в движение не корпус, а только его шар. Это позволяет существенно повысить точность управления курсором.
в) Внешние записывающие устроиства
Дискеты. Любой компьютер (предназначенный для серьезной работы) оснащен так называемыми устройствами внешней памяти. К этим устройствам относятся в первую очередь накопители на гибких магнитных дисках (НГМД) и накопители на жестких магнитных дисках (НМД).
Устройства внешней памятипредназначены для долговременного хранения информации. НГМД и НМД относятся к дисковым магнитным устройствам памяти, так как информация в этих устройствах записывается на вращающихся дисках, покрытых магнитным материалом, напоминающем покрытие лент обычных аудио- и видеокассет. И хотя по своему составу магнитное покрытие, используемое в дисковых накопителях, отличается от покрытия обычных бытовых магнитных лент, в них используется аналогичный принцип записи информации.
В обычных бытовых магнитофонах на магнитную ленту записывается аналоговый сигнал непосредственно с микрофона, проигрывателя пластинок, компакт-дисков или другого источника. Компьютер записывает на магнитные диски биты информации. Если надо записать несколько байт данных, все биты этих байтов записываются последовательно на одну дорожку.
Дорожки образуют на магнитных дисках концентрические круги. Блок специальных магнитных головок перемещается по радиальной оси к центру или от центра диска, прочерчивая по поверхности диска воображаемые круги. Компьютер может произвольно устанавливать блок магнитных головок на любую дорожку диска, однако сами данные на дорожке просматриваются компьютером последовательно по мере вращения диска. Конструктивно НГМД выполнен таким образом, что вы можете менять установленные в нем магнитные диски. Такие сменные магнитные диски называются гибкими магнитными дисками или флоппи-дисками (их также называют дискетами) и расположены в специальном картонном конверте, защищающем их от повреждения.
Флоппи-диски нельзя подвергать нагреву, располагать вблизи сильных электромагнитных полей (понятно почему — информация будет стерта). Для лучшей сохранности данных старайтесь держать дискеты подальше от сильных магнитов и видеомонитора. Нельзя также касаться пальцами поверхности диска, так как вы можете загрязнить ее жиром, который всегда есть на коже.
В настоящее время используются флоппи-диски двух типов — диаметром 5,25" (рис. 1.14) и 3,5" (рис. 1.15). В зависимости от конструкции диска и материала магнитного покрытия вы можете записать на флоппи-диск от 360 Кбайт до 2,88 Мбайт данных. Больше всего распространены флоппи-диски диаметром 3,5" и емкостью 1,44 Мбайт, диаметром 5,25" и емкостью 1,2 Мбайт, а также диаметром 5,25" и емкостью 360 Кбайт.
Емкость флоппи-дисков можно определить из обозначения на коробке. Приведем обозначение для встречающихся чаще всего дискет:
Обозначение | Диаметр флоппи-диска, дюймы | Емкость флоппи-диска, Кбайт |
5.25" 2S/2D | 5,25 | 360 |
5.25" 2S/HD | 5,25 | 1200 |
3.5" 2S/2D | 3,5 | 720 |
3.5" 2S/HD | 3,5 | 1440 |
Дискеты диаметром 5,25" и разной плотностью внешне практически ничем не отличаются друг от друга, за исключением того что у дискет емкостью 360 Кбайт отверстие для вращающегося вала имеет окантовку по краям. У дискет емкостью 1200 Кбайт (или как принято говорить, емкостью 1,2 Мбайт) такой окантовки нет.
Емкость дискет диаметром 3,5" легко определить по внешнему виду, так как у дискет емкостью 1,44 Мбайт (1440 Кбайт) есть специальное отверстие для обозначения емкости. Дискеты емкостью 720 Кбайт такого отверстия не имеют. Данные, записанные на дискете, можно защитить от случайного стирания или перезаписи. В дискете диаметром 5,25" для этого надо заклеить отверстие защиты от записи при помощи специальной полоски. Набор таких полосок продается вместе с дискетами. В дискете диаметром 3,5" для защиты от записи есть специальная крышечка. с ее помощью закрыть можно отверстие, защитив таким образом записанные на дискете данные.
Стримеры. Нельзя обойти вниманием и такой тип внешних устройств памяти, как накопители на магнитной ленте или стримеры. По своему принципу действия эти устройства напоминают бытовые кассетные магнитофоны. Чаще всего стримеры используют для резервного копирования содержимого НМД, что позволяет избежать потери данных при выходе НМД из строя. Самые хорошие стримеры позволяют записать на одну кассету с магнитной лентой до 2 Гбайт информации, однако из-за высокой стоимости таких стримеров больше распространены стримеры с кассетами, рассчитанными на запись 150 или 250 Мбайт данных.
в) CD - ROM
CD - ROM . Принцип работы дисковода напоминает принцип работы обычных дисководов для гибких дисков. Поверхность оптического диска (CD-ROM) перемещается относительно лазерной головки постоянной линейной скоростью, а угловая скорость меняется в зависимости от радиального положения головки. Луч лазера направляется на дорожку, фокусируясь при этом с помощью катушки. Луч проникает сквозь защитный слой пластика и попадает на отражающий слой алюминия на поверхности диска. При попадании его на выступ, он отражается на детектор и проходит через призму, отклоняющую его на светочувствительный диод. Если луч попадает в ямку он рассеивается и лишь малая часть излучения отражается обратно и доходит до светочувствительного диода. На диоде световые импульсы преобразуются в электрические, яркое излучение преобразуется в нули слабое — в единицы. Таким образом ямки воспринимаются дисководом как логические нули, а гладкая поверхность как логические единицы
Производительность дисководов CD - ROM . Производительность CD-ROM обычно определяется его скоростными характеристиками при непрерывной передаче данных в течение некоторого промежутка времени и средним временем доступа к данным, измеряемыми соответственно в Кбайт/с и мс. Существуют одно-, двух-, трех-, четырех-, пяти, шести и восьмискоростные дисководы, обеспечивающие считывание данных со скоростью 150, 300, 450, 600, 750, 900, 1200 Кбайт/с соответственно. В настоящий момент распространены двух- и четырехскоростные дисководы. В общем случае дисководы с четырехкратной скоростью обладают более высокой производительностью, однако оценить чистое преимущество дисковода с четырехкратной скоростью по сравнению с дисководом с удвоенной скоростью бывает не так просто. Прежде всего это зависит от того с какой операционной системой и с каким типом приложения ведется работа. При высокой интенсивности повторяющегося доступа к CD-ROM и считывании небольшого количества данных (например при работе с базами данных) “импульсная” скорость считывания информации приобретает важное значение. Например, по данным журнала InfoWorld, производительность дисководов с четырехкратной скоростью, по сравнению с дисководами с удвоенной скоростью, в случае операции доступа к базе данных в среднем повышается вдвое. В случае простого копирования данных выигрыш составляет от 10 до 30%. Однако наибольшее преимущество получится при работе с полноформатным видео.
Для повышения производительности дисководов их снабжают буферной памятью (стандартные объемы КЭШа: 64, 128, 256, 512, 1024 Кбайт). Буфер дисковода представляет собой память для кратковременного хранения данных, после считывания их с CD-ROM, но до пересылки в плату контролера, а затем в ЦП. Такая буферизация дает возможность дисковому устройству передавать данные в процессор небольшими порциями, а не занимать его время медленной пересылкой постоянного потока данных. Например, согласно требованиям стандарта MPC уровня 2 накопитель CD-ROM удвоенной скоростью должен занимать не более 60% ресурсов ЦП.
Важной характеристикой дисковода является степень заполнения буфера, которая влияет на качество воспроизведения анимационных изображений и видеофильмов. Эта величина определяется как отношение числа блоков данных, переданных в буфер из накопителя и хранящихся в нем до момента начала их выдачи на системную шину, к общему числу блоков, которые способен вмещать буфер. Слишком большая степень заполнения может привести к задержкам при выдаче из буфера на шину; с дугой стороны, буфер со слишком малой степенью заполнения будет требовать больше внимания со стороны процессора. Обе эти ситуации приводят к скачкам и срывам изображения во время воспроизведения.
IV Принтеры и сканеры
Классификация существующих типов печатных устройств:
Матричные печатающие устройства.
Когда говорят о матричных принтерах, обычно имеют в виду устройства ударного действия, например всем известные модели Epson, Star и Microlin.
У последовательных матричных печатающих устройств вертикальный ряд игл ( или 2 ряда ), или молоточков, вколачивает краситель с ленты прямо в бумагу, формируя последовательно символ за символом. Игольчатые имеют приемлемое качество печати, невысокую цену расходных материалов и бумаги, да и самих устройств. Для этих принтеров обычно возможно использование как форматной, так и рулонной бумаги. Головка принтера может быть оснащена 9, 18 или 24 иголками.
Существуют модели принтеров как с широкой ( А3 ), так и с узкой ( А4 ) кареткой. Высокое качество печати достигается в режимах NLQ для 9-игольчатых ( почти машинописное ) и LQ — для 24-игольчатых принтеров. Скорость печати для высокопроизводи-
тельных моделей может составлять до 380 знаков в секунду. Более высокую производительность обеспечивают построчные (постраничные) матричные принтеры. Вместо маленьких точечно-матричных головок они используют длинные массивы с большим количеством игл при этом достигается скорость порядка 1500 строк в минуту. Матричные ударные печатающие устройства создают много шума, а это, согласитесь, немаловажный фактор при выборе принтера.
Струйные принтеры.
Относятся к безударным печатающим устройствам. Данные устройства работают практически бесшумно. Струйные чернильные принтеры относятся к классу последовательных матричных безударных печатающих устройств. Они же в свою очередь подразделяются на устройства непрерывного и дискретного действия. Последние же могут использовать либо пузырьковую технологию, либо пьезоэффект. Почти все современные устройства этого класса используют две последних технологии. При печати высокого качества скорость вывода не превосходит обычно 2-3 ( около 200 знаков в секунду ), хотя максимальные значения могут достигать даже 7 страниц в минуту. Как правило струйные принтеры позволяют эмулировать работу наиболее популярных моделей ударных устройств и поддерживать соответствующее программное обеспечение.
Лазерные и LED — принтеры.
В лазерных принтерах используется электрографический способ создания изображения — примерно такой же, как и в ксероксах.
Кроме лазерных существуют LED — принтеры, которые получили своё название из-за того, что полупроводниковый лазер в них был заменён «гребёнкой» мельчайших светодиодов.
Плоттеры.
Устройство, позволяющее представлять выводимые из компьютера данные в виде рисунка или графика на бумаге, называют обычно графопостроителем, или плоттером.
Сканеры. Сканером называется устройство, позволяющее вводить ком- пьютер образы изображений, представленных в виде текста, рисунков, слайдов, фотографий и другой графической информации. Несмотря на обилие различных моделей сканеров в первом приближении их классификацию можно провести всего по нескольким признакам. Например, по кинематическому механизму сканера и по типу вводимого изображения.
В настоящее время все известные модели можно разбить на два типа: ручной и настольный. Существуют и комбинированные устройства, которые сочетают в себе возможности и тех и других.
Для того чтобы ввести в компьютер какой-либо документ при помощи ручного сканера, надо без резких движений провести сканирующей головкой по изображению. Равномерность перемещения handheld существенно сказывается на качестве вводимого изображения. Ширина вводимого изображения обычно не превышает 4дюйма ( 10см ).
Настольные же сканеры позволяют вводить изображения размером 8,5 на 11 дюймов или 8,5 на 14 дюймов. Существует три разновидности настольных сканеров: планшетные, рулонные и проекционные.
Принцип работы ч/б сканера заключается в следующем. Сканируемое изображение освещается белым светом. Отражённый свет через уменьшающую линзу попадает не фоточувствительный полупроводниковый элемент, называемый Прибором с Зарядовой Связью ( ПЗС ). Каждая строка сканирования соответствует определённым значениям напряжения на ПЗС. Эти значения напряжения преобразуются в цифровую форму либо через аналогово-цифровой преобразователь АЦП (для полутоновых сканеров ), либо через компаратор ( для двухуровневых сканеров ). Разрядность АЦП для полутоновых сканеров зависит от количества поддерживаемых уровней серого цвета… Блок-схема чёрно-белого сканера приведена ниже:
Источник белого Изображение Уменьшающая
цвета линза
АЦП или ПЗС
компаратор
В настоящее время существует несколько технологий для получения серых и цветных сканируемых изображений. Один из принципов работы цветного сканера заключается в следующем. Сканируемое изображение освещается через вращающийся RGB-светофильтр или тремя лампами различного цвета.
Для связи с компьютером сканеры могут использовать 8-и или 16-и разрядную интерфейсную плату. Кроме того в настоящее время достаточно широко используются стандартные интерфейсы ( последовательный и параллельный порты, а также интерфейс SCSI ).
V Сети
Под сетью подразумевается два и более компьютеров объединенных в сеть в целях обмены информации и совместного управления ресурсами. Различают локальные и глобальные сети. Локальные сети – или LAN (Local Area Network) – как следует из названия, объединяют компьютеры в определленом месте (например, офисе в отдельно взятом офисе). Глобальные сети объединяют компьютеры по всему миру. Самой обширной и быстроразвивающейся сетью в мире является интернет.
На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений ( факсов, E — Mail писем и прочего ) не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а так же обмен информацией между компьютерами разных фирм производителей работающих под разным программным обеспечением.
VI Маркетинг,
или как правильно выбрать компьютер. Одна из функций маркетинга, как известно, это анализ и изучение рынка, в данном случае рынка пк в целях приобретения компьютера. Принципиальным отличием пк от другой оргтехники является возможность модернизации (upgrade’a). Соответсвенно, пк надо покупать с расчетом на будущее. Прежде всего, следует обратить внимание на корпус: лучше всего преобрести ATX Midi Tower или Big Tower. Данные системные блоки достаточно велики для того, чтобы вместить все необходимые и в настоящем и в будущем компоненты, и имеют наибольшее количество разъёмов (таких, как LPT, COM 1,2 и т. д., а также таких как USB, которые отсутсвуют во многих системных блоках.) Следующее, на что надо обратить внимание – материнская карта. Выбирая мат. карту, надо учитывать диапазон тактовых частот и тип поддерживаемых ей процессоров. Процессор лучшего всего выбирать из последней серии, но не с самой высокой тактовой частотой (из-за большого разброса цен). В данный момент, когда появились в продаже процессоры Intel Pentium III 600 Mhz, рекомендуется покупать Pentium III с частотой не ниже 400 Mhz. При сегодняшнем росте цен можно надеятся, что компьетер не «потребует» модернизации через 2-2,5 года.
Еще одна важная деталь: необходимо определить для себя, какие основные задачи будут поставленны перед вашим компьютором (например, оффисные приложения, 2D граффик, 3D граффика, игры). От этого зависит выбор винчестера, объема оперативной памяти видео и звуковой карт.
Вероятно, будут полезны также следующие советы:
— стандартная монитора для пк – 17”. Зерно – 0,25.
— Если вам действительно нужна скорость, выбтрайте устройства с интерфейсом SCSI.
— Покупая brand name вы переплачивете за компаненты, покупая пк сделанный неизвестной фирмы с теми же компанентами — недоплачиваете за общую слаженность работы, протестированность.
Можно превести еще много прекрасных советов, но ГЛАВНОЕ помните, что вам все равно предется заменит ваш пк через 2-3 года.
VI Заключение
Итак, в данном реферате рассмотрено устройство ПК, оборудование, позволяющее расширить его функциональные возможноси; а также некторые его функции.
Число персональных компьютеров как в мире, так и, в частности, в России стремительно растет; рынок ПК – самый перспективный и доходный среди остальных рынков вычислительной техники. В северной Америке и Западной Европе процент семей, имеющих ПК, приближается к 30. Без сомнения, в наши дни каждый должен изучить и понять компьютер не только теоретически, но, что наиболее важно, и практически.
VIII Библиография
1) Фигурнов В. Э. «IBM PC для пользователя», 4-е издание, переработанное и дополненое, M., 1993 г.
2) Уинн Л. Рош. Библия по модернизации персонального компьютера. — Мн.: ИПП «Тивали-Стиль», 1995г.
3) А.Борзенко «IBM PC: устройство, ремонт, модернизация»
4) Журналы «HARD'n'SOFT» 1996-97гг.
5) Документация из сети Интернет
www.ronl.ru
Персональные компьютеры .
Процесс взаимодействия человека с ЭВМ насчитывает уже более 40лет. До недавнего времени в этом процессе могли участвовать только специалисты -инженеры, математики — программисты, операторы. В последние годы произошли кардинальные изменения в области вычислительной техники. Благодаря разработке и внедрению микропроцессоров в структуру ЭВМ появились малогабаритные, удобные для пользователя персональные компьютеры. Ситуация изменилась, в роли пользователя может быть не только специалист по вычислительной технике, но и любой человек, будь то школьник или домохозяйка, врач или учитель, рабочий или инженер. Часто это явление называют феноменом персонального компьютера. В настоящее время мировой парк персональных компьютеров превышает 20 млн.
Почему возник этот феномен? Ответ на этот вопрос можно найти, если четко сформулировать, что такое персональный компьютер и каковы его основные признаки. Надо правильно воспринимать само определение " персональный", оно не означает принадлежность компьютера человеку на правах личной собственности. Определение «персональный» возникло потому, что человек получил возможность общаться с ЭВМ без посредничества профессионала-программиста, самостоятельно, персонально. При этом не обязательно знать специальный язык ЭВМ. Существующие в компьютере программные средства обеспечат благоприятную " дружественную" форму диалога пользователя и ЭВМ. Можно выделить пять формальных признаков, которые помогут нам определить, является ли данный компьютер персональным или нет.
1. Способ управления простой, наглядный, удобный, не требующий глубоких знаний в области вычислительной техники. Все технические средства (дисплей. клавиатура, манипулятор, печатающее устройство и т.д.), обеспечивающие взаимодействие человека и ЭВМ, сделаны так, чтобы на них безбоязненно мог работать даже ребенок. Общение человека и компьютера организованно в диалоговом режиме.
2. Разработано большое количество программных средств для различных областей применения. Это избавит пользователя от необходимости самому составлять программу на языке компьютера.
3. Малогабаритные устройства внешней памяти большой емкости допускают замену одного накопителя другим. К таким устройствам можно отнести: накопители на гибких магнитных дисках и винчестерских дисках, кассетные магнитофон.
4. Благодаря малым габариту и массе, сравнимым с телевизором, для установки не требуется специальных приспособлений, достаточно место на рабочем столе.
5. Конструкция персонального компьютера, его внешнее оформление привлекательны по цвету и форме, удовлетворяют эргономическим показателям. Впервые за время развития вычислительной техники этот признак включен в качестве основного при определении целого класса ЭВМ.
При более тщательном анализе всех признаков видно, что конечно, самыми главными являются первые два признака, определяющие характер общения человека и ЭВМ, хотя отсутствие одного из пяти перечисленных выше признаков позволяет классифицировать компьютер как не персональный.
Понимая теперь, что такое персональный компьютер, рассмотрим историю возникновения и развития этого феномена.
Перечисленные признаки персонального компьютера стало возможным обеспечить благодаря созданию микропроцессоров, которые позволили резко изменить внешний облик ЭВМ — уменьшить размеры и массу. Однако только одно это обстоятельство привело к появлению класса микро ЭВМ. Совершенствование программного обеспечения, изучение математиками и программистами задач предметной области и разработка на их основе нужных в этой области программных средств позволили превратить микроЭВМ в персональное средство человека по обработки информации.
Первая персональная ЭВМ была разработана в 1973 г. во Франции. Ее автор Труонг Тронг Ти. Первые экземпляры были восприняты как дорогостоящая экзотическая игрушка. Массовое производство и внедрение в практику персональных компьютеров связывают с именем Стива Джобса, руководителя и основателя фирмы «Эпл компьютер», 1977 г. наладившая выпуск персональных компьютеров «Apple».
Персональные компьютеры можно классифицировать в соответствии с теми возможностями, которые они предоставляют пользователю. как бытовые и профессиональные.
Бытовые персональные компьютеры используют в домашних условиях. Их основное назначение: обеспечение несложных расчетов, выполнение функции записной книжки, ведение личной картотеки, средство обучения различным дисциплинам, инструмент доступа по телефонным каналам к общественным информационным фондам и т.д. Широкое распространение получил он как средство развлечения — организатор и партнер в различных играх.
Профессиональные персональные ЭВМ используют в конкретной профессиональной сфере, все программные и технические средства ориентированы на конкретную профессию. Однако независимо от профессиональной направленности ЭВМ их основное назначение-выполнение рутинной работы: они осуществляют поиск информации в различных справочно-нормативной документации и архивах, составляют типовые формы документации, ведут дневник или лабораторный журнал, фиксируют результаты исследований, запоминают и выдают по запросу пользователя информацию по данной профессиональной деятельности и т.д.
В настоящее время одними из самых популярных компьютеров стали модель IBM PC и ее модернизированный вариант IBM PC XT, который по архитектуре, программному обеспечению, внешнему оформлению считается базовой моделью персонального компьютера. Рассмотрим основную структуру и характеристики персонального компьютера IBM PC XT. В состав базового комплекта входят; системный блок2, дисплей1 с цветным изображением, клавиатура6, печатающее устройство (принтер), накопитель на гибком магнитном диске и накопитель на винчестерском диске.
Основой персонального компьютера является системный блок. Он организует работу, обрабатывает информацию, производит расчеты, обеспечивает связь человека и ЭВМ. Пользователь не обязан досконально разбираться в том, как работает системный блок. Это удел специалистов. Но он должен знать, из каких функциональных блоков состоит компьютер. Мы не имеем четкого представления о принципе действия внутренних функциональных блоков окружающих нас предметов — холодильника, газовой плиты, стиральной машины, автомобиля, но должны знать, что заложено в основу работы этих устройств, каковы возможности составляющих их блоков.
СИСТЕМНЫЙ БЛОК персонального компьютера состоит из системной платы, имеющей размеры 212/300 мм и расположенной в самом низу, динамика, вентилятора, источника питания, двух дисководов. Один дисковод обеспечивает ввод-вывод информации с винчестерского диска, другой- с гибких магнитных дисков.
СИСТЕМНАЯ ПЛАТА является центральной частью ЭВМ и составлена из нескольких десятков интегральных схем разного назначения. Микропроцессор выполнен в виде одной большой интегральной схемы. Предусмотрено гнездо для дополнительного микропроцессора Intel 8087-выполнения операции с плавающей запятой. При необходимости повысить производительность компьютера можно поместить его в это гнездо. Имеется несколько модулей постоянной и оперативной памяти. В зависимости от модели предусмотрены от 5 до 8 разъемов, куда вставляются платы различных адаптеров.
Адаптер — это устройство, которое обеспечивает связь между центральной частью ЭВМ и конкретным внешним устройством, например между оперативной памятью и принтером или винчестерским диском. На плате также устанавливают несколько модулей, выполняющих вспомогательные функции при работе с компьютером. Имеются переключатели, которые необходимы для обеспечения работы компьютера при выбранном составе внешних устройств ( конфигурация компьютера).
КЛАВИАТУРА
Клавиатура есть у каждого компьютера. С его помощью в компьютер вводят информацию или отдают компьютеру команды. Прабабушкой клавиатуры компьютера была пишущая машинка. От нее клавиатура получила в наследство клавиши с буквами и цифрами.
Но компьютер умеет делать больше дел, чем пишущая машинка, и потому у его клавиатуры намного больше клавиш. Разные клавиши служат для разных дел. Например, у обычной пишущей машинки нет клавиш для стирания того, что написано, а у клавиатуры — есть. Такая пишущая машинка не может вставить новое слово между двумя другими, а компьютер — может, и для этого тоже есть специальная клавиша.
Когда мы играем в компьютерные игры, то чаще всего используем клавиши со стрелками. Их еще называют «курсорными клавишами». С помощью этих клавиш можно управлять тем, как бегает по экрану герой игры. Очень часто в играх используются клавиши СTRI и ALT. Одной клавишей герой стреляет, а другой — прыгает. Это довольно большие клавиши, к тому же они находятся в самом низу клавиатуры, и потому ими пользоваться удобно.
Самая длинная клавиша — ПРОБЕЛ. Ее можно нажать даже с завязанными глазами. И потому ее тоже очень часто используют в играх.
МОНИТОР
При работе с компьютером больше всего информации мы получаем, глядя на экран монитора. Монитор чем-то похож на телевизор. Но телевизор нельзя смотреть вблизи, потому что он очень вредно действует на глаза. Монитор тоже действует на глаза, но не так сильно, как телевизор. Изображение у мониторов более четкое.
Мониторы бывают разные. Они различаются размерами экранов и качеством изображения. Размер экрана измеряют дюймами. Если вы не знаете, что такое дюйм. то возьмите спичку и сломайте ее пополам. Длина такой половинки и есть дюйм.
Измеряют экран наискосок — между противоположными углами. Обычные мониторы имеют 14 дюймов. Часто также встречаются мониторы с размером 15 дюймов. Бывают и еще больше, но дома ими редко пользуются.
Если у вас мониторы с размером 14 дюймов, то на него надо обязательно надеть защитный экран — он намного снизит вред от излучения монитора. БЕЗ ЗАЩИТНОГО ЭКРАНА РАБОТАТЬ С ОБЫЧНЫМ МОНИТОРОМ НЕЛЬЗЯ!
Гораздо лучше мониторы, у которых размер 15 дюймов. Они стоят дороже, но их качество выше. С такими мониторами можно работать и без защитного экрана, хотя он и им не помешает.
МЫШЬ (МЫШКА)
Мышь — очень удобная пластмассовая машинка для употребления компьютером. Это небольшая коробочка, внутри которой крутится резиновый шарик. Когда мышка двигается по столу или по специальному коврику, шарик крутится, а на экране двигается указатель мышки(курсор).
Как и клавиатура и джойстик, мышь служит для управления компьютером. Это как бы «клавиатура наоборот». У клавиатуры более 100 клавиш, а у мыши-всего 2, но зато мышь можно катать по столу, а клавиатура стоит на одном месте.
У мыши есть кнопки. Обычно их две — правая кнопка и левая. На левую кнопку удобно нажимать указательным пальцем. Поэтому эта кнопка используется очень часто. (У тех, кто не моет руки перед игрой с компьютером, эта кнопка особенно быстро пачкается). Правая кнопка используется реже — когда надо сделать что-то очень хитрое или умное.
Бывают мыши с тремя кнопками. У них между правой и левой кнопками есть еще средняя кнопка. Эта кнопка замечательна тем, что она одна из самых бесполезных вещей на свете. Много лет назад были очень умные люди, которые ее придумали, но программ для таких мышей не делают, а трехкнопочные мыши еще встречаются.
ПЕРЕМЕЩЕНИЕ КУРСОРА.
Мышка хоть и проста, но с ее помощью можно делать много самых разных дел. Если катать ее по столу, то по экрану двигается стрелка. Это указатель мыши или, как его еще называют, курсор. Правда, удобнее катать мышь не по столу, а по специальному резиновому коврику.
Простой щелчок. Если на экране нужно что-то выбрать, то установите курсор на том, что хотите выбрать. Затем щелкните один раз ЛЕВОЙ кнопкой — быстро нажмите на кнопку и отпустите. Поскольку почти всегда используется именно ЛЕВАЯ кнопка, то о том, что она ЛЕВАЯ, можно и не говорить. Когда о чем-то не говорят потому, что это само собой разумеется, это называется молчанием.
Так что если написано, что надо «щелкнуть» кнопкой, то это значит, что надо щелкнуть ЛЕВОЙ кнопкой. А если надо щелкнуть ПРАВОЙ кнопкой, то пишут полностью «Щелкните правой кнопкой».
ДВОЙНОЙ ЩЕЛЧОК.
Чтобы запустить программу или открыть на экране окно, делают двойной щелчок. Двойной щелчок – это два быстрых щелчка. Если щелкнуть один раз, потом подождать и щелкнуть второй раз, то получится не двойной щелчок, а два обычных щелчка. Поэтому щелкать надо быстро.
ПРАВЫЙ ЩЕЛЧОК. Это щелчок правой кнопкой. Он применяется довольно редко и служит для вспомогательных дел. Он применяется довольно редко и служит для вспомогательных дел. Например, в компьютерных играх с помощью правого щелчка можно иногда получить полезную подсказку.
ПЕРЕТАСКИВАНИЕ. Выполняется при нажатой левой кнопке. Чтобы на экране перенести что-то из одного места в другое, делают " перетаскивание". Надо установить курсор на том значке, который хотите перетащить в другое место, потом нажать левую кнопку и двигать мышь, не отпуская кнопку. Значок будет двигаться по экрану вместе с курсором. Он встанет на новое место, когда кнопка будет отпущена.
ПРОТЯГИВАНИЕ. Протягивание похоже на перетаскивание, только при этом ничего не передвигается, а только растягивается. Если установить курсор на рамке какого-нибудь окна или на его углу, курсор изменяет форму и превращается в стрелку с двумя наконечниками. Нажмите левую кнопку и подвигайте мышку. Размер окна при этом меняется.
ПРИНТЕР .
Если вам удастся создать что-нибудь на компьютере, например, нарисовать свой портрет при помощи графического редактора, то, конечно же, захочется показать его друзьям. А если у друзей нет компьютера? Тогда хотелось бы напечатать этот рисунок на бумаге.
Чтобы вывести на бумагу информацию, имеющуюся в компьютере, служит принтер. Принтер — это отдельное устройство. Он подключается к компьютеру с помощью разъема. Самые первые принтеры для компьютеров печатали очень медленно и могли напечатать только текст, похожий на тот, что получается на пишущей машинке. Потом появились принтеры, способные по точкам печатать картинки.
Сегодня самые популярные принтеры – лазерные. На них получаются странички, не уступающие по качеству книжным.
СКАНЕР .
Сканер — это как бы принтер «наоборот». С помощью принтера компьютер печатает на бумаге тексты или картинки. А с помощью сканера — наоборот. Напечатанные на бумаге тексты или картинки вводят в компьютер.
Сканерами пользуются художники, когда рисуют картинки для компьютерных игр. Но художники ими пользоваться не очень любят. Они привыкли рисовать карандашом на бумаге — так получается лучше и быстрее. Поэтому картинки для игр сначала рисуют карандашом. Потом картинку вводят в компьютер при помощи сканера. Так нарисованная картинка превращается в данные, которые поступают в компьютер. На компьютере картинку раскрашивают. Для раскрашивания используют графический редактор.
Хоть графический редактор и не очень удобен для рисования, для раскрашивания он подходит очень хорошо.
Сканер так же необходим художнику, как писателю — принтер.
Анализ новых решений построения структуры компьютера показывает, что процессор, память, устройства ввода — вывода составляют основу любого компьютера. Рассмотрим наиболее распространенную структурную схему, которая лежит в основе наиболее часто встречающихся моделей компьютеров, в частности персональных. Модульность, магистральность, микропрограммируемость, используется при разработке практически любой модели компьютера.
Модульность — это построение компьютера на основе набора модулей. Модуль представляет собой конструктивно и функционально законченный электронный блок в стандартном исполнении. Это означает, что с помощью модуля может быть реализована какая-то функция либо самостоятельно, либо совместно с другими модулями. Организация структуры ЭВМ на модульной основе аналогична строительству блочного дома, где имеются готовые функциональные блоки, например санузел, кухня, которые устанавливаются в нужном месте.
Магистральность — это способ связи между различными модулями компьютеров, т.е. все входные и выходные устройства подсоединены одними и теми же проводами, называемыми шинами. Как в городе главной артерией является центральная улица, связывающая центр города с помощью различных улиц и переулков с домами, кварталами, районами, так и в компьютере главной артерией является магистраль, по которой происходит основное движение информации.
Магистраль компьютера состоит из нескольких групп шин, объединенных по функциональному признаку. Шинами данных служат провода, по которым передается только информация, шинами адреса-провода, по которым передаются адреса ячеек и участков памяти, шинами управления-провода, по которым передаются управляющие сигналы. Магистральный принцип лег в основу организации интерфейса. Интерфейс — это совокупность аппаратуры сопряжения и программных средств для организации связи устройств компьютера и самих компьютеров. Аппаратуру сопряжения составляют электронные модули и шины предназначенные для выполнения различных функций. Организует работу аппаратуры сопряжения по передаче информации комплекс специальных программ.
Для реализации принципа микропрограммируемости необходимо наличие в компьютере так называемой постоянной памяти, в ячейках которой будут постоянно храниться коды, соответствующие различным комбинациям управляющих сигналов. Каждая такая комбинация позволяет выполнить элементарную операцию, т.е. подключить определенные электрические цепи и схемы.
Для того чтобы выполнить элементарную операцию, необходимо задать управляющий сигнал. Как уже было сказано, он хранится в ячейке постоянной памяти, имеющей совершенно определенный, конкретный адрес. Значит, достаточно задать определенную последовательность адресов, чтобы был сформирован набор управляющих сигналов для выполнения элементарных операций. Задает эту последовательность адресов микропрограмма, также хранящаяся в постоянной памяти.
Современный компьютер можно представить в большинстве случаев упрощенной структурной схемой, где выделены центральная и периферийная части. К центральной части относятся процессор и внутренняя память, к периферийной части — устройства ввода-вывода и внешняя память. В основу упрощенной структурной схемы заложены принципы магистральности, модульности, микропрограммирумостью.
САМАЯ ГЛАВНАЯ ЧАСТЬ КОМПЬЮТЕРА.
Процессор — это устройство, управляющее ходом вычислительного процесса и выполняющее арифметическое и логическое действия.
Внутренняя память — это память высокого быстродействия и ограниченной емкости. При изготовлении блока памяти используют либо электронные схемы на полупроводниковых элементах, либо ферромагнитные материалы. Конструктивно он выполнен в одном корпусе с процессором и является центральной частью ЭВМ. Внутренняя память может состоять из оперативной и постоянной памяти. Принцип ее разделения такой же, как у человека. Мы обладаем некоторой информацией, которая хранится в памяти постоянно, а есть информация, которую мы помним некоторое время, либо она нужна только на тот момент, пока мы думаем над решением какой-то проблемы.
Оперативная память служит для хранения оперативной, часто изменяющейся в процессе решения задачи. При решении другой задачи в оперативной памяти будет храниться информация только для этой задачи. При отключении ЭВМ вся информация, находящаяся в оперативной памяти, в большинстве случаев стирается.
Постоянная память предназначена для хранения постоянной информации, которая не зависит от того, какая задача решается в ЭВМ. В большинстве случаев постоянной информацией являются программы решения часто используемых задач, например вычисление функций sin X, cos X, lg X, а также некоторые управляющие программы, микропрограммы и т.д. Отключение ЭВМ и включение ее в работу не влияют на качество хранения информации.
Внешняя память предназначена для долговременного хранения информации независимо от того, работает ЭВМ или нет. Характеризуется она более низким быстродействием, но позволяет хранить существенно большой объем информации по сравнению с оперативной памятью. Во внешнюю память записывают информацию. которая не меняется в процессе решения задачи, программы, результаты решения и т.д. В качестве внешней памяти используют магнитные диски. магнитные ленты, магнитные карты, перфокарты, перфоленты. Устройства ввода — вывода предназначены для организации ввода информации в оперативную память компьютера или вывода информации из оперативной памяти компьютера во внешнюю память либо непосредственно пользователю. (НМЛ — накопитель на магнитной ленте НГМД — накопитель на гибких магнитных дисках, НМД — накопитель на жестких магнитных дисках, УПК-устройство ввода-вывода с перфокарт, УПЛ — устройство ввода-вывода с перфолент.
И последнее. Не следует надеяться, что развитие вычислительной техники как-то кардинально изменит наше существование. Компьютер не более (но и не менее) чем один из мощных двигателей прогресса (как энергетика, металлургия, химия, машиностроение), который берет на свои «железные плечи» такую важную функцию, как рутину обработки информации. Эта рутина всегда и везде сопровождает самые высокие полеты человеческой мысли. Именно в этой рутине очень часто тонут дерзкие решения, недоступные компьютеру. Поэтому так важно " свалить" на компьютер рутинные операции, чтобы освободить человека для его истинного предназначения-творчества.
Вспомним знаменитые слова М. Горького «Все — в человеке, все для человека! Существует только человек, все же остальное-дело его рук и его мозга». Компьютер — тоже дело рук и мозга человека.
Список литературы
1. Жигарев А. Н. Основы компьютноной грамоты -Л. Машиностроение. Ленинг. отд-ие, 1987 г. — 255 с.
2. Кузнецов Е. Ю., Осман В. М. Персональные компьютеры и программируемые микрокалькуляторы: Учеб. пособие для ВТУЗов — М.: Высш. шк. -1991 г. 160 с.
3. Растригин Л. А. С компьютером наедине — М.: Радио и связь, — 1990 г. — 224 с.
www.ronl.ru
СФЕРЫ ПРИМЕНЕНИЯ КОМПЬЮТЕРОВ
ВВЕДЕНИЕ
В настоящее время большое место в нашей жизни отведено различным устройствам предназначенным для создания комфорта в быту, облегчения выполнения работы и т.д. Одним из таких устройств является компьютер.
Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Это связано с тем, что первые компьютеры создавались как устройства для вычислений, грубо говоря, как усовершенствованные, автоматические арифмометры. Принципиальное отличие компьютеров от арифмометров и других счетных устройств состояло в том, что арифмометры могли выполнять лишь отдельные вычислительные операции (сложение, вычитание, деление, умножение), а компьютеры позволяют проводить без участия человека сложные последовательности вычислительных операций по заранее заданной инструкции — программе. Кроме того, для хранения данных, промежуточных и итоговых результатов вычислений компьютеры содержат память.
Хотя компьютеры создавались для численных расчетов, скоро оказалось, что они могут обрабатывать и другие виды информации. Для обработки различной информации на компьютере надо иметь средства для преобразования нужного вида информации в числовую форму и обратно. Сейчас с помощью компьютеров не только проводятся числовые расчеты, но и подготавливаются к печати книги, создаются рисунки, кинофильмы, музыка, осуществляется управление заводами и космическими кораблями и т.д. Компьютеры превратились в универсальные средства обработки информации.
ИСТОРИЯ РАЗВИТИЯ КОМПЬЮТЕРОВ
В первой половинеXIX века английский математик Бэбидж попытался построить универсальное вычислительное устройство, т.е. компьютер. Именно он впервые додумался, что компьютер должен содержать память и управляться с помощью программы.
В 40-х годах XX в. сразу несколько групп исследователей повторили попытку Бэбиджа на основе техники того времени.
Первым из них был немецкий инженер Конрад Цузе, который в 1941 г. построил небольшой компьютер на основе нескольких электро-механических реле. Но из-за войны работы Цузе не были опубликованы.
А в США в 1943 г. на одном из предприятий фирмы IBM американец Г.Эйкен создал более мощный компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз быстрее чем вручную.
Так как реле работают очень медленно, то начиная с 1943 г. в США группа специалистов начала конструировать компьютер под названием «ENIAC» на основе электронных ламп. Созданный ими компьютер работал в тысячу раз быстрее чем Марк-1. Однако большую часть времени он простаивал, т.к. для ввода программы в нем приходилось в течении нескольких часов или дней подсоединять провода, а расчеты проходили в течении нескольких минут или секунд.
Огромным шагом вперед было создание микропроцессоров которые по размерам не превышают нескольких квадратных сантиметров (1970 г.). Именно благодаря им мы видим компьютер таким какой он есть, т.е. небольшой процессорный блок и монитор.
СФЕРЫ ПРИМЕНЕНИЯ КОМПЬЮТЕРОВ.
В настоящее время широкую огласку получила всемирная компьютерная сеть InterNet.
InterNet это общемировая совокупность компьютерных сетей, связывающая между собой миллионы компьютеров. Зародышем ее была распределенная сеть ARPAnet, которая была создана по заказу Министерства обороны США для связи между собой компьютеров этого министерства.
Разработанные принципы организации этой сети оказались настолько удачными, что многие другие организации (особенно университеты и государственные учреждения) стали создавать собственные сети на тех же принципах.
Эти сети стали объединяться между собой, образуя единую сеть. Эта единая сеть и стала называться InterNet.
До середины 90-х годов InterNet. использовалась в основном для пересылки электронных писем и различной информации от одного пользователя к другому и др.
Пользоваться этими возможностями было непросто, поэтому до 1993-94 годов InterNet использовалась только в научной (прежде всего в университетской) среде.
В районе 1993-94 годов ситуация в InterNet в корне переменилась. Причиной этому стало появление в сети новой службы — World Wide Web, в буквальном переводе — всемирной паутины (сокращенно ее называют W W W или Web).Простота использования этой службы привела к тому, что в InterNet стали подключаться самый массовый пользователь — домохозяйки и бизнесмены, преподаватели и студенты и т.д.
Следующей сферой применения компьютеров стала промышленная индустрия. Создание высоконадежных систем управления позволило повсеместно автоматизировать процессы изготовления различных товаров, оборудования, линии сборки в автомобильной промышленности. Процессы автоматизации позволили сократить участие человека в процессе производства до минимума.
Одной из самых дорогих и трудоемких сфер использования компьютеров является военная сфера. Эта сфера с самого начала создания компьютерных систем шла
несколько иным путем. В ней компьютер всегда выступал как оружие или, по крайней мере, как средство управления оружием. В результате этого появились системы управления и наведения ракетными комплексами, наземными и подводными видами оружия. Появились системы обнаружения, отслеживания и поражения вероятного противника.
В быту на основе компьютерных технологий появились так называемые вещи с ограниченным интеллектом. Таким интеллектом обладает почти вся бытовая аппаратура последнего поколения: стиральные машины, телевизоры, видеомагнитофоны, аудиоаппаратура, микроволновые печи и т.д.
В самих компьютерах произошли значительные изменения. Добавились различные устройства позволяющие слышать музыку, просматривать видеофильмы и т.д. Одним из последних достижений в бытовых персональных компьютерах стало создание звукового редактора текста. Если раньше текст вводился в основном с клавиатуры, то после массового выпуска этого редактора, текст можно будет вводить голосом.
Благодаря быстродействию компьютеров появились электронные переводчики, обладающие к тому же памятью на десятки тысяч слов и выражений. Такой переводчик в течение нескольких секунд может переводить тексты и выражения, облегчая общение между людьми говорящими на разных языках.
В сфере правоохранительных органов компьютер значительно облегчил идентификацию и поиск преступников. Если раньше идентификация преступника по отпечаткам пальцев занимала от нескольких часов до нескольких недель, то сейчас, благодаря компьютеризации и созданию базы данных, эта операция занимает всего несколько секунд или минут.
В киноиндустрии компьютер позволил создавать такие эффекты о которых раньше и не задумывались. Знаменитый фильм «Парк юрского периода» на 80% состоит из компьютерной графики, то же самое можно сказать о многих фильмах и мультфильмах.
ЗАКЛЮЧЕНИЕ
В этом реферате перечислены далеко не все сферы применения компьютера. В дальнейшем скорее всего компьютеру будет отводиться все больше и больше места в нашей жизни. Я бы хотела отметить, что обучение работе с компьютером очень большая задача, особенно в наше время в нашей стране. В Казахстане этому уделяют большое внимание. Недавно городские власти предложили провести программу по компьютеризации средних школ и высших учебных заведений, но, хотя она нашла большой отклик среди населения, при таких темпах введения этой программы и таком финансировании ее реализация грозит затянуться на большой срок.
В данной работе отразились наиболее популярные области использования компьютеров. Об сети InterNet я старалась изложить более подробно, так как используя ее можно получить разную информацию, общаться с разными пользователями. Т.е. эта сеть является средством общения и обучения не только студентов но и обычных людей, служащих и т.д. Эта сеть наиболее реальный пример внедрения компьютеров в повседневную жизнь, т.к. остальные сферы являются или высоко технологичными, требующими специальных знаний, или просто недоступными.
www.ronl.ru
Персональный компьютер (ПК) предназначен для хранения и переработки информации. Информация может представлять собой текст, таблицы, рисунки, фотографии, звукозаписи и т. п. Информация хранится и обрабатывается в цифровом виде. Единица измерения информации — байт. Один байт (1б) соответствует примерно одному символу текста. Для удобства введены также более крупные единицы измерения информации: килобайт (Кб), мегабайт (Мб), гигабайт (Гб).
Современный ПК включает в себя следующие элементы: системный блок; монитор; клавиатура; мышь; принтер; сканер. Кроме перечисленных, в состав ПК могут входить модем или факс-модем, плоттер, устройства воспроизведения и записи звука и некоторые другие устройства.
1) Персональный компьютер (ПК) — это вид компьютера, спроектированный для использования отдельным человеком, отсюда и такое название. ПК изначально были известны как микрокомпьютеры. Ваш ПК не кажется Вам таким уж маленьким? А когда-то компьютер с вычислительной мощностью того, за которым Вы сидите сейчас, мог занимать комнату, а то и не одну.
2) Персональные компьютеры могут иметь разные формы, как, например, новый AppleiPad, который представляет собой такой вид ПК как планшетный компьютер, то есть оборудованный чувствительным экраном, что позволяет работать с ним без привычных мыши и клавиатуры, а с помощью специальной палочки (стилуса) или просто пальцами
3)Настольный компьютер (Desktop) — это вид ПК, который, проще говоря, нельзя назвать мобильным: его не так просто взять с собой и унести. Естественно, такой вид компьютера предполагает, что его поставят в определенное место на длительное время. Большинство настольных компьютеров могут предложить большую мощность, объём памяти и функциональность по меньшей цене, чем их портативные братья. Миниатюризация штука дорогая.
4) Ноутбук (иногда его называют лэптоп, от англ. laptop, что можно дословно перевести как «наколенный») — это вид портативного компьютера, в который встроен дисплей, клавиатура, устройство для управления указателем (курсором) — вместо мыши. Конечно же туда встроены процессор, оперативная, память, жесткий диск, видеокарта, в общем всё то, что можно увидеть в системном блоке настольного компьютера, только в более компактной форме. Работает ноутбук от батареи, его можно включить в сеть и работать сколько угодно, без электроэнергии он будет работать пока не разрядится батарея, что для современных ноутбуков может составлять до 12 часов работы. Весом ноутбук немного тяжелее, чем средняя книга в твердой обложке: примерно 2-3 килограмма.
5) Нетбук это ещё один вид компьютера. Это ещё более удобный для переноски вид компьютеров, чем ноутбук, потому что он ещё меньше и ещё легче: весит около килограмма. Кстати, чтобы «похудеть», нетбуку пришлось «сбросить» дисковод: его в нетбуке просто нету. Плюс и отличие нетбука от ноутбука ещё в том, что он, как правило, стоит меньше, чем ноутбук, однако они менее мощные. Предназначены в основном для работы с офисными приложениями и в интернете. Чего вполне должно быть достаточно девушкам, к примеру, чтобы не носить лишние тяжести, ведь носить с собой целый день 3 килограмма ноутбука это не так уж просто.
6) А вот что. Это ещё один вид: PDA – Personal Digital Assistant, что на русском будет КПК — карманный персональный компьютер, а если дословно, то «личный цифровой помощник». В обиходе КПК называют «наладонник». Кстати, если перевести на английский язык "карманный персональный компьютер" – PocketPC, то это будет не совсем корректно, потому как это только один из видов КПК, но производства Microsoft, поэтому в англоязычных странах используют термин PDA. Они очень маленькие (конечно, надо ведь оправдывать звание «карманных»), у них обычно нет клавиатуры, поэтому информация вводится с помощью сенсорного экрана, то есть прикосновениями к дисплею. Тут ещё стоит отметить такие устройства как смартфоны и коммуникаторы. Что такое коммуникатор и что такое смартфон? Чёткого разграничения между ними нету, на эти темы можно спорить, главное знать эти устройства совмещают в себе КПК и мобильный телефон, то есть с них можно звонить, в этом и есть отличие от КПК.
7) Автоматизированное рабочее место (Workstation). Серьёзное название, однако этот вид компьютеров представляет собой на деле настольный компьютер, у которого более мощный процессор, больше памяти и который имеет расширенные возможности для выполнения специальных групп заданий, таких как 3D-моделирование, разработка компьютерных игр и другие.
8) Сервер. Вид компьютера, оптимизированный для того, чтобы предоставлять другим компьютерам сервисы через сеть. У компьютеров этого вида обычно очень мощные процессоры, много памяти и объёмные жесткие диски.
9) Следующий вид:мейнфрейм. На заре компьютерной эпохи это были огромные машины, занимающие комнату, две, а то и целый этаж (я уже упоминал про них). Постепенно размер компьютеров уменьшался, в то время как мощность росла. Термин «мейнфрейм» постепенно вышел из употребления, вместо него используется «сервер предприятия». Однако его всё ещё можно услышать, как правило, в больших компаниях, чтобы описать огромные машины, обрабатывающие миллионы операций каждый день.
10) Суперкомпьютер. Этот вид компьютера обычно стоит сотни тысяч или даже миллионы долларов. Невзирая на то, что некоторые суперкомпьютеры — это отдельные компьютерные системы, большинство из них включает множество высокопроизводительных компьютеров, работающих параллельно как единая система.
www.ronl.ru
СФЕРЫ ПРИМЕНЕНИЯ КОМПЬЮТЕРОВ
ВВЕДЕНИЕ
В настоящее время большое место в нашей жизни отведено различным устройствам предназначенным для создания комфорта в быту, облегчения выполнения работы и т.д. Одним из таких устройств является компьютер.
Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Это связано с тем, что первые компьютеры создавались как устройства для вычислений, грубо говоря, как усовершенствованные, автоматические арифмометры. Принципиальное отличие компьютеров от арифмометров и других счетных устройств состояло в том, что арифмометры могли выполнять лишь отдельные вычислительные операции (сложение, вычитание, деление, умножение), а компьютеры позволяют проводить без участия человека сложные последовательности вычислительных операций по заранее заданной инструкции — программе. Кроме того, для хранения данных, промежуточных и итоговых результатов вычислений компьютеры содержат память.
Хотя компьютеры создавались для численных расчетов, скоро оказалось, что они могут обрабатывать и другие виды информации. Для обработки различной информации на компьютере надо иметь средства для преобразования нужного вида информации в числовую форму и обратно. Сейчас с помощью компьютеров не только проводятся числовые расчеты, но и подготавливаются к печати книги, создаются рисунки, кинофильмы, музыка, осуществляется управление заводами и космическими кораблями и т.д. Компьютеры превратились в универсальные средства обработки информации.
ИСТОРИЯ РАЗВИТИЯ КОМПЬЮТЕРОВ
В первой половинеXIX века английский математик Бэбидж попытался построить универсальное вычислительное устройство, т.е. компьютер. Именно он впервые додумался, что компьютер должен содержать память и управляться с помощью программы.
В 40-х годах XX в. сразу несколько групп исследователей повторили попытку Бэбиджа на основе техники того времени.
Первым из них был немецкий инженер Конрад Цузе, который в 1941 г. построил небольшой компьютер на основе нескольких электро-механических реле. Но из-за войны работы Цузе не были опубликованы.
А в США в 1943 г. на одном из предприятий фирмы IBM американец Г.Эйкен создал более мощный компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз быстрее чем вручную.
Так как реле работают очень медленно, то начиная с 1943 г. в США группа специалистов начала конструировать компьютер под названием «ENIAC» на основе электронных ламп. Созданный ими компьютер работал в тысячу раз быстрее чем Марк-1. Однако большую часть времени он простаивал, т.к. для ввода программы в нем приходилось в течении нескольких часов или дней подсоединять провода, а расчеты проходили в течении нескольких минут или секунд.
Огромным шагом вперед было создание микропроцессоров которые по размерам не превышают нескольких квадратных сантиметров (1970 г.). Именно благодаря им мы видим компьютер таким какой он есть, т.е. небольшой процессорный блок и монитор.
СФЕРЫ ПРИМЕНЕНИЯ КОМПЬЮТЕРОВ.
В настоящее время широкую огласку получила всемирная компьютерная сеть InterNet.
InterNet это общемировая совокупность компьютерных сетей, связывающая между собой миллионы компьютеров. Зародышем ее была распределенная сеть ARPAnet, которая была создана по заказу Министерства обороны США для связи между собой компьютеров этого министерства.
Разработанные принципы организации этой сети оказались настолько удачными, что многие другие организации (особенно университеты и государственные учреждения) стали создавать собственные сети на тех же принципах.
Эти сети стали объединяться между собой, образуя единую сеть. Эта единая сеть и стала называться InterNet.
До середины 90-х годов InterNet. использовалась в основном для пересылки электронных писем и различной информации от одного пользователя к другому и др.
Пользоваться этими возможностями было непросто, поэтому до 1993-94 годов InterNet использовалась только в научной (прежде всего в университетской) среде.
В районе 1993-94 годов ситуация в InterNet в корне переменилась. Причиной этому стало появление в сети новой службы — World Wide Web, в буквальном переводе — всемирной паутины (сокращенно ее называют W W W или Web).Простота использования этой службы привела к тому, что в InterNet стали подключаться самый массовый пользователь — домохозяйки и бизнесмены, преподаватели и студенты и т.д.
Следующей сферой применения компьютеров стала промышленная индустрия. Создание высоконадежных систем управления позволило повсеместно автоматизировать процессы изготовления различных товаров, оборудования, линии сборки в автомобильной промышленности. Процессы автоматизации позволили сократить участие человека в процессе производства до минимума.
Одной из самых дорогих и трудоемких сфер использования компьютеров является военная сфера. Эта сфера с самого начала создания компьютерных систем шла
несколько иным путем. В ней компьютер всегда выступал как оружие или, по крайней мере, как средство управления оружием. В результате этого появились системы управления и наведения ракетными комплексами, наземными и подводными видами оружия. Появились системы обнаружения, отслеживания и поражения вероятного противника.
В быту на основе компьютерных технологий появились так называемые вещи с ограниченным интеллектом. Таким интеллектом обладает почти вся бытовая аппаратура последнего поколения: стиральные машины, телевизоры, видеомагнитофоны, аудиоаппаратура, микроволновые печи и т.д.
В самих компьютерах произошли значительные изменения. Добавились различные устройства позволяющие слышать музыку, просматривать видеофильмы и т.д. Одним из последних достижений в бытовых персональных компьютерах стало создание звукового редактора текста. Если раньше текст вводился в основном с клавиатуры, то после массового выпуска этого редактора, текст можно будет вводить голосом.
Благодаря быстродействию компьютеров появились электронные переводчики, обладающие к тому же памятью на десятки тысяч слов и выражений. Такой переводчик в течение нескольких секунд может переводить тексты и выражения, облегчая общение между людьми говорящими на разных языках.
В сфере правоохранительных органов компьютер значительно облегчил идентификацию и поиск преступников. Если раньше идентификация преступника по отпечаткам пальцев занимала от нескольких часов до нескольких недель, то сейчас, благодаря компьютеризации и созданию базы данных, эта операция занимает всего несколько секунд или минут.
В киноиндустрии компьютер позволил создавать такие эффекты о которых раньше и не задумывались. Знаменитый фильм «Парк юрского периода» на 80% состоит из компьютерной графики, то же самое можно сказать о многих фильмах и мультфильмах.
ЗАКЛЮЧЕНИЕ
В этом реферате перечислены далеко не все сферы применения компьютера. В дальнейшем скорее всего компьютеру будет отводиться все больше и больше места в нашей жизни. Я бы хотела отметить, что обучение работе с компьютером очень большая задача, особенно в наше время в нашей стране. В Казахстане этому уделяют большое внимание. Недавно городские власти предложили провести программу по компьютеризации средних школ и высших учебных заведений, но, хотя она нашла большой отклик среди населения, при таких темпах введения этой программы и таком финансировании ее реализация грозит затянуться на большой срок.
В данной работе отразились наиболее популярные области использования компьютеров. Об сети InterNet я старалась изложить более подробно, так как используя ее можно получить разную информацию, общаться с разными пользователями. Т.е. эта сеть является средством общения и обучения не только студентов но и обычных людей, служащих и т.д. Эта сеть наиболее реальный пример внедрения компьютеров в повседневную жизнь, т.к. остальные сферы являются или высоко технологичными, требующими специальных знаний, или просто недоступными.
www.ronl.ru
В начале августа 1981 г. корпорация IBM организовала пресс-конференцию, на которой было объявлено о выпуске принципиально новой модели компьютера — IBM PC. Очень соблазнительно считать поворотным именно этот момент, но на самом деле революция началась на несколько лет раньше. Выпуск IBM PC обозначил новую фазу революции: захват персональными компьютерами совершенно нового рынка — корпоративного.
Революция, как это обычно бывает, зарождалась там, где ее никто не ждал. В конце 60-х — начале 70-х г. микроэлектроника достигла такого состояния, когда уже стал возможным промышленный выпуск больших интегральных схем (БИС). Разумеется, очень соблазнительно собрать в одном корпусе весь прибор того или иного назначения. Однако вскоре обнаружилось, что такой прибор будет стоить много дороже, чем изготовленный традиционными методами — на печатной плате (это так и до сих пор).
Для того чтобы выпуск БИС был экономически целесообразен, требуется выпускать их крупными партиями, т. е. делать универсальными. К тому времени уже было хорошо известно, что едва ли не любую техническую задачу можно решить двумя способами — схемным и программным. Можно, например, изготовить станок-автомат для выпуска каких-то конкретных деталей, а можно разработать станок с ЧПУ, чтобы настраивать его как на эти детали, так и на другие. Электронная схема — это своего рода черный ящик, который реагирует на разнообразные комбинации входных сигналов соответствующими комбинациями сигналов на выходе. Внутри этого «ящика» может быть специально разработанная схема, а может быть и «компьютер» с соответствующей программой, быть может занесенной в ПЗУ. Начиная с некоторого уровня сложности, разработка и отладка специализированной программы становится быстрее и проще, чем разработка и отладка схемы с теми же функциями. Так что появление микропроцессоров было неизбежно: это позволяла технология, этого же требовала экономика.
Вот так в далеком 1971 г. появился первый микропроцессор Intel 4004. Это был настоящий универсальный ЦП, но ни разрядность, ни адресное пространство не позволяли применять его для вычислений. До поры до времени микропроцессоры оставались непременным атрибутом автоматизированных приборов, а если использовались для расчетов, то в форме специализированных вариантов для калькуляторов. Кстати говоря, в приборах, где требовалось по-настоящему высокое быстродействие, микропроцессорам места не было, там приходилось применять схемные решения.
Именно этот факт побуждал изготовителей микропроцессоров повышать их быстродействие и разрядность, и вот настал наконец момент, когда появилась возможность сделать настоящий микрокомпьютер. Пальму первенства большинство историков компьютерного рынка присваивают фирме MITS, которая в 1975 г. выпустила компьютер Altair на базе микропроцессора Intel 8080. Но… с оперативной памятью 256 байт, это еще была игрушка для любителей. Однако «игрушка» имела коммерческий успех и еще через год в магазинах США появилось множество моделей микрокомпьютеров, в числе которых Commodore PET, Radio Shack TRS-80 и (внимание!) Apple II. К этому времени создатели последнего, Стив Джобс и Стив Возняк, уже слегка остепенились. Аппараты для обкрадывани телефонных компаний и идея «раскулачить» кондиционер, чтобы извлечь из него микропроцессор для изготовлени своего компьютера, а также имевшие совершенно неожиданный коммерческий успех системные платы типа Apple I были уже в прошлом. Возняк и Джобс к тому времени «инкорпорировали» в свою фирму серьезного экономиста и маркетолога Майка Марккулу, который и занялся продвижением новинки на рынок. Компьютер Apple II отличался от большинства своих «современников» тем, что нес на себе «родимые пятна» прошлого, это не был вполне законченный аппарат, там оставалась некотора свобода для любительских упражнений: в Apple II можно было устанавливать дополнительные интерфейсные платы, платы памяти и пр. Именно эта особенность, которую впоследствии стали называть «открытой архитектурой», и сделалась его основным преимуществом. Успеху Apple II способствовали еще две новинки. Во-первых, это был разработанный Возняком в 1978 г. недорогой накопитель на гибких дисках, во-вторых, первая программа дл коммерческих расчетов — электронная таблица VisiCalc, которую создали Дэн Бриклин и Боб Фрэнкстон. Именно эта программа «пересадила» многих бизнесменов с калькулятора за микрокомпьютер.
Соперники Apple II поначалу продолжали выпускать микрокомпьютеры с другой «родословной» — это были сильно усовершенствованные настольные калькуляторы, сделанные как готовые законченные приборы, что называется, «ни убавить, ни прибавить». Но так было недолго. В конце 70-х рынок уже был заполнен микрокомпьютерами на базе микропроцессоров 8080 и Z80, работавшими под управлением одной из первых настоящих операционных систем для настольных машин — CP/M фирмы Digital Research. CP/M была построена по модульному принципу и предусматривала адаптацию к немного отличающимся конфигурациям, поэтому каждая фирма выпускала компьютеры чуть по-своему, стремясь обойти соперников.
То были поистине романтические времена: о совместимости с предыдущими моделями задумываться не приходилось, поэтому столько аппаратных новинок, сколько тогда, за аналогичный промежуток времени никогда более не появлялось.
Ранняя история: ПК в офисе (1982-83)Целый ряд решений, которые приняли в начале 80-х тогдашние руководители IBM, оказали кардинальное влияние на весь последующий ход развития компьютерной индустрии. Сейчас можно судить и рядить, были то ошибки или гениальное провидение, но история не знает сослагательного наклонения, поэтому вопрос, «что было бы, если...» мы здесь обсуждать не будем. Важно одно: не замечать столь бурно развивающееся направление индустрии стало невозможно, и корпорация IBM тогда была вынуждена поступиться многими из дотоле незыблемых дл них принципов.
В частности, пришлось отказаться от продажи своих изделий только через собственные каналы сбыта и продавать новые компьютеры в розницу, пришлось отказаться и от изготовления машин преимущественно из собственных модулей и с собственным программным обеспечением. Впрочем, и то, и другое решение были в значительной мере вынужденными: развертывание и производства, и новой сети распространения потребовали бы времени, а его уже не было: на столах сотрудников крупных корпораций, в которых тогда IBM доминировала, уже начали появляться персональные машины — производства других компаний. Многие сейчас считают, что решением, имевшим самые далеко идущие последствия, было соглашение с Microsoft.
Популярная в компьютерных кругах легенда утверждает, что сотрудники IBM пытались вступить в контакт с сотрудниками Digital Research о переносе системы CP/M на платформу 8088/86, но в самый критический момент глава этой фирмы Гэри Киндалл оказался на борту самолета в какой-то деловой поездке и добраться до него не было никакой возможности. В результате соглашение с DR не состоялось, а вот с Microsoft — было подписано, сначала о лицензировании транслятора с Бейсика, а затем и операционной системы, которая тогда получила название PC-DOS.
Самая первая IBM PC была построена на базе микропроцессора 8088, имела 64-Кбайт ОЗУ и была оснащена НГМД для односторонних дисков емкостью 160 Кбайт. Рекомендованная розничная цена этого компьютера составляла 2880 долл. Продажа IBM PC началась в октябре 1981 г., а уже к концу этого же года было продано более 35 тыс. машин.
Теперь уже можно с уверенностью сказать: в том, что касается схемотехнических решений, IBM PC была разработана очень верно. Хотя это был весьма слабый компьютер, он допускал расширения, которые почти незамедлительно появились на рынке. Это были и платы дополнительной памяти по 256 Кбайт (если кто-нибудь забыл, доступный объем физической памяти в тех компьютерах составлял те самые 640 Кбайт, которые впоследствии начали называть «барьером»), и графические адаптеры (поначалу минимальная конфигурация допускала работу только в текстовом режиме), и платы с последовательными и параллельными портами. Первые PC оснащались интерпретаторами с языка Бейсик, и почти сразу же начали появляться новые программы.
У IBM PC был еще один недостаток, который обернулся достоинством. Машина была недостаточно быстродействующей, а ее операционные системы — как их ни называй, PC-DOS, MS-DOS или просто DOS — несовершенными. Это побуждало разработчиков программ действовать «в обход системы», обращаясь к вычислительным ресурсам непосредственно. В результате ни одна из попыток выпустить на рынок хотя и совместимую с IBM, но более совершенную машину успехом не увенчалась. Свежесть не бывает второй, а совместимость — неполной. Именно поэтому очень быстро вышли из игры Digital Equipment с ее компьютером Rainbow, AT&T с моделью 6300 и Texas Instruments с Professional. Некоторые программы разрабатывались дл обобщенной версии DOS, и в результате оказывались недостаточно эффективными, иные — для конкретных машин, и они отказывались работать на других. Пользователи не любят неопределенностей, поэтому все захотели иметь истинно совместимые компьютеры. Тогда «тестовыми» программами для определения совместимости сделались Lotus 1-2-3 и Microsoft Flight Simulator.
В марте 1983 г. фирма Compaq, которую основали трое выходцев из Texas Instruments, продемонстрировала миру, что на рынке есть место и для портативных IBM-совместимых машин. Хотя Compaq была не первой, кто начал выпуск таких компьютеров, ее маркетинговые усили увенчались успехом. Кстати, в те времена «портативной» считалась машина массой более 12 кг...
Первые ласточки (1984-86)Следом за портативными машинами Compaq выпустила и настольную модель, и 1984 г. стал годом зарождения так называемых «клонов». В этом же году IBM попыталась стать законодателем мод еще по двум направлениям. Во-первых, была выпущена модель для домашних пользователей, названная PCjr («PC мл.»). Этот компьютер был построен на базе процессора 8088, был оснащен едва ли не первой беспроводной клавиатурой, должен был стоить 1300 долл. и потерпел сокрушительный провал: рынок не созрел. Вторая новинка оказалась куда более перспективной. Это была IBM PC AT. Самая важна особенность этой машины состояла в том, что это была первая ласточка в серии переходов на микропроцессоры более высоких уровней с сохранением совместимости с предыдущими моделями. Этот компьютер оказалс законодателем стандартов на много лет вперед в целом ряде отношений: здесь впервые появилась 16-разрядна шина расширений (остающаяся стандартной и по сей день) и графические адаптеры EGA с разрешением 640х350 при глубине представления цвета 16 бит, почти одновременно с этим компьютером IBM и Microsoft выпустили DOS 3.0, систему, ставшую стандартной на несколько лет. К этому же времени относится первая попытка IBM сделать персональный компьютер многозадачным. Пакет этой фирмы TopView позволял одновременно исполнять несколько прикладных программ, предусматривал вывод на экран нескольких окон, но лишь в текстовом режиме. Кроме того, программы, составленные с отклонениями от «правил хорошего тона», т. е. обращавшиеся к вычислительным ресурсам в обход операционной системы и BIOS, под управлением этой оболочки работали не всегда корректно. Тот факт, что сейчас мало кто помнит такую штуку, как TopView, говорит сам за себя...
1984 г. ознаменован еще целым рядом событий, которые определили дальнейший ход развития компьютерной индустрии на многие годы вперед. В частности, именно в этом году Hewlett-Packard выпустила первый лазерный принтер.
Однако самым важным событием 1984 г. (если не считать появления PC AT) был выпуск первых компьютеров Macintosh с графическим (и только графическим!) интерфейсом, манипулятором «мышь» и многими другими атрибутами пользовательского интерфейса, без которых не мыслятся современные настольные компьютеры. О настольных компьютерах других моделей можно было бы не упоминать: Commodore 64 и Atari 800 пока еще работали у домашних пользователей, но постепенно «сползали» в нишу игровых систем, где в новых воплощениях пребывают и по сей день. Компания Apple выпустила Macintosh тоже после серии неудач. Попытка выпустить Apple III успеха не принесла. Столь же разочаровывающей оказалась реакци рынка на компьютер Lisa, который опередил свое врем чуть ли не на десять лет. Ни домашние, ни корпоративные пользователи не были готовы платить 10 тыс. долл. за одно лишь дополнительное удобство в работе. Macintosh, унаследовавший многие свойства пользовательского интерфейса от компьютеров Lisa (в свою очередь «позаимствованные» у исследователей из фирмы Xerox), стоил куда дешевле.
Агрессивная рекламная кампания по продвижению компьютеров Macintosh на рынок увенчалась успехом. Однако этот успех никак нельзя назвать полным. Пользователей из мира PC новый интерфейс не оставил равнодушными, но революционный компьютер не был совместим ни с прежними программами, ни с аппаратными элементами. А в тогдашних корпорациях уже сделались нормальными рабочими инструментами WordPerfect и Lotus 1-2-3, пользователи уже привыкли и приспособились к символьному интерфейсу DOS. С их точки зрения Macintosh выглядел даже как-то несерьезно. Корпоративный мир выжидал.
В общем, период с 1983 по 1985 г. лучше всего описать как эпоху фальстартов, подавляющая часть компьютерной индустрии выжидала того, что в прессе называли PC II (предполагалось, что ее выпустит IBM) и новой DOS. Новые компьютер и система действительно появились, но совсем не так, как предполагали и ожидали. В 1986 г. Compaq и ALR выпустили первые в мире компьютеры на базе микропроцессора Intel 386, не дожидаясь примера со стороны IBM.
Новая история: стая без вожака (1987-89)В апреле 1987 г. новинка от IBM действительно увидела свет. Это было семейство компьютеров PS/2. Но с выпуском этой серии IBM просчиталась во многих отношениях. Прежде всего, старшие модели семейства, построенные на базе микропроцессора 386, были новостью только для IBM. Точно так же «локальной» новостью оказалось применение 3,5-дюйм НГМД — на компьютерах Macintosh уже давно использовались только такие диски. Были еще две новости: микроканальная архитектура (MCA) и графические адаптеры VGA.
Времена, когда IBM была безусловным законодателем мод, кончились, и похоже, безвозвратно. Единственна новинка, которая была принята почти сразу и безусловно — был стандарт VGA. На 3,5-дюйм дискеты в конце концов перешли тоже все, но очень постепенно. А вот архитектуру MCA ожидала печальная участь. Поначалу еще наблюдалась вялая борьба, но решающее слово сказали те, кто начал выпускать AT-386 раньше IBM. В их компьютерах применялась шина EISA, основными преимуществами которой была совместимость с прежними платами расширений и 32-разрядный тракт данных дл новых плат. Еще много лет выпускались компьютеры с шиной MCA, но в конце концов от нее отказалась и сама IBM, ибо лишь небольшая часть изготовителей внешних устройств производила платы, совместимые с MCA.
IBM уступила позиции и еще на одном направлении. После длительного периода неопределенностей IBM и Microsoft совместно выпустили новую операционную систему — OS/2. На протяжении некоторого времени представители Microsoft рассказывали о «многозадачной DOS», ходили слухи и о том, что свою аналогичную систему разрабатывает IBM. И вот, наконец, они объединились и выпустили в свет OS/2. О недостатках DOS к тому времени было сказано уже много: это и барьер 640 Кбайт, и отсутствие единообразного пользовательского интерфейса, и монопольный режим работы программ.
Внутренние противоречия начали подтачивать альянс IBM-Microsoft почти с самого начала. OS/2 1.0, появившаяся в конце 1987 г., предусматривала многозадачный режим работы с вытеснением и допускала размеры прикладных программ до 16 Мбайт — принципиального предела для микропроцессоров 286. Однако истинным событием для пользователей стало появление версии 1.1, которая была выпущена лишь в октябре 1988 г., ибо именно в этой версии был наконец-то реализован графический интерфейс.
На операционных системах уже начало сказыватьс бремя совместимости: если и было возможно подготовить систему с перечисленными выше возможностями дл микропроцессоров 286, то полностью это не удалось ни IBM, ни Microsoft. Определенное смущение пользователей вызвало и появление «чисто-IBM'овской» версии OS/2, так называемой расширенной редакции (Extended Edition), где были встроенные средства управления базами данных и коммуникаций, и совпадение названий — некоторые полагали, что операционная система OS/2 предназначена специально для компьютеров PS/2 и только для них.
А тем временем Microsoft продолжала работать над Windows (тогда еще оболочкой), которая провозглашалась переходным звеном между DOS и OS/2. В 1987 г. была выпущена в свет подсистема Windows 2.0, интерфейс которой был уже много ближе к тому, к которому мы сейчас привыкли. Кроме того, в этой оболочке была реализована архитектура прикладных программ SAA (System Application Architecture), предложенная IBM, но на год раньше, чем ее внедрила сама IBM. Однако и эта оболочка действовала в режиме совместимости с 8088/8086, а не в защищенном режиме хотя бы микропроцессоров 286, так что невозможно было реализовать истинную многозадачность, а размеры прикладных программ были по-прежнему ограничены. В этом же году Microsoft подготовила раздельные версии Windows для микропроцессоров 286 и 386; в последнем варианте образовалась и многозадачность, и возможность работать с памятью до 16 Мбайт. Тем самым началось состязание между Windows и OS/2, хотя IBM и Microsoft долго отрицали этот факт.
Самое важное в упомянутом состязании — отсутствие полной совместимости между Windows и OS/2; вывод графики на экран в них выполнялся по-разному. В результате возникли недоразумения у независимых разработчиков программ: Microsoft убеждала их готовить программы для Windows, уверяя, что эти программы позднее можно будет свободно выполнять и в среде OS/2, в то время как IBM склоняла разработчиков к работе дл OS/2 сразу же.
Корпоративные пользователи — не те люди, которые выясняют, которая из новинок более перспективна, на собственном опыте. Любое сомнение становится веским основанием, чтобы занять выжидательную позицию. И, несмотря на появление нескольких прикладных пакетов, в корпорациях по-прежнему работали в среде DOS и на компьютерах с шиной ISA. IBM не сумела удержать за собой роль законодателя стандартов, но и ни один из других разработчиков компьютерных систем не перехватил лидерство. И вот, мало-помалу сложилась ситуация, аналога которой не было во всей истории компьютерной техники: диктовать начали программисты. Началом этой эры можно считать выпуск Windows 3.0 — именно с этого момента начинается
Новейшая история: «Windows-совместимые» компьютеры (1990-94)Windows 3.0 была еще оболочкой для DOS, поэтому отказываться от старых программ пока не требовалось. В этой подсистеме уже был использован защищенный режим, поэтому можно было реализовать многозадачную работу. Пользовательский интерфейс был похож на интерфейс Presentation Manager — пиктограммами (Program Manager) и древовидной структурой каталогов (File Manager).
Однако даже после появления Windows 3.0 фирмы IBM и Microsoft продолжали высказываться об OS/2, в особенности об OS/2 2.0, первой истинно 32-разрядной системе, которой суждено было появиться лишь в 1992 г. IBM считала OS/2 операционной системой будущего дл всех, в то время как Microsoft «позиционировала» OS/2 как операционную систему для ответственных приложений и серверов. Позднее представители Microsoft начали даже говорить об OS/2 3.0 (не путайте с OS/2 Warp 3.0), в которой предполагалось усовершенствовать средства обеспечения безопасности и предусмотреть управление несколькими процессорами. Более того, эта система должна была обеспечить непосредственную совместимость с Windows- и Posix-программами. По этому сценарию Windows NT должна была стать ядром, где была бы обеспечена совместимость и с DOS, и Windows, и OS/2.
И свершился развод. OS/2 благодаря своей устойчивости и надежности, нашла себе место в некоторых корпорациях, но IBM не сумела ничего противопоставить победному шествию Windows. Даже появление OS/2 Warp 3.0, которая разошлась многомиллионным тиражом, расстановку сил не изменило.
Доминирующее положение Microsoft укрепило и ее массированное вторжение на рынок прикладных программ, которые реально готовились параллельно с операционными системами. Отныне наиболее популярные пакеты начали появляться почти одновременно с новыми версиями систем.
Именно на переходе от 80-х к 90-м г. сформировалс альянс Wintel. Когда в начале 1989 г. Intel выпустила микропроцессор 486, производители компьютеров не стали дожидаться примера со стороны IBM или Compaq. Началась гонка, в которую вступили десятки фирм. Но все новые компьютеры были чрезвычайно похожи друг на друга — их роднила совместимость с Windows и микропроцессоры от Intel.
Список литературы
Пятибратов А.П., Можаров Р.В. ЭВМ, МИНИ-ЭВМ и микропроцессорная техника в учебном процессе., -М.,1997. –230с.
Лувишис И., Зарубин Ю., Мазо Б. Коротко о истории развития компьютеров. // Компьютер Пресс — 1996 — N5.
Иванов А.В. История создания компьютеров // Компьютер Пресс — 1996 — N5.
Для подготовки данной работы были использованы материалы с сайта referat2000.bizforum.ru/
www.ronl.ru
Санкт-Петербургский Гуманитарный Университет Профсоюзов
Реферат на тему
ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР
Выполнил: студент
эк-го ф-та 3 к. 1 гр.
Кауненко В.Г.
Проверил: Долин Р.А.
Санкт-Петербург
2000
СОДЕРЖАНИЕ:
Введение………………………………………………………………..3стр.
1.Что такое компьютер?……………………………………………….4стр.
2.Принцип действия и структурная схема компьютера……………..7стр.
Список использованной литературы……………………………….12 стр.
ВВЕДЕНИЕ
В настоящем времени трудно назвать те области человеческой деятельности, успехи в которых не были бы связаны с использованием компьютера. Сфера применения компьютера постоянно расширяется, существенно влияя на развитие производительных сил нашего общества. Непрерывно изменяются технико-экономические характеристики компьютера, например, такие, как быстрота действия, ёмкость памяти, надёжность в работе, стоимость, удобства в эксплуатации, габаритные размеры, потребляемая мощность и др. В широком понимании всякий компьютер рассматривается как преобразователь информации. При этом под информацией понимается различные сведения о тех или иных явлениях природы, событиях общественной жизни или процессах, протекающих в технических устройствах.
1. ЧТО ТАКОЕ КОМПЬЮТЕР?
Что же такое персональный компьютер? Если описывать его внешне, то это «небольшой ящик, лежащий (desktop) или стоящий (mini-tower) на столе, реже — ящик высотой около метра (tower), стоящий на полу, с выключателем питания и прорезями, в которые вставляются дискеты. К этому ящику подключается дисплей, напоминающий телевизор, клавиатура и мышь — небольшая коробочка с двумя или тремя кнопками, которую перемещают по столу или специальному коврику. К компьютеру также подключается принтер — устройство, позволяющее распечатывать на бумаге тексты, графики, письма, таблицы, рисунки и др.»1
Но компьютер — это не только аппаратура или железо. Это также и различные программы, записанные в нём и выполняемые по приказу пользователя или незаметно для него, обеспечивающие работоспособность всей системы в целом. Стоимость установленных на компьютере программ всё чаще оказывается выше стоимости самого компьютера. Своим широким распространением персональные компьютеры обязаны в первую очередь удобству использования и «дружелюбно» разработанных для них программ.
Один из важнейших элементов компьютера — микропроцессор, для краткости часто называемый процессором. Именно он проделывает все вычисления, необходимые при выполнении программы. Микропроцессоры постоянно совершенствуются, каждые один-два года появляется новая модель, но новые микропроцессоры используют тот же самый набор команд, что и старые, только постоянно расширяемый. РС — совместимые компьютеры построены на микропроцессорах, разработанных фирмой INTEL, это 8088 в первых компьютерах, 80286 — в РСАТ, в следующих моделях — 80386, 8046 и в последних — PENTIUM. Зачастую тип компьютера определяют типом микропроцессора и его быстродействием.
Другим важнейшим элементом компьютера является память. Она делится на оперативную, выполненную на процессорах, и долговременную. Память измеряется в байтах. В одном байте может хранится одна буква или цифра. Используются также величины: кило байт (К), мегабайт (М) и гигабайт (Г). Один килобайт равен не 1000, а 1024 байтам. Из-за того, что внутри компьютера используется двоичная система счисления, такие числа оказываются более удобными, чем круглые.
Доступ к оперативной памяти практически не отнимает времени у процессора, на этой памяти всегда меньше, чем хотелось бы. Ёмкость долговременной памяти гораздо больше, но для доступа к ней требуется довольно большое компьютерное время.
Следующий важный элемент компьютера — контроллер дисплея, или видеоадаптер. Его задача заключается в преобразовании цифровых сигналов, поступающих от микропроцессора, в видеосигнал, подаваемый на дисплей. Видеоконтроллер имеет собственную память, размер которой определяет, на сколько точек можно разбить изображение на экране и какое количество цветов можно использовать. Наиболее распространёнными в настоящее время являются видеоадаптеры VGA и SVGA.
VGA обеспечивает формирование изображения из 480 линий по 640 точек в каждой, причём одновременно можно использовать только 16 цветов ( режим 640Х480Х16). «SVGA — адаптеры в зависимости от объёма установленной на них памяти могут работать в большем числе режимов, например, 800х600Х256,1024х768х256 и даже 1600х1200х16млн. Конечно, чем мельче точки, из которых состоит изображение, тем легче глазу его воспринимать”1 .
Существует несколько типов компьютеров, отличающихся составом и характеристиками своих компонентов, которые используются для решения различных задач.
Так, для решения сложных задач обработки информации требуется компьютер, который содержал бы наиболее мощное устройство для проведения вычислений. В нём, как правило, несущественно качественное представление информации, и устройство, на котором эта информация отображается, может быть весьма слабым. Обычно компьютеры, удовлетворяющие таким условиям и работающие в общей вычислительной сети офиса, называюся серверами и предназначены для обработки информации по требованиям, поступающих с других компьютеров.
С другой стороны, компьютер, предназначенный в основном для печати документов, может не иметь столь мощного устройства обработки информации, однако к нему должно быть подключено печатающее устройство часто довольно высокого качества.
В офисах используются компьютеры, стационарно располагающиеся на рабочих местах
2.ПРИНЦИПЫ ДЕЙСТВИЯ И СТРУКТУРАЯ СХЕМА КОМПЬЮТЕРА
|
|
|
|
|
|
|
|
|
Пульт управления предназначен для пуска и остановки машины, задания режимов её работы, контроля и индикации состояния отдельных устройств и ЭВМ в целом. На пульте управления располагаются необходимые органы управления — кнопки, тумблеры, клавиатура, а также сигнализационные лампочки, отражающие состояние различных устройств и узлов ЭВМ.
Центральное устройство управления организует и координирует автоматическое взаимодействие всех устройств ЭВМ в процессе решения задачи. В основе автоматизации вычислительного процесса ЭВМ лежит принцип программного управления, заключающийся в том, что ЭВМ автоматически решает поставленную задачу, если в виде программы её задана последовательностью выполнения действий. Программа указывает ЭВМ то, какие операции ей необходимо выполнить, над какими данными и в какой последовательности.
«Основной задачей Центрального устройства управления является выборка из памяти кодов команд программ и их преобразование в необходимые последовательности синхронизирующих, разрешающих, устанавливающих, стробирующих и других сигналов.»1 С помощью этих сигналов обеспечивается согласованное взаимодействие всех устройств компьютера в процессе автоматического выполнения программы, в том числе выборка из памяти необходимых данных, их пересылка в арифметико-логическое устройство, выполнение в арифметико-логическом устройстве операций и т.д.
Арифметико-логическое устройство обеспечивает выполнение определённой машинной операции ( арифметической, логической и др.). При этом данные, участвующие в выполнении данной операции, поступают в арифметико-логическое устройство из памяти машины.
Совокупность Центрального устройства управления и Арифметико-логического устройства называют процессором ЭВМ, поскольку именно эти устройства реализуют вычислительный процесс в соответствии с заданной программой. Процессор занимает центральное место в структуре компьютера, так как осуществляет автоматическое управление взаимодействием всех устройств, входящих в состав компьютера.
Память ЭВМ служит для хранения исходных данных, команд программ, а также промежуточных и окончательных результатов вычислений. Информация, содержащаяся в памяти компьютера, по мере необходимости выдаётся в другие устройства машины (Центральное устройство управления, Арифметико-логическое устройство, устройства вывода и др.).
Основная память тесно связана с Арифметико-логическим устройством и служит для хранения информации, используемой в ближайшей серии вычислений. Информация из основной памяти обычно извлекается определёнными порциями. Все ячейки основной памяти пронумерованы. Номера ячеек памяти являются адресами тех данных, которые хранятся в них. При считывании машинного слова из ячейки основной памяти содержимое этой ячейки при необходимости восстанавливается и может быть в дальнейшем снова получена из той же ячейки. При записи информации хранившиеся в ячейке памяти слово стирается и его место занимает новое.
Наряду с оперативной и сверхоперативной памятью в современных компьютерах используется ещё один вид внутренней памяти – постоянная память, реализуемая постоянными запоминающими устройствами.
Постоянные запоминающие устройства служат для хранения различных констант и постоянных программ. Информация в них записывается однократно, обычно в процессе изготовления устройства, а в дальнейшем только считывается без разрушения. В тех случаях, когда занесение информации производится в эксплуатационных условиях соответствующей настройкой, такие постоянные запоминающие устройства называются программируемые постоянные запоминающие устройства.
Внутренняя память ЭВМ (основная память, сверхоперативная память, постоянные запоминающие устройства, программируемые постоянные запоминающие устройства) непосредственно взаимодействуют с процессором и вместе с ним образуют центральную часть (ядро) компьютера. Кроме центральной части в состав компьютера входят также различные периферийные ( внешние )устройства , которые по своему значению делятся на две группы:
— устройства внешней памяти, предназначенные для хранения больших массивов информации;
— устройства ввода и вывода, обеспечивающие связь компьютера с внешней средой, в том числе с пользователями, путём ввода в компьютер информации, её регистрации и отображения;
Обмен информацией между центральной частью и периферийными устройствами ЭВМ производится операциями ввода-вывода. В процессе ввода информация передаётся в центральную часть компьютера из внешней среды, в том числе от пользователя, а также из внешней памяти. В процессе вывода информация передаётся во внешнюю среду или во внешнюю память компьютера.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
1. Иванов Е.А., Степанов И.М., Хомяков К.С. «Периферийные устройства ЭВМ», М, «Инфо», 1987г.
2. Ламекин В.Ф. «Оргтехника для вашего офиса», Ростов-на-Дону, «Новая печать», 1997г.
3. Семененко В.А. Айдидын В.М., Липова А.Д. «Электронные вычислительные машины», М, «Высшая школа», 1991г.
1 Иванов Е.Л., Степанов И.М., Хомыков К.С. «Периферийные устройства ЭВМ», М.,1991
1 Семененко В, А,, Айдидян В.М., Липова А.Д. 2Электронные вычислительные машины», М.,1991
1 Ламекин В.Ф. «Оргтехника для вашего офиса», Ростов-на-Дону, 1997г.
www.ronl.ru