Устройство и принцип действия насосов. Реферат на тему устройство и принцип работы насосов общего применения


Устройство и принцип действия насосов — Мегаобучалка

Центробежный насос

Центробежный насос состоит из следующих элементов (рисунок 2):

1) вал;

2) направляющий аппарат или отвод;

3) рабочее колесо;

4) подвод или подводящее устройство;

5) внутреннее уплотнение;

6) концевое уплотнение;

7) система разгрузки осевой силы;

8) шнек;

9) импеллер.

Рисунок 2 – Схема центробежного насоса

Направляющий аппарат бывает лопастного типа, кольцевой или спиральный. Направляющие аппараты в многоступенчатых насосах между ступенями.

Отвод – это устройство, выполненное в виде улитки или спирали для сбора и отвода жидкости в трубопровод. В расширяющейся части отвода происходит преобразование кинетической энергии жидкости в потенциальную энергию давления.

Рабочее колесо бывает с двухсторонним и односторонним входом жидкости (рисунок 3).

1 - ступица с диском 2, 3 - ведомый диск соединяется с ведущими лопатками 4

Рисунок 3 – Типы рабочих колес

Колеса бывают закрытого типа, полузакрытого (отсутствует ведомый диск) и открытого типа (отсутствуют оба диска).

Подвод служит для плавного подвода жидкости в насос. Бывает осевой подвод и радиальный.

Внутреннее уплотнение устанавливается между колесом и корпусом насоса и предотвращает переток жидкости из области высокого давления в область низкого. Внутренние уплотнения бывают лабиринтного и кольцевого типа.

Концевое уплотнение устанавливается между корпусом насоса и валом.

Бывает: а) сальниковое;

б) торцевое.

Разгрузка осевой силы может выполняться следующими способами:

а) применение колес с двухсторонним входом. Остаточные осевые силы воспринимаются радиально-упорными подшипниками.

б) у одноступенчатых насосов применяется сверление отверстий в задней стенке диска.

в) у многоступенчатых насосов применяется попарная установка колес.

г) применятся гидравлическая пята.

У магистральных насосов, особенно у подпорных, устанавливается предвключенное колесо – шнек. Служит для увеличения кавитационных качеств насоса.

Импеллер в магистральных насосах устанавливается между колесом и торцевым уплотнением. Представляет собой винтовой насос, который обеспечивает циркуляцию жидкости через торцевые уплотнения.

 

Принцип действия центробежного насоса

При вращении рабочего колеса за счет центробежных сил жидкость перемещается от центра колеса к периферии. В центре создается разряжение, под действием которого жидкость перемещается из всасывающего трубопровода в насос. Перед включением в работу центробежный насос должен быть заполнен жидкостью, т.к. плотность воздуха почти в 1000 раз меньше плотности жидкости; и насос на воздухе не может создать достаточного разрежения.

За счет центробежных сил и силового воздействия лопаток на поток увеличивается механическая энергия жидкости. На выходе из рабочего колеса скорость жидкости может достигать 30 и более м/с, поэтому направляющий аппарат выполненный в виде расширяющегося канала переводит кинетическую энергию в потенциальную энергию давления. Давление растет, скорость падает до 3 м/с.

 

Осевые насосы

Рабочее колесо осевого насоса похоже на гребной винт корабля (рисунок 4). Оно состоит из втулки 1, на которой закреплено несколько лопастей 2. Механизм передачи энергии от рабочего колеса жидко­сти тот же, что и у центробежного насоса. Отводом насоса служит осевой направляющий аппарат 5, с помощью которого устраняется закрутка жидкости и кинетическая энергия ее преобразуется в энергию давления. Осевые насосы применяют при больших подачах и малых напорах.

Рисунок 4 – Схема осевого насоса

 

В осевом насосе жидкость движется по цилиндрическим поверх­ностям, соосным с валом насоса. Следовательно, радиусы, на которых жидкость входит в колесо и выходит из него, одинаковы.

Осевое усилие воспринимается пятой электродвигателя. В зару­бежной практике известны насосы, баббитовые подшипники ко­торых смазываются консистентной смазкой от масленок, а осевое усилие воспринимается упорным подшипником насоса.

Насосы с диаметром лопастей D> 1 м имеют подвод в виде колена, мелкие — камерный подвод.

Известны конструкции осевых насосов, которые могут работать при погружении в воду в любом положении: горизонтальном, вертикальном и наклонном.

Для перекачивания больших количеств жидкости с относитель­но малыми напорами обычно используют осевые насосы. По ГОСТ 9366—71 осевые насосы типа О и Оп выпускают на пара­метры: Q = 0,072 ~40,5 м3/с, H = 2,5-26м: п = 250-2900 об/мин. В настоящее время разработаны высоконапорные осевые насосы с напором до 25 м в одноступенчатом исполнении для крупных насосных станций. Подача таких насосов составляет 137 000 м3/ч.

Преобладающее распространение получили одноступенчатые осевые насосы консольного типа. Чаще всего выполняют насосы вертикального типа, хотя известны также некоторые типы насо­сов с горизонтальным и наклонным расположением оси агрегата. При вертикальном исполнении валы насоса и приводного электро­двигателя жестко соединяются фланцами либо непосредственно, либо через промежуточный вал.

Рабочее колесо насоса имеет от двух до шести лопастей. Ло­пасти крепят к втулке жестко (тип О), или так, что они могут поворачиваться относительно нее (тип Оп). В соответствии с этим насосы называют жестколопастными или поворотнолопастными. Для изменения режима работы насоса лопасти поворачивают как при остановленном, так и при работающем насосе.

 

Вихревые насосы

Вихревые насосы относятся к машинам трения. Рабочее колесо вихревого насоса аналогично колесу центробежного насоса, засасывает жидкость из внутренней части канала и нагнетает ее во внешнюю, в результате чего возникает продольный вихрь. При прохождении жидкости через рабочее колесо (рисунок 5) в вихревом насосе, как и в центробежном, увеличиваются кинетическая энергия жидкости (увеличивается ее скорость) и потенциальная энергия давления.

Рабочим органом насоса является рабочее колесо с радиальными или наклонными лопатками. Колесо вращается в цилиндрическом корпусе с малыми торцовыми зазорами.Жидкость поступает через всасывающее отверстие в канал, перемещается по нему рабочим колесом и выбрасывается через выходное отверстие.Вихревой насос по сравнению с центробежным обладает следующими достоинствами: создаваемое им давление в 3-7 раз больше при одинаковых размерах и частоте вращения рабочего колеса; конструкция проще и дешевле; обладает самовсасывающей способностью; может работать на смеси жидкости и газа; подача меньше зависит от противодавления сети. Недостатками насоса являются низкий КПД, не превышающий в рабочем режиме 45%, и непригодность для подачи жидкости, содержащей абразивные частицы (так как это приводит к быстрому изнашиванию стенок торцовых и радиальных зазоров и, следовательно, падению давления и КПД).Вихревые насосы обычно применяют при необходимости создания большого напора при малой подаче. Поэтому их широко применяют в химической промышленности для подачи кислот, щелочей и других химически агрессивных реагентов, где при малых подачах (мала скорость протекания химических реакций) необходимы высокие напоры (велики гидравлические сопротивления реакторов и давления, при которых протекают реакции). Вихревые машины используют в качестве вакуум-насосов и компрессоров низкого давления. В последние годы они находят применение в системах перекачки сжиженного газа.

1 - рабочее колесо; 2 - лопатка; 3 - корпус; 4 - всасывающее отверстие; 5 - выходное отверстие

Рис. 5.Схема вихревого насоса

 

Рабочим органом вихревого насоса является рабочее колесо 1 с радиальными или наклонными лопатками (рисунок6), помещенное в цилиндрический корпус с малыми торцевыми зазорами. В боковых и периферийной стенках корпуса имеется концентричный канал 2, начинающийся у всасывающего отверстия и кончающийся у напорного. Канал прерывается перемычкой 4, служащей уплотнением между напорной и всасывающей полостями. Жидкость поступает через всасывающий патрубок 5 в канал, прогоняется по нему рабочим колесом и уходит в напорный патрубок 3.

Рис. 6. Схема вихревого насоса закрытого типа

Напор вихревого насоса в 3-7 раз больше, чем центробежного, при тех же размерах и числе оборотов. Большинство вихревых насосов обладает самовсасывающей способностью, т. е. способностью при пуске засасывать жидкость без предварительного заполнения всасывающего трубопровода. Многие вихревые насосы могут работать на смеси жидкости и газа. Недостатком вихревого насоса является низкий КПД, не превышающий 45%. Наиболее распространенные конструкции имеют КПД 35-38%. Низкий КПД препятствует применению вихревого насоса при больших мощностях. Вихревые насосы изготовляют на подачу до 12 л/с. Напор вихревых насосов достигает 240 м, мощность доходит до 25 кВт, коэффициент быстроходности ns=6÷40. Число оборотов вихревого насоса так же, как и лопастного, ограничено только кавитационными явлениями. Следовательно, насос может быть непосредственно соединен с электродвигателем. Вихревые насосы не пригодны для перекачивания жидкости с большей вязкостью, вследствие того, что при увеличении вязкости напор и КПД резко падают. Вихревые насосы рекомендуется применять при Re > 20000.

Эти насосы пригодны также для подачи жидкостей, содержащих абразивные частицы, так как из-за износа быстро увеличиваются торцовые и радиальные зазоры, что приводит к падению напора и КПД.

По типу рабочего колеса вихревые насосы делятся на насосы закрытого и открытого типов. У насосов закрытого типа (см. рис. 6) лопатки рабочего колеса короткие. Их внутренний радиус равен внутреннему радиусу канала. Жидкость подводится из всасывающего патрубка непосредственно в канал. У насосов открытого типа (рисунок 7) внутренний радиус лопаток меньше внутреннего радиуса канала. Жидкость подводится из всасывающего патрубка 1, поступает в подвод 2, из которого через всасывающее окно 3 подводится к лопаткам рабочего колеса 4 и затем поступает в канал 5. От типа колеса зависят его кавитационные свойства, а также самовсасывающая способность и способность работать на газожидкостной смеси. Далее жидкость прогоняется по каналу рабочим колесом и через напорное отверстие 8 уходит в отвод 6 и напорный патрубок 7.

Рисунок 7. Схема вихревого насоса открытого типа

Струйные насосы

В струйных насосах, называемых также инжекто­рами, эжекторами, гидроэлеваторами, поток полезной подачи Q0 перемещается и получает энергию благодаря смещению с рабочим потоком Q1 обладающим большей энергией. Полная подача на выходе из насоса

Q2=Q1+Q0

Энергия этого потока больше энергии потока полезной подачи Q0, но меньше энергии рабочего потока Q1 перед входом в насос.

Струйный насос (рисунок 8) состоит из рабочего сопла 3 с подводом 2 рабочего потока, камеры 5 смешения, диффузора 6 и подвода 1 потока полезной подачи с входным кольцевым соплом 4 камеры смешения.

Режим работы струйного насоса характеризует четыре приведен­ных ниже и показанных на рис.8, а параметра (их выражения даны для наиболее простого и распространенного случая, когда плотности смешиваемых потоков одинаковы, т. е. р1 = р0):

 

а – схема и распределение напоров в проточной части; б – схема процесса смещения

Рис. 8 Струйный насос

 

1) рабочий напор, затрачиваемый в насосе и равный разности напоров рабочего потока на входе в насос (сечение b — b) и на вы­ходе из него (сечение с — с),

Hp=Pb/ρg+υ2b/2g-Pc/ρg- υ2c/2g;

2) полезный напор, создаваемый насосом и равный разности на­поров подаваемой жидкости за насосом (сечение с — с) и перед ним (сечение а — а),

Hп=Pc/ρg+υ2c/2g-Pа/ρg- υ2а/2g;

3) расход рабочей жидкости

Q1=υ1S1=υ1(π/4)d21

4) полезная подачаQ0 = υ0S0 = v0(π/4)(d20-d21).

КПД струйного насоса равен отношению полезной мощности к затраченной:

η=HnQ0/(HpQ1).

Его максимальное значение невелико и составляет ηrnax = 0,2÷0,35. Несмотря на это струйные насосы распространены широко, так как, благодаря простому устройству, малым габаритным размерам, от­сутствию подвижных частей они надежны, легко размещаются в труднодоступных мостах, способны подавать агрессивные и загряз­ненные жидкости и выполнять функции смесителей.

megaobuchalka.ru

Реферат Насос

скачать

Реферат на тему:

План:

Введение

Насо́с (разг. водяная помпа, колонка) — гидравлическая машина, преобразующая механическую энергию приводного двигателя в энергию потока жидкости, служащая для перемещения и создания напора жидкостей всех видов, механической смеси жидкости с твёрдыми и коллоидными веществами или сжиженных газов. Следует заметить, что машины для перекачки и создания напора газов выделены в отдельные группы и получили название вентиляторов и компрессоров. Разность давлений жидкости в насосе и трубопроводе обуславливает её перемещение.

Условное графическое обозначение нереверсивного нерегулируемого насоса

Неполная классификация насосов по принципу действия и конструкции выглядит следующим образом:

1. История

Изобретение насоса относится к глубокой древности. Первый поршневой насос для тушения пожара, который изобрёл древнегреческий механик Ктесибий, упоминается ещё в I веке н. э. В Средние века насосы использовались в различных гидравлических машинах. Один из первых центробежных насосов со спиральным корпусом и четырёхлопастным рабочим колесом был предложен французским учёным Д. Папеном. До XVIII века насосы использовались гораздо реже чем водоподъёмные машины (устройства для безнапорного перемещения жидкости), но с появлением паровых машин насосы начали вытеснять водоподъёмные машины. В XIX веке с развитием тепловых и электрических двигателей насосы получили широкое распространение. В 1838 году русский инженер А. А. Саблуков на основе созданного им ранее вентилятора построил центробежный насос и работал над применением его при создании судового двигателя.

2. Классификация насосов по принципу действия

По характеру сил, преобладающих в насосе: объёмные, в которых преобладают силы давления и динамические, в которых преобладают силы инерции.

По характеру соединения рабочей камеры с входом и выходом из насоса: периодическое соединение (объёмные насосы) и постоянное соединение входа и выхода (динамические насосы).

Объёмные насосы используются перекачки вязких жидкостей. В этих насосах одно преобразование энергии — энергия двигателя непосредственно преобразуется в энергию жидкости (механическая => кинетическая + потенциальная). Это высоконапорные насосы, они чувствительны к загрязнению перекачиваемой жидкости. Рабочий процесс в объёмных насосах неуравновешен (высокая вибрация), поэтому необходимо создавать для них массивные фундаменты. Также для этих насосов характерна неравномерность подачи. Большим плюсом таких насосов можно считать способность к сухому всасыванию (самовсасыванию).

Для динамических насосов характерно двойное преобразование энергии (1 этап: механическая => кинетическая + потенциальная; 2 этап: кинетическая => потенциальная). В динамических насосах можно перекачивать загрязнённые жидкости, они обладают равномерной подачей и уравновешенностью рабочего процесса. В отличие от объёмных насосов, они не способны к самовсасыванию.

2.1. Объёмные насосы

Процесс объёмных насосов основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. Некоторые виды объёмных насосов:

Общие свойства объёмных насосов:

2.2. Динамические насосы

Динамические насосы подразделяются на:

2.3. Вихревые насосы

Вихревые насосы — динамические насосы, жидкость в которых перемещается по периферии рабочего колеса в тангенциальном направлении. Преобразование механической энергии привода в потенциальную энергию потока (напор) происходит за счёт множественных вихрей, возбуждаемых лопастным колесом в рабочем канале насоса. КПД идеального вихревого насоса не превышает 45 %. КПД реальных насосов обычно не превышает 30 %.

Применение вихревого насоса оправдано при значении коэффициента быстроходности[неизвестный термин]ns < 40. Вихревые насосы в многоступенчатом исполнении значительно расширяют диапазон рабочих давлений при малых подачах, снижая коэффициент быстроходности до значений, характерных для насосов объёмного типа.

Вихревые насосы сочетают преимущества насосов объёмного типа (высокие давления при малых подачах) и динамических насосов (линейная зависимость напора насоса от подачи, равномерность потока).

Вихревые насосы используются для перекачки чистых и маловязких жидкостей, сжиженных газов, в качестве дренажных насосов для перекачки горячего конденсата.

Вихревые насосы обладают низкими кавитационными качествами. Кавитационный коэффициент быстроходности вихревых насосов C = 100..110.

3. Классификация насосов по реализации

4. Классификация насосов по типу перекачиваемой среды

4.1. Химические насосы

Химические насосы предназначены для перекачки различных агрессивных жидкостей, поэтому основными областями их применения являются химическая и нефтехимическая промышленность (перекачивание кислот, щелочей, нефтепродуктов), лакокрасочная промышленность (краски, лаки, растворители и др.) и пищевая промышленность.

Химические насосы перекачивает кислоты и щёлочи, органические продукты, сжиженные газы и т. п., которые характеризуются взрывоопасностью, различной температурой, токсичностью, склонностью к полимеризации и налипанию, содержанием растворенных газов. Характер перекачиваемых жидкостей обуславливает то, что химические насосы изготавливаются полностью из химостойких полимеров.

Примечания

wreferat.baza-referat.ru

Центробежный насос: устройство и принцип действия

Принцип действия центробежных насосов

Принцип действия центробежных насосов

Принцип действия центробежных насосов целиком построен на законах физики. Работа происходит при возникновении центробежной силы, появление которой обусловлено действием лопастей колеса на жидкость.Что бы правильно понять, где применяется данный насос и что он может качественно делать, надо знать устройство насоса центробежного. С эти мы сегодня ознакомимся. Также видео в этой статье покажет весь принцип его работы наглядно.

Работа и устройство

Чтобы понять работу данного механизма надо знать из чего состоит центробежный насос. Так же понять его принцип работы.После этого вы сможете подобрать его именно для нужной работы. После этого и можно будет установить его своими руками. Посмотрев фото вы все поймете без проблем.

Основные узлы и элементы

Устройство и принцип действия центробежного насоса происходит в результате согласованных действий всех механизмов. Они состоят из корпуса в виде спирали и рабочего колеса, расположенного внутри корпуса и крепится на валу шпонкой.

Устройство центробежного насоса насоса

Устройство центробежного насоса насоса

 Итак:

Внимание: Таким образом происходит воздействие лопастей на молекулярный состав воды, что служит причиной, по которой созданная кинетическая энергия двигателя переходит в напор жидкости с определенной скоростью из-за оказываемого на нее давления.

Принцип работы

При центробежных насосах обычно имеется арматура и некоторые приборы:

Внимание: В свою очередь обратный клапан не позволяет воде при возникновении такой ситуации перетекать в обратном направлении по центробежному насосу и находится на напорном трубопроводе.

Работа центробежного насоса

Наличие образования центробежной силы и заложен весь смысл работы или действия центробежного насоса:

Внимание: Необходимо отметить, что самыми востребованными и популярными насосами, которые используются в целях перекачки воды и другой жидкости являются именно центробежные насосы различных видов.

Центробежный насос устройство и принцип действия подразделяются по своим преимуществам на функциональные и конструктивные. Сравнительно невысокие расценки центробежных насосов обусловлены дешевизной материалов, из которых они изготавливаются.Это преимущественно сталь, полимеры и чугун. При покупке должна быть изучена инструкция, они бывают довольно разных параметров, от этого и зависит их цена. При покупке стоит отдать предпочтение проверенным брендам, а не гнаться за дешевыми вариантами. В этом случае   вы просто потеряете в качестве.

moikolodets.ru


Смотрите также