|
|||||||||||||||||||||||||||||||||||||||
|
Читать реферат по химии: "Ртуть". Реферат на тему ртуть по химииДоклад - Ртуть - ХимияВведениеРтуть (лат. Hudrargyrum) – химический элемент 2 группы периодической системы Менделеева; атомный номер 80, атомная масса 200,59. Ртуть – элемент редкий и рассеянный, его содержание примерно 4,5*10-6% от массы земной коры. Тем не менее известна ртуть с глубокой древности. Скорее всего, человек познакомился с ртутью, выделив при нагревании главного минерала ртути – ярко-красной киновари HgS. Иногда встречается в природе самородная ртуть, образовавшаяся, по-видимому, из той же киновари. Ртуть – тяжелый (плотность 13,52 г/см3) металл серебристо-белого цвета, единственный металл, жидкий при обычных условиях. Затвердевает ртуть при – 38,9 С, закипает – при +357,25' С. При нагревании ртуть довольно сильно (всего в 1,5 раза меньше воды) расширяется, плохо проводит электрический ток и тепло – в 50 раз хуже серебра. Многие металлы хорошо растворяются в ртути с образованием амальгамы. Как и благородные металлы, ртуть на воздухе не изменяется – не окисляется кислородом, не реагирует с другими компонентами атмосферы. Реакция с кислородом заметно идет лишь при температурах, близrих к температуре кипения ртути, причем многие примеси например аналог ртути по подгруппе – цинк, заметно ускоряют окисление. С галогенами ртуть реагирует легче, чем с кислородом; взаимодействует с азотной кислотой, а при нагревании и с серной. В соединениях ртуть всегда двухвалентна. Известны, правда соединения одновалентной ртути – оксид (1) Hg и каломель HgCl. Но в этих соединениях ртуть всего лишь формально одновалентна. Состав каломели точнее отражает формула HgCl2, или Cl – Hg – Hg. Каломель, как и другой хлорид ртути — сулема HgCl2 используется в качестве антисептика. Соединения ртути весьма ядовиты. Работа с ними требует не меньшей осторожности, чем работа с самой ртутью. В промышленности и в технике ртуть используется очень широко и разнообразно. Каждый из нас держал в руках ртутный термометр. Ртуть работает и в других приборах – барометрах, ареометрах, расходометрах Важны ртутные катоды в производстве хлора и едкого натра, щелочных и щелочноземельных металлов, известны ртутные выпрямители переменного тока ртутные лампы. Историческая справка. Самородная ртуть была известна за 2000 лет до и. э. народам Индии и Китая. Ими же, а также греками и римлянами применялась киноварь (природная HgS) как окраска, лекарственное и косметическое средство. Греческий Диоскорид (1 в. н. э,), нагревая киноварь в железном сосуде с крышкой, получил ртуть в виде паров, которые конденсировались на холодной внутренней поверхности крышки. Продукт реакции был назван hydragyros (от греч. Hydro – вода и argyros – серебро), т. е. жидким серебром, откуда произошли лат. hydrargyrum, а также argentumvivum – живое серебро. Последнее сохранилось в названиях Ртути Quicksilver (англ.) и Quecksilber (нем.).Происхождение русского, названия ртути не установлено. Алхимики считали ртуть главной составной частью всех металлов. «Фиксация» ртути (переход в твердое состояние) признавалась первым условием ее превращения в золото. Твёрдую ртуть впервые получили в декабре 1759 петербургские академики И. А. Браун и М. В. Ломоносов. Ученым удалось заморозить ртуть в смеси из снега и концентрированной азотной кислоты. В опытах Ломоносова отвердевшая ртуть оказалась ковкой, как свинец. Известие о «фиксации» ртуть произвело сенсацию в ученом мире того времени; оно явилось одним из наиболее убедительных доказательств того, что ртуть – такой же металл, как и все прочие. Получение ртути Ртутные руды (или рудные концентраты), содержащие ртуть в виде киновари, подвергают окислительному обжигу HgS + O2 = Hg + SO2 Обжиговые газы, пройдя пылеуловительную камеру, поступают в трубчатый холодильник из нержавеющей стали или монель-металла. Жидкая ртуть стекает в железные приёмники. Для очистки сырую ртуть пропускают тонкой струйкой через высокий (1 – 1,5 м) сосуд с 10%-ной HNO3, промывают водой, высушивают и перегоняют в вакууме. Возможно также гидрометаллургическое извлечение ртути из уд и концентратов растворением HgS в сернистом натрии с последующим вытеснением ртуть алюминием. Разработаны способы извлечения ртуть электролизом сульфидных растворов. Распространение Ртути в природе. Ртуть принадлежит к числу весьма редких элементов, её средние содержание в земной коре (кларк) близко к 4,5. 10–6 % по массе. Приблизительно в таких количествах она содержится в изверженных горных породах. Важную роль в геохимии ртуть играет её миграция в газообразном состоянии и в водных растворах. В земной коре ртуть преимущественно рассеяна; осаждается из горячих подземных вод, образуя ртутные руды (содержание ртуть в них составляет несколько процентов), Известно 35 ртутных минералов; главнейший из них – киноварь HgS. В биосфере ртуть в основном рассеивается и лишь в незначительных. количествах сорбируется глинами и илами (в глинах исланцах в среднем 4. 10–5 %). В морской воде содержится 3. 10–9 %ртути. Самородная ртуть, встречающаяся в природе, образуется при окислении киновари в сульфат и разложении последнего, при вулканических извержениях (редко), гидротермальным путём (выделяется из водных растворов). ПрименениеРтуть широко применяется при изготовлении научных приборов (барометры, термометры, манометры, вакуумныенасосы, нормальные элементы, полярографы, капиллярные электрометры и др.), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ; в медицине (каломель, сулема, ртутьорганические и др. соединения), в качестве пигмента (киноварь), в сельском хозяйстве (органические соединения ртути ) в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами). ртуть и ее соединения токсичны, поэтому работа с ними требует принятия необходимых мер предосторожности. ОтравленияОтравления ртутью и ее соединениями возможны на ртутных рудникахи заводах, при производстве некоторых измерительных приборов, ламп, фармацевтических препаратов, инсектофунгицидов и др. Основной опасность представляют пары металлической ртути, выделение которых с открытых поверхностей возрастает при повышении температуры воздуха. При вдыхании ртуть попадает в кровь. В организме ртуть циркулирует в крови, соединяясь с белками; частично откладывается в печени, в почках, селезенке, ткани мозга и др. Токсическое действие связано с блокированием сульфгидрильных групп тканевых белков, нарушением деятельности головного мозга (в первую очередь, гипоталамуса). Из организма ртуть выводится через почки, кишечник, потовые железы и др. Острые отравления ртути и её парами встречаются редко. При хронических отравлениях наблюдаются эмоциональная неустойчивость, раздражительность, снижение работоспособности, нарушение сна, дрожание пальцев рук, снижение обоняния, головные боли. «характерный признак отравления – появление по краю дёсен каймы сине-черного цвета; поражение дёсен (разрыхленность, кровоточивость) может привести к гингивиту и стоматиту. При отравлениях органическими соединениями ртуть (диэтилмеркурфосфатом, диэтилртутью, этилмеркурхлоридом) преобладают признаки одновременного поражения центральной нервной (энцефало-полиневрит) и сердечно-сосудистой систем, желудка, печени, почек. www.ronl.ru Читать реферат по химии: "Ртуть"(Назад) (Cкачать работу) Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме! ВведениеРтуть (лат. Hudrargyrum) – химический элемент 2 группы периодической системы Менделеева; атомный номер 80, атомная масса 200,59. Ртуть – элемент редкий и рассеянный, его содержание примерно 4,5*10-6% от массы земной коры. Тем не менее известна ртуть с глубокой древности. Скорее всего, человек познакомился с ртутью, выделив при нагревании главного минерала ртути – ярко-красной киновари HgS. Иногда встречается в природе самородная ртуть, образовавшаяся, по-видимому, из той же киновари. Ртуть – тяжелый (плотность 13,52 г/см3) металл серебристо-белого цвета, единственный металл, жидкий при обычных условиях. Затвердевает ртуть при – 38,9 С, закипает – при +357,25' С. При нагревании ртуть довольно сильно (всего в 1,5 раза меньше воды) расширяется, плохо проводит электрический ток и тепло – в 50 раз хуже серебра. Многие металлы хорошо растворяются в ртути с образованием амальгамы. Как и благородные металлы, ртуть на воздухе не изменяется – не окисляется кислородом, не реагирует с другими компонентами атмосферы. Реакция с кислородом заметно идет лишь при температурах, близrих к температуре кипения ртути, причем многие примеси например аналог ртути по подгруппе – цинк, заметно ускоряют окисление. С галогенами ртуть реагирует легче, чем с кислородом; взаимодействует с азотной кислотой, а при нагревании и с серной. В соединениях ртуть всегда двухвалентна. Известны, правда соединения одновалентной ртути – оксид (1) Hg и каломель HgCl. Но в этих соединениях ртуть всего лишь формально одновалентна. Состав каломели точнее отражает формула HgC l2, или Cl – Hg – Hg. Каломель, как и другой хлорид ртути - сулема HgCl2 используется в качестве антисептика. Соединения ртути весьма ядовиты. Работа с ними требует не меньшей осторожности, чем работа с самой ртутью. В промышленности и в технике ртуть используется очень широко и разнообразно. Каждый из нас держал в руках ртутный термометр. Ртуть работает и в других приборах – барометрах, ареометрах, расходометрах Важны ртутные катоды в производстве хлора и едкого натра, щелочных и щелочноземельных металлов, известны ртутные выпрямители переменного тока ртутные лампы. Историческая справка. Самородная ртуть была известна за 2000 лет до и. э. народам Индии и Китая. Ими же, а также греками и римлянами применялась киноварь (природная HgS) как окраска, лекарственное и косметическое средство. Греческий Диоскорид (1 в. н. э,), нагревая киноварь в железном сосуде с крышкой, получил ртуть в виде паров, которые конденсировались на холодной внутренней поверхности крышки. Продукт реакции был назван hydragyros (от греч. Hydro – вода и argyros – серебро),т. е. жидким серебром, откуда произошли лат. hydrargyrum, а также argentum vivum – живое серебро. Последнее сохранилось в названиях Ртути Quicksilver (англ.) и Quecksilber (нем.).Происхождение русского, названия ртути не установлено. Алхимики считали ртуть главной составной частью всех металлов. “Фиксация” ртути (переход в твердое состояние) признавалась первым условием ее превращения в золото. Твёрдую ртуть впервые получили в декабре 1759 петербургские академики И. А. Браун и М. В. Ломоносов. Ученым удалось заморозить ртуть в смеси из снега и концентрированной азотной кислоты. В опытах Ломоносова отвердевшая ртуть оказалась ковкой, как свинец. Известие о “фиксации” ртуть произвело сенсацию в ученом мире того времени; оно явилось одним из наиболее убедительных доказательств того, что ртуть – такой же металл, как и все прочие. Получение ртутиРтутные руды (или рудные концентраты), содержащие ртуть в виде киновари, подвергают окислительному обжигу HgS + O2 = Hg + SO2Обжиговые газы, пройдя пылеуловительную камеру, поступают в трубчатый холодильник из нержавеющей стали или монель-металла. Жидкая ртуть стекает в железные приёмники. Для очистки сырую ртуть пропускают тонкой струйкой через высокий (1 – 1,5 м) сосуд с 10%-ной HNO3, промывают водой, высушивают и перегоняют в вакууме. Возможно также гидрометаллургическое извлечение ртути из уд и концентратов растворением HgS в сернистом натрии с последующим вытеснением ртуть алюминием. Разработаны способы извлечения ртуть электролизом сульфидных растворов. Распространение Ртути в природе.Ртуть принадлежит к числу весьма редких элементов, её средние содержание в земной коре (кларк) близко к 4,5.10–6% по массе. Приблизительно в таких количествах она содержится в изверженных горных породах. Важную роль в геохимии ртуть играет её миграция в газообразном состоянии и в водных растворах. В земной коре ртуть преимущественно рассеяна; осаждается из горячих подземных вод, образуя ртутные руды (содержание ртуть в них составляет несколько процентов), Известно 35 ртутных минералов; главнейший из них – киноварь HgS. В биосфере ртуть в основном рассеивается и лишь в незначительных. количествах сорбируется глинами и илами (в глинах и сланцах в среднем 4.10–5%). В морской воде содержится 3.10–9% ртути. Самородная ртуть , встречающаяся в природе, образуется при окислении киновари в сульфат и разложении последнего, при вулканических извержениях (редко), гидротермальным путём (выделяется из водных растворов). ПрименениеРтуть широко применяется при изготовлении научных приборов (барометры, термометры,манометры, вакуумные насосы, нормальные элементы, полярографы, капиллярные электрометры и др.), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ; в медицине (каломель, сулема, ртутьорганические и др. соединения), в качестве пигмента (киноварь), в сельском хозяйстве (органические соединения ртути ) в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами). ртуть и ее соединения токсичны, поэтому работа с ними требует принятия необходимых мер предосторожности. ОтравленияОтравления ртутью и ее соединениями возможны на ртутных рудниках и заводах, при производстве некоторых измерительных приборов, ламп, фармацевтических препаратов, инсектофунгицидов и др. Основной опасность представляют пары металлической ртути, выделение которых с открытых поверхностей возрастает при повышении температуры воздуха. При вдыхании ртуть попадает в кровь. В организме ртуть циркулирует в крови, соединяясь с белками; частично откладывается в печени, в почках, селезенке, ткани мозга и др. Токсическое действие связано с блокированием сульфгидрильных групп тканевых белков, нарушением деятельности головного мозга (в первую очередь, гипоталамуса). Из организма ртуть выводится через почки, кишечник, потовые железы и др. Острые отравления ртути и её парами встречаются редко. При хронических отравлениях наблюдаются эмоциональная неустойчивость, раздражительность, снижение работоспособности, нарушение сна, дрожание пальцев рук, снижение обоняния, головные боли. "характерный признак отравления – появление по краю дёсен каймы сине-черного цвета; поражение дёсен (разрыхленность, кровоточивость) может привести к гингивиту и стоматиту. При отравлениях органическими соединениями ртуть (диэтилмеркурфосфатом, диэтилртутью, этилмеркурхлоридом) преобладают признаки одновременного поражения центральной нервной (энцефало-полиневрит) и сердечно-сосудистой систем, желудка, печени, почек. referat.co Реферат - Интересные и опасные свойства ртутиИНТЕРЕСНЫЕ И ОПАСНЫЕ СВОЙСТВА РТУТИ Ртуть — единственный металл, находящийся при комнатной температуре в жидком состоянии. Она обладает многими интересными особенностями, которые раньше использовали для эффектных лекционных опытов. Например, она хорошо растворяется в расплавленном белом фосфоре (он плавится при 44°С), а при охлаждении этого необычного раствора ртуть выделяется в неизменном состоянии. При встряхивании ртути с водой, эфиром, скипидаром, уксусной кислотой, растворами различных солей и даже с соками растений, а также при растирании ртути с сахаром, жиром и другими веществами получается серая эмульсия, состоящая из мельчайших капелек ртути. Еще одна красивая демонстрация была связана с тем, что при охлаждении до — 39°С ртуть затвердевает, а ее твердые кусочки при соприкосновении слипаются так же легко, как и жидкие ее капли. Если же охладить ртуть очень сильно, например жидким азотом, до температуры — 196°С, вставив в нее предварительно палочку, то после замерзания ртути получался своеобразный молоток, которым лектор легко забивал гвоздь в доску. Конечно, всегда оставался риск, что от такого «молотка» отколятся маленькие кусочки, которые потом доставят мною неприятностей. Другой опыт был связан с «лишением» ртути ее способности с легкостью разбиваться на мельчайшие блестящие шарики. Для этого ртуть подвергали действию очень малых количеств озона. При этом ртуть теряла подвижность и налипала тонкой пленкой на содержащий ее сосуд. Понятно, почему сейчас подобные опыты не проводятся. То, что ртуть ядовита, знают все. Недаром не только ртуть, но и ее соединения, например, сулема, не используются в школьных кабинетах химии. В то же время ртуть находит очень широкое применение во многих производствах (один ученый насчитал их около 3 тысяч!). Металлическую ртуть используют в электрических контактах-переключателях; для заполнения вакуумных насосов, выпрямителей, барометров, термометров, ультрафиолетовых ламп; в производстве хлора и едкого натра, при пломбировании зубов и т.д., — список можно продолжать очень долго. Ртуть есть в каждом доме — в медицинском термометре или в лампе дневного света, поэтому сведения о ядовитости ртути нужны не только специалистам. Из всех соединений ртути наиболее опасны легко растворимые и легко диссоциирующие ее соли, например HgCl2 — сулема; ее смертельная доза при попадании в желудок составляет от 0,2 до 0,5 г. Но так ли опасна металлическая ртуть? Ведь в некоторых книгах пишут даже, что раньше ее использовали для лечения… заворота кишок (заливали ртуть больному через рот, чтобы «расправить» завернувшиеся петли кишечника)? Действительно, металлическая ртуть — малоактивный металл, с желудочным соком не реагирует и выводится из желудка и кишечника почти полностью. В чем же ее опасность? Оказывается, ртуть легко испаряется, а ее пары, попадая в легкие, полностью задерживаются там и вызывают впоследствии отравление организма хотя и не такое быстрое, как соли ртути. При этом происходят специфические биохимические реакции, окисляющие ртуть и превращающие ее в растворимые ядовитые соединения. Ионы ртути прежде всего реагируют с SH-группами белковых молекул, среди которых важнейшие для организма белки-катализаторы — ферменты. Могут ионы Hg2* также реагировать с белковыми группами СООН, ~Nll2 с образованием прочных комплексов — металлопротеидов. Более того, циркулирующие в крови «свободные» атомы ртути, попавшие туда из легких, также образуют соединения с белковыми молекулами. Нарушение нормальной работы белков-ферментов приводит к глубоким нарушениям в организме и прежде всего в центральной нервной системе, а также в почках. Другой возможный источник отравления — органические производные ртути, в которых ее атомы связаны с метальными радикалами СН3. Эти чрезвычайно ядовитые и легко летучие соединения образуются в результате так называемого биологического метилирования. Оно происходит под действием микроорганизмов, например плесени, и характерно не только для ртути, но и для мышьяка, селена, теллура. Если при неосторожной работе соединения этих элементов случайно попадут внутрь, они начинают выделяться, в том числе при дыхании, в виде зловонных газообразных димсгилпроизводных, так что соседство с таким химиком станет невыносимым! Но это, оказывается, не самая большая неприятность, которую может причинить биологическое метилирование ртути. Ртуть и ее биологические соединения широко используются на многих производствах, например при электролитическом получении хлора и гидроксида натрия. Эти вещества со сточными водами попадают на дно водоемов. Обитающие там микроорганизмы превращают их в диметилртуть (Ch4),Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион. Оба вещества поглощаются водными организмами и попадают в пищевую цепочку — сначала они накапливаются в растениях и мельчайших организмах, затем — в рыбах. Метилированная ртуть очень медленно выводится из организма: месяцами у людей и годами — у рыб. Поэтому концентрация ртути вдоль биологической цепочки непрерывно увеличивается и в рыбах-хищниках, которые питаются другими рыбами, ртути может оказаться в тысячи раз больше, чем в воде, из которой она выловлена. Именно этим объясняется так называемая «болезнь Мина-мата» — по названию приморского города в Японии, в котором за несколько лет от отравления ртутью умерло 50 человек и многие родившиеся дети имели врожденные уродства. Опасность оказалась настолько велика, что в некоторых водоемах пришлось приостановить лов рыбы — настолько она оказалась «нашпигованной» ртутью. Страдают от поедания отравленной рыбы не только люди, но и рыбы, тюлени. Для ртутного отравления, в том числе и парами, характерны головная боль, покраснение и набухание десен и появление на них характерной темной каймы сульфида ртути, набухание лимфатических и слюнных желез, расстройства пищеварения. При легком отравлении через 2-3 недели нарушенные функции организма восстанавливаются по мере выведения ртути из организма (эту работу выполняют в основном почки, железы толстых кишок и слюнные железы). Если поступление ртути в организм происходит очень малыми дозами, но в течение длительного времени, то наступает хроническое отравление. Для него характерны прежде всего повышенная утомляемость, слабость, сонливость, апатия, головные боли и головокружения. Как видно, эти симптомы очень легко спутать с проявлениями других заболеваний или даже с недостатком витаминов. Поэтому распознать такое отравление непросто. Из других проявлений ртутного отравления следует отметить психические расстройства. Раньше их называли «болезнью шляпников», так как для размягчения шерсти, из которой изготовляли фетровые шляпы использовали нитрат ртути Hg(NO3) 2. Это расстройство описано в книге Льюиса Кэрролла «Алиса в стране чудес» на примере одного из персонажей — Сумасшедшего Шляпника. Опасность хронического отравления ртутью возможна RO всех помещениях, в которых металлическая ртуть находится в соприкосновении с воздухом, даже если концентрация ее паров в воздухе очень мала — порядка 0,01 мг/м3. Но разве ртуть при комнатной температуре испаряется? Ведь температура кипения ее очень высока — 357°С. Действительно, при комнатной температуре давление паров ртути не превышает 0,001 мм ртутного столба (это примерно в миллион, раз меньше атмосферного давления). Но и такое малое давление означает, что в каждом кубическом сантиметре воздуха содержится 30 триллионов атомов ртути! И вот что еще плохо: поскольку силы притяжения между атомами ртути малы (именно поэтому этот металл жидкий), испаряется ртуть довольно быстро, хотя на первый взгляд кажется, что пролитые капли ртути долгое время совсем не уменьшаются в размерах. А отсутствие цвета и запаха у паров ртути приводит к тому, что многие недооценивают опасность. Чтобы сделать этот факт очевидным в буквальном смысле этого слова, в 1942 году в США провели такой опыт. В небольшую пластмассовую чашечку налили немного ртути так, что образовалась лужица диаметром около 2 см. Эту лужицу присыпали мелким флюоресцирующим порошком (слово «флюоресцирующий» происходит от латинского корня fluor — поток и суффикса escentia, означающего слабое действие) — примерно таким, каким покрывают изнутри кинескопы телевизоров или лампы дневного света. Если такой порошок осветить невидимыми ультрафиолетовыми лучами, он начинает ярко светиться. Когда такой порошок просто насыпали в чашечку и облучили ультрафиолетом, было видно равномерное свечение дна чашки. Но когда под порошком находилась ртуть, на ярком фоне были видны темные движущиеся «облачка». Особенно отчетливо это было видно в том случае, когда в комнате было небольшое движение воздуха. Объясняется опыт просто: ртуть в чашечке непрерывно испаряется и ее пары свободно проходят сквозь тонкий слой флюоресцирующего порошка. Пары ртути обладают способностью сильно поглощать ультрафиолетовое излучение. Поэтому в тех местах, где над чашечкой поднимались невидимые «ртутные струйки», ультрафиолетовые лучи задерживались в воздухе и не доходили до порошка. В этих местах и были видны темные пятна. В последующем этот опыт усовершенствовали так, что его могли наблюдать сразу много зрителей в большой аудитории. Ртуть на этот раз находилась в обычной склянке без пробирки, откуда ее нары свободно выходили наружу. За склянкой поставили экран, покрытый флуоресцирующим порошком, а перед ней — ультрафиолетовую лампу. При включении лампы экран начал ярко светится, и на светлом фоне ясно были видны движущиеся тени. Это означало, что в этих местах ультрафиолетовые лучи задержались парами ртути и не смогли достичь экрана. Как показали специальные измерения, после установления равновесия между жидкой ртутью и ее парами при комнатной температуре концентрация паров ртути в воздухе в сотни раз превышает допустимую для дыхания. Но если открытую поверхность ртути покрыть водой, скорость ее испарения снижается примерке, в миллион рал. Происходит это потому, что ртуть очень плохо растворяется в воде: в отсутствие воздуха в одном литре воды может раствориться 0,06 мг ртути. Соответственно, очень сильно должна уменьшиться и концентрация паров ртути в воздухе при условии его вентиляции (при полном отсутствии вентиляции концентрация паров ртути в воздухе будет такой же, как и при отсутствии защитного водного слоя). Это было проведено в компании «Бетхелем аппаратус» в Пенсильвании (США), в цехах которой за годы их существования было перегнано и расфасовано тысячи тонн жидкой ртути. В одном из опытов около 100 кг ртути налили в два одинаковых лотка размерами 78 х 21 х 7 см, один из которых залили слоем воды толщиной около 2 см и оставили на ночь. На утро замерили концентрацию паров ртути на высоте 10 см от каждого лотка. Там, где ртуть залили водой, ее было в воздухе 0,05 мг/м3 — чуть больше, чем в комнате (0,03 мг/м3). А над свободной поверхностью ртути прибор зашкалил… Все это стало известно сравнительно недавно, а в прошлом с ртутью обращались довольно беспечно. О ртути знали древние индийцы, китайцы, египтяне. Греческий врач Диоскорид, живший в I веке до н.э., дал ей название hydrargyros, т.е. «водяное серебро». Близкое по значению название — Quecksilber (т.е. «подвижное серебро») сохранилось в немецком языке (интересно, что quecksilberig по-немецки означает «непоседливый»). Старинное английское название ртути — quicksilver («быстрое серебро»). Ртуть и ее соединения в древности и в Средние века использовались в медицине, а также для приготовления красок. Но были и довольно необычные применения. Так, в середине X века мавританский король Абдаррахман III построил дворец близ Кордовы в Испании, во внутреннем дворике которого был фонтан с непрерывно льющейся струей ртути (напомним, что богатые месторождения ртути в Испании были известны еще в древности, и сейчас по добыче ртути эта страна занимает ведущее место). Еще оригинальнее был другой король, имя которого история не сохранила: он спал на матрасе, который плавал в бассейне из ртути! Ртутью травились не только короли, но и многие ученые, в числе которых был Исаак Ньютон (одно время он очень интересовался алхимией). Да и в наше время небрежное обращение со ртутью нередко приводит к печальным последствиям. Из всего сказанного следует, что пролитую в помещении ртуть следует собирать самым тщательным образом. Особенно много паров образуется, если ртуть рассыпалась на множество мельчайших капелек, которые забились в различные щели, например между плитками паркета. Поэтому все эти капельки необходимо собрать. Лучше всего это сделать с помощью оловянной фольги, к которой ртуть легко прилипает, или же медной проволочкой, промытой в азотной кислоте. А те места, где ртуть еще могла бы задержаться, заливают 20% -ным раствором хлорного железа. Хорошая профилактическая мера против отравления парами ртути — тщательно и регулярно, в течение многих недель или даже месяцев, проветривать помещение, где была разлита ртуть. В смысле отравления ртутными нарами большую опасность представляют лампы дневного света. Кто не видел на свалке белые трубки перегоревших ламп? Однако каждая такая трубка содержит до 0.2 г жидкой ртути, которая, если трубку разбить, начинает испаряться и загрязнять воздух. Когда лампа горит, ртуть испаряется и разряд происходит в ее парах. После охлаждения лампы ртуть оседает на ее поверхности мелкими капельками, которые видны невооруженным глазом. Поэтому разбивать такие лампы совершенно недопустимо. АмальгамыЕще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы – амальгамы. Некоторые из них, например амальгамы серебра и кадмия, химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы. Амальгаму таллия, затвердевающую только при –60°C, применяют в специальных конструкциях низкотемпературных термометров. Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути, В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу – цианированию. Однако старый процесс находит применение и сейчас, главным образом при извлечении золота, тонко вкрапленного в руду. Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна. Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности. При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента №80. Сегодня хлорная промышленность – один из самых массовых потребителей металлической ртути. Ртутный парРтуть закипает при 357°C, т.е. тогда, когда большинство металлов еще далеки от точки плавления. Об этом знали еще в древности, и на этом свойстве издавна основывались методы извлечения металлической ртути из руд. Самым первым способом был обжиг киновари с конденсацией паров ртути на холодных предметах и, в частности, на свежесрубленных зеленых деревьях. Позднее стали использовать реторты из керамики и чугуна. Начиная с 1842 г., ртуть из руд извлекается в отражательных печах, а с 1857 г. – в каскадных. В XX в. к ним присоединились механические многоподовые, а также вращающиеся трубчатые печи. В киновари 86,2% ртути, но в рудах, считающихся богатыми, на ее долю в среднем приходится 8%. В бедных рудах ртути не больше 0,12%. Такие руды приходится обязательно обогащать тем или иным путем, «отсеивая» бесполезные компоненты. И сейчас из руд и концентратов ртуть извлекают главным образом пирометаллургическими методами. Обжиг происходит в шахтных, отражательных или трубчатых печах при 700...750°C. Такая высокая температура нужна для того, чтобы киноварь окислялась, а не возгонялась, и чтобы процесс окисления HgS + O2 → Hg + SO2 шел до конца. В результате обжига получается парообразная ртуть, которую превращают в жидкий металл в специальных аппаратах – конденсаторах. Хотя газы, образующиеся при обжиге, проходят несколько стадий очистки, конденсируется не столько металлическая ртуть, сколько так называемая ступпа – тонкодисперсная смесь, состоящая из мельчайших капелек ртути и мелкой пыли сложного химического состава. В ступпе есть соединения как самой ртути, так и других элементов. Ее подвергают отбивке, стремясь разрушить пылевые пленки, мешающие слиянию микроскопически малых капелек жидкого металла. Ту же цель преследует и повторная дистилляция. Но извлечь из ступпы всю ртуть так и не удается, и это одна из нерешенных и сегодня проблем металлургии ртути. А ведь это один из самых старых разделов металлургии. Способность ртути испаряться при сравнительно низкой температуре была использована для нанесения золотых покрытий на неблагородные металлы. Именно таким способом позолочен купол Исаакиевского собора в Ленинграде. Сейчас этот способ вышел из употребления из-за ядовитости ртутных паров. Электрохимические способы золочения более совершенны и безопасны. Но видеть в ртутных парах только яд – неверно. Они могут принести и приносят много пользы. В 1936 г. появилось сообщение о том, что одна из зарубежных нефтяных фирм приобрела ртутный рудник. Оказалось, что ртуть нужна этой фирме для организации парортутной установки, предназначенной для очистки нефти. В наше время ртутные пары все шире используются в нефтеперерабатывающей промышленности: они помогают очень точно регулировать температуру процессов, что крайне важно для нефтепереработки. Еще раньше, в начале XX в., внимание теплотехников привлекало сообщение о работах доктора Эммета из США. Эммет первым попытался использовать в паровых котлах не воду, а ртуть. Его опытная установка мощностью 2000 л. с. работала и потребляла на 45% меньше топлива, чем обычный паровой котел с генератором. Конечно, не обошлось без дискуссий: ртуть не вода, из реки ее не зачерпнешь! Возражений против использования ртути в паровых котлах было больше чем достаточно. Исследования, однако, продолжались. Весьма успешной была работа советских научно-исследовательских институтов по проблеме использования ртутного котла и турбины. Были доказаны экономичность ртутно-паровых турбин и возможность создания так называемого ртутно-водяного бинарного цикла, в котором тепло конденсирующегося ртутного пара используется в специальном конденсаторе-испарителе для получения водяного пара. А до этого ртутный пар успевает покрутить вал генератора. Полученный водяной пар приводит в движение второй электротурбогенератор… В подобной системе, работающей только на водяном паре, удается в лучшем случае достигнуть КПД 30%. Теоретический же КПД ртутно-парового цикла (45%) намного выше, чем у газовой турбины (18… 20%) и дизеля (35...39%). В 50-х годах в мире существовало уже несколько таких энергетических установок мощностью до 20 тыс. киловатт. Дальше дело, к сожалению, не пошло, главным образом из-за нехватки ртути. Вакуумные установки в наше время очень важны для науки и промышленности. И здесь ртуть встречается не только как заполнитель трубок вакуумметра. Еще в 1916 г. Ирвинг Ленгмюр создал вакуум-насос, в котором испарялась и конденсировалась ртуть. При этом в системе, связанной с насосом, создавалось остаточное давление в сотни миллионов раз меньше атмосферного. Современные ртутные диффузионные насосы дают еще большее разрежение: стомиллионные доли миллиметра ртутного столба. Изучение ультрафиолетовых лучей продвигалось медленно до тех пор, пока не был создан искусственный источник этих лучей. Им оказались пары ртути в вакууме. Когда через ртутные пары проходит электрический ток, они испускают видимое голубое свечение и много ультрафиолетовых лучей. Чем выше температура паров ртути, тем интенсивнее излучение ультрафиолетовых лучей в ртутно-кварцевой лампе. Видимое свечение паров ртути использовано в конструкциях мощных ламп освещения. Лампы дневного света – это разрядные трубки, в которых находятся инертные газы и пары ртути. А что такое «холодный свет», пояснять, вероятно, излишне. Из каждого рубля, который мы платим «за свет», на долю действительно светового излучения приходятся лишь четыре копейки. Остальные 96 – за ненужное тепло, излучаемое обычными электролампами. Лампы дневного света намного экономичнее. Ртуть и ее специфическое отравляющее действиеПри вдыхании воздуха, содержащего пары ртути в концентрации не выше 0,25 мг/м3, последняя задерживается и накапливается в лёгких. В случае более высоких концентраций ртуть всасывается неповрежденной кожей. В зависимости от количества ртути и длительности ее поступления в организм человека возможны острые и хронические отравления, а также микромеркуриализм. В наибольшей степени к ртутным отравлениям чувствительны женщины и дети. Острые отравления парами ртутиОстрое отравление ртутью проявляется через несколько часов после начала отравления. Симптомы острого отравления: общая слабость, отсутствие аппетита, головная боль, боль при глотании, металлический вкус во рту, слюнотечение, набухание и кровоточивость десен, тошнота и рвота. Как правило, появляются сильнейшие боли в животе, слизистый понос (иногда с кровью). Нередко наблюдается воспаление легких, катар верхних дыхательных путей, боли в груди, кашель и одышка, часто сильный озноб. Температура тела поднимается до 38-40°С. В моче пострадавшего находят значительное количество ртути. В тяжелейших случаях через несколько дней наступает смерть пострадавшего. В конце ХIХ века был описан эксперимент со вдыханием нескольких грамм ртути, испаряемых с железного листа: из-за быстрого испарения острое отравление не наступило. Хронические отравления. МеркуриализмМеркуриализмом называется общее отравление организма при хроническом воздействии паров ртути и её соединений, незначительно превышающих санитарную норму, в течение нескольких месяцев или лет. Проявляется в зависимости от организма и состояния нервной системы. Симптомы: повышенная утомляемость, сонливость, общая слабость, головные боли, головокружения, апатия, а также эмоциональная неустойчивость — неуверенность в себе, застенчивость, общая подавленность, раздражительность. Так же наблюдаются: ослабления памяти и самоконтроля, снижение внимания и умственных способностей. Постепенно развивается усиливающееся дрожание кончиков пальцев при волнении — «ртутный тремор», вначале пальцев рук, затем ног и всего тела (губы, веки), позывы к испражнению, частые позывы к мочеиспусканию, снижение обоняния (очевидно, из-за повреждения ферментов, имеющих сульфгидрильную группу), кожной чувствительности, вкуса. Усиливается потливость, увеличивается щитовидная железа, возникают нарушения ритма сердечной деятельности, снижение кровяного давления. МикромеркуриализмМикромеркуриализм — хроническое отравление возникает при воздействии ничтожных количеств ртути в течение 5-10 лет. Микродозы тимеросала и аутизмВ настоящее время существуют подозрения относительно безопасности некоторых ртутьсодержащих консервантов. Подозревают, в частности, что возможна связь между тимеросалом из вакцин и развитием аутизма у детей, однако, на сегодняшний день отсутствуют статистически достоверные доказательства такой связи. www.ronl.ru Реферат - Ртуть и ее соединенияРОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ Кафедра гигиены и экологии человека Заведующий кафедрой профессор Ю.П. Пивоваров РЕФЕРАТ По теме: Ртуть и её соединенияСтудент 341 гр. Тихонов Н.В. Москва 1998г. Содержание 1. Общие сведения о ртути. 2. Токсическое действие ртути и ее соединений на живые организмы. 3. Техника безопасности при работе со ртутью и ее соединениями. а ) ртутенепроницаемые покрытия б ) демеркуризация в ) индивидуальная защита и меры личной профилактики 4. Первая помощь при ртутных отравлениях. 5. Литература. 1. Общие сведения о ртути. Ртуть благодаря своим удивительным свойствам, занимает особое место среди других металлов и широко используется в науке и технике. Ртуть остаётся в жидком состоянии в интервале температур от 357,25 до -38.87 и легко испаряется при комнатной температуре. Ртуть применяется в электротехнике, металлургии, в медицине, химии, в строительном деле, сельском хозяйстве, лабораторной практике и многих других областях. В атмосферу Земли непрерывно поступают пары ртути из литосферы и частично из гидросферы. Источниками поступления паров ртути в атмосферу являются многие производства, перерабатывающие ртутное сырьё, а также изготовляющие ртутные приборы и препараты. Небольшие количества ртути, содержащиеся в каменном угле, нефти и газе, попадают в атмосферу при сгорании этих продуктов. В результате в 1 м3 воздуха постоянно находится 2*10-8г паров ртути. Эти сравнительно небольшие количества ртути далеки от насыщения ими воздуха. Однако в результате испарения ртути в течение миллиардов лет, атмосфера Земли должна была бы содержать такие количества ртути, которые сделали бы невозможным существование жизни на Земле в ее современных формах. Это не происходит потому, что наряду с испарением ртути в атмосферу она постоянно удаляется из нее. Действительно, растворяясь в дождевой воде и адсорбируясь снегом, ртуть вместе с атмосферными осадками возвращается на Землю. Как показывают наблюдения, в течение года на Землю выпадает в среднем около 500000 км 3 атмосферных осадков вместе с которыми переносится на сушу и в гидросферу около 100000 т ртути, что примерно в 20 раз превышает мировую добычу ртути в течение года. Удаление ртути из атмосферы происходит также в результате абсорбции ее водами гидросферы, а также в результате образования в атмосфере хлоридов и сульфидов ртути, адсорбции паров ртути почвами, гидратами окислов железа, марганца, алюминия и пр. Таким образом, происходит круговорот ртути в природе. Ртуть из почвы попадает в растения (деревья, траву), овощи и фрукты, поэтому в небольших количествах она содержится в продуктах питания растительного и животного происхождения. Таким образом, в организме любого человека, который даже никогда не работал со ртутью и не находился в местах ее значительного скопления, всегда имеется некоторое количество ртути. Недостаток ртути в организме, равно как и ее избыток, приводит к функциональным растройствам. 2. Токсическое действие ртути, и ее соединений. И с т о ч н и к и р т у т н о й и н т о к с и к а ц и и По современной классификации металлическакя ртуть относится к 1 группе чрезвычайно токсичных веществ. Поэтому работа со ртутью в лабораторных и производственных условиях условияхдаже при малейшем несоблюдении правил техники безопасности приводит к острым или хроническим отравлениям, а наиболее тяжелые случаи ртутных интоксикаций приводят к смертельному исходу. Постоянная опасность отравления парами ртути существует на ртутных рудниках, при переработке руд с целью получения из них металлической ртути, изготовлении люминисцентных и радиотехнических ламп, производстве термометров и контрольно-измериткльных приборов, использующих ртуть, производстве ртутных вентилей, изготовлении медикаментов, имеющих в своем составе ртуть или ртутные соединения. Опасность ртутной интоксикации существует при добыче каменного угля и других полезных ископакмых, если выработка ведется с помощью взрывов и применяют детонаторы с гремучей ртутью. Ртутные отравления не исключены при получении амальгам и их использовании в зубоврачебной практике. Ртутная интоксикация опасна не только для врачей и обслуживающего персонала, но и для пациентов, в зубах которых появляются амальгамные пломбы. Ртутные отравления возможны при переборке и ремонте ртутных приборов, вентилей и ртутного энергетического оборудования, очистке ртути и переработке ртутных остатков и всевозможных соединений ртути, при протравливании семян соединениями, содержащими ртуть, пропитке древесины с целью предохранения ее от гниения, окраске подводной части морских и речных судов и т.д. Сильное загрязнение учебных помещений, как правило, совершенно не приспособленных для работы со ртутью, в лабораториях вузов, школьных физических и химических кабинетах, где ничем неоправданное применение ртути и ртутных приборов, обусловленное часто удивительной неосведомленности учителей о токсических свойствах ртути, может привести к отравленю обслуживющего персонала и учащихся. В результате использования ртути и, особенно, ее соединений для технологических целей сильно загрязняется окружающая среда. Например, в Канаде ежегодная утечка ртути в окружающую среду составляет ~90 т. Это приводит к загрязнению почвы, воды и растений, отравлению животных, рыб и населения. действие ртути и ее соединений на человека и животных Токсическое действие металлической ртути отличается от действия ртутных паров, являющихся основным источником ртутных отравлений, и от влияния на организм ртутных соединений. Следует отметить, что мнения о влиянии металлической ртути на организм довольно противоречивы. Например, в литературе указывается, что при приеме внутрь даже значительных количеств металлической ртути не возникает каких-либо вредных последствий. Это послужило в свое время поводом для использования ртути при лечении запоров, подагры, почечных камней и других болезней. Однако существует другое основанное на наблюдениях мнение, что ртуть, попадая в ткани организма, образует там отложения, которые могут быть источником отравления. Ртуть относится к канцерогенным веществам, и при продолжительном ее депонировании в организме могут возникать грануломы и злокачественные опухоли, что и было показано в опытах на животных. Таким образом, воздействие металлической ртути на организм нельзя считать безопасным. Однако основными источниками ртутныхявляются пары ртути, а также многочисленные ее соединения, среди которых первое место принадлежит ртутноорганическим. Количество испарившейся ртути пропорционально величине свободной поверхности, температуре, зависит от скорости движения воздуха над поверхностью ртути, от состояния поверхности, чистоты ртути и других факторов. При разливании ртути происходит ее дробление на капли, диаметр которых может состовлять несколько микрон или даже долей микрона. Это приводит к огромному увеличению поверхности ртути и, следовательно, к быстрому насыщению воздуха помещения ее парами. По современным представлениям ртуть и, особенно ртутноорганические соединения относятся к фермментным ядам, которые, попадая в кровь и ткани даже в ничтожных количествах, проявляют там свое отравляющее действие. Токсичность ферментных ядов обусловлено их взаимодействием с тиоловыми сульфгидрильными группами (SH) клеточных протеинов. В результате такого взаимодействия нарушается активность основных ферментов, для нормального функционирования которых необходимо наличие свободных сульфгидрильных групп. Пары ртути, попадая в кровь, циркулируют вначале в организме в виде атомной ртути, но затем ртуть подвергается ферментативному окислению, и вступает в соединения с молекулами белка, взаимодействуя, прежде всего с сульфгидрильными группами этих молекул. Ионы ртути поражают в первую очередь многочисленные ферменты, и, прежде всего тиоловые энзимы, играющие в живом организме основную роль в обмене веществ, вследствие чего нарушаются многие функции, особенно нервной системы. Поэтому при ртутной интоксикации нарушения нервной системы являются первыми признаками, указывающими на вредное воздействие ртути. Сдвиги в таких жизненно важных органах, как нервная система, связаны с нарушениями тканевого обмена, что в свою очередь приводит к нарушению функционирования многих органов и систем, проявляющемуся в различных клинических формах интоксикации. Приодних и тех же условиях степень отравления вомногом зависит от индивидуальных особенностей организма. Дети и женщины оказываются наиболее чувствительными к ртутным отравлениям. о с т р ы е и х р о н и ч е с к и е р т у т н ы е и н т о к с и к а ц и и В зависимости от количества поступающей в организм ртути в виде паров или соединений, а также от времени нахождения в атмосфере, содержащей ртуть в том или ином виде, происходит интоксикация организма. Обычно различают острые и хронические отравления ртутью, причем особое значение имеет микромеркуриализм — интоксикация, возникающая при воздействии на организм очень малых количеств ртути в течение продолжительного времени. Острое отравление парами ртути происходит при быстром поступлении их в организм в значительных количествах. При острых отравлениях появляется металлический вкус во рту, слюноистечение, набухание и кровотечение десен, иногда с выделением гноя; следствием острого отравления может быть выпадение зубов и омертвление челюсти. Как правило, тотчас же после отравления происходит потеря аппетита, появляется тошнота и рвота (иногда с кровью) боли в животе, слизистый понос (большей частью с кровью), множественные изъязвления слизистой оболочки желудка и двенадцатиперстной кишки. Наблюдается воспаление легких и токсический отек их, катаральное воспаление верхних дыхательных путей. Температура в некоторых случаях повышается до 38-400C, наблюдаются озноб и симптомы, напоминающие литейную лихорадку. Отмечаются изменения в формуле крови: вначале наблюдается увеличение гемоглобина и эритроцитов, а затем, по мере ослабления явлений интоксикации, наступает анемия. Заболевание порой сопровождается лейкоцитозом, при этом число лейкоцитов увеличивается до 12-20 тыс. в 1 кв. мм3. При острых отравлениях резко увеличивается содержание ПВК. Отравление сопровождается общей разбитостью, острыми головными болями, слабостью, растройством речи, дрожанием, изменением походки. Обычно при острых ртутных отравлениях не наблюдается изменений нервной системы, характерных для хронических отравлений. Как правило, в моче пострадавших содержится некоторое количество ртути. При тяжелых отравлениях парами ртути через несколько дней наступает смерть. Острые отравления солями ртути во многом напоминают отравления парами ртути. К наиболее токсичным неорганическим соединениям ртути относится сулема, иодид ртути (I), цианид и нитраты ртути. Наиболее часто наблюдается интоксикация сулемой. Смертельная доза сулемы, по данным разных авторов, колелется в пределах от 0.1 до 0.4г. Ртутные соли, попадающие в ЖКТ, быстро всасываются через слизистую оболочку и вызывают глубокие изменения в тканях организма. При острых отравлениях солями ртути набухают дёсна, наблюдается их покраснение, они начинают кровоточить. На деснах появляется темная кайма сульфида ртути, развивается стоматит, зубы расшатываются. Лимфатические и слюнные железы набухают, начинается обильное слюноотделение. Во рту ощущается металлический вкус. В животе появляются резкие боли, появляется рвота, как правило, с кровью и желчью, которая во многих случаях является для пострадавшего спасительной, поскольку при этом выводится основная масса ядовитой соли. Острое отравление сопровождается слизистым поносом, обычно тоже с кровью, слизистая оболочка желудка и двенадцатиперстной кишки покрывается многочисленными язвами. В некоторых случаях летальный исход отравления солями ртути наступает через 10-30 и даже более чем через 50 дней. Однако известны молниеносные формы интоксикации солями ртути, когда при сравнительно небольших количествах соли (1 г. сулемы, 0.4 г. цианистой ртути) больные погибали в бессознательном состоянии в течение 24-36 ч. Наиболее характерным при этом является внешний вид крови, которая становится жидкой, как вода, и черной, как деготь. Во много раз токсичнее металлической ртути, сулемы и других неорганических соединений ртути являются ртутноорганические соединения. Х р о н и ч е с к и е о т р а в л е н и я п а р а м и р т у т и Гораздо чаще наблюдаются хронические отравления, наступающие при срвнительно продолжительной работе (иногда в течение нескольких лет) в помещениях, воздух которых содержит незначительные количества паров ртути. При хронических отравлениях парами ртути в первую очередь наблюдаются изменения со стороны нервной системы. Субъективно на первой стадии хронической интоксикации больной начинает быстро утомлятся, у него начинается сонливость, апатия, головные боли и головокружения — типичные признаки ртутной неврастении. Появляется дрожание, усиливающееся при волнениях; оно начинается обычно с пальцев рук, переходит затем на веки, губы, язык и даже на все тело. При тяжелом отравлении дрожание усиливается настолько, что ходьба, еда и речь становятся почти невозможными. Наблюдается ослабление мышечной силы, и преде всего силы разгибателей кисти. Наблюдается также растройство кожной чувствительности и вкусовых ощущений, резко снижается острота обоняния. К ранним признакам ртутного отравления относится увеличение щитовидной железы, судороги в конечностях, ускоренное потоотделение, частые позывы к мочеиспусканию, что связано с нарушением иннервации мочевого пузыря. При хроническом отравлении может происходить органическое поражение подкорковых узлов; с этим связано появление у человека своеобразной нервно-психической раздражительности (ртутный эретизм), при этом часто наступает бессонница или сон становится тревожным, наполненным кашмарами, память у человека слабеет, появляется беспричинный страх и депрессивное состояние. При более тяжелых изменениях нервной системы, обусловленных ртутными отравлениями (при ртутной энцефалопатии), происходит нарушение психики и интеллекта, человек впадает в бредовое состояние, а в тяжелых случаях ртутного отравления наступает смерть, которой предшествует резкое ухудшение здоровья и малокровие. Кроме нервной системы поражаются и другие органы человека. В частности, отмечаются характерные изменения в полости рта, аналогичные описанным выше для случая острого отравления; иногда хроническое отравление сопровождается гнойным воспалением слизистой оболочки (альвеолярная пиоррея). В органах пищеварения, печени и почках не происходит каких-либо значительных изменений. Однако по последним данным при хронической ртутной интоксикации кора надпочечников не остается неизменной, и это имеет определенное значение для патогенеза токсического процесса. В результате хроническог ртутного отравления происходят нарушения и сердечно-сосудистой системы. Это выражается в функциональных изменениях миокарда: развивается тенденция к учащению или замедлению сердцебиения, понижается кровяное давление, что объясняется блокадой сульфгидрильных групп хеморецепторов сосудов сужающего аппарата стенок сосудов, а также тонуса блуждающего нерва. Картина крови при хронических ртутных отравлениях меняется незначительно, так что сдвиги в ее формуле, ка правило, не могут указывать на степень интоксикации организма парами ртути. В проблеме ртутной интоксикации особое место занимает вопрос о микромеркуриализме — совокупности патологических изменений, которые возникают в результате длительного воздействия на организм паров ртути в очень небольших концентрациях. Обычно различают три степени интоксикации при воздействии очень малых количеств ртути. Первая степень микромеркуриализма характеризуется снижением работоспособности, быстрой утомляемостью, повышенной возбудимостью. При второй степени микромеркуриализма эти явления становятся более выраженными, появляются головные боли, ничем неоправданное беспокойство, человек становится очень раздражительным, память у него заметно слабеет. Наряду с этим слизистая оболочка рта воспаляется, десны начинают кровоточить, наблюдаются катаральное воспаление верхних дыхательных путей, частые позывы к мочеиспусканию. Наконец, при третьей степени микромеркуриализма возникают симптомы, которые мало чем отличаются от симптомов, характерных для хронического отравления ртутью. н а к о п л е н и е р т у т и в о р г а н и з м е и ее в ы в е д е н и е В производственных условиях ртуть в виде пара или пыли ртутных соединений попадает в организм главным образом через легкие и, как указывалось, практически полностью поглощается организмом; только в редких случаях растворимые соединения ртути проникают в кровь через порезы, ссадины или впитываются через кожу. В результате поглощения ртути организмом и ее циркуляции в нем происходит депонирование ртути. В наибольших количествах ртуть депонируется в мозге, легких, почках, печени и сердце. Ртуть, депонированная в организме, постепенно выводится почками, кишечником, органами дыхания, а также слюнными и потовыми железами. По данным проведенных опытов установлено, что при отравлениях солями ртути до 40% ртути выводится почками, 30-35% — железами толстых кишек в виде хлоральбуминатов, которые не всасываются организмом и выводятся наружу вместе с калом, до 25% ртути выводится слюнными железами, но при этом значительная часть ртути снова попадает в организм больного при проглатывании слюны. Следует отметить, что выведение ртути из организма происходит очень медленно. Более того, ртуть выводится неравномерно, иногда скачками, в течение нескольких месяцев, проходя через ряд экстремальных значений. 3. Техника безопасности при работе со ртутью. р т у т е н е п р о н и ц а е м ы е п о к р ы т и я Экспериментально было показано, что пары ртути хорошо поглощаются штукатуркой, деревом, почвой, тканями, ржавчиной и другими материалами и веществами. Значительное количество ртути сорбируется даже такими непористыми материалами, как стекло, линолеум, глазурованные и эмалированные поверхности. В результате поглощения ртути в рабочих помещениях создаются ртутные депо, представляющие собой при определенных условиях источники отравления для работающих в данном помещении, так как процесс адсорбции ртути является обратимым. Поэтому при работе со ртутью должны быть созданы ртутенепроницаемые покрытия, практически исключающие поглощение паров ртути и сводящие к минимуму их десорбцию. Строительные материалы должны быть непроницаемы для жидкой и газообразной ртути, прочными и не растрескиваться с течением времени, иметь гладкие поверхности, позволяющие легко смывать адсорбированную ртуть, они также должны быть неэлектропроводными и устойчивыми к действию химических сред, прежде всего щелочей и кислот. Ртутенепроницаемые неэлектропроводные и химически стойкие материалы и композиции могут быть разбиты на 3 группы: щелочестойкие, кислотостойкие и неэлектропроводные щелоче-кислотостойкие материалы. К щелочестойким относятся гранитные плиты, а также покрытия, изготовленные из бетона или песчано-цементного раствора. Покрытия, выполненные из бетона или из песчано-цементного раствора, могут быть монолитными или состоять из плиток, однако во всех случаях для придания ртутенепроницаемости их подвергают специальной пропитке. К кислотостойким материалам относятся полиизобутилен, диабазовые и гранитные плиты, силикатное стекло, глазурованные плитки, линолеум некоторых сортов, оргстекло и керамические плитки. При использовании керамических плиток их также пропитывают специальными растворами. К неэлектропроводным щелоче-кислотостойким материалам относятся полистирольные и асбоэбонитовые плитки, релин, эскапон, а также материалы, изготовленные на основе поливинилхлорида (пластикат и винипласт). Отношение строительных материалов к ртути характеризуется ртутенепроницаемостью, сорбцией ее паров и смываемостью адсорбированной ртути. В последние годы все более широкое распространение получают полы, выполненные в виде бесшовных монолитных покрытий из мастичных, полимер-цементных или наливных составов. Наливные полы имеют гладкую поверхность, плотную структуру и хорошо упругие свойства; они термо- и морозостойки, обладают повышенной водостойкостью, ртутенепроницаемы и щелочестойки, не дают трещин и не коробятся. Такие полы гигиеничны, поскольку, они, в отличие от твердых поверхностей, не приводят к развитию плоскостопия у работающих, легко моются и очищаются от загрязнений и т.д. защита стен, колонн, перекрытий (и др., кр. полов.) Оштукатуренные поверхности стен, потолков, колонн и других строительных конструкций защищают от ртути лакокрасочными покрытиями. Отдельные участки стен, колонн и других конструкций, подвергающиеся систематическому одновременному воздействию металлической ртути и агрессивных жидкостей, облицовывают на необходимую высоту стеклянными плитками, листовым стеклом, асбоэбонитовыми, полистирольными и керамическими плитками. Швы между плитками разделывают цементным раствором с последующей пропиткой специальными растворами или мастикой. д е м е р к у р и з а ц и я Несмотря на все предосторожности при работе со ртутью, в лабораторных и производственных условиях могут происходить аварии, сопровождающиеся загрязнением ртутью помещений, оборудования и одежды. Демеркуризация помещений включает механическую уборку видимых количеств ртути и химическую обработку загрязненных мест с последующим тщательным удалением продуктов реакции ртути с химическими реагентами. Для механического удаления пролитой ртути используют стеклянную ловушку с резиновой грушей. Небольшие количества пролитой ртути можно собрать с помощью амальгамированных полосок или кисточек из белой жести, медной или латунной проволоки и других амальгамирующихся металлов, а также из металлизированных угольных волкон. Для собирания капелек ртути применяют также лейкопластырь, который прикладывают к поверхности, загрязненной ртутью. Прилипшие к лейкопластырю капельки ртути отделяют от него промыванием ацетоном или другими органическими растворителями. Для демеркуризации помещений в производственных условиях можно использовать передвижной агрегат ТД, имеющий камеру, которую можно нагревать до 2000 С. Механическая обработка загрязненных поверхностей от ртути недостаточна, так как капельки ртути могут задерживаться при наличии в поверхности трещин или щелей. Для химической очистки поверхностей, загрязненных ртутью часто применяют растворы пермарганата калия. Рекомендуют употреблять раствор, в 1л. которого содержится 1г. пермарганата калия и 5 мл. соляной кислоты (плотность 1,19 г/см2 ). Также применяют растворы сульфида натрия и хлорида железа (III), состав, содержащий 15-20% этилендиаминтетрауксусной кислоты и 80-85% тиосульфата (25 г. этой смеси растворяют в 1 л. воды) и др. Известно, что ткани, особенно окрашенные в темные цвета, хорошо поглощают пары ртути. Однако в производственных условиях или при работе со ртутью в лабораториях основным источником загрязнения одежды является не сорбция ее паров, а попадание на одежду мелких капель и брызг при неосторожном обращении со ртутью. Ртуть, попавшая на одежду и адсорбированная ей, является дополнительным источником отравления не только для того, кто носит эту одежду, но и для окружающих. На производстве и в лабораторных условиях, приработе с большими количествами ртути, следует пользоваться верхней одеждой, бельем и обувью, предназначенными только для работы со ртутью. В соответствии с правилами стирки спецодежды при работе со ртутью (не в домашних условиях) загрязненную одежду освобождают от пыли, загружают в барабан стиральной машины и в течение 30 мин промывают холодной водой. Промытую спецодежду заливают мыльно-содовым раствором и стирают в течение 30 мин при 70-800С. Простиранную спецодежду промывают в барабане сначала горячей, а затем холодной водой и в течение 30 мин обрабатывают 1-2%-ным раствором соляной кислоты. После этого производят повторную стирку. При такой стирке ткань освобождается от ртути на 96-99%. индивидуальная защита и меры личной профилактики При работе со ртутью и ртутными приборами возможны аварии, связанные со взрывом ртутной аппаратуры, в которой металлическая ртуть или сильно токсичные соединения ртути могут находиться под большим давлением и при температурах, значительно превышающие температуру их кипения. При этом рабочее помещение загрязняется мельчайшими каплями ртути или пылью ее ядовитых соединений. В связи с этим на рабочих местах для индивидуальной защиты необходимо иметь кислородные изолирующие приборы или промышленные противортутные противогазы марки «Г» (желто-черная коробка), которые в случае аварии надежно защищают работающих от отравлений. При работе со ртутью очень важно выполнять меры личной профилактики, так как в противном случае никакие санитарно-технические мероприятия не предотвратят отравления. Работать со ртутью необходимо в накрахмаленной спецодежде, изготовленной из плотной белой ткани, наглухо завязанном сзади балом халате, не имеющем карманов, белой косынке или в белой шапочке. Нельзя работать в валяной или мягкой суконной обуви. Кожанную или резиновую обувь рекомендуется защищать поливинилхлоридными чехлами; пользоваться этой одеждой можно только при работе со ртутью, а затем их нужно оставлять в гардеробной комнате. По окончании работы, а также перед едой руки и лицо надо мыть теплой водой с мылом, а после работы принимать душ и чаще бывать в бане. При мытье горячей водой кожа очищается, что способствует удалению ртути из организма, так как она, в частности, выделяется и потовыми железами. Нельзя курить, принимать пищу и пить молоко на рабочем месте, это надо делать в специально отведенных для этого помещениях. Во время перерывов в работе следует находиться на свежем воздухе, а там, где это возможно, — заниматься производственной гимнастикой; систематические занятия физкультурой и спортом повышают сопротивляемость организма вредным воздействиям ртути, укрепляют нервную систему. Наряду с профилактическими мероприятиями общего характера известны медикаментозные способы предупреждения ртутных отравлений, использующие различные фармакологические препараты, повышающие общую сопротивляемость организма отравлению. В частности, в качестве средств индивидуальной профилактики, в последнее время начинают применять тиоловые соединения, среди которых наибольшей антидотной активностью обладает 2,3-димеркаптопропансульфонат натрия, так называемый унитиол. Этот препарат малотоксичен, способствует улучшению обмена веществ и увеличивает общую сопротивляемость организма. Препарат, введенный до начала поступления в организм паров ртути, впоследствии связывает ртуть и предотвращает отравления, а при введении в условиях хронической интоксикации способствует быстрому и более полному удалению ртути из организма, особенно в начальный период введения. 4. Первая помощь при ртутных отравлениях. Случаи попадания в организм значительных количеств металлической ртути очень редки, тогда как острые отравления парами ртути или ее соединениями встречаются гораздо чаще. При ингаляционных отравлениях парами ртути пострадавшего выводят из зоны поражения и подвергают лечению. Для этого используют 5%-ный раствор унитиола, применяя его для подкожных или внутривенных инъекций. Кроме унитиола внутривенно вводят 10 мл 10%-ого раствора хлорида кальция, 20-40 мл 40%-ного раствора глюкозы и 10 мл 20%-ного раствора тиосульфата натрия. При острых отравлениях солями ртути в результате их попадания в желудок в организм вводят унитиол и одновременно дают antidotum metallorum. В 1 л этого препарата содержится 3,75 г сульфата магния, 12,5 г бикарбоната натрия, 1 г едкого натра и 0,4% сероводорода. При отсутствии antidotum metallorum желудок обильно промывают водой, содержащей 20-30 г активированного угля, или белковой водой, после этого дают молоко, яичный белок, взбитый с водою и, наконец, слабительное. Для промывания желудка рекомендуется также 5%-ный раствор ронгалита. При отравлениях ртутью или ее соединениями рот полощут слабым раствором бертолетовой соли или 5%-ным раствором хлорида цинка. Кроме унитиола для оказания первой помощи и лечения применяют и другие дитиоловые соединения, например, 2,3-димеркаптопропанол — так называемый БАЛ. В последнее время, наряду с перчисленными препаратами для лечения интоксикаций ртутью и другими тяжелыми металлами, а также для профилактических целей используют соли аминополикарбоновых кислот, которые относятся к группе хелатов или комплексообразователей (комплексоны). При применении комплексонов усиливается выведение ртути из организма, причем освобождение организма от депонированной ртути сопровождается нормализацией нарушенных окислительно-восстановительных процессов. 5. Литература. Пугачевич П.П. «Работа со ртутью в лабораторных и производственных условиях» Москва, изд. «Химия», 1972 г., список литературы 1194 ссылки. Стр. 7-8, 17-21, 248-251, 252-260, 265-266, 272, 274-275, 300-308, 309-313 www.ronl.ru |
|
|||||||||||||||||||||||||||||||||||||
|
|