Многообразие живого мира. Уровни организации и основные свойства. Реферат многообразие живого мира


Многообразие живого мира. Уровни организации и основные свойства

Все многообразие живого мира практически невозможно выразить в количественном эквиваленте. По этой причине систематики объединили их в группы на основании определенных признаков. В нашей статье мы рассмотрим основные свойства, основы классификации и уровни организации живых организмов.

Многообразие живого мира: кратко

Каждый вид, существующий на планете, индивидуален и неповторим. Однако многие из них имеют целый ряд сходных черт строения. Именно по этим признакам все живое можно объединить в таксоны. В современный период ученые выделяют пять Царств. Многообразие живого мира (фото демонстрирует некоторых его представителей) включает Растения, Животные, Грибы, Бактерии и Вирусы. Последние из них не имеют клеточного строения и по этому признаку относятся к отдельному Царству. Молекула вирусов состоит из нуклеиновой кислоты, которая может быть представлена как ДНК, так и РНК. Вокруг них располагается белковая оболочка. С таким строением данные организмы способны осуществлять только единственный признак живых существ - размножаться самосборкой внутри организма хозяина. Все бактерии являются прокариотами. Это значит, что в их клетках нет оформленного ядра. Их генетический материал представлен нуклеоидом - кольцевыми молекулами ДНК, скопления которых находятся прямо в цитоплазме.

Растения и животные отличаются способом питания. Первые способны сами синтезировать органические вещества в ходе фотосинтеза. Такой способ питания называется автотрофным. Животные поглощают уже готовые вещества. Такие организмы называют гетеротрофами. Грибы обладают признаками как растений, так и животных. К примеру, они ведут прикрепленный образ жизни и неограниченный рост, но не способны к фотосинтезу.

многообразие живого мира

Свойства живой материи

А по каким признакам, вообще, организмы называют живыми? Ученые выделяют целый ряд критериев. Прежде всего, это единство химического состава. Вся живая материя образована органическими веществами. К ним относятся белки, липиды, углеводы и нуклеиновые кислоты. Все они являются естественными биополимерами, состоящими из определенного количества повторяющихся элементов. К признакам живых существ также принадлежат питание, дыхание, рост, развитие, наследственная изменчивость, обмен веществ, размножение, способность к адаптации.

Каждый таксон характеризуется своими особенностями. К примеру, растения произрастают неограниченно, в течение всей жизни. А вот животные увеличиваются в размерах только до определенного времени. То же самое касается и дыхания. Принято считать, что этот процесс происходит только при участии кислорода. Такое дыхание называется аэробным. Но вот некоторые бактерии могут окислять органические вещества и без наличия кислорода - анаэробно.

многообразие живого мира кратко

Многообразие живого мира: уровни организации и основные свойства

Указанными признаками живого обладает и микроскопическая бактериальная клетка, и огромный голубой кит. Кроме того, все организмы в природе взаимосвязаны непрерывным обменом веществ и энергии, а также являются необходимыми звеньями в цепях питания. Несмотря на многообразие живого мира, уровни организации предполагают наличие только определенных физиологических процессов. Они ограничиваются особенностями строения и видовым разнообразием. Рассмотрим каждый из них подробнее.

многообразие живого мира уровни организации

Молекулярный уровень

Многообразие живого мира наряду с его уникальностью определяется именно этим уровнем. Основу всех организмов составляют белки, структурным элементов которых являются аминокислоты. Количество их невелико - около 170. Но в состав белковой молекулы входит всего 20. Их сочетание обуславливает бесконечное разнообразие белковых молекул - от запасного альбумина птичьих яиц до коллагена мышечных волокон. На этом уровне осуществляется рост и развитие организмов в целом, хранение и передача наследственного материала, обмен веществ и превращение энергии.

многообразие живого мира основные свойства живых организмов

Клеточный и тканевый уровень

Молекулы органических веществ формируют клетки. Многообразие живого мира, основные свойства живых организмов на этом уровне уже проявляются в полном объеме. В природе широко распространены одноклеточные организмы. Это могут быть как бактерии, так и растения, и животные. У таких существ клеточный уровень соответствует организменному.

На первый взгляд может показаться, что их строение достаточно примитивно. Но это совсем не так. Только представьте: одна клетка выполняет функции целого организма! К примеру, инфузория туфелька осуществляет движение с помощью жгутика, дыхание через всю поверхность, пищеварение и регуляцию осмотического давления посредством специализированных вакуолей. Известен у этих организмов и половой процесс, который происходит в форме конъюгации. У многоклеточных организмов формируются ткани. Эта структура состоит из клеток, сходных по строению и функциям.

многообразие живого мира в биологии

Организменный уровень

В биологии многообразие живого мира изучается именно на этом уровне. Каждый организм является единым целым и работает согласовано. Большинство из них состоит их клеток, тканей и органов. Исключением являются низшие растения, грибы и лишайники. Их тело образовано совокупностью клеток, которые не формируют тканей и называется слоевищем. Функцию корней в организмах такого типа выполняют ризоиды.

многообразие живого мира фото

Популяционно-видовой и экосистемный уровень

Наименьшей единицей в систематике является вид. Это совокупность особей, обладающих рядом общих черт. Прежде всего, это морфологические, биохимические особенности и способность к свободному скрещиванию, позволяющие обитать данным организмам в пределах одного ареала и давать плодовитое потомство. Современная систематика насчитывает более 1,7 млн. видов. Но в природе они не могут существовать разрозненно. В пределах определенной территории обитает сразу несколько видов. Это и определяет многообразие живого мира. В биологии совокупность особей одного вида, которые обитают в пределах определенного ареала, называются популяцией. От подобных групп они изолированы определенными природными барьерами. Это могут быть водоемы, горные или лесные массивы. Каждая популяция характеризуется своим разнообразием, а также половой, возрастной, экологической, пространственной и генетической структурой.

многообразие живого мира фото

Но даже в пределах отдельно взятого ареала, видовое разнообразие организмов достаточно велико. Все они приспособлены к обитанию в определенных условиях и тесно связаны трофически. Это означает, что каждый вид является источником питания для другого. В результате формируется экосистема, или биоценоз. Это уже совокупность особей уже разных видов, связанных местом обитания, круговоротом веществ и энергии.

Биогеоценоз

Но со всеми организмами постоянно взаимодействуют факторы неживой природы. К ним относятся температурный режим воздуха, соленость и химический состав воды, количество влаги и солнечного света. Все живые существа находятся в зависимости от них и не могут существовать без определенных условий. К примеру, растения питаются только при наличии солнечной энергии, воды и углекислого газа. Это условия фотосинтеза, в ходе которого синтезируются необходимые им органические вещества. Совокупность биотических факторов и неживой природы называются биогеоценозом.

Что такое биосфера

Многообразие живого мира в самом широком масштабе представлено биосферой. Это глобальная природная оболочка нашей планеты, объединяющая все живое. Биосфера имеет свои границы. Верхняя, расположенная в атмосфере, ограничена озоновым слоем планеты. Он расположен на высоте 20 - 25 км. Данный слой поглощает вредное ультрафиолетовое излучение. Выше него жизнь просто невозможна. На глубине до 3 км находится нижняя граница биосферы. Здесь она ограничена наличием влаги. Так глубоко способны обитать только анаэробные бактерии. В водной оболочке планеты - гидросфере, жизнь найдена на глубине 10-11 км.

Итак, живые организмы, населяющие нашу планету в разных природных оболочках, обладают рядом характерных свойств. К ним относят их способность к дыханию, питанию, движению, размножению и т. д. Многообразие живых организмов представлено разными уровнями организации, каждый из которых отличается уровнем сложности структуры и физиологических процессов.

fb.ru

Доклад - Многообразие живых организмов – основа организации и устойчивости биосферы

Реферат

по дисциплине: «Концепции современного естествознания».

На тему: «Многообразие живых организмов –

основа организации и устойчивости биосферы».

Содержание

Введение

1. Основа организации и устойчивости биосферы

2. Распределение живого вещества

3. Классификация живого вещества

4. Миграция и распределение живого вещества

5. Постоянство биомассы живого вещества

6. Функции живого вещества в биосфере Земли

Заключение

Список литературы

Введение

Огромное видовое разнообразие живых организмов обеспечивает постоянный режим биотического круговорота. Каждый из организмов вступает в специфические взаимоотношения со средой и играет свою роль в трансформации энергии. Это сформировало определенные природные комплексы, имеющие свою специфику в зависимости от условий среды в той или иной части биосферы. Живые организмы населяют биосферу и входят в тот или иной биоценоз — пространственно ограниченные части биосферы — не в любом сочетании, а образуют определенные сообщества из видов, приспособленных к совместному обитанию. Такие сообщества называются биоценозами.

Важное экологическое правило состоит в том, что чем разнороднее и сложнее биоценозы, тем выше устойчивость, способность противостоять различным внешним воздействиям. Биоценозы отличаются большой самостоятельностью. Одни из них сохраняются в течение длительного времени, другие закономерно изменяются. Озера превращаются в болота — идет образование торфа, а в итоге на месте озера вырастает лес.

Процесс закономерного изменения биоценоза называется сукцессией. Сукцессия — это последовательная смена одних сообществ организмов (биоценозов) другими на определенном участке среды. При естественном течении сукцессия заканчивается формированием устойчивой стадии сообщества. В ходе сукцессии увеличивается разнообразие входящих в состав биоценоза видов организмов, вследствие чего повышается его устойчивость.

Повышение видового разнообразия обусловлено тем, что каждый новый компонент биоценоза открывает новые возможности для вселения. Например, появление деревьев позволяет проникнуть в экосистему видам, живущим в подсистеме: на коре, под корой, строящим гнезда на ветвях, в дуплах.

В ходе естественного отбора в составе биоценоза неизбежно сохраняются лишь те виды организмов, которые могут наиболее успешно размножаться именно в данном сообществе. Формирование биоценозов имеет существенную сторону: «соревнование за место под солнцем» между различными биоценозами. В этом «соревновании» сохраняются лишь те биоценозы, которые характеризуются наиболее полным разделением труда между своими членами, а следовательно, более богатыми внутренними биотическими связями.

Так как каждый биоценоз включает в себя все основные экологические группы организмов, он по своим возможностям приравнивается биосфере. Биотический круговорот в пределах биоценоза — своеобразная уменьшенная модель биотического круговорота Земли.

1. Основа организации и устойчивости биосферы

Термин «биосфера» был введен для обозначения общего облика поверхности Земли, обусловленного наличием на ней всей массы живых организмов. Два главных компонента биосферы — живые организмы и среда их обитания (включая нижние слои атмосферы, водную среду) — сосуществуют в постоянном взаимодействии, образуя целостную систему. Отдельные популяции живых организмов не являются изолированными от окружения. В ходе эволюции образуются биоценозы — сообщества животных, растений, микроорганизмов, В совокупности со средой обитания биоценозы образуют биогеоценозы. В них происходит непрерывный обмен веществом и энергией, которые реализуются множеством трофических цепочек и биогеохимических циклов. Биогеоценозы служат элементарными ячейками биосферы, которые, взаимодействуя между собой, устанавливают динамическое равновесие в ней. Живое вещество выполняет системообразующую роль в суперсистеме жизни — биосфере. Высокая степень согласованности всех видов жизни в биосфере есть результат совместно протекающей эволюции взаимодействующих биологических систем — коэволюции. Коэволюционное развитие проявляется в тонкой взаимной приспособляемости видов, во взаимодополнении живых систем. В конечном итоге коэволюция приводит к увеличению разнообразия и сложности в природе. В этом представлении состоит суть концепции коэволюции. Согласно ей многообразие живых организмов — это основа организации и устойчивости биосферы. Каждый биологический вид выполняет свою функцию в биосферном циркулировании вещества, энергии, в обмене информацией и осуществлении обратных связей. В связи с этим очевидна опасность уменьшения численности видов живых организмов и сокращение генофонда, которые непрерывно происходят под давлением человеческой цивилизации на природу.

Таким образом

1. Устойчивость биосферы в целом, ее способность эволюционировать определяется тем, что она представляет собой систему относительно независимых биоценозов. Взаимосвязь между ними ограничивается связями посредством неживых компонентов биосферы: газов, атмосферы, минеральных солей, воды и т.д.

2. Биосфера представляет собой иерархически построенное единство, включающее следующие уровни жизни: особь, популяция, биоценоз, биогеоценоз. Каждый из этих уровней обладает относительной независимостью, и только это обеспечивает возможность эволюции всей большой макросистемы.

3. Многообразие форм жизни, относительная устойчивость биосферы как среды обитания и жизни отдельных видов создают предпосылки для морфологического процесса, важным элементом которого является совершенствование реакций поведения, связанных с прогрессивным развитием нервной системы. Сохранились лишь те виды организмов, которые в ходе борьбы за существование стали оставлять потомство, несмотря на внутренние перестройки биосферы и изменчивость космических и геологических факторов.

2. Распределение живого вещества

«Быть живым, — отмечал В.И. Вернадский, — значит, быть организованным». На протяжении миллиардов лет существования биосферы организованность создается и сохраняется благодаря деятельности живых организмов.

Живая природа является основной чертой проявления биосферы, она резко отличает ее тем самым от других земных оболочек. Строение биосферы прежде всего и больше всего характеризуется жизнью. Эта самая мощная геологическая сила, живое вещество планеты, представляет собой совокупность весьма хрупких и нежных живых организмов, по массе составляющих ничтожную часть созданной ими биосферы.

Если живое вещество равномерно распределить по поверхности нашей планеты, то оно покроет ее слоем всего в 2 см толщиной.

Химический состав элементов живого вещества нашей планеты характеризуется преобладанием немногих элементов: водород, углерод, кислород, азот являются главными элементами земного живого вещества и поэтому названы биофильными. Атомы их создают в живых организмах сложные молекулы в сочетании с водой и минеральными солями.

Живые вещества нашей планеты существуют в виде огромного множества организмов со своими индивидуальными признаками, разнообразных форм и размеров. Среди живых организмов встречаются мельчайшие по форме микроорганизмы и многоклеточные животные и растения крупных размеров. Размеры колеблются от микрометров (малые бактерии, инфузории) до десятков метров.

Население биосферы в видовом и морфологическом отношении так же чрезвычайно разнообразно. Подсчеты количества видов, населяющих нашу планету, проводились различными авторами, но их все же можно считать только приближенными.

Согласно современным оценкам, на Земле существует около 3 млн видов организмов, из которых на долю растений приходится 500 тысяч видов, а на долю животных — 2,5 млн видов. Весь органический мир нашей планеты со времен Аристотеля традиционно разделяется на растения и животных. В настоящее время, благодаря изучению структуры организации живых существ, можно провести более совершенную классификацию, чем это было раньше.

Живое вещество, по В.И. Вернадскому, «растекается по земной поверхности и оказывает определенное давление на окружающую среду, обходит препятствия, мешающие его продвижению, или ими овладевает, их покрывает». Внутренняя энергия, производимая жизнью, проявляется в переносе химических элементов и в создании из них новых тел. По мнению В.И. Вернадского, геохимическая энергия жизни выражается в движении живых организмов путем размножения, идущего в биосфере непрерывно. Размножение организмов производит «давление жизни», или «напор жизни». В этой связи между организмами возникает борьба за площадь, питание и в особенности «за газ», нужный для дыхания свободный кислород.

При этом происходит биогенная миграция атомов: атомы, захваченные растениями, переходят к травоядным животным, затем — к хищникам, которые питаются травоядными. Мертвые растения и животные служат пищей для микроорганизмов, а выделяемые микроорганизмами в результате жизнедеятельности минеральные вещества снова потребляются растениями. Из этого биологического круговорота выпадает лишь небольшой процент атомов. Эти вышедшие из жизненного процесса биогенные атомы попадают в косную (неживую) природы, тем самым играя огромную роль в истории биосферы.

Процесс размножения замирает только при недостатке кислорода в окружающей среде, действии низких температур и отсутствии места для обитания новых организмов.

В.И. Вернадский вычислил время, необходимое различным организмам для «захвата» поверхности планеты.

Таким образом, он сделал вывод о том, что мелкие организмы размножаются быстрее крупных, а домашние животные размножаются быстрее диких.

3. Классификация живого вещества

Весь мир живых существ в настоящее время подразделяют на две большие систематические группы: прокариоты и эукариоты.

Прокариоты (от лат. pro — вперед, вместо и греч. кагуоп — ядро) — организмы, не обладающие, в отличие от эукариотов, оформленным клеточным ядром и типичным хромосомным аппаратом. Наследственная информация у них реализуется и передается через ДНК, типичный половой процесс отсутствует. К ним относятся бактерии, например, сине-зеленые водоросли. В системе органического мира прокариоты составляют над-царство.

Эукариоты (от греч. еu — хорошо, полностью и karyon — ядро) — организмы, обладающие в отличие от прокариотов, оформленным клеточным ядром, отделенным от цитоплазмы ядерной оболочкой. Генетический материал у них заключается в хромосомах, характерен половой процесс. К ним относится все, кроме бактерий.

Самыми низкоорганизованными живыми организмами являются те, у которых отсутствует истинное ядро клетки, ДНК располагается в клетке свободно, не отделяясь от цитоплазмы ядерной мембраной. Эти организмы получили название прокариоты. Все остальные организмы называются эукариоты.

Именно прокариотам обязана наша планета появлением атмосферы. Прокариоты могли существовать в совершенно немыслимых условиях, которые сложились на нашей планете 3 млрд лет назад — интенсивная ультрафиолетовая радиация, не удерживаемая озоновым слоем, активнейший вулканизм — и были одними из самых приспособленных живых существ. Их потомки, например, сине-зеленые водоросли и сейчас обладают необыкновенной живучестью.

Огромный шаг в эволюции живого вещества был сделан, когда появились эукариоты с их кислородным дыханием. На переход от прокариотов к эукариотам, вызвавшем грандиозную перестройку биосферы, ушло еще около миллиарда лет. За обретение кислородного голодания прокариоты заплатили тем, что они стали смертны в обычном смысле слова, в отличие от эукариотов, которые, по-видимому, не имели естественной смерти. Но вместе с этим они приобрели и значительно большую, чем у прокариотов, эффективность использования энергии, благодаря чему смогли гораздо быстрее эволюционировать и стали способны к самосовершенствованию.

4. Миграция и распределение живого вещества

В связи с действием солнечной энергии и внутренней энергии Земли в биосфере совершаются постоянные процессы движения и перераспределения вещества. В ней осуществляется массовый перенос твердых, жидких и газообразных тел при различных температурах и давлениях. На Земле ежегодно разрушатся 1012 тонн живого вещества из общего запаса 1013 тонн. Такой интенсивный круговорот веществ, создавший биосферу и определяющий ее устойчивость и целостность, связан с жизнедеятельностью биомассы планеты. В отличие от мертвой, материи живое вещество способно к аккумуляции энергии, размножению и обладает огромной скоростью реакций. На Земле нет силы более постоянно действующей, а поэтому и более могущественной по своим последствиям, чем живые организмы, взятые вместе. Жизнь на Земле невозможна без круговорота веществ. Аккумуляция и минерализация происходит в биоценозах. Основной круговорот углерода состоит в превращении СO2 в живое вещество, из которого при разложении бактериями и дыханием вновь образуется СО2

Круговорот азота связан с превращением в нитраты молекулярного азота атмосферы за счет деятельности некоторых бактерий и энергии грозовых разрядов. Нитраты усваиваются растениями. В составе их белков азот попадает к животным, а после отмирания растений и животных — в почву, где гнилостные бактерии разлагают органические остатки до аммиака, который затем окисляется бактериями в азотную кислоту. Таким образом, накопление химических элементов в живых организмах и освобождение их в результате разложения мертвых — характерная особенность биогенной миграции.

Обновление биомассы на суше происходит в среднем за 15 лет, причем для лесной растительности эта величина значительно больше, а для травянистой — значительно меньше. В океане общая масса живого вещества обновляется в среднем через каждые 25 дней. Обновление всей биомассы Земли осуществляется за 7—8 лет.

5. Постоянство биомассы живого вещества

Количество биомассы живого вещества приобретает тенденцию к определенному постоянству. Это достигается тем, что в природе есть противоположная направленность процессов.

Важнейшим звеном биохимического круговорота является фотосинтез — мощный естественный процесс, вовлекающий ежегодно в круговорот огромные массы вещества биосферы и определяющий ее высокий кислородный потенциал. Этот процесс выступает как регулятор основных геохимических процессов в биосфере и как фактор, определяющий наличие свободной энергии верхних оболочек земного шара. За счет углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Фотосинтез происходит на всей поверхности Земли и создает огромный геохимический фактор, который может быть выражен количеством массы углерода, ежегодно вовлекаемой в построение органического живого вещества всей биосферы. Продуктивность планетарного фотосинтеза может быть выражена в количестве масс углекислоты и воды, потребляемых всеми растениями земного шара в течение года. Учитывая то, что воды мирового океана прошли через биогенный цикл, связанный с фотосинтезом, не менее 300 раз, свободный кислород атмосферы обновлялся не менее одного миллиона раз.

При гибели организма происходит обратный процесс — разложение органического вещества путем окисления, гниения и т.п. с образованием продуктов разложения.

Напряженность жизни выражается в росте и размножении организмов. За все время развития биосферы энергия Солнца превращалась в биохимическую энергию размножения живых организмов. При этом поглощенная энергия разделялась на два компонента: компонент роста, приводящий к определенной массе данного тела, и компонент размножения, определяющий увеличение числа организмов данного вида.

6. Функции живого вещества в биосфере Земли

Функции живого вещества в атмосфере Земли довольно разнообразны. В.И. Вернадский выделял пять таких функций:

1. Газовая функция. Осуществляется зелеными растениями. Для синтеза органических веществ растения используют углекислый газ, выделяя при этом в атмосферу кислород. Весь остальной органический мир использует кислород с процессе дыхания и пополняет при этом запасы углекислого газа в атмосфере. По мере увеличения биомассы зеленых растений изменяется газовый состав атмосферы: снижается содержание углекислого газа и увеличивается концентрация кислорода. Таким образом, живое вещество качественно изменило состав атмосферы — геологической оболочки Земли.

2. С газовой функцией тесно связана окислительно-восстановительная функция. В процессе своей жизнедеятельности и после своей гибели организмы, обитающие в разных водоемах, регулируют кислородный режим и тем самым создают условия, благоприятные для растворения ряда металлов, что приводит к образованию осадочных пород.

3. Концентрационная функция проявляется в способности живых организмов накапливать различные химические элементы, например, в таких растениях-накопителях, как осока, хвощ, содержится много кремния. Благодаря осуществлению концентрационной функции живые организмы создали многие осадочные породы: залежи мела, известняка и т.п.

4. Биохимическая функция связана с ростом, размножением и перемещением живых организмов в пространстве. Размножение приводит к быстрому распространению живых организмов и расползанию живого вещества в разные географические области.

5. Биохимическая деятельность охватывает все возрастающее количество вещества земной коры для нужд промышленности, транспорта, сельского хозяйства и бытовых потребностей человека.

Заключение

«Быть живым, — писал В.И. Вернадский, — значит, быть организованным». На протяжении миллиардов лет существования биосферы организованность создается и сохраняется благодаря деятельности живых организмов.

Список литературы

1. Дягилев Ф.М. Концепции современного естествознания. — М.: Изд. ИЭМПЭ, 2008.

2. Недельский Н.Ф., Олейников Б.И., Тулинов В.Ф. Концепции современного естествознания. – М: Изд. Мысль, 2006.

3. Грушевицкая Т.Г., Садохин А.П. Концепции современного естествознания.- М.: Изд. ЮНИТИ, 2005.

3. Карпенков С.Х. Основные концепции естествознания. – М.: Изд. ЮНИТИ, 2004.

www.ronl.ru

Реферат

по дисциплине: «Концепции современного естествознания».

На тему: «Многообразие живых организмов –

основа организации и устойчивости биосферы».

Содержание

Введение

1. Основа организации и устойчивости биосферы

2. Распределение живого вещества

3. Классификация живого вещества

4. Миграция и распределение живого вещества

5. Постоянство биомассы живого вещества

6. Функции живого вещества в биосфере Земли

Заключение

Список литературы

Введение

Огромное видовое разнообразие живых организмов обеспечивает постоянный режим биотического круговорота. Каждый из организмов вступает в специфические взаимоотношения со средой и играет свою роль в трансформации энергии. Это сформировало определенные природные комплексы, имеющие свою специфику в зависимости от условий среды в той или иной части биосферы. Живые организмы населяют биосферу и входят в тот или иной биоценоз — пространственно ограниченные части биосферы — не в любом сочетании, а образуют определенные сообщества из видов, приспособленных к совместному обитанию. Такие сообщества называются биоценозами.

Важное экологическое правило состоит в том, что чем разнороднее и сложнее биоценозы, тем выше устойчивость, способность противостоять различным внешним воздействиям. Биоценозы отличаются большой самостоятельностью. Одни из них сохраняются в течение длительного времени, другие закономерно изменяются. Озера превращаются в болота — идет образование торфа, а в итоге на месте озера вырастает лес.

Процесс закономерного изменения биоценоза называется сукцессией. Сукцессия — это последовательная смена одних сообществ организмов (биоценозов) другими на определенном участке среды. При естественном течении сукцессия заканчивается формированием устойчивой стадии сообщества. В ходе сукцессии увеличивается разнообразие входящих в состав биоценоза видов организмов, вследствие чего повышается его устойчивость.

Повышение видового разнообразия обусловлено тем, что каждый новый компонент биоценоза открывает новые возможности для вселения. Например, появление деревьев позволяет проникнуть в экосистему видам, живущим в подсистеме: на коре, под корой, строящим гнезда на ветвях, в дуплах.

В ходе естественного отбора в составе биоценоза неизбежно сохраняются лишь те виды организмов, которые могут наиболее успешно размножаться именно в данном сообществе. Формирование биоценозов имеет существенную сторону: «соревнование за место под солнцем» между различными биоценозами. В этом «соревновании» сохраняются лишь те биоценозы, которые характеризуются наиболее полным разделением труда между своими членами, а следовательно, более богатыми внутренними биотическими связями.

Так как каждый биоценоз включает в себя все основные экологические группы организмов, он по своим возможностям приравнивается биосфере. Биотический круговорот в пределах биоценоза — своеобразная уменьшенная модель биотического круговорота Земли.

1. Основа организации и устойчивости биосферы

Термин "биосфера" был введен для обозначения общего облика поверхности Земли, обусловленного наличием на ней всей массы живых организмов. Два главных компонента биосферы — живые организмы и среда их обитания (включая нижние слои атмосферы, водную среду) — сосуществуют в постоянном взаимодействии, образуя целостную систему. Отдельные популяции живых организмов не являются изолированными от окружения. В ходе эволюции образуются биоценозы - сообщества животных, растений, микроорганизмов, В совокупности со средой обитания биоценозы образуют биогеоценозы. В них происходит непрерывный обмен веществом и энергией, которые реализуются множеством трофических цепочек и биогеохимических циклов. Биогеоценозы служат элементарными ячейками биосферы, которые, взаимодействуя между собой, устанавливают динамическое равновесие в ней. Живое вещество выполняет системообразующую роль в суперсистеме жизни - биосфере. Высокая степень согласованности всех видов жизни в биосфере есть результат совместно протекающей эволюции взаимодействующих биологических систем — коэволюции. Коэволюционное развитие проявляется в тонкой взаимной приспособляемости видов, во взаимодополнении живых систем. В конечном итоге коэволюция приводит к увеличению разнообразия и сложности в природе. В этом представлении состоит суть концепции коэволюции. Согласно ей многообразие живых организмов — это основа организации и устойчивости биосферы. Каждый биологический вид выполняет свою функцию в биосферном циркулировании вещества, энергии, в обмене информацией и осуществлении обратных связей. В связи с этим очевидна опасность уменьшения численности видов живых организмов и сокращение генофонда, которые непрерывно происходят под давлением человеческой цивилизации на природу.

Таким образом

1. Устойчивость биосферы в целом, ее способность эволюционировать определяется тем, что она представляет собой систему относительно независимых биоценозов. Взаимосвязь между ними ограничивается связями посредством неживых компонентов биосферы: газов, атмосферы, минеральных солей, воды и т.д.

2. Биосфера представляет собой иерархически построенное единство, включающее следующие уровни жизни: особь, популяция, биоценоз, биогеоценоз. Каждый из этих уровней обладает относительной независимостью, и только это обеспечивает возможность эволюции всей большой макросистемы.

3. Многообразие форм жизни, относительная устойчивость биосферы как среды обитания и жизни отдельных видов создают предпосылки для морфологического процесса, важным элементом которого является совершенствование реакций поведения, связанных с прогрессивным развитием нервной системы. Сохранились лишь те виды организмов, которые в ходе борьбы за существование стали оставлять потомство, несмотря на внутренние перестройки биосферы и изменчивость космических и геологических факторов.

studfiles.net

Многообразие живого мира — реферат

 Современные научные данные  говорят о существенном значении  того свойства (и «ступени бытия»), которое стоики обозначали как  «сцепленность». Это свойство как  рефрен проходит на деле через  все уровни организации как  материи вообще, так и живого. И в то же время его можно использовать как специфическую характеристику одного из уровней жизни – а именно наинизшего уровня проявления специфики жизни, уровня «самоорганизуемых комплексов апериодических полимеров» по Кремянскому, предбиологического уровня по Донцову. В 1944 г. А.Гурвич писал о «констелляциях» молекул как базисе живого. В чем же заключается сцепленность молекул, входящих в состав биосистем? В 1935 г. Э.Бауэр дает ответ, вновь и вновь подтверждаемый на протяжении XX века «неклассическими» экспериментальными данными.

 Речь идет об особом неравновесном  состоянии материи в живых  организмах. Молекулы «сцепляются»  между собой в ансамбли (белки,  нуклеиновые кислоты), обладающие  особым запасом энергии. Умирание  организма, утрата неравновесного  состояния ведет к высвобождению энергии в виде излучения (В.Л. Воейков). Чем больше сведений мы получаем о биомолекулярных ансамблях с целостными свойствами (и способностью к самосборке), тем в большей мере становится ясно, что многие биологические науки (биофизика, биохимия, «молекулярная биология» имеют дело с трупами. Фотографии ткани мышц, вошедшие в учебники по биологии, на которых видны чередующиеся светлые и темные полосы, отражают строение мертвых тканей.

 Известно в то же время,  что и труп некоторое время  продолжает обнаруживать постепенно угасающие явления жизни. Соответственно, «остаточную» способность молекулярных ансамблей к самоорганизации, наблюдают у препаратов, выделенных из организмов методами современной «физико–химической биологии». С этим связана и поражавшая первые поколения молекулярных биологов возможность самосборки рибосом, свертывания ДНК. К аналогичным явлениям можно отнести и матричный синтез белка на рибосомах в бесклеточной системе. Разумеется, что лишь «бледное подобие» тех способностей, которые молекулы проявляют непосредственно в живой клетке.

 В рамках уровня молекулярных  ансамблей, наделенных этим свойством,  создаются структуры следующего  уровня жизни. Его можно назвать  витальным. Витальный уровень  в наибольшей мере сопоставим  с «уровнем одноклеточного организма». Почему речь идет именно об одноклеточном организме? Многоклеточный организм в меньшей мере, чем одноклеточный, может быть сведен к витальному уровню, поскольку в нем в большей степени проявляется следующий, более высокий уровень.

 В. Новак кладет в фундамент  биологической эволюции «принцип  социогенеза». Этот принцип предполагает  ассоциацию и постепенную интеграцию  биологических структур. Такой подход  к исследованию систем живого  мира требует более подробно  рассмотреть проблему структурной организации и самоорганизации живой материи.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Классическая система живого мира

 

 Построение естественной системы  органического мира является  непрерывным процессом. Это связано  с бесконечной серией все углубляющихся и усложняющихся исследований. В настоящее время с учетом ископаемого и современного материала выделяют от 4 до 26 царств, от 33 до 132 типов, от 100 до 200 классов, а общее число видов оценивается в несколько миллионов. Естественно, что системы органического мира, построенные в различные времена, существенно отличаются друг от друга.

 Большинство классификаций  современных групп органического  мира построены на основе кладистического  метода, или кладистики (от греч. klados – ветвь). Кладистика – один  из вариантов построения родословного древа органического мира, базируемого на степени родства, но без учета геохронологической последовательности. Полученные таким методом родословные благодаря эмбриологическим, цитологическим и другим исследованиям в целом достаточно объективно отражают уровни эволюции и степень родства групп. Тем не менее, без учета палеонтологических данных, то есть геохронологии, анализа признаков «предок-потомок» и «братья-сестры», основного звена развития и т.д., построение относительно стабильной филогенетической системы органического мира невозможно.

Теория и практика классификации  органических объектов получили название таксономия (от греч. taxis – расположение, строй, закон). Необходимо различать  два понятия: таксоны и таксономические категории, то есть ранги таксонов. Число таксонов как биологических объектов по мере познания органического мира все время возрастает.

 Систематика (от греч. systematikos – упорядоченный) представляет  собой раздел биологии, в задачи  которого входят, с одной стороны, описание всего многообразия как современных, так и вымерших организмов, а с другой « упорядоченное иерархическое расположение таксономических категорий по отношению друг к другу. Иногда термины «систематика», «таксономия» и «классификация» считают синонимами, поэтому наряду с понятием «таксономическая категория» нередко используют понятие «систематическая категория». Таким образом, систематика (таксономия, классификация) представляет собой прежде всего процесс исследования, а построение системы является конечным результатом.

 Считают, что понятия  «род» и «вид», а также бинарное  название (биномен) вида впервые  предложил в середине XVI века Конрад  Геснер. Бинарная номенклатура (от  лат. binarius – состоящий из двух  частей и nomenclatura – перечень имен) означает, что вид получает двойное наименование: первое слово отвечало названию рода, а второе представляло соответственно видовое название, например Betula alba, то есть Береза белая.

 Широкое применение бинарной  номенклатуры началось с работ  английского священнослужителя  Дж. Рея (1628-1705), который оставил  заметный след в развитии естествознания. Ботаник-систематик, зоолог и путешественник  Дж. Рей предложил разделять растения  на две большие группы (в современном понимании однодольные и двудольные).

 Создателем научной таксономии  и систематики по праву является  шведский натуралист К. Линней (1707-1778). Он разработал правила  и принципы классификации и  построил иерархическую систему  для известных в то время современных и ископаемых животных и растений. С его работами с середины XVIII века окончательно утвердилось применение бинарной номенклатуры.

 В настоящее время число  основных таксономических категорий  возросло до двенадцати: вид, род, триба, семейство, отряд, когорта, класс, тип, раздел, царство, доминион, империя. Для ботанических таксонов в ранге отряда и типа используются соответственно порядок и отдел, хотя некоторые авторы считают, что типу в царстве животных соответствует подотдел в царстве растений.

 Благодаря систематике разнообразие  жизни предстает не как хаотическое  нагромождение организмов, а как  определенным образом упорядоченная  система, изменяющаяся от простого  к сложному. Естественно стремление  построить такую систему, которая отражала бы последовательность «предки – потомки». Исходным может быть постулат, что более простые организмы соответствуют предковым состояниям, а более сложные – последующим уровням развития. Но и простые организмы, развиваясь, образуют совокупности различной сложности.

 Систему органического мира  изображают в двух основных  вариантах: в виде родословного  древа, ветви которого связаны  родственными отношениями и соответствуют  определенным таксонам, или как  перечень названий таксонов в  иерархической последовательности. Излагаемая ниже система включает два надцарства и пять царств:

 Для двух наиболее крупных  царств – растений и животных  – принята следующая иерархия  высших таксонов:

 Многие организмы бактериального, растительного и животного происхождения на одноклеточном уровне имеют ряд сходных черт. На это давно было обращено внимание, и в 1866 году Э. Геккель выделил самостоятельное царство Protista (от греч. protistos – самый первый). Современные сторонники обособления царства Protista включают в него как одноклеточных эукариот, так и многоклеточные водоросли.

 Основу живых организмов  составляет клетка, которая функционирует  как самостоятельный организм  – разнообразные одноклеточные,  либо клетки являются составной  частью многоклеточных. Основное  содержимое клетки – цитоплазма заключает одно или несколько ядер, вакуоли, митохондрии и т.д. Наличие ядра, представляющего собой генетический аппарат, или отсутствие оформленного ядра является морфологическим признаком для разграничения надцарства прокариот (доядерные) и эукариот (ядерные).

 Существует гипотеза, что на  первых этапах эволюции органического  мира широко проявлялся процесс  возникновения более сложных  организмов за счет слияния  нескольких простых (симбиогенез,  эндосимбиоз). Современная эукариотная клетка возникла в результате длительных и многократных эндосимбиозов. Возможно, что такие клеточные структуры, как реснички, жгутики, центриоли, появились за счет серии внедрений различных бактерий и цианобионтов.

 

 Надцарство доядерные организмы. Superregnum Procaryota

 Это одноклеточные и колониальные  организмы, не имеющие обособленного  ядра. Цитоплазма имеет стенку, генетическая  информация сосредоточена в единственной  хромосоме. Размеры прокариот  от 0,015 мкм до 20 см. Они появились  в интервале 3,8-3,1 млрд лет. Прокариоты разделяются на два царства: бактерии и цианобионты. Обмен веществ осуществляется в процессе хемосинтеза и фотосинтеза.

 Царство Бактерии. Regnum Bacteria

 Бактерии представляют собой  микроскопические организмы, размеры  которых обычно около 1-5 мкм. Гигантские бактерии размером до 10 000 мкм обнаружены в денсали. Среди бактерий встречаются автотрофные и гетеротрофные формы. Первые создают органические вещества из неорганических, вторые используют готовые органические вещества. Большинство бактерий являются автотрофами, обычно их называют литотрофами. Процессы обмена веществ у автотрофных бактерий идут без использования света (хемосинтез, хемолитотрофы) либо только на свету (фотосинтез, фотолитотрофы).

 Некоторые исследователи объединяют с бактериями вирусы, полагая, что упрощение их строения обусловлено способом существования – внутриклеточные паразиты. Другие рассматривают их как доклеточную форму жизни и выделяют в самостоятельное царство Virae. Вирусы в ископаемом состоянии пока не обнаружены.

 Царство Цианобионты. Regnum Cyanobionta

 Одиночные и колониальные  организмы с постоянной формой  клеток без обособленного ядра. Размеры одиночных форм микроскопические  – около 10 мкм. Размеры колоний,  а особенно продуктов их жизнедеятельности (строматолиты) могут достигать многих сотен метров. Колониальные формы покрыты общей слизистой оболочкой. В самом организме, на его поверхности и в слизистой оболочке может происходить накопление карбонатов, приводящее в дальнейшем к формированию известняков. Известняковые слоистые образования получили название строматолитов.

 Надцарство ядерные организмы. Superregnum Eucaryota

 Эукариоты – одноклеточные  или многоклеточные организмы,  разделяющиеся на три царства:  растения, животные и грибы. В  отличие от прокариот они имеют обособленное ядро. Размеры эукариот изменяются в диапазоне от 10 мкм (одноклеточные) до 33 м (длина китообразных) и 100 м (высота некоторых гигантских хвойных). Эукариоты появились позднее прокариот, скорее всего на уровне 1,5-1,7 млрд. лет тому назад (ранний протерозой), хотя не исключено и более раннее возникновение.

 Царство Растения. Regnum Phyta.

 Это разнообразные, преимущественно  неподвижные одноклеточные и  многоклеточные организмы, имеющие  верхушечный рост, плотные, преимущественно целлюлозные оболочки клеток и автотрофный способ питания. Для всех растений характерен фотосинтез: при помощи энергии света, поглощаемой хлорофиллом, реже другими пигментами, они выделяют молекулярный кислород, а из неорганических соединений создают органические.

 Царство растений разделяется  на два подцарства, отличающиеся  между собой уровнем организации  и средой обитания: Thallophyta (низшие  растения) и Telomophyta (высшие растения). Первые обитают в разнообразных  водных бассейнах, и для них  используется собирательное название «водоросли», то есть растущие в воде. Высшие растения обитают в наземных условиях, встречаясь почти на всех широтах, лишь небольшое число из них ведет вторичноводный образ жизни.

 Подцарство Низшие растения.  Subregnum Thallophyta

 Это низшие растения –  одноклеточные и многоклеточные  организмы, которые обитают в  разнообразных водных бассейнах,  изредка они живут в почве.  Водоросли имеют единое тело (таллом, слоевище), в котором не выделяются  корень, стебель и листья. В основу выделения отделов, число которых превышает 10, положены число клеток (одноклеточные и многоклеточные), различный набор окрашивающих пигментов и особенности минерального скелета.

 Подцарство Высшие растения. Subregnum Telomophyta

 Подцарство высших растений отличается от подцарства низших растений следующими особенностями: 1)тело расчленено на корень, стебель, листья и органы размножения; 2)специализация клеток приводит к образованию различных специфических тканей, осуществляющих проводящую, защитную, механическую и другие функции; 3)среда обитания наземная, хотя имеются некоторые вторично-водные формы; 4)закономерное чередование полового (гаметофит) и бесполого (спорофит) поколений. В соответствии со способом размножения подцарство высших растений разделено на два надотдела: Sporophyta (споровые) и Spermatophyta (семенные).

turboreferat.ru

Многообразие видов на Земле. Функции живого вещества планеты

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

 

 

 

 

 

 

 

 

 

 

Контрольная работа.

Многообразие видов на Земле. Функции живого вещества планеты.

 

 

                                                     выполнила:

                                                               студентка …-го курса

                                                               …                факультета

                                                               …

                                                     

                                                    проверил:

                                                                ...

 

 

                                                САМАРА 2004

 

ПЛАН

ВВЕДЕНИЕ.

1. ФУНКЦИИ ЖИВОГО ВЕЩЕСТВА.

2. МНОГООБРАЗИЕ ВИДОВ НА ЗЕМЛЕ.

ЗАКЛЮЧЕНИЕ.

СПИСОК ЛИТЕРАТУРЫ

 

 

ВВЕДЕНИЕ.

    В 1916-м году, когда отечественный ученый В. И. Вернадский ввел в науку представление о «живом веществе», это совершенно изменило господствующее до того времени научное мировоззрение. Именно с этого момента начинается пересмотр основных положений современной науки о Земле и целого ряда прилегающих к ней частных естественнонаучных дисциплин.

    Прежде принято было считать, что все живое произошло просто путем постепенного усложнения инертной материи Земли. Однако Вернадский признает подобные мнения несостоятельными и на новом витке естествознания возвращается к теории Ж. Л. Бюффона, в соответствии с которой вся вселенная пронизана вечными и неуничтожимыми органическими частицами, а количество жизни на Земле постоянно. Из этих предпосылок следовало, что именно живое состояние материи является ее главным и основным состоянием. В заметках, которые были написаны в период с 1917-го по 1921 годы, и вышли через 60 лет в виде книги «Живое вещество», Вернадский так определяет это сове новое понятие:

«Я буду называть живым веществом совокупность организмов,

участвующих в геохимических процессах. Организмы, составляющие совокупность, будут являться элементами живого вещества. Мы будем при этом обращать внимание не на все свойства живого вещества, а только на те, которые связаны с его массой (весом), химическим составом и энергией. В таком употреблении «живое вещество» является новым понятием в науке. Я сознательно не пользуюсь новым термином, а употребляю старый, придавая ему не совсем обычное, строго определенное содержание».[1]

    По теории Вернадского, не только горные породы и ископаемые, но и атмосфера Земли в целом является результатом жизнедеятельности бактерий, растений и животных. Связь между геологическими структурами и органической жизнью, как правило, не доступна прямому наблюдению, не наглядна и завуалирована. Это связано с тем, что такого рода процессы характеризуются чрезвычайно длительными периодами времени. Тем не менее, такая связь существует, и при достаточной настойчивости исследователя всегда удается отыскать первопричину – чаще всего этот процесс в своем ядре содержит химическое воздействие одного или нескольких организмов на протяжении большого времени.

     Возможны три принципиально различных ответа на вопрос о происхождении жизни и, соответственно, о функциях живого вещества. 

    Первый в конечном счете сводится к постулату о вечности жизни и, следовательно, о ее космическом происхождении. Второй так или иначе основывается на предпосылке о сугубо земном происхождении жизни и, соответственно, всего многообразия видов живого, которое мы можем наблюдать на нынешнем этапе эволюции.

    Однако, и в том, и в другом случае, оба возможных варианта ответа на вопрос о происхождении жизни являются не более чем гипотезами. А поэтому, для того, чтобы приблизиться к истине, ученым было необходимо оставить эти слишком абстрактные и умозрительные ответы в стороне и основываться на бесспорных, непротиворечивых тезисах. Данные тезисы должны вытекать из многократно доказанных фактов, которые в силу этого обстоятельства уже не подлежат сомнению.

    В своем труде «Биосфера» В.И. Вернадский выдвигает шесть таких основополагающих обобщений.

1) В условиях Земли еще никогда не наблюдался факт зарождения живого из неживого.

Данный тезис ярко демонстрирует отличие эмпирического обобщения не только от гипотезы, но и от любого чисто теоретического постулата. В нем не утверждается, что зарождение живого от неживого в принципе невозможно, но утверждается только, что что в пределах наших наблюдений таких фактов нет.

2) В геологической истории нет эпох отсутствия жизни

3) Современное живое вещество генетически родственно всем прошлым организмом

4) В современную геологическую эпоху живое вещество так же влияет на химический состав земной коры, как и в прошлые эпохи

5) Существует постоянное количество атомов, захваченных в данный момент живым веществом

6) Энергия живого вещества есть преобразованная, аккумулированная энергия Солнца

   

  

1. ФУНКЦИИ ЖИВОГО ВЕЩЕСТВА.

     Два самых распространенных варианта ответа на вопрос о характере происхождения жизни распадаются на три разных решения этой проблемы.

1) Жизнь зародилась на Земле при космических стадиях ее истории в таких уникальных условиях, которые в позднейшие геологические эпохи уже больше не повторялись.

2) Жизнь извечна, то есть она существовала на Земле и в космические эпохи ее прошлого.

3) Жизнь, извечная во вселенной, явилась новой на Земле. Другими словами, в этой концепции утверждается, что зародыши жизни заносились на Землю извне постоянно. Но укрепились они на нашей планете только тогда, когда на Земле сложились благоприятные для этого условия.

   

    В. И. Вернадский и целый ряд его последователей, влиятельных современных ученых, принимают третий вариант, то есть гипотезу о космическом переносе латентных форм жизни, так как, согласно Вернадскому, «жизнь есть явление космическое, а не специально земное»[2]. Именно эта теория породила представление о едином живом веществе, обладающем внеземной природой. Важным моментом в этой теории оказывается привнесение на Землю живого вещества из глубин космоса. Но этот источник был привнесен не в молекулярном плане (то есть не в виде совокупности живых молекул), а в форме постоянно действующих во вселенной биологических полей. Функционирование этих полей таково, что живые молекулы формируются везде, где имеются для этого необходимые условия. В последнее время появились доказательства реального существования этого всепроникающего биологического поля.

    Целый ряд известных научных опытов и открытий время от времени подтверждают гипотезу об изначальности и вечности живого вещества.

    Некоторое время назад палеонтологи обнаружили структуры явного геологического облика из пород, возраст которых ориентировочно равен 3,8 миллиарда лет. Причем нет никаких оснований думать, что в данном случае обнаружен самый начальный этап жизни. Никто не может поручиться, что с развитием палеонтологических методов не найдутся еще более древние следы жизни. Родственным этому открытию является другое, уже из биогеохимической области: о постоянстве соотношения двух изотопов углерода в земной коре. Это открытие означает, что на протяжении всей геологической истории живое вещество контролирует земной цикл углерода, так как один из углеродов – биогенный.

    В другом опыте ученые взяли живые клетки крови и в виде раствора добавили к ним антитела. Как и ожидалось, в результате происходил процесс дегранулирования (деструктурации) живых клеток, и они погибали. Затем эти тела начинали разбавлять водой и вновь добавляли к клеткам крови. В результате клетки вновь распадались. Но сенсационность этого опыта заключалась в том, что предел, после которого антитела перестают действовать (так как их концентрация становится ничтожно малой) так и не был найден. Исследователи посредством огромного числа опытов довели растворение до невероятной концентрации, которая значительно превышает количество элементарных частиц во всей вселенной. Но даже и в такой концентрации сыворотки продолжали действовать.

   Это казалось тем более невероятным, что в растворе заведомо не могло существовать ни одной молекулы активного вещества, и тем не менее дегрануляция продолжалась. Перед учеными встал вопрос: каким образом переносится информация в данном случае, если уже отсутствуют даже следы материального носителя этой информации? В результате этого опыта было установлено, что биологическая информация может передаваться не только при помощи молекул, но и каким-то принципиально другим путем. Этот неучтенный агент является переносчиком биологического поля.

     Но, пожалуй, главное обстоятельство, свидетельствующее в пользу тезиса о вечности живого вещества и невыводимости его из вещества неживого, связано со следующими его функциями.     

    Живое вещество существует только в образе биосферы большого тела, отдельные части которого выполняют взаимоподдерживающие и взаимодополняющие функции, как бы оказывающие друг другу услуги по поддержанию жизни. Если есть организмы, накапливающие некоторые вещества, то логично предположить, что должны также существовать и организмы с противоположной биогеохимической функцией, для поддержания равновесия. Эти организмы второго вида разлагают данное вещество до простых минеральных составляющих, снова затем пускаемых в оборот.

    Далее, если есть окисляющие бактерии, значит, должны быть – и они всегда есть – восстанавливающие бактерии. Один или несколько организмов сколько-нибудь долго продержаться на Земле не смогут. Можно привести интересный и показательный пример, подтверждающий взаимодополняющие функции живого вещества. Когда создавались первые космические корабли для длительных полетов, то конструкторы этих кораблей первыми ощутили необходимость ввести системы, выполняющие самоподдержание жизни на борту: как бы «почки», «легкие», и т.п. для корабля. Тем самым они выполняли функции, аналогичные функциям живого вещества в природе.

    В большом космическом корабле по имени Земля если что и неизменно, то это функции жизни. И недаром Вернадский, назвав поначалу биосферу «механизмом», в дельнейшем отказался от этого слова, заменив его на более адекватное – организм. Вернадский считал константным количество атомов, захваченный в жизненный круговорот. Точнее, количество атомов считалось колеблющимся около какой-то средней величины. Именно на этом основании современные ученые, взявшие на вооружение гипотезу о вечности и космическом происхождении жизни, опровергают расхожие представления о том, что в невообразимо далекие времена жизнь была хилой и слабой, ютящейся разве что в каких-то отдельных оазисах.

     Далее, учеными были сделаны расчеты скорости захвата организмами пространства: применительно к бактериям она оказалась сравнима со скоростью звука в воздушной среде. Известно также, что они способны нарастить массу, равную по весу земному шару, в течение нескольких суток. И даже слон, наиболее медленно размножающийся из всех животных, способен сделать это за 1300 лет, то есть, с геологической точки зрения, практически мгновенно.

    Хрестоматийные и расхожие представления, почерпнутые из школьных учебников, основаны на мысли о «начале» и о постепенной эволюции жизни, о ее развитии от более простых и примитивных форм, по восходящей, ко все более и более сложным. Но в эволюции, когда ее представляют таким образом, упускаются некоторые существенные моменты, например: неизменность целого ряда организмов на протяжении всей истории биосферы. К таким упорно не желающим эволюционировать организмам относятся, так называемые прокариоты, или дробянки. В отличие от всего остального живого мира, в их клетках нет ядра.

    Несмотря на такую примитивность, а, может быть, именно благодаря ей, прокариоты оказываются настолько вездесущи, что «встроены» почти в каждую химическую реакцию, происходящую на поверхности, в так называемой коре выветривания, в недрах, в горячих источниках, а также в воде и вулканических выбросах. На каком-нибудь участке реакции помещается живое вещество, превращая тем самым геохимическую картину в биогеохимическую, порождая необратимость этих реакций и приводя их к какому-нибудь результату. А поскольку скорость деления этих прокариотов огромна, то и плоды их биогеохимической работы ошеломляющи. Например, это можно сказать о запасах руд Курской магнитной аномалии или Чиатурского марганцевого бассейна. Везде, где наблюдается повышенное содержание какого-либо химического элемента по сравнению со средним его содержанием в земной коре, то в качестве причины этого, как правило, нужно искать живое вещество. Чаще всего это прокариот или, как его по-другому называют, литотрофные бактерии.

    Открыл их выдающийся русский микробиолог С.Н. Виноградский. Он исследовал серные бактерии, которые имели аномальное количество серы в своих клетках. Оставался нерешенным вопрос, для чего этим существам такое количество серы. Виноградский предположил, что сера для бактерий – питательный субстрат, такой же, как белок для других организмов.

    Это предположение полностью противоречило всему опыту биологии. Считалось, что неорганические, минеральные вещества – это структурный, опорный либо сопутствующий компонент клеток, но никак не энергетический. Так были открыты литотрофы, или так называемые «камнееды», обладающие вторым основным способом питания – минеральным (хемосинтетическим) в отличие от фотосинтетического. Переводя минеральные соединения из одной формы в другую, они извлекают при этом энергию, и потому им не требуется ни солнечная энергия, как растениям, ни другое органическое  вещество, как животным.

    В результате дальнейших исследований оказалось, что число литотрофов непрерывно растет: то, что казалось редким капризом природы, превратилось в огромный отряд. Кроме того, выяснилось, что по своим морфологическим особенностям и по своей экологии они настолько не похожи на остальной живой мир, что образовали собой некое совершенно отдельное надцарство живой природы. Между ним и остальным (эвкариотическим) живым миром такая же бездонная пропасть без всяких переходов и промежуточных ступеней, как и между живой и неживой материей.

    И, наконец, в-третьих, прокариоты – весьма самостоятельные организмы. Их отряды способны выполнять все функции в биосфере. А значит, в принципе возможна биосфера с таким строением, которая состояла бы только из одних прокариотов. Вполне возможно, что такова она и была в прошлых, былых сферах. И тогда все динозавры и крокодилы, все мхи и лишайники, все рыбы и животные, все грибы и водоросли, травы и деревья  - все это только надстройка, цветы на «подкладочной», первой биосфере.

    Сами литотрофы и синезеленые водоросли, тоже относящиеся к надцарству прокариотов, - это бессмертное, неуничтожимое и неэволюционирующее вещество. На геохронологической шкале, где отряды и виды вымерших и ныне существующих организмов изображены в виде капель, более или менее вытянутых, то есть появляющихся и исчезающих, эти организмы представлены в виде сплошной ровной ленты, которая тянется из архейского периода вплоть до наших дней. Их точная штамповка без изменений в течение всей бездны времени существования биосферы – настоящая загадка для сторонников теории всеобщей эволюции.

   

«Прокариоты символизируют собой некий особый тип эволюции, где

организм нельзя рассматривать отдельно от его среды: ведь не меняясь

сами, они изменяют природную среду своей жизнедеятельностью. Возможно,

что такой же характер носит и эволюция самого человека; морфологически

он все тот же, а впереди себя катит все увеличивающийся вал цивилизации.

Лик Земли изменен им решительно и бесповоротно. Подобный тип эволюции

надо было бы назвать как-нибудь особенно: например, «необратимая неизменность». Существование «прокариотической биосферы» доказывает прежде всего…

ее вечность. Геология и палеонтология вкупе с другими дисциплинами,

особенно с приставкой «палео», - географией, климатологией и экологией 

на наших глазах подтверждает тезис о вечности и космичности жизни,

о всегдашней оживленности планеты.»[3]

    Что касается изощренных опытов по выращиванию «жизни в пробирке», то все они окончились ничем. И если раньше у ученых еще теплилась надежда смоделировать некие первоначальные условия, которые могли бы привести к возникновению простейших организмов, то после открытия материального носителя наследственности из-под них была выбита всякая почва. Между лабораторным органическим веществом и генетическими структурами, на основе которых строится все живое, - не заполняемая ничем пропасть.

   Таким образом, именно биогенез современная наука считает основным свойством живого и вместе с тем величайшей тайной природы, ее неразрешимой загадкой, неподвластной человеческому разуму. К другим версиям происхождения жизни автор концепции живого вещества Вернадский относился отрицательно, справедливо подчеркивая, что накопившийся в естествознании огромный фактический материал с несомненностью доказывает происхождение всех современных живых организмов путем биогенеза.

    Признавая биогенез, согласно научному наблюдению, за единственную форму зарождения живого, неизбежно приходится допустить, что начала жизни в том космосе, который мы наблюдаем, не было, поскольку не было начала у самого этого космоса. Жизнь вечна постольку, поскольку вечен космос, и передавалась она всегда биогенезом. То, что верно для десятков и сотен миллионов лет, протекших от архейской эры до наших дней, верно и для всего бесчисленного хода времени космических периодов истории Земли, а значит, справедливо и применительно ко всей вселенной.

    В результате наука приходит к выводу, что в безначальном космосе такими же вечными являются четыре его основных компонента: материя, энергия, эфир и жизнь.

    С самого начала своего возникновения земная биосфера представляла собой область земной коры, в которой энергия космических излучений трансформировалась в такие виды земной энергии, как электрическая, химическая, механическая и тепловая. Благодаря этому история биосферы резко отлична от истории других частей планеты, и ее значение в планетарном механизме совершенно исключительное. Она в такой же, если не в большей, степени есть создание Солнца, как и выявление процессов Земли.

    Автоматическое регулирование живого вещества биосферы, обусловленное единством порядка и хаоса, объясняет и происхождение жизни, поскольку существование хаоса и регулярного, циклического движения играет огромную роль в образовании разнообразных биологических структур. Ведь хаотическое поведение является типичным свойством многих систем (как природных, так и технических). Оно зафиксировано в периодически повторяющихся стимуляциях клеток сердца, в химических реакциях, при возникновении турбулентности в жидкостях и газах, в электрических цепях и других нелинейныхдинамических системах, оно проявляется в диссипативных структурах, как их назвал другой крупный ученый Илья Пригожин.

    Такие диссипативные структуры обладают следующими признаками, без которых невозможна самоорганизация системы: они открытые, нелинейные и необратимые. В процессе возникновения земной жизни основную роль сыграли самоорганизующиеся системы. Результат их специфического отбора на пути длительной эволюции и есть жизнь. Следовательно, природа «изобрела» не только принцип программного регулирования по разомкнутому циклу, но и принцип автоматического управления в замкнутом цикле с обратной связью в живых системах.

    Космические излучения, генерируемые ядром Галактики, нейтронными звездами, ближайшими звездными системами, Солнцем и планетами, пронизывают всю биосферу, проникают все в ней.

    В этом потоке самых разнообразных излучений основное место принадлежит солнечному излучению, которое обусловливает существенные черты функционирования механизма биосферы, космопланетарного по своему существу. В. И. Вернадский пишет об этом следующее:

«Солнцем в корне переработан и изменен лик Земли, пронизана и охвачена

биосфера. В значительной мере биосфера является проявлением его излучений;

она составляет планетный механизм, превращающий их в новые

разнообразные формы свободной живой энергии, которая в корне

меняет историю и судьбу нашей планеты»[4].

    Если инфракрасные и ультрафиолетовые лучи Солнца косвенно влияют на химические процессы биосферы, то химическая энергия в ее действенной форме получается из энергии солнечных лучей при помощи живого вещества – совокупности живых организмов, которые выступают в качестве преобразователей энергии. Это значит, что земная жизнь отнюдь не является чем-то случайным, она входит в космопланетарный механизм биосферы.

    Данные, которыми располагает современная наука, свидетельствуют, что живое вещество только в том случае прогрессивно развивается, если оно своей жизнедеятельностью увеличивает упорядоченность среды своего обитания. Это основной и чрезвычайно важный признак живого вещества.

    Для разумной формы живого вещества эти законы имеют особое, решающее значение. Земная разумная форма жизни – человечество – выполняет их, обеспечивая два вектора своего бессмертия: биологическое продолжение рода (общее свойство всего живого вещества) и духовно-культурное, в конечном счете космическое бессмертие (творческий вклад в создание ноосферы).

    Именно творческая активность как чисто человеческое свойство разумной жизни для каждого человеческого существа является основой и гарантией его индивидуального, личностного развития и продолжительной активной жизни. В целом это выражается в прогрессе человеческих популяций, всего человечества, в развитии его психофизиологического, биологического, глобального здоровья.

    Понять сущность жизни, живого планетарного вещества, его разумной формы – человека, рассматривая только изолированное пространство Земли, видимо, не удастся. Земная жизнь неотрывна от космических процессов, включена во всеединство мирового целого (универсума). Пути прогресса человечества, так же как сопровождающие его жизнь противоречия, напряженность, катастрофы, могут быть постигнуты и подвергнуты регулированию только на основе широкого понимания антропокосмического характера социально-природной эволюции человека и его перспектив.

    Таким образом, выдвигая гипотезу о космических масштабах распространения живого вещества во вселенной, ученые исходят из того, что принципы бесконечности, неисчерпаемости материи справедливы в отношении включенности жизни (в том числе и ее разумной формы) во всеединство универсума.

2. МНОГООБРАЗИЕ ВИДОВ НА ЗЕМЛЕ.

    Живое вещество, если рассматривать его в целом, представляет собой некую единую и гомогенную субстанцию жизни вообще, это жизнь как таковая. Однако в окружающей нас природе живое вещество представляет собой сложное и дифференцированное образование, оно состоит из самых разнообразных видов, которые в свою очередь дробятся на многочисленные подвиды, состоящие из отдельных живых существ.

    При этом можно констатировать не только целесообразность строения каждого отдельного существа, но и тот порядок, который существует во всей живой природе в целом. Единство и многообразие видов живого не исключают друг друга, - наоборот, как показывают различные естественнонаучные исследования, друг друга предполагают.

    Многообразие органического мира не ограничивается числом различных видов. Виды, в свою очередь, состоят из молодых и взрослых индивидуумов, многие – из самцов и самок, у некоторых общественных насекомых имеются матки, трутни, «рабочие» и «солдаты», и, наконец,  у большинства видов есть разновидности, географические расы и экологические формы. Для них характерны определенные строения и образ жизни.

    И все же, при всем своем разнообразии органический мир – не что-то разрозненное и хаотичное. Как бы ни отличались друг от друга отдельные виды животных, растений и микроорганизмов, всем им присуще определенное биохимическое единство, выражающееся в общности химического состава (белков, углеводов, жиров, ферментных и гармональных систем и т.д.) и близости типов реакций, лежащих в основе процессов ассимиляции и диссимиляции.

    Вместе с тем имеются и специфические особенности и отличия между видами уже на уровне самого биохимизма. Этими особенностями животное отличается от растения, бактерии от вирусов, а порой даже одна разновидность от другой.

    Существует также и определенное единство строения животных, растений и микроорганизмов. Главным образом это единство прослеживается на клеточном уровне, поскольку клетка является основой структуры всех организмов. Ученые так же выявили и описали некоторые общие законы, по которым живут и развиваются все без исключения виды животных и растений. Таков, например, закон единства живого тела и среды его обитания, закон естественного отбора, закон взаимосвязи индивидуального и исторического развития организмов и т.д.

    С другой же стороны, поскольку органический мир дискретен, то есть состоит из отдельно существующих частей, то каждая такая часть в определенном смысле уже является целым. Обладая известной автономией, части входят в состав более крупных структурных единиц, образуя разные ступени организации живого вещества – от клетки до органического мира в целом.

    Но и автономность организмов (особей, индивидуумов) тоже относительна, они существуют только как составные части популяций. Популяции представляют собой совокупность свободно скрещивающихся особей одного вида, занимающих определенные территории – биотопы. Совокупность таких территориальных популяций составляет вид, распространенный на определенной части земной поверхности, к условиям которой он приспособился.

    Почти каждый вид состоит из различающихся по строению, но в то же время кровно родственных групп индивидуумов; у многих животных личинки не только отличаются по внешнему виду, строению и физиологии, но и живут в других местах или питаются другой пищей и имеют многие другие особенности. Также отличаются самцы и самки, а у многих видов насекомых, паразитических червей и других известны пищевые расы, живущие за счет разных кормов или по-разному размножающиеся, например, озимые и яровые расы рыб. Вид, таким образом, представляет собой не просто собрание одинаковых индивидуумов, а сложную систему группировок, соподчиненных, тесно связанных друг с другом и тем самым поддерживающих существование друг друга.

   

«Объединение разнородных индивидуумов в популяции, а различных

популяций в виды создает много преимуществ в борьбе за существование

и обеспечивает более активные отношения вида со средой, поскольку

здесь возникают более активные сложные формы групповой жизнедеятельности. Морфологическое разнообразие внутри вида, существование географических

рас (подвидов) и биологических форм расширяют использование видом

среды и имеют важное значение для успеха его борьбы с другими видами»[5].

    Наконец, популяции разных видов образуют сообщества (биоценозы), занимающие отдельные участки земной поверхности. В каждый биоценоз, где бы он ни находился, входят хлорофиллоносные растения, питающиеся ими растительноядные животные, хищники и паразиты, живущие за счет этих животных, и, наконец, микроорганизмы, минерализующие трупы животных и растений. Такие сообщества представляют собой целые системы, где существование одних видов без других невозможно, так как их обмен веществ приспособлен друг к другу и одни виды используют продукты метаболизма других видов или их самих в качестве пищи. В биоценозах на основе взаимодействия составляющих их видов возникают новые формы отношений живых существ с неживой природой.

   Биоценозы отдельных биотопов и природных зон на основе общего круговорота веществ объединяются в единую систему – органический мир. Все части единого органического мира отличаются не только степенью самостоятельности и автономности, но и тем, что по мере их развития, на каждой ступени возникают качественно новые, вес более сложные проявления жизни, при этом углубляется и расширяется взаимодействие живого с неорганической средой.

    Единство многообразной и сложно организованной живой природы выражается во взаимосвязях и взаимодействии качественно различных видов животных, растений и микроорганизмов. Эти взаимоотношения и служат основой возникновения и развития сообществ, состоящих из разных видов.

    Такова, в целом, структура органического мира, покоящаяся на основном свойстве живой материи – обмене веществ и энергии со средой.

    Отношения животных, растений и микроорганизмов, развивающиеся на базе биологического круговорота веществ, имеют столь же длительную историю, как и эволюция этих групп. Они регулируются возникшими в ходе эволюции взаимными приспособлениями. Именно этим объясняется известный порядок и слаженность в биоценозах. Но эти отношения и противоречивы. Отдельные виды животных, растений, или микроорганизмов связаны друг с другом пищевыми, пространственными и другими отношениями. Во многих случаях они не могут существовать друг без друга, но в то же время каждый вид обладает определенной самостоятельностью.

    Автономность вида как части целостного органического мира заключается в возможности множества путей его приспособления к окружающей его среде. Какой из этих способов приспособления реально осуществится  - это будет зависеть от конкретного сочетания обстоятельств. Кроме того, виды возникли в разных местах и в разное время, и, следовательно, имеют неодинаковую историю и способность существовать в тех или иных условиях. В биоцеенозах виды различного происхождения, в разное время вошедшие в состав данного сообщества, обычно составляют значительную долю. Поэтому неодинакова и степень их взаимной приспособленности, а сами приспособления относительны.

   

ЗАКЛЮЧЕНИЕ.

    Вопрос о функциях живого вещества и о многообразии видов тесно связан с проблемой происхождения жизни.

    Современная наука утверждает, что о жизни на нашей планете бессмысленно говорить в терминах генезиса, ведь это предполагало бы существование некоего «начала», то есть такой точки эволюции, до которой жизни на Земле еще не существовало бы. В этом случае оставалось бы только постулировать гипотезу о постепенном зарождении живого из неживой материи. Современная же наука отрицает такую возможность и выдвигает гипотезу о внеземном происхождении жизни и о ее изначальном характере.

    Живое вещество – это явление космического масштаба, а не «специально земное», по выражению В. И. Вернадского. В концепции Вернадского утверждается, что зародыши жизни заносились на Землю извне постоянно, но укрепились они на нашей планете только тогда, когда на Земле сложились благоприятные для этого условия.

    Можно выделить ряд основных функций, свойств и законов, по которым развивается живое вещество.

    Его главная функция - самоподдержание жизни. О ней свидетельствует множество научных опытов и экспериментов, в результате которых ученые пришли к выводу о неизменности целого ряда организмов на протяжении всей истории биосферы. К ним относятся прежде всего так называемые литотрофные бактерии, обнаруженные в результате опытов С. Н. Виноградского. Эти бактерии представляют собой в буквальном смысле бессмертное, неуничтожимое и неэволюционирующее вещество.

    Кроме того, отдельные части живого вещества способны как бы оказывать друг другу услуги по поддержанию жизни. Если есть организмы, накапливающие некоторые вещества, то логично предположить, что в природе должны также существовать и организмы с противоположной биогеохимической функцией, для поддержания равновесия. Эти организмы второго вида разлагают данное вещество до простых минеральных составляющих, снова затем пускаемых в оборот. Так осуществляется замкнутый цикл круговорота живого вещества. Это возможно благодаря взаимодополняющим и взаимоподдерживающим функциям отдельных частей живого вещества.

    Основное свойство жизни, таким образом, - биогенез, то есть способность порождать самоорганизующиеся и саморазвивающиеся системы. Общее свойство живого вещества - биологическое продолжение рода, а его частный случай -  духовно-культурное, в конечном счете космическое бессмертие (творческий вклад человека в создание ноосферы). Жизнь в целом – это результат специфического отбора на пути длительной эволюции.

    Другой аспект понятия живого вещества – отношения организма с окружающей его средой. Организм (и – шире – материя вообще) существует только за счет обмена веществами и энергией со средой своего обитания. Это означает, что живое вещество прогрессивно развивается только в том случае, если своей жизнедеятельностью оно увеличивает упорядоченность среды своего обитания.

    На нашей планете оно существует в четырех основных формах: в виде материи, энергии, эфира и жизни.

    Кроме того, наука выделяет несколько общих законов развития и функционирования любого организма: закон единства живого тела и среды его обитания, закон естественного отбора, закон взаимосвязи индивидуального и исторического развития организмов.

   

СПИСОК ЛИТЕРАТУРЫ.

1) В. И. Вернадский. Возраст Земли // Владимир Иванович Вернадский: Материалы к биографии. Т. 15.  – М.; 1988; сс. 318 - 326

2) Концепции современного естествознания. Учебное пособие под ред. С.И. Самыгина. – Ростов на Дону; 1999.

3) Г. П. Аксенов. Живое вещество: между вечностью и временем. // Владимир Иванович Вернадский: Материалы к биографии. Т. 15.  – М.; 1988; сс. 202 - 221

4) С. Г. Семенова. Активно-эволюционная мысль Вернадского // Владимир Иванович Вернадский: Материалы к биографии. Т. 15.  – М.; 1988; сс. 221 - 249

[1] Г. П. Аксенов. Живое вещество: между вечностью и временем. // Владимир Иванович Вернадский: Материалы к биографии. Т. 15.  – М., 1988, с. 211

[2] Концепции современного естествознания. Учебное пособие под ред. С.И. Самыгина. – Ростов на Дону; 1999. с. 532

[3] Г. П. Аксенов. Живое вещество: между вечностью и временем. // Владимир Иванович Вернадский: Материалы к биографии. Т. 15. – М., 1988, с. 215

[4] Концепции современного естествознания. Учебное пособие под ред. С.И. Самыгина. – Ростов на Дону; 1999. с. 534

[5] Концепции современного естествознания. Учебное пособие под ред. С.И. Самыгина. – Ростов на Дону; 1999. с. 382

Теги: Многообразие видов на Земле. Функции живого вещества планеты  Реферат  КСЕ

dodiplom.ru

Многообразие живого мира — реферат

 Надотдел Споровые растения. Superdivisio Sporophyta

 Споровые растения характеризуются  следующими признаками:

1) размножение осуществляется с  помощью спор;

2) гаметофит свободноживущий;

3) ксилема состоит из трахеид  – удлиненных клеток с толстой  оболочкой, которая несет разнообразную  скульптуру и поры;

4) эволюция споровых связана  с выходом растений на сушу  и формированием ствола, листьев  и корня. 

 К споровым растениям относится пять отделов: моховидные, риниофиты, плауновидные, хвощевидные и папоротниковидные.

Надотдел Семенные растения. Superdivisio Spermatophyta

Семенные растения характеризуются  следующими признаками:

1) размножение осуществляется при  помощи семян. Общий признак голосеменных и покрытосеменных растений – наличие семени, но у голосеменных отсутствует завязь, поэтому семя считают голым;

2) мегаспоры созревают на спорофите  и не покидают его; 

3) гаметофит не существует как  самостоятельное растение;

4) впервые появляется сосудистая система.

К семенным растениям отнесены два  отдела: пинофиты, или голосеменные, и магнолиофиты, или покрытосеменные. Семенные растения появились в позднем  девоне, в современной флоре они  резко преобладают над споровыми.

 Царство Грибы. Regnum Fungi

 Царство грибов сочетает  свойства как растений, так и  животных. Общие признаки грибов  и растений: неподвижность, верхушечный  рост и размножение с помощью  спор. Вместе с тем у грибов, как и у животных, отсутствует  фотосинтез, в продуктах обмена присутствует мочевина, а в плотных оболочках клеток имеется хитин, поэтому оболочки клеток могут сохраняться в ископаемом состоянии. Известно около 100 тыс. видов грибов. По типу питания грибы являются гетеротрофами: сапротрофами, паразитами, редко хищниками.

 Царство Животные. Regnum Zoa (Animalia)

 Царство животных включает  одноклеточные и многоклеточные  организмы, для которых характерны  следующие признаки: 1)питание осуществляется  готовыми органическими продуктами (гетеротрофы). Для животных в  отличие от грибов характерен фаготрофный тип питания, то есть захват (заглатывание) пищевого материала; 2)клетки не имеют целлюлозной оболочки и различных пигментов, свойственных растениям; 3)на протяжении всей жизни или на отдельных возрастных стадиях организмы подвижные.

 Размножение животных происходит  двумя способами: половым и  бесполым. Половой процесс сопровождается  возникновением половых клеток, слияние которых дает начало  новому организму. Бесполое размножение  представляет собой деление или  почкование. В результате образуются колонии либо единый организм распадается на несколько себе подобных особей.

 Подцарство Простейшие или Одноклеточные. Subregnum Protozoa

 Это подцарство включает  животных, которые хотя и состоят  из одной клетки, но характеризуются значительным разнообразием как по размерам, так и по строению клетки. Простейшие многочисленны и распространены повсюду, общее число современных и ископаемых видов приближается к 50 тыс. По способу питания простейшие относятся к фитофагам и зоофагам: они питаются микроорганизмами растительного и животного происхождения.

 Подцарство Многоклеточные. Subregnum Metazoa

 К подцарству многоклеточных  относятся животные, тело которых  состоит из большого числа  клеток, слагающих ткани и органы  и выполняющих различные функции. По уровню строения Metazoa подразделяются на два надраздела: Parazoa - примитивные (?ненастоящие) и Eumetazoa - настоящие многоклеточные. У первого из названных надразделов отсутствует нервная система, а у второго имеется.

 Надраздел Примитивные многоклеточные. Superdivisio Parazoa

 Примитивные многоклеточные  не имеют стабильной дифференциации  клеток как по морфологии и  функциям, так и по положению  в теле животного. Поэтому у  них отсутствуют ткани и органы, а в эмбриогенезе не формируются зародышевые листки. Это водные животные, ведущие прикрепленный образ жизни. Они являются фильтраторами и получают пищу вместе с током воды. Им свойственно пристеночное и внутриклеточное пищеварение, что сближает этот надраздел с подцарством простейших. К надразделу Parazoa относятся три типа: Spongiata, Placozoa и Archaeocyathi, третий из названных типов является вымершим.

 Надраздел Настоящие многоклеточные. Superdivisio Eumetazoa

 Настоящие многоклеточные обладают  стабильной дифференциацией клеток, у них имеются ткани и органы, в эмбриогенезе закладываются два или три зародышевых листка. Для этих животных характерно внеклеточное «резервуарное» пищеварение, происходящее в единой пищеварительной полости, либо в серии полостей, образующих пищеварительную систему. При таком типе пищеварения размер поглощаемых пищевых частиц не зависит от размеров клетки, что резко повышает кормовую базу, а отсюда и все метаболические и физиологические процессы. Тем не менее, сохраняется внутриклеточное и пристеночное пищеварение.

 Надраздел Eumetazoa в соответствии  с типом симметрии и числом  зародышевых листков рассматривается  в составе двух разделов. К  первому относятся животные, обладающие  радиальной симметрией и имеющие  в эмбриогенезе два зародышевых  листка. Ко второму разделу принадлежат организмы, для которых характерны двусторонняя симметрия и закладка в эмбриогенезе трех зародышевых листков. Двухслойные находятся на более низкой ступени, чем трехслойные, поэтому нередко говорится о низших и высших настоящих многоклеточных.

 Раздел Радиально-симметричные  или Двухслойные. Divisio Radiata или Diblastica

 В подавляющем большинстве  это радиально-симметричные многоклеточные  животные, у которых закладывается  два зародышевых листка (эктодерма  + энтодерма). Пищеварительная система с единственным ротовым отверстием. К этому разделу принадлежат два типа: Стрекающие и Гребневики, отличающиеся присутствием стрекательных клеток у первого типа и отсутствием таковых у второго. До недавнего времени названные животные рассматривались в ранге двух подтипов, входящих в единый тип кишечнополостных.

 Раздел Двусторонне-симметричные или Трехслойные. Divisio Bilateria или Triblastica

 К двусторонне-симметричным  относятся настоящие многоклеточные  животные, обладающие тремя зародышевыми  листками (эктодерма + энтодерма + мезодерма) и пищеварительной системой, имеющей, как правило, два отверстия: ротовое и анальное. Эктодерма дает начало покровным образованиям, включая формирование наружного скелета, органов чувств и нервной системы; энтодерма - прежде всего пищеварительной системе, а за счет мезодермы возникают внутренний скелет, кровеносная и остальные системы.

 В разделе билатерий выделяют  два подраздела: первичноротые (Protostomia) и вторичноротые (Deuterostomia), отличающиеся  между собой типом дробления яйца, способом закладки мезодермы, а также различным положением ротового и анального отверстий на эмбриональной и постэмбриональной стадии развития. Достоверные билатерии известны с вендского периода.

 В последние годы возрастает  число сторонников иной концепции.  Признавая, что развитие трехслойных  животных шло по двум основным  эволюционным направлениям, некоторые  исследователи считают основополагающим  признаком не положение ротового  отверстия, а тип дробления яйца. Животные, для которых характерны спиральное дробление яйца и телобластический способ закладки мезодермы, объединяются в Spiraloblastica (=Spiralia), а те, у которых радиальное дробление яйца и чаще всего энтероцельный способ закладки мезодермы, – в Radialoblastica (=Radialia). Объем первичноротых и вторичноротых в основном совпадает с вновь предлагаемыми эволюционными стволами.

 Необходимо отметить, что большинство  систем органического мира построены  по принципу монофилии и дивергенции.  В последнее время увеличивается число сторонников параллельного развития различных ветвей (парафилия, но не полифилия). Более того, утверждается идея о радиальном многоцарственном развитии органического мира, насчитывающего 22 царства. О радиальном развитии свидетельствует и схема эволюции живых существ, уточненная с помощью геномных исследований.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Заключение

 

Для изучения процесса развития необходимо знать характер изменения структур во времени, их динамические параметры. Надо также уметь вскрывать закономерности взаимосвязи между структурой и проявляемой системой функцией. До недавнего времени естествознание и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета коллективных эффектов и исследования процессов образования устойчивых структур и самоорганизации. В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией. Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем – энергетических, экологических, многих других, требующих привлечения огромных ресурсов.

 Идея развития неразрывно  связана с концепцией иерархии  структурных уровней природы, выступающих как ступени, этапы развития природных объектов. Это положение едино для систем различной природы. Согласно схеме иерархического ступенчатого строения материи, отдельные объекты определенного уровня материи, вступая в специфические взаимодействия, служат исходными образованиями в развитии принципиально новых типов объектов с иными свойствами и формами взаимодействия. При этом основным исходным положением является наличие преемственности. Если нет преемственности, то мы будем наблюдать не процесс развития, а лишь хаотические смены круговоротов. Новое всегда рождается в недрах старого.

 Развитие неживой и живой  природы рассматривается как  необратимое изменение структуры  объектов природы. Важная проблема  в теории развития – выявление объективных критериев прогресса, которые определяют переход системы от одного уровня развития к другому, более высокому. Таксономия имеет большое значение в развитии синергетической теории эволюционного развития живого.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Список использованной литературы

 

1.   Аверьянов А.Н. Системное познание мира. М.: Политиздат, 1985.

2.   Андреев И.Д. Методологические  основы познания социальных явлений.  М., 1977.

3.   Бауэр Э. Теоретическая  биология. – М.; Л., 1935.

4.   Гурвич А. Теория биологического поля. – М., 1944.

5.   Иорданский Н.Н. Макроэволюция:  Системная теория. – М., 1994.

6.   Кремянский В.И. Структурные  уровни организации живой материи.  – М., 1969.

turboreferat.ru

Многообразие живых организмов и биологическая систематика - Биология

ВВЕДЕНИЕ. МНОГООБРАЗИЕ ЖИВОЙ ПРИРОДЫ

Интерес к познанию мира живых существ возник на самых ранних стадиях рождения человечества. И понятно, что умение различать полезные или вредные жизненные формы помогало древним людям выживать в меняющихся условиях окружающей среды. Так возникло представление о разнообразии живых организмов. Вместе с ним появились и первые попытки их классификации, подразделения на опасные и полезные, болезнетворные, представляющие пищевую ценность, пригодные для изготовления одежды, предметов обихода, удовлетворения эстетических потребностей. К середине ХХ в. учеными описано около 2 млн видов живых существ. В настоящее время нет единого мнения о количестве видов, обитающих на Земле. Некоторые систематики увеличивают эту цифру в два раза. Ориентировочно называются и размеры царств живой природы: архебактерий - 40 тыс., грибов - 100 тыс., растений - 350 тыс., животных 1,5-4,5 млн видов. Следует отметить, что ежегодно открываются сотни новых видов - как существующих ныне, так и существовавших сотни миллионов лет назад. И, скорее всего, сегодня известное множество видов составляет незначительную часть того генерального множества видов, которое возможно в природе, что говорит о великом разнообразии живого. Жизнь на Земле представлена ядерными и доядерными, одно- и многоклеточными существами. Многоклеточные, в свою очередь, представлены грибами, растениями и животными. Все это многообразие организмов изучает систематика (от греч. systematikos - упорядоченный, относящийся к системе), раздел биологии, задачей которого является описание и обозначение всех существующих и вымерших организмов, а также их классификация по таксонам - иерархически соподчиненным группам (надцарство, царство, тип, класс, род, семейство, вид). Иными словами, систематика упорядочивает, укладывает множество видов в определенную систему, опираясь на знания морфологических и филогенетических, биохимических и молекулярных признаков вида. Следует заметить, что на современном этапе развития систематика призвана решать многие актуальные вопросы биологической науки, в том числе - проблему прогнозирования, предвидения развития жизни на Земле в будущем. Одна из первых попыток систематизировать объекты природы принадлежит Аристотелю (384-322 гг. до н. э.). В своих биологических трактатах он приводит результаты непосредственных наблюдений, т. е. исследования внешнего строения и развития животных, а также результаты экспериментов. Аристотель считал, что природа состоит из целой цепи форм - от наиболее простых до наиболее сложно организованных. Нет четких границ между соседними звеньями этой цепи. Одни формы жизни связаны с другими без больших скачков. Аристотель создал лестницу существ, или лестницу природы, в которой отдельные объекты живой и неживой природы находились на своей ступени. Лестница начиналась минералами, а заканчивалась человеком. Иными словами - животные, почва, растения, вода, воздух, вещества у Аристотеля не имели четких границ и объединялись в единую систему. В эпоху Средневековья и особенно в XVII-XVIII вв. это представление было одним из ведущих в философии и естествознании. В тот период идею Аристотеля развили еще дальше, включая в систему природы существа чисто духовные, к которым относили ангелов. На этой лестнице человек, состоящий из телесной и духовной субстанции, занимает как бы исключительное место, и поэтому, являясь двойственным в этом смысле существом, может называться Homo duplex - человек двойственный. Отдельные звенья цепи, находящиеся по соседству, не связаны между собой генетически, а являются лишь подобием Божьим, которым наделила природу сверхъестественная сила. Основной систематической единицей является вид. Понятие же вида с незапамятных времен связывали с размножением. Аристотель говорил: «Партнеры в размножении относятся к одному роду... В естественном ходе вещей самец и самка одного рода воспроизводят самца или самку того же рода». Аристотель еще не различает понятий вида и рода. Наибольшее значение для развития зоологической и ботанической систематики имела научная деятельность Джона Рея. Дело не только в его заслугах в области классификации растений и животных, но также в его подходе к вопросу определения вида. Он утверждал, что, несмотря на значительные различия между женскими и мужскими особями, эти обе формы относятся к одному виду, т. к. производят плодовитое потомство, похожее на своих родителей. Иными словами, Д. Рея можно считать основоположником понятия «вид». Вслед за Д. Реем появились работы замечательного французского натуралиста Бюффона. Его «Естественная история» состояла из 44 томов. В первом томе Бюффон старался придать систематическим исследованиям более глубокий биологический смысл, считая, что систематика должна стремиться к раскрытию общих законов природы. В этом томе ученый привел свое известное определение вида, которое считается наиболее оригинальным научным достижением, хотя основоположником самого понятия был уже Рей. Согласно этому определению, организмами, относящимися к одному и тому же виду, считаются только те особи, которые, скрещиваясь между собой, производят плодовитое потомство. Иными словами, Бюффон принимал за систематическую единицу лишь отдельные индивидуумы. Первым среди классификаторов живого мира был Карл Линней, которого справедливо считают подлинным создателем современной систематики. Линней (1707-1778) уже в ранней молодости проявил настоящую страсть к классификации, которая у него сочеталась с глубокой любовью к природе и необыкновенной наблюдательностью. Будучи уже автором нескольких научных трудов, он в 1735 г. опубликовал произведение «Система природы», которое принесло ему мировую славу. Линней, согласно своим воззрениям, за систематическую единицу принимал вид, постоянный и неизменный. Ему принадлежит знаменитая фраза, что «видов существует столько, сколько их создало изначально бесконечное существо» (т. е. Бог). По мнению этого ученого, Бог дал творческое начало только высшим систематическим категориям, а именно родам, а, возможно, и отрядам. Именно Карл Линней считается создателем научной системы животных и растений. Он предложил называть каждый вид двумя словами на латинском языке, из которых первое было названием рода, а второе - видовое (бинарная номенклатура). Так, например, волк - Canis lupus, шакал - Canis aureus, воробей домовый - Passer domesticus. После названия вида часто указывается фамилия автора, установившего этот вид. Фамилия Линнея часто обозначается одной латинской буквой L. Предложенная бинарная номенклатура была принята всеми учеными, ею пользуются и в настоящее время. Виды объединяются в род, близкие роды - в семейство, семейства - в отряд, отряды - в класс, классы - в тип. Тип - большая систематическая категория. Каждый тип характеризуется определенным планом строения, общим для всех групп (подтипов, классов и т. д.). Термин «тип» был предложен в 1825 г. А. Бленвилем, назвавшим так 4 «ветви» животных (позвоночные, мягкотелые, членистые, лучистые). В систематике растений типу соответствует отдел. Первые системы органического мира, следовательно, строились на основании какого-либо одного признака, с учетом, что виды неизменны и их столько, сколько сотворил Бог. Например, тот же Линней относил к червям (т. е. к сравнительно низкоорганизованным беспозвоночным животным) тропических подземных земноводных (т. е. настоящих позвоночных животных) только потому, что они лишены ног. Такие системы принято называть формальными, или искусственными, т. е. не отражающими сущности различий между группами организмов. В первой половине XIX в. стали складываться представления об изменении видов в процессе развития живой природы, завершившиеся появлением эволюционной теории Ч. Дарвина. К концу XIX в. был накоплен большой материал по внутривидовой географической изменчивости и введено понятие подвида. Классический период в развитии систематики завершила работа А. П. Семенова-Тян-Шанского (1910), принявшего за основу линнеон - совокупность «больших» родственных групп и давшего определения подвидовым категориям (подвид, морфа и т. д.). С эволюционной точки зрения, система живого должна отражать историческое (эволюционное) развитие царств и входящих в его состав групп. Другими словами, система должна строиться на основе выяснения степени родства между разными группами организмов после их всестороннего изучения. Победа эволюционной теории Ч. Дарвина содействовала успешной разработке естественных систем органического мира. До настоящего времени современная систематика стремится к созданию эволюционной, или филогенетической системы организмов, разрабатываемой на всех таксономических уровнях, от видового и подвидового до высших таксонов-классов, отделов (типов) и царств.

2. РАЗВИТИЕ СИСТЕМАТИЧЕСКИХ ПРЕДСТАВЛЕНИЙ. ЦАРСТВА ЖИВОЙ ПРИРОДЫ. ЕСТЕСТВЕННАЯ СИСТЕМА КЛАССИФИКАЦИИ ЖИВЫХ ОРГАНИЗМОВ. АКТУАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ СИСТЕМАТИКИ

До середины ХХ в. органический мир делили только на два царства - растений и животных. Только с развитием электронной микроскопии и молекулярной биологии в середине ХХ в. началась фундаментальная перестройка всей системы высших таксонов. Принципиально важным было установление факта резкого отличия бактерий, цианобактерий (сине-зеленых водорослей) и недавно открытых архебактерий от всех остальных живых существ. У них нет истинного ядра, а генетический материал в виде кольцевой цепи ДНК лежит свободно в нуклеоплазме и не образует настоящих хромосом. Они также отличаются отсутствием митотического веретена (деление немитотическое), микротрубочек, митохондрий, центриолей. Эти организмы называются доядерными, или прокариотами. Все остальные организмы (одно- и многоклеточные) имеют настоящее ядро, окруженное мембраной. Генетический материал ядра заключен в хромосомах, содержащих ДНК, РНК и белки, обычно имеются различные формы митоза, а также упорядоченно расположенные микротрубочки, митохондрии и пластиды. Такие организмы называются ядерными, или эукариотами. Различия между прокариотами и эукариотами так существенны, что в системе организмов их выделяют в надцарства. Согласно современным взглядам, прокариоты эволюционно, наряду с предками эукариот - уркариотами, относятся к наиболее древним организмам. Надцарство прокариот состоит из двух царств - бактерий (включая цианобактерий) и архебактерий. Сложнее обстоит дело с гораздо более разнообразным надцарством эукариот. Оно состоит из трех царств - животных, грибов и растений. Царство животных включает в себя подцарства простейших и многоклеточных животных. Объем подцарства простейших вызывает большие разногласия, многие зоологи включают в него также часть ядросодержащих водорослей и низшие грибы. Простейшие - одноклеточные эукариотные организмы, имеющие микроскопические размеры. Простейшие не обладают единым планом строения и в целом характеризуются большими различиями, а не единством. По разным данным их количество варьирует от 40 до 70 тыс. видов, фауна простейших изучена недостаточно. Международный комитет по систематике простейших выделил (1980) семь типов этих организмов, и эта классификация является общепринятой. Подцарство многоклеточных животных включает в себя организмы разнопланового строения - пластинчатые, губки, кишечнополостные, черви, хордовые и др. Однако для всех них характерно разделение функций между различными группами клеток. Растения - царство автотрофных организмов, для которых характерны способность к фотосинтезу и наличие плотных клеточных оболочек, состоящих, как правило, из целлюлозы; запасным веществом служит крахмал. Царство грибов включает в себя организмы, называемые низшими эукариотами. Своеобразие грибов определяется сочетанием признаков как растений (неподвижность, неограниченный верхушечный рост, способность к синтезу витаминов, наличие клеточных стенок), так и животных (гетеротрофный тип питания, наличие хитина в клеточных стенках, запасных углеводов в форме гликогена, образование мочевины, структура цитохромов). Большое сходство в строении клеток эукариот можно объяснить тем, что они произошли от общего предка, который имел все главные особенности ядерных организмов. Кто же был этим предком: автотрофный организм, т. е. растение, или гетеротрофный организм, т. е. животное? Мнения ученых расходятся. Одни считают, что первыми ядерными организмами были растения, от которых произошли грибы и животные. Другие полагают, что первыми ядерными организмами были животные, произошедшие от доядерных гетеротрофов и давшие потом начало грибам и растениям. Необходимо отметить, что сторонники обеих гипотез признают непосредственное родство растительного и животного царств. Это означает, что вначале различия между растениями и животными были невелики, а в ходе дальнейшей эволюции все больше возрастали. Причина постепенного расхождения в процессе эволюции животных и растений кроется в главном различии между ними, а именно в характере обмена веществ: первые являются гетеротрофами, вторые - автотрофами. Неорганические соединения, которыми питаются растения, рассеяны в непосредственной близости от них (в воде, почве, атмосфере). Поэтому растения могут питаться, ведя относительно неподвижный образ жизни. Животные же могут синтезировать органические вещества только из органических веществ, содержащихся в телах других организмов, что обуславливает их подвижность. К другим важным особенностям животных относят активный метаболизм и в связи с этим ограниченный рост тела, а также развитие в процессе эволюции различных функциональных систем органов: мышечной, пищеварительной, дыхательной, нервной систем и органов чувств. Клетки животных, в отличие от растений, не имеют твердой (целлюлозной) оболочки. Однако границы между тремя царствами эукариот служат предметом разногласий, и лишь будущие исследования могут внести ясность в этот вопрос. Поэтому не создана и общепринятая система организмов, поэтому и число типов (отделов) у разных авторов неодинаково. Например, Р. Циттекер в 1969 г. предложил выделить и четвертое царство эукариот - царство протистов, куда отнес простейших, эвгленовых, золотистые водоросли, пирофитовые водоросли, а также гифохитридиомицетов и плазмодиофоровых, относимых обычно к грибам. Примерами современной общепринятой системы организмов могут служить системы А. Л. Тахтаджяна (1973), Л. Маргелис (1981). На основе данных, приведенных в этих работах, система живых организмов представляется в следующем виде.

А. Надцарство Доядерные организмы, или Прокариоты: I. Царство Бактерии. 1. Подцарство Бактерии. II. Царство Архебактерии.

Б. Надцарство Ядерные организмы, или Эукариоты: I. Царство Животные. 1. Подцарство Простейшие. 2. Подцарство Многоклеточные. II. Царство Грибы. III. Царство Растения: 1. Подцарство Багрянки. 2. Подцарство Настоящие водоросли. 3. Подцарство Растения.

Кроме эволюционного, в современной систематике существуют и другие направления. Численная (нумерическая) систематика прибегает к численной обработке данных, придавая каждому признаку, используемому для внесения в систему, определенное количественное значение. Классификация строится на основании степени различий между отдельными организмами в зависимости от высчитанного коэффициента. Кладистическая систематика определяет ранг таксонов в зависимости от последовательности обособления отдельных ветвей (кладонов) на филогенетическом древе, не придавая значения диапазону эволюционных изменений в какой-либо группе. Так, млекопитающие у кладистов - не самостоятельный класс, а таксон, соподчиненный пресмыкающимся. Однако основным наиболее распространенным методом систематики остается сравнительно-морфологический. Современная систематика определяет и место человека в системе организмов, что имеет глубокий философский смысл для понимания взаимоотношений человека и живой природы. Это уже не Homo duplex - человек двойственный, каким называли человека в XVII-XVIII вв., а Homo sapiens - человек разумный. Словом, в системе живой природы человек имеет следующий адрес.

Надцарство Эукариоты. Царство Животные. Подцарство Многоклеточные. Тип Хордовые. Подтип Позвоночные. Надкласс Наземные четвероногие. Класс Млекопитающие. Подкласс Настоящие звери (Живородящие). Инфракласс Плацентарные. Отряд Приматы (Обезьяны). Подотряд Узконосые обезьяны. Семейство Люди (Гоминиды). Род Человек (Homo). Вид Человек разумный (Homo sapiens).

В конце ХХ в., на стыке систематики и биохимии нуклеиновых кислот и белков, зародилась новая область знаний о живой природе - геносистематика. Термин был предложен в 1974 г. отечественным биохимиком А. С. Антоновым. Открылась качественно новая перспектива создания естественных систем живого мира. Оказалось, что различия в числе, частоте встречаемости и порядке расположения нуклеидов в ДНК разных организмов носят видоспецифический характер. В конце 1970 г. в истории геносистематики начался новый этап: в число «молекулярных документов эволюции» были включены молекулы рибосомальной РНК и белки - самые древние информационные молекулы. С помощью специального метода можно определить состав и расположение нуклеотидных последовательностей в молекуле РНК, составить банк данных, провести компьютерную обработку и вывести особый коэффициент сходства, свидетельствующий о степени родства таксонов. Однако посредством изучения структуры ДНК и РНК пока не удалось восстановить последовательность предков-потомков в историческом развитии вида. Огромное влияние на систематику оказывают серологические исследования. Одним из первых, кто применил их для выяснения систематического положения таксонов, стал Nuttal и его сотрудники. Например, некоторые из зоологов считали, что существует близкое родство между мышами, белками, бобрами с одной стороны и зайцами и кроликами - с другой. Другие же систематики причисляли кроликов и зайцев к отдельному отряду, не относя их к грызунам. Результаты серологических анализов подтвердили правильность последней теории, и в настоящее время различают два отдельных отряда - грызунов и зайцеобразных.

3. ЗАКЛЮЧЕНИЕ. ЗНАЧЕНИЕ СИСТЕМАТИКИ КАК НАУКИ, ИЗУЧАЮЩЕЙ ВИДОВОЕ РАЗНООБРАЗИЕ ЖИВОГО

В заключение следует отметить, что систематика живой природы отнюдь не сводится к систематизации. Описание новых видов, разработка латинских названий для видов и других таксонов, распределение видов по таксонам, деление множества видов на подмножества - это лишь внешняя, наиболее приметная функция систематики. У большинства людей этим исчерпывается представление о систематике вообще. Вряд ли стоит рассматривать эту науку в качестве каталога живой природы. Классифицируя таксоны, систематик как бы объясняет их, рассматривает связи между ними, характеризует тот или иной вид. Например, вид «виноградная улитка» Helix pomalia (Linne) получает в системе следующее объяснение: «Виноградная улитка есть легочный брюхоногий моллюск», и к нему относятся все имеющиеся сведения о моллюсках (тип организации, физиология, биохимия, происхождение, история расселения, развитие). Если бы из всех моллюсков нам была известна только одна виноградная улитка, то такое объяснение было бы невозможным. Для анализа отдельного изолированного факта пришлось бы обратиться к другим животным и вести сравнение с ними, что привело бы к неправильным выводам о месте этого животного в системе. Таким образом, через таксономическое положение объекта природы раскрывается содержание единичного факта - вида - в совокупности наших знаний об органическом мире как множестве видов. Не может быть и такого, чтобы все известные виды живой природы были бы навсегда расставлены каждый на своем месте, т. к. исследования на организменном уровне (энергетика клетки, ДНК, биологические мембраны и т. д.) далеко не закончены и будут влиять на положение вида в системе. Актуальной остается возможность построения такой системы живого, которая включала бы неизвестные науке таксоны. В такой системе перестройки были бы следствием открытия новых признаков уже известных видов. Анализируя проблему систематического прогнозирования, многие систематики вспоминают идеи Д. И. Менделеева, создателя периодической системы элементов в химии, и Н. И. Вавилова, открывшего гомологические ряды наследственной изменчивости. Неустойчивое положение в системе некоторых таксонов является важной проблемой систематики. Для выяснения спорных вопросов проводятся таксономические ревизии. В ходе ревизий система приводится к современному уровню знаний об органическом мире как множестве видов. Поэтому «система является, следовательно, не только фундаментом ботаники, но и венцом всей науки о растениях» (Тахтаджян, 1965). «...Систематика не есть средство биологии, но и сама цель ее» (Козо-Полянский, 1922). Сведения о систематических взаимоотношениях видов обязательны также в генетических и биохимических исследованиях. Представления об экологической системе, или биоценозе (В. Н. Сукачев) непосредственно затрагивают систему организмов и доказывают связь всего живого с неживой природой на Земле. Современная биологическая классификация органического мира непротиворечиво отражает, с одной стороны, факт разнообразия живых форм, а с другой - единство всего живого.

Ключевые слова страницы: как, скачать, бесплатно, без, регистрации, смс, реферат, диплом, курсовая, сочинение, ЕГЭ, ГИА, ГДЗ

referatzone.com


Смотрите также