Реферат: Математика Древнего Египта. Реферат математика древнего египта


Реферат Математика в Древнем Египте

скачать

Реферат на тему:

План:

Введение

Данная статья — часть обзора История математики.

Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.

Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов — известно[1], что греческие математики учились у египтян[2].

Нам ничего не известно о развитии математических знаний в Египте как в более древние, так и в более поздние времена. После воцарения Птолемеев начинается чрезвычайно плодотворный синтез египетской и греческой культур.

1. Источники

Часть папируса Ахмеса.Задачи с 49 по 55.

Основные сохранившиеся источники относятся к периоду Среднего царства, времени расцвета древнеегипетской культуры:

От Нового царства до нас дошли несколько фрагментов вычислительного характера.

Авторы всех этих текстов нам неизвестны. Дошедшие до нас экземпляры — это в основном копии, переписанные в период гиксосов. Носители научных знаний тогда именовались писцами и фактически были государственными или храмовыми чиновниками.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным [3].

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и гениальных догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или, по крайней мере, начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни и возводить в степень, решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.

2. Нумерация (запись чисел)

Иероглифическая запись числа 35736

Древнеегипетская нумерация, то есть запись чисел, была похожа на римскую: поначалу были отдельные значки для 1, 10, 100, … 10 000 000, сочетавшиеся аддитивно (складываясь). Египтяне писали справа налево, и младшие разряды числа записывались первыми, так что в конечном счёте порядок цифр соответствовал нашему. В иератическом письме уже есть отдельные обозначения для цифр 1-9 и сокращённые значки для разных десятков, сотен и тысяч.

Любое число в Древнем Египте можно было записать двумя способами: словами и цифрами. Например, чтобы написать число 30, можно было использовать обычные иероглифы:

или то же самое написать цифрами (три символа десятки):

Плита с гробницы принцессы Неферетиабет (2590—2565 до н. э., Гиза). Лувр

Умножение египтяне производили с помощью сочетания удвоений и сложений. Деление заключалось в подборе делителя, то есть как действие, обратное умножению.

Особые значки обозначали дроби вида ~\frac{1}{n} и \frac{2}{3}. Однако общего понятия дроби \frac{m}{n} у них не было, и все неканонические дроби представлялись как сумма аликвотных дробей. Типовые разложения были сведены в громоздкие таблицы.

Примеры изображения часто встречающихся дробей 1 / 2 1 / 3 2 / 3 1 / 4 1 / 5
Aa13
rZ2
D22

Пример записи дробей из Папируса Ринда[4]

5 + 1⁄2 + 1⁄7 + 1⁄14 (= 5 5⁄7)

3. Арифметика

3.1. Знаки сложения и вычитания

Чтобы показать знаки сложения или вычитания использовался иероглиф

D54
 или
D55

Если направление ног у этого иероглифа совпадало с направлением письма, тогда он означал «сложение», в других случаях он означал «вычитание».[5]

3.2. Сложение

Если при сложении получается число большее десяти, тогда десяток записывается повышающим иероглифом.

Например: 2343 + 1671

+

Собираем все однотипные иероглифы вместе и получаем:

Преобразуем:

Окончательный результат выглядит вот так:

3.3. Умножение

Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать.

Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное переумножение на второй множитель (см. пример).

Этот метод можно и сегодня встретить в очень отдаленных регионах.

3.4. Разложение

Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.

Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:

1 x 2 = 22 x 2 = 44 x 2 = 88 x 2 = 1616 x 2 = 32

Пример разложения числа 25:

Таким образом «25» — это сумма трех слагаемых: 16, 8 и 1.

Пример: умножим «13» на «238»:

1 х 238 = 238
4 х 238 = 952
8 х 238 = 1904
13 х 238 = 3094

Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 3094.

3.5. Уравнения

Иероглифическая запись уравнения ~x\left(\frac{2}{3}+\frac{1}{2}+\frac{1}{7}+1\right)=37

Пример задачи из папируса Ахмеса:

Найти число, если известно, что от прибавления к нему 2/3 его и вычитания из результата его трети получается 10.

4. Геометрия

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника, трапеции и сферы, могли высчитывать объемы параллелепипеда, цилиндра и пирамид. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как ~S = \frac{{a+c}}{2} \cdot \frac {b+d}{2}; эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику.

Египтяне предполагали, что площадь круга S диаметром d равна площади квадрата, сторона которого составляет 8/9 диаметра: ~ S =\left(d - \frac {d} {9} \right)^2 = \left( \frac {8} {9} d \right)^2.

Это правило соответствует значению \pi = 4\cdot\left( \frac {8} {9} \right)^2 (≈ 3,1605, погрешность менее 1 %)[6].

Ещё одна ошибка содержится в Акмимском папирусе [7]: автор считает, что если радиус круга A есть среднее арифметическое радиусов двух других кругов B и C, то и площадь круга A есть среднее арифметическое площадей кругов B и C.

Вычисление объёма усечённой пирамиды: пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по оригинальной, но точной формуле: ~V = (a^2+ab+b^2)\cdot\frac {h} {3}.

4.1. Египетский треугольник

Египетский треугольник

Египетским треугольником называется прямоугольный треугольник с соотношением сторон 3:4:5.

4.2. Объём усечённого конуса

Реконструкция водяных часов по чертежам из Оксиринха

Древний свиток папируса, найденный в Оксиринхе, свидетельствует, что египтяне могли вычислять объем усеченного конуса. Эти знания ими использовались для сооружения водяных часов. Так, например, известно, что при Аменхотепе III были построены водяные часы в Карнаке.

Примечания

  1. Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. Указ. соч., стр. 125: «Фалес путешествовал в Египет и привёз геометрию в Элладу» (из комментария Прокла к Евклиду).
  2. «Согласно большинству мнений, геометрия была впервые открыта в Египте, и возникла при измерении площадей» // Proclus Diadochus. In primum Euclidis Elementorum commentarii. — Leipzig, 1873. — С. 64.
  3. История математики под редакцией А. П. Юшкевича в трёх томах, М., Наука, 1970, том 1, стр. 21—33.
  4. Gardiner Alan H. Egyptian grammar: being an introduction to the study of hieroglyphs 3rd ed., rev. London: 1957, p. 197.
  5. Cajori Florian A History of Mathematical Notations. — Dover Publications, 1993. — P. pp. 229–230. — ISBN 0486677664
  6. История математики под редакцией А. П. Юшкевича в трёх томах, М., Наука, 1970, том 1, стр.30-32.
  7. Глейзер Г. И. История математики в школе - ilib.mccme.ru/djvu/istoria/school.htm. — М.: Просвещение, 1964. — С. 279.

Литература

wreferat.baza-referat.ru

Математика Древнего Египта

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА Бурдун Вячеслав г. Луганск ССФМШ №1 6-а класс 11 лет

Математика Древнего Египта Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии. Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности - Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь. Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус - его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, "Кожаный свиток египетской математики", с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление - образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д. Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции - многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n - натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m:n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи. Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением "куча". В задачах про "кучу", решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях. В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3:4:5, то получался прямоугольный треугольник. И это - единственный прямоугольный треугольник, который знали в Древнем Египте. Важным достижением геометрической науки египтян было очень хорошее приближение числа π, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение π»3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение π=3. Так что в этом отношении египтяне намного опередили другие народы. Среди пространственных тел самым "египетским" можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики. Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты. Как могло появиться первое приближение числа π По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А.Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d. В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов А со стороной (1/6)d: S»d2-4(1/6*d)2=d2(1-1/9)=(8/9)d2 Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению: S»(1-1/9)d2-8(1/9*d)2=(1-1/9)d2-1/9*(8/9)d2=(1-1/9)d2-1/9(1-1/9)d2=(1-1/9)2d2

www.coolreferat.com

Реферат: "Математика Древнего Египта"

Выдержка из работы

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА

Бурдун Вячеслав

г. Луганск

ССФМШ № 1 6-а класс

11 лет

Математика Древнего Египта

Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии.

Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности — Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь.

Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус — его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, «Кожаный свиток египетской математики», с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление — образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д.

Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции — многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n — натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m: n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи.

Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением «куча». В задачах про «кучу», решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях.

В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3: 4:5, то получался прямоугольный треугольник. И это — единственный прямоугольный треугольник, который знали в Древнем Египте.

Важным достижением геометрической науки египтян было очень хорошее приближение числа ?, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение ?3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение ?=3. Так что в этом отношении египтяне намного опередили другие народы.

Среди пространственных тел самым «египетским» можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики.

Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты.

Как могло появиться первое приближение числа ?

По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А. Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d.

В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов, А со стороной (1/6)d:

Sd2-4(1/6*d)2=d2(1−1/9)=(8/9)d2

Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению:

S(1−1/9)d2-8(1/9*d)2=(1−1/9)d2-1/9*(8/9)d2=(1−1/9)d2-1/9(1−1/9)d2=(1−1/9)2d2

Показать Свернуть

r.bookap.info

Реферат - Математика Древнего Египта

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА

Бурдун Вячеслав

г. Луганск

ССФМШ №1 6-а класс

11 лет

Математика Древнего Египта

Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии.

Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности — Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь.

Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус — его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, «Кожаный свиток египетской математики», с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление — образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д.

Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции — многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n — натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m:n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи.

Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением «куча». В задачах про «кучу», решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях.

В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3:4:5, то получался прямоугольный треугольник. И это — единственный прямоугольный треугольник, который знали в Древнем Египте.

Важным достижением геометрической науки египтян было очень хорошее приближение числа π, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение π» 3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение π=3. Так что в этом отношении египтяне намного опередили другие народы.

Среди пространственных тел самым «египетским» можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики.

Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты.

Как могло появиться первое приближение числа π

По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А.Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d.

В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов А со стороной (1/6)d:

S » d2 -4(1/6*d)2 =d2 (1-1/9)=(8/9)d2

Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению:

S » (1-1/9)d2 -8(1/9*d)2 =(1-1/9)d2 -1/9*(8/9)d2 =(1-1/9)d2 -1/9(1-1/9)d2 =(1-1/9)2 d2

www.ronl.ru

Сочинение - Математика Древнего Египта

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА

Бурдун Вячеслав

г. Луганск

ССФМШ №1 6-а класс

11 лет

Математика Древнего Египта

Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии.

Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности — Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь.

Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус — его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, «Кожаный свиток египетской математики», с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление — образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д.

Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции — многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n — натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m:n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи.

Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением «куча». В задачах про «кучу», решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях.

В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3:4:5, то получался прямоугольный треугольник. И это — единственный прямоугольный треугольник, который знали в Древнем Египте.

Важным достижением геометрической науки египтян было очень хорошее приближение числа π, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение π» 3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение π=3. Так что в этом отношении египтяне намного опередили другие народы.

Среди пространственных тел самым «египетским» можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики.

Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты.

Как могло появиться первое приближение числа π

По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А.Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d.

В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов А со стороной (1/6)d:

S » d2 -4(1/6*d)2 =d2 (1-1/9)=(8/9)d2

Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению:

S » (1-1/9)d2 -8(1/9*d)2 =(1-1/9)d2 -1/9*(8/9)d2 =(1-1/9)d2 -1/9(1-1/9)d2 =(1-1/9)2 d2

www.ronl.ru

Реферат: "Математика Древнего Египта"

Выдержка из работы

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА

Бурдун Вячеслав

г. Луганск

ССФМШ № 1 6-а класс

11 лет

Математика Древнего Египта

Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии.

Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности — Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь.

Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус — его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, «Кожаный свиток египетской математики», с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление — образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д.

Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции — многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n — натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m: n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи.

Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением «куча». В задачах про «кучу», решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях.

В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3: 4:5, то получался прямоугольный треугольник. И это — единственный прямоугольный треугольник, который знали в Древнем Египте.

Важным достижением геометрической науки египтян было очень хорошее приближение числа ?, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение ?3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение ?=3. Так что в этом отношении египтяне намного опередили другие народы.

Среди пространственных тел самым «египетским» можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики.

Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты.

Как могло появиться первое приближение числа ?

По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А. Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d.

В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов, А со стороной (1/6)d:

Sd2-4(1/6*d)2=d2(1−1/9)=(8/9)d2

Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению:

S(1−1/9)d2-8(1/9*d)2=(1−1/9)d2-1/9*(8/9)d2=(1−1/9)d2-1/9(1−1/9)d2=(1−1/9)2d2

Показать Свернуть

referat.bookap.info

Реферат : Математика Древнего Египта

МАТЕМАТИКА ДРЕВНЕГО ЕГИПТА

Бурдун Вячеслав

г. Луганск

ССФМШ №1 6-а класс

11 лет

Математика Древнего Египта

Мы начнем наше исследование гораздо раньше указанных дат в описании проекта. Ведь успехи античных математиков (в том числе и Фалеса) не могли возникнуть на пустом месте. Народы Древнего востока на протяжении многих веков сделали немало открытий в арифметике, геометрии и астрономии.

Самые ранние математические тексты, известные в наши дни, оставили две великие цивилизации древности - Египет и Месопотамия. Именно там появились первые математические задачи, решения которых требовала повседневная жизнь.

Уровень древнеегипетской математики был довольно высок. Источников, по которым можно судить об уровне математических знаний древних египтян, совсем немного. Во-первых, это папирус Райнда, названный так по имени своего первого владельца. Он был найден в 1858 г., расшифрован и издан в 1870 г. Рукопись представляла собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Во-вторых, так называемый Московский папирус - его в декабре 1888 г. приобрёл в Луксоре русский Египтолог Владимир Семёнович Голенищев. Сейчас папирус принадлежит Государственному музею изобразительных искусств имени А. С. Пушкина. Этот свиток длиной 5,44 м и шириной 8 см включает 25 задач. И наконец, "Кожаный свиток египетской математики", с большим трудом расправлённый в 1927 г. и во многом проливший свет на арифметические знания египтян. Ныне он хранится в Британском музее. Подобные папирусы, по-видимому, служили своего рода учебниками. В папирусах есть задачи на вычисление - образцы выполнения арифметических операций, задачи на раздел имущества, на нахождение объёма амбара или корзины, площади поля и т. д.

Все правила счёта древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции - многократного удвоения или раздвоения чисел. Выглядели такие расчёты довольно громоздко. Для дробей были специальные обозначения. Египтяне использовали дроби вида 1/n, где n - натуральное число. Такие дроби называются аликвотными. Иногда вместо деления m:n производили умножение m*(1/n). Надо сказать, что действия с дробями составляли особенность египетской арифметики, в которой самые простые вычисления порой превращались в сложные задачи.

Сравнительно небольшой круг задач в египетских папирусах сводится к решению простейших уравнений с одним неизвестным. При решении подобных задач для неизвестного использовали специальный иероглиф со значением "куча". В задачах про "кучу", решаемых единым методом, можно усмотреть зачатки алгебры как науки об уравнениях.

В египетских папирусах встречаются также задачи на арифметическую и геометрическую прогрессии, что ещё раз подчёркивает не только практический, но и теоретический характер древней математики. Поразительно, но при довольно примитивной и громоздкой арифметике египтяне смогли добиться значительных успехов в геометрии. Они умели точно находить площадь поля прямоугольной, треугольной и трапециевидной формы. Известно, что в середине І тысячелетия до н. э. для построения прямого угла египтяне использовали верёвку, разделённую узлами на 12 равных частей. Концы верёвки связывали и затем натягивали её на 3 колышка. Если стороны относились как 3:4:5, то получался прямоугольный треугольник. И это - единственный прямоугольный треугольник, который знали в Древнем Египте.

Важным достижением геометрической науки египтян было очень хорошее приближение числа π, которое получается из формулы для площади круга диаметра d. Этому правилу из 50-ой задачи папируса Райанда соответствует значение π3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно. Заметим, что на всём Древнем Востоке при вычислениях использовалось значение π=3. Так что в этом отношении египтяне намного опередили другие народы.

Среди пространственных тел самым "египетским" можно считать пирамиду, ведь именно такую форму имеют знаменитые усыпальницы фараонов. Так вот, оказывается, кроме объёма куба, параллелепипеда, призмы и цилиндра египтяне умели вычислять объём усечённой пирамиды, в основаниях которой лежат квадраты со сторонами a и b, а высота h. Для этого они применяли специальную формулу. Эта формула считается высшим достижением древнеегипетской математики.

Математика в Древнем Египте представляла собой совокупность знаний, между которыми ещё не существовало чётких границ. Это были правила для решения конкретных задач, имевших практическое значение. И лишь постепенно, очень и очень медленно, задачи начали обобщаться и приобретать более абстрактные черты.

Как могло появиться первое приближение числа π

По поводу формулы площади круга нам кажется весьма правдоподобной гипотеза автора многочисленных книг по истории математика А.Е. Раик: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами (1/6)d и (1/9)d.

В наших обозначениях вычисления будут выглядеть так. В первом приближении площади круга S равна разности между площадью квадрата со стороной d и суммарной площадью 4-ёх малых квадратов А со стороной (1/6)d:

Sd2-4(1/6*d)2=d2(1-1/9)=(8/9)d2

Далее из полученной площади нужно вычесть площадь 8-ми квадратов В со стороной (1/9)d, и тогда площадь круга будет приближённо равна следующему выражению:

S(1-1/9)d2-8(1/9*d)2=(1-1/9)d2-1/9*(8/9)d2=(1-1/9)d2-1/9(1-1/9)d2=(1-1/9)2d2

topref.ru


Смотрите также