Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

История создания и развития вычислительной техники. Реферат история возникновения вычислительной техники


История создания и развития вычислительной техники — Мегаобучалка

 

 

Выполнила : Федоренкова Софья Олеговна

Группа № 358

 

 

Химки 2015

 

Оглавление

Введение. 3

Поколения ЭВМ:Первое поколение. 4

Второе и третье поколения. 6

Четвёртое и пятое поколения. 7

Заключение. 11

Список литературы.. 12

Приложения. 13

 

 

ВВЕДЕНИЕ

Еще во времена древнейших культур человеку приходилось решать задачи, связанные с торговыми расчетами, с исчислением времени, с определением площади земельных участков и т. д. Рост объемов этих расчетов приводил даже к тому, что из одной страны в другую приглашались специально обученные люди, хорошо владевшие техникой арифметического счета. Поэтому рано или поздно должны были появиться устройства, облегчающие выполнение повседневных расчетов. Так, в Древней Греции и в Древнем Риме были созданы приспособления для счета, называемые абак. Абак называют также римскими счетами. Эти счеты представляли собой костяную, каменную или бронзовую доску с углублениями – полосами. В углублениях находились костяшки, и счет осуществлялся передвижением костяшек.

В странах Древнего Востока существовали китайские счеты. На каждой нити или проволоке в этих счетах имелось по пять и по две костяшки. Счет осуществлялся единицами и пятерками. В России для арифметических вычислений применялись русские счеты, появившиеся в 16 веке, но кое – где счеты можно встретить и сегодня.

Однако ни абак, ни счеты, ни логарифмическая линейка не означают механизации процесса вычислений. В 17 веке выдающимся французским ученым Блезом Паскалем было изобретено принципиально новое счетное устройство – арифметическая машина.

 

 

ИСТОРИЯ СОЗДАНИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

В 1833 г. английский ученый Чарльз Бэббидж(приложение 3), занимавшийся составлением таблиц для навигации, разработал проект «аналитической машины». По его замыслу, эта машина должна была стать гигантским арифмометром с программным управлением. В машине Бэббиджа предусмотрены были также арифметические и запоминающие устройства. Его машина стала прообразом будущих компьютеров. Но в ней использовались далеко не совершенные узлы, например, для запоминания разрядов десятичного числа в ней применялись зубчатые колеса. Осуществить свой проект Бэбиджу не удалось из за недостаточного развития техники, и «аналитическая машина» на время была забыта.

Лишь спустя 100 лет машина Бэббиджа привлекла внимание инженеров. В конце 30 – х годов 20 века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. К. Уцзе создал машину Z3, полностью управляемую с помощью программы.

В 1944 г. американец Говард Айкен на одном из предприятий фирмы IBM построил мощную по тем временам машину «Марк – 1». В этой машине для представления чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле.

ПОКОЛЕНИЯ ЭВМ[1]

Историю развития ЭВМ удобно описывать, пользуясь представлением о поколениях вычислительных машин. Каждое поколение ЭВМ характеризуется конструктивными особенностями и возможностями.

ПЕРВОЕ ПОКОЛЕНИЕ

Резкий скачок в развитии вычислительной техники произошел в 40 – х годах, после Второй мировой войны, и связан он был с появлением качественно новых электронных устройств электронно – вакуумных ламп(, работали значительно быстрее, чем схемы на электромеханическом реле, а релейные машины быстро вытеснены более производительными и надежными электронными вычислительными машинами (ЭВМ).

Стали доступны задачи, которые раньше просто не ставились: расчеты инженерных сооружений, вычисления двежения планет, баллистические расчеты и т.д.

Первая ЭВМ(приложение 1) создавалась в 1943 – 1946 гг. в США и называлась она ЭНИАК. Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле, причем ежемесячно выходило из строя около 2 тысяч ламп. ЦУ машины ЭНИАК, а также у других первых ЭВМ, был серьезный недостаток – исполняемая программа хранилась не в памяти машины, а набиралась сложным образом с помощью внешних перемычек.

В 1945 г. известный математик и физик – теоретик фон Нейман сформулировал общие принципы работы универсальных вычислительных устройств. Согласно фон Нейману вычислительная машина должна была управляться программой с последовательным выполнением команд, а сама программа – храниться в памяти машины. Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г.

В 1951 году в СССР[2] была создана МЭСМ, эти работы проводились в Киеве в Институте электродинамики под руководством крупнейшего конструктора вычислительной техники С. А. Лебедева.

ЭВМ постоянно совершенствовались, благодаря чему к середине 50 – х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. Однако при этом электронная лампа оставалась самым надежным элементом ЭВМ. Использование ламп стало тормозить дальнейший прогресс вычислительной техники.

Впоследствии на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ. Вычислительные машины этого этапа принято называть ЭВМ первого поколения

Действительно, ЭВМ первого поколения размещались в больших машинных залах, потребляли много электроэнергии и требовали охлаждения с помощью мощных вентиляторов. Программы для этих ЭВМ нужно было составлять в машинных кодах, и этим могли заниматься только специалисты, знающие в деталях устройство ЭВМ.

 

ВТОРОЕ ПОКОЛЕНИЕ

Разработчики ЭВМ всегда следовали за прогрессом в электронной технике. Когда в середине 50 – х годов на смену электронным лампам пришли полупроводниковые приборы, начался перевод ЭВМ на полупроводники.

Полупроводниковые приборы (транзисторы, диоды) были, во – первых, значительно компактнее своих ламповых предшественников. Во – вторых они обладали значительно большим сроком службы. В – третьих, потребление энергии у ЭВМ на полупроводниках было существенно ниже. С внедрением цифровых элементов на полупроводниковых приборах началось создание ЭВМ второго поколения.

Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, произошло естественное разделение вычислительных машин на большие, средние и малые.

В СССР были разработаны и широко использовались серии малых ЭВМ «Раздан», «Наири». Уникальной по своей архитектуре была машина «Мир», разработанная в 1965 г. в Институте кибернетики Академии Наук УССР. Она предназначалась для инженерных расчетов, которые выполнял на ЭВМ сам пользователь без помощи оператора.

К средним ЭВМ относились отечественные машины серий «Урал», «М – 20» и «Минск». Но рекордной среди отечественных машин этого поколения и одной из лучших в мире была БЭСМ – 6 («большая электронно – счетная машина», 6 – я модель), которая была создана коллективом академика С. А. Лебедева. Производительность БЭСМ – 6 была на два три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн. Операций в секунду. За рубежом наиболее распространенными машинами второго поколения были «Эллиот» (Англия), «Сименс» (ФРГ), «Стретч» (США).

ТРЕТЬЕ ПОКОЛЕНИЕ

Очередная смена поколений ЭВМ произошла в конце 60 – х годов при замене полупроводниковых приборов в устройствах ЭВМ на интегральные схемы. Интегральная схема[3]– это небольшая пластинка кристалла кремния, на которой размещаются сотни и тысячи элементов: диодов, транзисторов, конденсаторов, резисторов и т. д.

Кроме того, составлять программы для ЭВМ стало по силам простым пользователям, а не только специалистам – электронщикам.

В третьем поколении появились крупные серии ЭВМ, различающиеся своей производительностью и назначением. Это семейство больших и средних машин IBM360/370, разработанных в США. В Советском Союзе и в странах СЭВ были созданы аналогические серии машин: ЕС ЭВМ (Единая Система ЭВМ, машины большие и средние), СМ ЭВМ (Система Малых ЭВМ) и «Электроника» (система микро – ЭВМ).

ЧЕТВЁРТОЕ ПОКОЛЕНИЕ

В процессе совершенствования микросхем увеличивалась их надежность и плотность размещенных в них элементов. Это привело к появлению больших интегральных схем (БИС), в которых на один квадратный сантиметр приходилось несколько десятков тысяч элементов. На основе БИС были разработаны ЭВМ следующего – четвертого поколения.

Благодаря БИС(приложение 2) на одном крошечном кристалле кремния стало возможным разместить такую большую электронную схему, как процессор ЭВМ. Однокристальные процессоры впоследствии стали называться микропроцессорами. Первый микропроцессор был создан компанией Intel(США) в 1971 г. Это был 4 – разрядный микропроцессор Intel 4004, который содержал 2250 транзисторов и выполнял 60 операций в секунду.

Микропроцессоры положили начало мини – ЭВМ, а затем и персональным компьютерам, то есть ЭВМ, ориентированным на одного пользователя. Началась эпоха персональных компьютеров (ПК), продолжающаяся и по сей день. Однако четвертое поколение ЭВМ – это не только поколение ПК. Кроме персональных компьютеров, существуют и другие, значительно более мощные компьютерные системы.

Влияние персональных компьютеров на представление людей о вычислительной технике оказалось настолько большим, сто постепенно из обихода исчез термин «ЭВМ», а его место прочно заняло слово «компьютер».

ПЯТОЕ ПОКОЛЕНИЕ

Характерной чертой компьютеров пятого поколения должно быть использование искусственного интеллекта и естественных языков общения. Предполагается, что вычислительные машины пятого поколения будут легко управляемы. Пользователь сможет голосом подавать машине команде.

В настоящее время информатика и ее практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Ее технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Теперь уже очевидно, что XXI век будет веком максимального использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле и т. д. Последние десятилетия XX века характерны возрастанием интереса к истории развития информатики, в первую очередь к истории появления первых цифровых вычислительных машин и их создателям. В большинстве развитых стран созданы музеи, сохраняющие образцы первых машин, проводятся конференции и симпозиумы, выпускаются книги о приоритетных достижениях в этой области.

Появление ПК было подготовлено всей предшествующей историей развития ЭВМ. В начале вычислительные машины занимали огромные залы, потребляли много энергии и создавали много шума. Затем ЭВМ стали поменьше и начали работать эффективнее, но по-прежнему требовали для себя отдельных помещений. Наиболее мощные ЭВМ размещались в отдельных комплексах, которые назывались вычислительными центрами (ВЦ). В те не очень далекие времена (70 – е годы) мало кто представлял себе компактную ЭВМ, которая может уместиться на рабочем столе. О такой машине инженеры и ученые могли только мечтать, а обычным людям трудно было бы объяснить, зачем вообще такая вычислительная машина нужна.

Первой ласточкой стал компьютер KENBAK-1, сконструированный Джоном Бланкейнбейкером в 1971 г. Внешне он напоминал скорее автомобильный радиоприемник с индикаторными лампочками и переключателями, чем привычный нашему глазу персональный компьютер.

 

производители заинтересовались персональными компьютерами в 1974 г., когда американская фирма MITS на основе микропроцессора Intel 8080 разработала компьютер Altair. Этот персональный компьютер был значительно удобнее своих предшественников и обладал более широкими возможностями.

Значительно более совершенная модель персонального компьютера была разработана в 1976 г. двумя молодыми американцами Стивом Возняком

и Стивом Джобсом. Свой компьютер они назвали Apple и быстро развернули его производство и продажу. Благодаря невысокой цене (примерно 500 долларов) в первый же год ими было продано около 100 компьютеров.. В следующем году они выпустили модель Apple II, которая имела материнскую плату, дисплей, клавиатуру и внешне напоминала собой телевизор. Количество заказчиков на ПК стало исчисляться сотнями и тысячами.

Персональные компьютеры быстро совершенствовались. В 1976 г. для них была разработана операционная система СР/М. В 1978 г. был сконструирован гибкий магнитны диск диаметром 5.25 дюйма (1 дюйм=2,45 см), предназначенный для хранения информации. Усилиями фирмы MOTOROLA в 1979 г. был создан микропроцессор motorola 68000, который превосходил своих конкурентов по скорости, производительности и возможностям работы с графическими программами. В 1980 г. в персональных компьютерах появился жесткий магнитный диск, правда, он вмещал в себя всего лишь 5 Мбайт данных.

Первые Пк были 8 - разрядными и больше походили на дорогую игрушку, чем на серьезную ЭВМ. Так продолжалось до тех пор, пока в отрасли индивидуальных компьютеров не появился компьютерный гигант – фирма IBM, которая специализировалась на изготовлении больших ЭВМ. В 1982 г. фирма IBM выпустила очень удачную модель – 16 – разрядный компьютер. Он был построен на основе микропроцессора Intel 8088, работал с тактовой частотой 4.77 МГц и использовал операционную систему MS – DOS. Называлась эта модель компьютера как IBM PC или просто PC.

Далее развитие Пк происходило очень высокими темпами: фирма IBM каждый год создавала по новой модели. В 1983 г. появилась модель PC XT, а в 1984 – более совершенный и производительный компьютер PC AT. Они быстро завоевывали рынок ПК и стали своего рода стандартами, которые старались подражать фирмы – конкуренты. Фирма IBM создавала свой персональный компьютер не «с нуля», а используя узлы других производителей (в первую очередь, микропроцессор Intel).

При этом она не делала секрета из того, как узлы компьютера должны соединяться и взаимодействовать друг с другом. В результате к созданию и совершенствованию компьютера могли подключаться другие фирмы – архитектура компьютеров IBM PC оказалась «открытой». У компьютеров IBM появились многочисленные «клоны», то есть различные семейства компьютеров, похожих на IBM PC. В дальнейшем ЭВМЮ поддерживающие

стандарт IBM PC, стали называться просто «персональными компьютерами». С течением времени ПК оправдали свое название, поскольку для многих людей они стали необходимой частью досуга, инструментом для бизнеса и исследований.

Кроме IBM совместимых ПК, существует еще одно семейство персональных ЭВМ, называемых Macintosh. Эти компьютеры ведут свою родословную от уже упоминавшейся модели Apple, их производством занималась фирма Apple Computer. Архитектура компьютеров Macintosh, в отличие от IBM PC, не была открытой. Поэтому, несмотря на свои более продвинутые по сравнению с IBM PC графические возможности, «Маки» не смогли завоевать такой обширный рынок. Численность «Маков» в десятки раз меньше численности IBM PC – совместимых компьютеров.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы - вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры - суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, - нейронных компьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП – транспьютеры – микропроцессоры сети со встроенными средствами связи.

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видео-средств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК.

ЗАКЛЮЧЕНИЕ

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

 

СПИСОК ЛИТЕРАТУРЫ

1. Информатика. Базовый курс. / Под ред. С.В.Симоновича. – СПб., 2000 г.

2. Компьютерные технологии обработки информации: Учебное пособие /Под ред. С.В. Назарова. – М.: Финансы и статистика, 1995.

3. Могилев А.В. Информатика: Учебное пособие, Москва: Издательский центр "Академия", 2001

4. Успенский И. Энциклопедия Интернет-бизнеса, СПб: Питер, 2001

 

ПРИЛОЖЕНИЯ

Приложение 1

Первая ЭВМ

Приложение 2

Большая интегральная схема – БИС

Приложение 3

Чарльз Беббидж

[1] Электронная вычислительная машина

[2] Союз Советских Социалистических Республик

[3]Микросхема

megaobuchalka.ru

Реферат История вычислительной техники

скачать

Реферат на тему:

PurehuggingRoseStar.png

План:

    Введение
  • 1 Ранние приспособления и устройства для счёта
  • 2 1801: появление перфокарт
  • 3 1835—1900-е: первые программируемые машины
  • 4 1930-е — 1960-е: настольные калькуляторы
  • 5 Появление аналоговых вычислителей в предвоенные годы
  • 6 Первые электромеханические цифровые компьютеры
    • 6.1 Z-серия Конрада Цузе
    • 6.2 Британский «Колосс»
    • 6.3 Американские разработки
  • 7 Первое поколение компьютеров с архитектурой фон Неймана
  • 8 1950-е — начало 1960-х: второе поколение
  • 9 1960-е и далее: третье и последующие поколения
  • Примечания
  • 11 Фильмография

Введение

По тематике Навигация
История науки
PurehuggingRoseStar.png
Математика
Естественные науки
Астрономия
Биология
Ботаника
География
Геология
Физика
Химия
Экология
Общественные науки
Лингвистика
Психология
Социология
Философия
Экономика
Технология
Вычислительная техника
Медицина
Сельское хозяйство
Портал
Категории

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту. Развиваясь, эти приспособления становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени.

Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка, механический арифмометр, электронный компьютер. Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека.

1. Ранние приспособления и устройства для счёта

Когда людям надоело вести счёт при помощи загибания пальцев, они изобрели абак.

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы, которые стали, таким образом, одним из первых устройств для количественного определения массы.

Юпана (абак инков) предположительно использовал числа Фибоначчи

Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

Звёздочки и шестерёнки были сердцем механических устройств для счёта.

С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения более 30-ти бронзовых колёс и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

«Считающие часы» Вильгельма Шикарда.

В 1623 году Вильгельм Шикард придумал «Считающие часы» — первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестерёнок. Практическое использование это изобретение нашло в руках друга Шикарда, философа и астронома Иоганна Кеплера.

За этим последовали машины Блеза Паскаля («Паскалина», 1642 г.) и Готфрида Вильгельма Лейбница.

Примерно в 1820 году Charles Xavier Thomas создал первый удачный, серийно выпускаемый механический калькулятор — Арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница. Механические калькуляторы, считающие десятичные числа, использовались до 1970-х.

Лейбниц также описал двоичную систему счисления, центральный ингредиент всех современных компьютеров. Однако вплоть до 1940-х, многие последующие разработки (включая машины Чарльза Бэббиджа и даже ЭНИАК 1945 года) были основаны на более сложной в реализации десятичной системе.

Джон Непер заметил, что умножение и деление чисел может быть выполнено сложением и вычитанием, соответственно, логарифмов этих чисел. Действительные числа могут быть представлены интервалами длины на линейке, и это легло в основу вычислений с помощью логарифмической линейки, что позволило выполнять умножение и деление намного быстрее. Логарифмические линейки использовались несколькими поколениями инженеров и других профессионалов, вплоть до появления карманных калькуляторов. Инженеры программы «Аполлон» отправили человека на Луну, выполнив на логарифмических линейках все вычисления, многие из которых требовали точности в 3-4 знака.

Для составления первых логарифмических таблиц Неперу понадобилось выполнить множество операций умножения, и в то же время он разрабатывал палочки Непера.

2. 1801: появление перфокарт

Перфокарточная система музыкального автомата

В 1801 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.

В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.

В 1890 году Бюро Переписи США использовало перфокарты и механизмы сортировки (табуляторы[1]), разработанные Германом Холлеритом, чтобы обработать поток данных десятилетней переписи, переданный под мандат в соответствии с Конституцией. Компания Холлерита в конечном счёте стала ядром IBM. Эта корпорация развила технологию перфокарт в мощный инструмент для деловой обработки данных и выпустила обширную линию специализированного оборудования для их записи. К 1950 году технология IBM стала вездесущей в промышленности и правительстве. Предупреждение, напечатанное на большинстве карт, «не сворачивать, не скручивать и не рвать», стало девизом послевоенной эры.

Во многих компьютерных решениях перфокарты использовались до (и после) конца 1970-х. Например, студенты инженерных и научных специальностей во многих университетах во всём мире могли отправить их программные команды в локальный компьютерный центр в форме набора карт, одна карта на программную строку, а затем должны были ждать очереди для обработки, компиляции и выполнения программы. Впоследствии после распечатки любых результатов, отмеченных идентификатором заявителя, они помещались в выпускной лоток вне компьютерного центра. Во многих случаях эти результаты включали в себя исключительно распечатку сообщения об ошибке в синтаксисе программы, требуя другого цикла редактирование — компиляция — исполнение.

3. 1835—1900-е: первые программируемые машины

Определяющая особенность «универсального компьютера» — это программируемость, что позволяет компьютеру эмулировать любую другую вычисляющую систему всего лишь заменой сохранённой последовательности инструкций.

В 1835 году Чарльз Бэббидж описал свою аналитическую машину. Это был проект компьютера общего назначения, с применением перфокарт в качестве носителя входных данных и программы, а также парового двигателя в качестве источника энергии. Одной из ключевых идей было использование шестерней для выполнения математических функций.

Часть Разностной машины Бэббиджа, собранная после его смерти сыном из частей, найденных в лаборатории.

Его первоначальной идеей было использование перфокарт для машины, вычисляющей и печатающей логарифмические таблицы с большой точностью (то есть для специализированной машины). В дальнейшем эти идеи были развиты до машины общего назначения — его «аналитической машины».

Хотя планы были озвучены и проект, по всей видимости, был реален или, по крайней мере, проверяем, при создании машины возникли определённые трудности. Бэббидж был человеком, с которым трудно было работать, он спорил с каждым, кто не отдавал дань уважения его идеям. Все части машины должны были создаваться вручную. Небольшие ошибки в каждой детали, для машины, состоящей из тысяч деталей, могли вылиться в значительные отклонения, поэтому при создании деталей требовалась точность, необычная для того времени. В результате, проект захлебнулся в разногласиях с исполнителем, создающим детали, и завершился с прекращением государственного финансирования.

Ада Лавлейс, дочь лорда Байрона, перевела и дополнила комментариями труд «Sketch of the Analytical Engine». Её имя часто ассоциируют с именем Бэббиджа. Утверждается также, что она является первым программистом, хотя это утверждение и значение её вклада многими оспаривается.

Реконструкция 2-го варианта Разностной машины — раннего, более ограниченного проекта, действует в Лондонском музее науки с 1991 года. Она работает именно так, как было спроектировано Бэббиджем, лишь с небольшими тривиальными изменениями, и это показывает что Бэббидж в теории был прав. Для создания необходимых частей, музей применил машины с компьютерным управлением, придерживаясь допусков, которые мог достичь слесарь того времени. Некоторые полагают, что технология того времени не позволяла создать детали с требуемой точностью, но это предположение оказалось неверным. Неудача Бэббиджа при конструировании машины, в основном, приписывается трудностям, не только политическим и финансовым, но и его желанию создать очень изощрённый и сложный компьютер.

По стопам Бэббиджа, хотя и не зная о его более ранних работах, шёл Percy Ludgate, бухгалтер из Дублина (Ирландия). Он независимо спроектировал программируемый механический компьютер, который он описал в работе, изданной в 1909 году.

4. 1930-е — 1960-е: настольные калькуляторы

Арифмометр «Феликс» — самый распространённый в СССР. Выпускался в 1929—1978 гг.

К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни. С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить. Словом «computer» (буквально — «вычислитель») называлась должность — это были люди, которые использовали калькуляторы для выполнения математических вычислений. В ходе Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — для проекта водородной бомбы.

ANITA Mark VIII, 1961 год

В 1948 году появился Curta — небольшой механический калькулятор, который можно было держать в одной руке. В 1950-х — 1960-х годах на западном рынке появилось несколько марок подобных устройств. Первым полностью электронным настольным калькулятором был британский ANITA Мк. VII, который использовал дисплей на трубках «Nixie» и 177 миниатюрных тиратроновых трубок. В июне 1963 года Friden представил EC-130 с четырьмя функциями. Он был полностью на транзисторах, имел 13-цифровое разрешение на 5-дюймовой электронно-лучевой трубке, и представлялся фирмой на рынке калькуляторов по цене 2200 $. В модель EC 132 были добавлены функция вычисления квадратного корня и обратные функции. В 1965 году Wang Laboratories произвёл LOCI-2, настольный калькулятор на транзисторах с 10 цифрами, который использовал дисплей на трубках «Nixie» и мог вычислять логарифмы.

В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс», выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве.

5. Появление аналоговых вычислителей в предвоенные годы

Дифференциальный анализатор, Кембридж, 1938 год

Перед Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти и другие физические явления значениями электрического напряжения и тока.

6. Первые электромеханические цифровые компьютеры

6.1. Z-серия Конрада Цузе

Репродукция компьютера Zuse Z1 в Музее техники, Берлин

В 1936 году, работая в изоляции в нацистской Германии, Конрад Цузе начал работу над своим первым вычислителем серии Z, имеющим память и (пока ограниченную) возможность программирования. Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершённая в 1938 году, так и не заработала достаточно надёжно, из-за недостаточной точности выполнения составных частей. В 1939 году, Цузе создал второй вычислитель Z2, но её планы и фотографии были уничтожены при бомбардировке во время Второй Мировой Войны поэтому о ней почти ничего не известно. Z2 работала на электромагнитных переключателях созданных в 1835 году ученым Джозефом Хенри. Следующая машина Цузе — Z3, была завершена в 1941 году. Она была построена на телефонных реле и работала вполне удовлетворительно. Тем самым, Z3 стала первым работающим компьютером, управляемым программой. Во многих отношениях Z3 была подобна современным машинам, в ней впервые был представлен ряд новшеств, таких как арифметика с плавающей запятой. Замена сложной в реализации десятичной системы на двоичную, сделала машины Цузе более простыми и, а значит, более надёжными; считается, что это одна из причин того, что Цузе преуспел там, где Бэббидж потерпел неудачу.

Программы для Z3 хранились на перфорированной плёнке. Условные переходы отсутствовали, но в 1990-х было теоретически доказано, что Z3 является универсальным компьютером (если игнорировать ограничения на размер физической памяти). В двух патентах 1936 года, Конрад Цузе упоминал, что машинные команды могут храниться в той же памяти что и данные — предугадав тем самым то, что позже стало известно как архитектура фон Неймана и было впервые реализовано только в 1949 году в британском EDSAC.

6.2. Британский «Колосс»

Британский Colossus был использован для взлома немецких шифров в ходе Второй мировой войны.

Во время Второй мировой войны, Великобритания достигла определённых успехов во взломе зашифрованных немецких переговоров. Код немецкой шифровальной машины «Энигма» был подвергнут анализу с помощью электромеханических машин, которые носили название «бомбы». Такая «бомба», разработанная Аланом Тьюрингом и Гордоном Уэлшманом (англ. Gordon Welchman), исключала ряд вариантов путём логического вывода, реализованного электрически. Большинство вариантов приводило к противоречию, несколько оставшихся уже можно было протестировать вручную.

Немцы также разработали серию телеграфных шифровальных систем, несколько отличавшихся от «Энигмы». Машина Lorenz SZ 40/42 использовалась для армейской связи высокого уровня. Первые перехваты передач с таких машин были зафиксированы в 1941 году. Для взлома этого кода, в обстановке секретности, была создана машина «Колосс» (Colossus). Спецификацию разработали профессор Макс Ньюман (Max Newman) и его коллеги; сборка Colossus Mk I выполнялась в исследовательской лаборатории Почтового департамента Лондона и заняла 11 месяцев, работу выполнили Томми Флауэрс (Tommy Flowers) и др.

«Колосс» стал первым полностью электронным вычислительным устройством. В нём использовалось большое количество электровакуумных ламп, ввод информации выполнялся с перфоленты. «Колосс» можно было настроить на выполнение различных операций булевой логики, но он не являлся тьюринг-полной машиной. Помимо Colossus Mk I, было собрано ещё девять моделей Mk II. Информация о существовании этой машины держалась в секрете до 1970-х гг. Уинстон Черчилль лично подписал приказ о разрушении машины на части, не превышающие размером человеческой руки. Из-за своей секретности, «Колосс» не упомянут во многих трудах по истории компьютеров.

6.3. Американские разработки

В 1937 году Клод Шеннон показал, что существует соответствие один-к-одному между концепциями булевой логики и некоторыми электронными схемами, которые получили название «логические вентили», которые в настоящее время повсеместно используются в цифровых компьютерах. Работая в МТИ, в своей основной работе он продемонстрировал, что электронные связи и переключатели могут представлять выражение булевой алгебры. Так своей работой A Symbolic Analysis of Relay and Switching Circuits он создал основу для практического проектирования цифровых схем.

В ноябре 1937 года Джорж Стибиц завершил в Bell Labs создание компьютера «Model K» на основе релейных переключателей. В конце 1938 года Bell Labs санкционировала исследования по новой программе, возглавляемые Стибицем. В результате этого, 8 января 1940 года был завершён Complex Number Calculator, умеющий выполнять вычисления над комплексными числами. 11 сентября 1940 года в Дартмутском колледже, на демонстрации в ходе конференции Американского математического общества, Стибиц отправлял компьютеру команды удалённо, по телефонной линии с телетайпом. Это был первый случай когда вычислительное устройство использовалось удалённо. Среди участников конференции и свидетелей демонстрации были Джон фон Нейман, Джон Моучли и Норберт Винер, написавший об увиденном в своих мемуарах.

Компьютер Атанасова—Берри

В 1939 году Джон Винсент Атанасов (John Vincent Atanasoff) и Клиффорд Берри (Clifford E. Berry) из Университета штата Айова разработали Atanasoff-Berry Computer (ABC). Это был первый в мире электронный цифровой компьютер. Конструкция насчитывала более 300 электровакуумных ламп, в качестве памяти использовался вращающийся барабан. Несмотря на то, что машина ABC не была программируемой, она была первой, использующей электронные лампы в сумматоре. Соизобретатель ENIAC Джон Моучли изучал ABC в июне 1941 года, и между историками существуют споры о степени его влияния на разработку машин, последовавших за ENIAC. ABC был почти забыт, до тех пор пока в центре внимания не оказался иск «Хоневелл против Sperry Rand», постановление по которому аннулировало патент на ENIAC (и некоторые другие патенты), из-за того что, помимо других причин, работа Атанасова была выполнена раньше.

В 1939 году в Endicott laboratories в IBM началась работа над Harvard Mark I. Официально известный как Automatic Sequence Controlled Calculator, Mark I был электромеханическим компьютером общего назначения, созданного с финансированием IBM и при помощи со стороны персонала IBM, под руководством гарвардского математика Howard Aiken. Проект компьютера был создан под влиянием Аналитической машины Ч. Бэббиджа, с использованием десятичной арифметики, колёс для хранения данных и поворотных переключатей в дополнение к электромагнитным реле. Машина программировалась с помощью перфоленты, и имела несколько вычислительных блоков, работающих параллельно. Более поздние версии имели несколько считывателей с перфоленты, и машина могла переключаться между считывателями в зависимости от состояния. Тем не менее, машина была не совсем Тьюринг-полной. Mark I был перенесён в Гарвардский университет и начал работу в мае 1944 года.

6.3.1. «ЭНИАК»

ЭНИАК выполнял баллистические расчёты и потреблял мощность в 160 кВт

Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений. Это стало ключевым моментом в разработке вычислительных машин, прежде всего из-за огромного прироста в скорости вычислений, но также и по причине появившихся возможностей для миниатюризации. Созданная под руководством Джона Мочли и Дж. Преспера Эккерта (J. Presper Eckert), эта машина была в 1000 раз быстрее, чем все другие машины того времени. Разработка «ЭНИАК» продлилась с 1943 до 1945 года. В то время, когда был предложен данный проект, многие исследователи были убеждены, что среди тысяч хрупких электровакуумных ламп многие будут сгорать настолько часто, что «ЭНИАК» будет слишком много времени простаивать в ремонте, и тем самым, будет практически бесполезен. Тем не менее, на реальной машине удавалось выполнять несколько тысяч операций в секунду в течение нескольких часов, до очередного сбоя из-за сгоревшей лампы.

«ЭНИАК», безусловно, удовлетворяет требованию полноты по Тьюрингу. Но «программа» для этой машины определялась состоянием соединительных кабелей и переключателей — огромное отличие от машин с хранимой программой, появившихся позже. Тем не менее, в то время, вычисления, выполняемые без помощи человека, рассматривались как достаточно большое достижение, и целью программы было тогда решение только одной единственной задачи. (Улучшения, которые были завершены в 1948 году, дали возможность исполнения программы, записанной в специальной памяти, что сделало программирование более систематичным, менее «одноразовым» достижением.)

Переработав идеи Эккерта и Мочли, а также, оценив ограничения «ЭНИАК», Джон фон Нейман написал широко цитируемый отчёт, описывающий проект компьютера (EDVAC), в котором и программа, и данные хранятся в единой универсальной памяти. Принципы построения этой машины стали известны под названием «архитектура фон Неймана» и послужили основой для разработки первых по-настоящему гибких, универсальных цифровых компьютеров.

7. Первое поколение компьютеров с архитектурой фон Неймана

Память на ферритовых сердечниках. Каждый сердечник — один бит.

Первой работающей машиной с архитектурой фон Неймана стал манчестерский «Baby» — Small-Scale Experimental Machine (Малая экспериментальная машина), созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I, который уже был полной системой, с трубками Уильямса и магнитным барабаном в качестве памяти, а также с индексными регистрами. Другим претендентом на звание «первый цифровой компьютер с хранимой программой» стал EDSAC, разработанный и сконструированный в Кембриджском университете. Заработавший менее чем через год после «Baby», он уже мог использоваться для решения реальных проблем. На самом деле, EDSAC был создан на основе архитектуры компьютера EDVAC, наследника ENIAC. В отличие от ENIAC, использовавшего параллельную обработку, EDVAC располагал единственным обрабатывающим блоком. Такое решение было проще и надёжнее, поэтому такой вариант становился первым реализованным после каждой очередной волны миниатюризации. Многие считают, что Манчестерский Марк I / EDSAC / EDVAC стали «Евами», от которых ведут свою архитектуру почти все современные компьютеры.

Первый универсальный программируемый компьютер в континентальной Европе был создан командой учёных под руководством Сергея Алексеевича Лебедева из Киевского института электротехники СССР, Украина. ЭВМ МЭСМ (Малая электронная счётная машина) заработала в 1950 году. Она содержала около 6000 электровакуумных ламп и потребляла 15 кВт. Машина могла выполнять около 3000 операций в секунду. Другой машиной того времени была австралийская CSIRAC, которая выполнила свою первую тестовую программу в 1949 году.

В октябре 1947 года директора компании Lyons & Company, британской компании, владеющей сетью магазинов и ресторанов, решили принять активное участие в развитии коммерческой разработке компьютеров. Компьютер LEO I начал работать в 1951 году и впервые в мире стал регулярно использоваться для рутинной офисной работы.

Машина Манчестерского университета стала прототипом для Ferranti Mark I. Первая такая машина была доставлена в университет в феврале 1951 года, и, по крайней мере, девять других были проданы между 1951 и 1957 годами.

В июне 1951 года UNIVAC 1 был установлен в Бюро переписи населения США. Машина была разработана в компании Remington Rand, которая, в конечном итоге, продала 46 таких машин по цене более чем в 1 млн $ за каждую. UNIVAC был первым массово производимым компьютером; все его предшественники изготовлялись в единичном экземпляре. Компьютер состоял из 5200 электровакуумных ламп, и потреблял 125 кВт энергии. Использовались ртутные линии задержки, хранящие 1000 слов памяти, каждое по 11 десятичных цифр плюс знак (72-битные слова). В отличие от машин IBM, оснащаемых устройством ввода с перфокарт, UNIVAC использовал ввод с металлизированной магнитной ленты стиля 1930-х, благодаря чему обеспечивалась совместимость с некоторыми существующими коммерческими системами хранения данных. Другими компьютерами того времени использовался высокоскоростной ввод с перфоленты и ввод/вывод с использованием более современных магнитных лент.

Первой советской серийной ЭВМ стала Стрела, производимая с 1953 на Московском заводе счётно-аналитических машин. «Стрела» относится к классу больших универсальных ЭВМ (Мейнфрейм) с трёхадресной системой команд. ЭВМ имела быстродействие 2000-3000 операций в секунду. В качестве внешней памяти использовались два накопителя на магнитной ленте емкостью 200 000 слов, объём оперативной памяти — 2048 ячеек по 43 разряда. Компьютер состоял из 6200 ламп, 60 000 полупроводниковых диодов и потреблял 150 кВт энергии.

В 1955 году Морис Уилкс изобретает микропрограммирование, принцип, который позднее широко используется в микропроцессорах самых различных компьютеров. Микропрограммирование позволяет определять или расширять базовый набор команд с помощью встроенных программ (которые носят названия микропрограмма или firmware).

В 1956 году IBM впервые продаёт устройство для хранения информации на магнитных дисках — RAMAC (Random Access Method of Accounting and Control). Оно использует 50 металлических дисков диаметром 24 дюйма, по 100 дорожек с каждой стороны. Устройство хранило до 5 МБ данных и стоило по 10 000 $ за МБ. (В 2006 году, подобные устройства хранения данных — жёсткие диски — стоят около 0,001 $ за Мб.)

8. 1950-е — начало 1960-х: второе поколение

Транзисторы, в качестве миниатюрной и более эффективной замены электровакуумным лампам, совершили революцию в вычислительной технике.

Следующим крупным шагом в истории компьютерной техники стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Например, IBM 1620 на транзисторах, ставшая заменой IBM 650 на лампах, была размером с офисный стол. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.

Компьютеры второго поколения обычно состояли из большого количества печатных плат, каждая из которых содержала от одного до четырёх логических вентилей или триггеров. В частности, IBM Standard Modular System определяла стандарт на такие платы и разъёмы подключения для них. В 1959 году на основе транзисторов IBM выпустила мейнфрейм IBM 7090 и машину среднего класса IBM 1401. Последняя использовала перфокарточный ввод и стала самым популярным компьютером общего назначения того времени: в период 1960—1964 гг. было выпущено более 100 тыс. экземпляров этой машины. В ней использовалась память на 4000 символов (позже увеличенная до 16 000 символов). Многие аспекты этого проекта были основаны на желании заменить перфокарточные машины, которые широко использовались начиная с 1920-х до самого начала 1970-х гг. В 1960 году IBM выпустила транзисторную IBM 1620, изначально только перфоленточную, но вскоре обновлённую до перфокарт. Модель стала популярна в качестве научного компьютера, было выпущено около 2000 экземпляров. В машине использовалась память на магнитных сердечниках объёмом до 60 000 десятичных цифр.

В том же 1960 году DEC выпустила свою первую модель — PDP-1, предназначенную для использования техническим персоналом в лабораториях и для исследований.

В 1961 году Burroughs Corporation выпустила B5000, первый двухпроцессорный компьютер с виртуальной памятью. Другими уникальными особенностями были стековая архитектура, адресация на основе дескрипторов, и отсутствие программирования напрямую на языке ассемблера.

«Сетунь» была первым компьютером на основе троичной логики, разработана в 1958 году в Советском Союзе.

Первыми советскими серийными полупроводниковыми ЭВМ стали «Весна» и «Снег», выпускаемые с 1964 по 1972 год. Пиковая производительность ЭВМ «Снег» составила 300 000 операций в секунду. Машины изготавливались на базе транзисторов с тактовой частотой 5 МГц. Всего было выпущено 39 ЭВМ.[2]

Наилучшей отечественной ЭВМ 2-го поколения считается БЭСМ-6, созданная в 1966. В архитектуре БЭСМ-6 впервые был широко использован принцип совмещения выполнения команд (до 14 одноадресных машинных команд могли находиться на разных стадиях выполнения). Механизмы прерывания, защиты памяти и другие новаторские решения позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. ЭВМ имела 128 Кб оперативной памяти на ферритовых сердечниках и внешнюю памяти на магнитных барабанах и ленте. БЭСМ-6 работала с тактовой частотой 10 МГц и рекордной для того времени производительностью — около 1 миллиона операций в секунду. Всего было выпущено 355 ЭВМ.

9. 1960-е и далее: третье и последующие поколения

Интегральные микросхемы содержат многие сотни миллионов транзисторов.

Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel).

В течение 1960-х наблюдалось определённое перекрытие технологий 2-го и 3-го поколений. В конце 1975 года, в Sperry Univac продолжалось производство машин 2-го поколения, таких как UNIVAC 494.

Появление микропроцессоров привело к разработке микрокомпьютеров — небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк, один из основателей Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а позже — первого персонального компьютера. Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.

Примечания

  1. Табулятор Холлерита - chernykh.net/content/view/16/40/
  2. В. К. Левин. Электронные вычислительные машины «Весна» и «Снег» - www.computer-museum.ru/histussr/vesna.htm

wreferat.baza-referat.ru

История создания и развития вычислительной техники

История создания и развития средств вычислительной техники

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Еще во времена древнейших культур человеку приходилось решать задачи, связанные с торговыми расчетами, с исчислением времени, с определением площади земельных участков и т. д. Рост объемов этих расчетов приводил даже к тому, что из одной страны в другую приглашались специально обученные люди, хорошо владешие техникой арифметического счета. Поэтому рано или поздно должны были появиться устройства, облегчающие выполнение повседневных расчетов. Так, в Древней Греции и в Древнем Риме были созданы приспособления для счета, называемые абак. Абак называют также римскими счетами. Эти счеты представляли собой костяную, каменную или бронзовую доску с углублениями - полосами. В углублениях находились костяшки, и счет осуществлялся передвижением костяшек.

В странах Древнего Востока существовали китайские счеты. На каждой нити или проволоке в этих счетах имелось по пятьи по две костяшки. Счет осуществлялся единицами и пятерками. В России для арифметических вычеслений применялись русские счеты, появившиеся в 16 веке, но кое - где счеты можно встретить и сегодня.

Развитие приспособлений для счета шло в ногу с достижениями математики. Вскоре после открытия логарифмов в 1623 г. была изобретена логарифмическая линейка, её автором был английский математик Эдмонд Гантер. Логарифмической линейке суждена была долгая жизнь: от 17 века до нашего времени.

При этом ни абак, ни счеты, ни логарифмическая линейка не означают механизации процесса вычислений. В 17 веке выдающимся французким ученым Блезом Паскалем было изобретено принципиально новое счетное устройство - арифметическая машина. В основу её работы Б. Паскаль положил извесную до него идею выполнения вычислений с помощью металических шестеренок. В 1645 г. им была построена первая суммирующая машина, а в 1675 г. Паскалю удается создать настоящую машину, выполняющую все четыре арифметических действия. Почти одновременно с Паскалем в 1660 - 1680 гг. Сконструировал счетную машину великий немецкий математик Готфирд Лейбниц.

Счетные машины Паскаля и Лейбница стали прообразом арифмометра. Первый арифмометр для четырех арифметических действий, нашедший арифметическое применение, удалось построить только через сто лет, 1790 г., немецкому часовому мастеру Гану. Впоследствии устройство арифмометра совершенствовалось многими механиками из Англии, Франции, Италии, России, Швейцарии. Арифмометры применялись для выполнения сложных вычислений при проектировании и строительстве кораблей. Мостов, зданий, при проведении финансовых операций. Но производительность работы на арифмометрах оставалась невысокой, настоятельным требованием времени была автоматизация вычислений.

В 1833 г. анлийский ученый Чарлз Бэбидж, занимавшийся составлением таблиц для навигации, разработал проект «аналитической машины». По его замыслу, эта машина должна была стать гигантским арифмометром с программным управлением. В машине Бэбиджа предусмотрены были также арифметические и запоминающие устройства. Его машина стала прообразом будущих компьютеров. Но в ней использовались далеко не совершенные узлы, например, для запоминания разрядов десятичного числа в ней применялись зубчатые колеса. Осуществить свой проект Бэбиджу не удалось из - за недостаточного развития техники, и «аналитическая машина» на время была забыта.

Лишь спустя 100 лет машина Бэбиджа привлекла внимкние инженеров. В конце 30 - х годов 20 века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. К. Уцзе создал машину Z3, полностью управляемую с помощью программы.

В 1944 г. американец Говард Айкен на одном из предприятий фирмы IBM построил мощную по тем временам машину «Марк - 1». В этой машине для представления чисел использовались механические элементы - счетные колеса, а для управления применялись электромеханические реле.

Поколения ЭВМ

Историю развития ЭВМ удобно описывать, пользуясь представлением о поколениях вычислительных машин. Каждое поколене ЭВМ характеризуется констуктивными особенностями и возможнотями. Приступим к описанию каждого из поколений, однако нужно помнить, что деление ЭВМ на поколения является условным, поскольку в одно и то же время выпускались машины разного уровня.

Первое поколение

Резкий скачек в развитии вычислительной техники произошел в 40 - х годах, после Второй мировой войны, и связан он был с появлением качественно новых электронных устройств - электронно - вакуумных ламп, работали значительно быстрее, чем схемы на электромеханическом реле, а релейные машины быстро вытеснены болеепроизводительными и надежными электронными вычислительными машинами (ЭВМ). Применение ЭВМ значительно расширило круг решаемых задач. Стали доступны задачи, которые раньше просто не ставились: расчеты инженерных сооружений, вычисления двежения планет, баллистические расчеты и т.д.

Первая ЭВМ создавалась в 1943 - 1946 гг. в США и называлась она ЭНИАК. Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле, причем ежемесячно выходило из строя около 2 тысяч ламп. ЦУ машины ЭНИАК, а также у других первых ЭВМ, был серьезный недостаток - исполняемая программа хранилась не в памяти машины, а набаралась сложным образом с помощью внешних перемычек.

В 1945 г. извесный математик и физик - теоретик фон Нейман сформулировал общие принципы работы универсальных вычислительных устройств. Согласно фон Нейману вычислительная машина должна была управляться программой с последовательным выполнением команд, а сама программа - храниться в памяти машины. Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г.

В1951 году в СССР была создана МЭСМ, эти работы проводились в Киеве в Институте электродинамики под руководством крупнейшего конструктора вычислительной техники С. А. Лебедева.

ЭВМ постоянно совершенствовались, благодаря чему к середине 50 - х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. При этом при всём этом электронная лампа оставалась самым надежным элементом ЭВМ. Использование ламп стало тормозить дальнейший прогресс вычислительной техники.

Впоследствии на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ. Вычислительные машины этого этапа принято называть ЭВМ первого поколения

Действительно, ЭВМ первого поколения размещались в больших машинных залах, потребляли много электроэнергии и требовали охлаждения с помощью мощных вентилятогров. Программы для этих ЭВМ нужно было составлять в машинных кодах, и этим могли заниматься только специалисты, знающие в деталях устройство ЭВМ.

Второе поколение

Разработчики ЭВМ всегда следовали за прогрессом в электронной технике. Когда в середине 50 - х годов на смену электронным лампам пришли полупроводниковые приборы, начался перевод ЭВМ на полупроводники.

Полуповодниковые приборы (транзисторы, диоды) были, во - первых, значительно компактнее своих ламповых предшественников. Во - вторых они обладали значительно большим сроком службы. В - третьих, потребление энергии у ЭВМ на полупроводниках было существенно ниже. С внедрением цифровых элементов на полупроводниковых приборах началось создание ЭВМ второго поколения.

Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, произошло естественное разделение вычислительных машин на большие, средние и малые.

В СССР были разработаны и широко использовались серии малых ЭВМ «Раздан», «Наири». Уникальной по своей архитектуре была машина «Мир», разработанная в 1965 г. в Институте кибернетики Академии Наук УССР. Она предназначалась для инженерных расчетов, которые выполнял на ЭВМ сам пользователь без помощи оператора.

К средним ЭВМ относились отечественные машины серий «Урал», «М - 20» и «Минск». Но рекордной среди отечественных машин этого поколния и одной из лучших в мире была БЭСМ - 6 («большая электронно - счетная машина», 6 - я модель), которая была создана коллективом академика С. А. Лебедева. Производительность БЭСМ - 6 была на два - три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн. Операций в секунду. За рубежем наиболее распространенными машинами второго поколения были «Эллиот» (Англия), «Сименс» (ФРГ), «Стретч» (США).

Третье поколение

Очередная смена поколений ЭВМ произошла в конце 60 - х годов при замене полупроводниковых приборов в устройствах ЭВМ на интегральлые схемы. Интегральная схема (микросхема) - это небольшая пластинка кристалла кремния, на которой размещаются сотни и тысячи элементов: диодов, транзисторов, конденсаторов, резисторов и т. д.

Применение интегральных схем позволило увеличить количество электронных элементов в ЭВМ без увеличения их реальных размеров. Быстродействие ЭВМ возросло до 10 миллионов операций в секунду. Кроме того, составлять программы для ЭВМ стало по силам простым пользователям, а не только специалистам - электронщикам.

В третьем поколении появились крупные серии ЭВМ, различающиеся своей производительностью и назначением. Это семейство больших и средних машин IBM360/370, разработанных в США. В Советском Союзе и в странах СЭВ были созданы аналогические серии машин: ЕС ЭВМ (Единая Система ЭВМ, машины большие и средние), СМ ЭВМ (Система Малых ЭВМ) и «Электроника» (система микро - ЭВМ).

Четвертое поколение

В процессе совершенствования мокросхем увеличивалась их надежность и плотность размещенных в них элементов. Это привело к появлению больших интегральных схем (БИС), в которых на один квадратный сантиметр приходилось несколько десятков тысяч элементов. На основе БИС были разработаны ЭВМ следующего - четвертого поколения.

Благодаря БИС на одном крошечном кристале кремния стало возвожным разместить такую большую электронную схему, как процессор ЭВМ. Однокрисальные процессоры впоследствии стали называться микропроцессорами. Первый микропрцессор был созда компанией Intel(США) в 1971 г. Это был 4 - разрядный микропроцессор Intel 4004, который содержал 2250 транзисторов и выполнл 60 операций в секунду.

Микропроцессоры положили начало мини - ЭВМ, а затем и персональным компьютерам, то есть ЭВМ, ориентированным на одного пользователя. Началась эпоха персональных компьютеров (ПК), продолжающаяся и по сей день. При этом четвертое поколение ЭВМ - это не только поколение ПК. Кроме персональных компьютеров, существуют и другие, значительно более мощные компьтерные системы.

Влияние персональных компьютеров на представление людей о вычислительной технике оказалось настолько большим, сто постепенно из обихода исчез термин «ЭВМ», а его место прочно заняло слово «компьютер».

Пятое поколение

Начиная с середины 90 м- х годов, в мощных компьютерах начинают применяться БИС супермасштаба, которые вмещают сотни тысяч элементов на квадратный сантиметр. Многие специалисты стали говорить о компьютерах пятого поколения.

Характерной чертой компьютеров пятого поколения должно быть использование искусственного интелекта и естественных языков общения. Предпологаестя, что вычислительные машины пятого поколения будут легко управляемы. Пользователь сможет голосом подавать машине команде.

В настоящее время информатика и ее практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Ее технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Теперь уже очевидно, что XXI век будет веком максимального использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле и т. д. Последние десятилетия XX века характерны возрастанием интереса к истории развития информатики, в первую очередь к истории появления первых цифровых вычислительных машин и их создателям. В большинстве развитых стран созданы музеи, сохраняющие образцы первых машин, проводятся конференции и симпозиумы, выпускаются книги о приоритетных достижениях в этой области.

Появление ПК было подготовлено всей предшествующей историей развития ЭВМ. В начале вычислительные машины занимали огромные залы, потребляли много энергии и создавали много шума. Затем ЭВМ стали поменьше и начали работать эффективнее, но по-прежнему требовали для себя отдельных помещений. Наиболее мощные ЭВМ размещались в отдельных комплексах, которые назывались вычислительными центрами (ВЦ). В те не очень далекие времена (70 - е годы) мало кто представлял себе компактную ЭВМ, которая может уместиться на рабочем столе. О такой машине инженеры и ученые могли только мечтать, а обычным людям трыдно было бы объяснить, зачем вообще такая вычислительная машина нужна.

Первой ласточкой стал компьютер KENBAK-1, сконструированный Джоном Бланкейнбейкером в 1971 г. Внешне он напоминал скорее автомобильный радиоприемник с индикаторными лампочками и переключателями, чем привычный нашему глазу персональный компьютер.

С 1971 г. по 1974 г. различными фирмами создавались разные модели ПК. При этом ввиду ограниченных возмодностей этих компьютеров интерес к ним был невелик. По - настоящему пользователи и производители заинтересовались персональнми компьютерами в 1974 г., когда американская фирма MITS на основе микропроцессора Intel 8080 разработала компьютер Altair. Этот персональный компьютер был значительно удобнее своих предшественников и обладал более широкими возможностями.

Значительно более совершенная модель персонального компьютера была разработана в 1976 г. двумя молодыми американцами Стивом Возняком и Стивом Джобсом. Свой компьютер они назвали Apple и быстро развернули его производство и продажу. Благодаря невысокой цене (примерно 500 долларов) в первый же год ими было продано около 100 компьютеров.. В следующем году они выпустили модель Apple II, которая имела материнскую плату, дисплей, клавиатуру и внешне напоминала собой телевизор. Количество заказчиков на ПК стало исчисляться сотнями и тысячями.

Персональные компьютеры быстро совершенствовались. В 1976 г. для них была разработана операционная система СР/М. В 1978 г. был сконструирован гибкий магнитны диск диаметром 5.25 дюйма (1 дюйм=2,45 см), предназначенный для хранения информации. Усилиями фирмы MOTOROLA в 1979 г. был создан мокропроцессор motorola 68000, который превосходил своих конкурентов по скорости, производительности и возможностям работы с графическими программами. В 1980 г. в персональных компьютерах появился жесткий магнитный диск, правда, он вмещал в себя всего лишь 5 Мбайт данных.

Первые Пк были 8 - разрядными и больше походили на дорогую игрушку, чем на серьезную ЭВМ. Так продолжалось до тех пор, пока в отрасли индивидуальных компьтеров не появился компьютерный гигант - фирма IBM, которая специализировалась на изготовлении больших ЭВМ. В 1982 г. фирма IBM выпустила очень удачную модель - 16 - разрядный компьютер. Он был построен на основе микропроцессора Intel 8088, работал с тактовой частотой 4.77 МГц и использовал операционную систему MS - DOS. Называлась эта модель компьютера как IBM PC или просто PC.

Далее развитие Пк происходило очень высокими темпами: фирма IBM каждый год создавала по новой модели. В 1983 г. появилась модель PC XT, а в 1984 - более совершенный и производительный компьютер PC AT. Они быстро завоевывали рынок ПК и стали своего рода стандартами, которые старались подражать фирмы - конкуренты.

Фирма IBM создавала свой персональный компьютер не «с нуля», а используя узлы других производителей (в первую очередь, микропроцессор Intel). При этом она не делала секрета из того, как узлы компьютера должны соединяться и взаимодействовать друг с другом. В результате к созданию и совершенствованию компьютера могли подключаться другие фирмы - архитектура компьютеров IBM PC оказалась «открытой». У компьютеров IBM появились многочисленные «клоны», то есть различные семейства компьютеров, похлжих на IBM PC. В дальнейшем ЭВМЮ поддерживающие стандарт IBM PC, стали называться просто «персональными компьютерами». С течением времени ПК оправдали свое название, поскольку для многих людей они стали необходимой частью досуга, инсрументом для бизнеса и исследований.

Кроме IBM - совместимых ПК, существует еще одно семейство персонгальных ЭВМ, называемых Macintosh. Эти компьютеры ведут свою родословную от уже упоминавшейся модели Apple, их производством занималась фирма Aplle Computer. Архитектура компьютеров Macintosh, в отличие от IBM PC, не была открытой. Поэтому, несмотря на свои более продвинутые по сравнению с IBM PC графические возможности, «Маки» не смогли завоевать такой обширный рынок. Численность «Маков» в десятки раз меньше численности IBM PC - совместимых компьютеров.

Главной тенденцией развития вычислительной техники сегодня является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы - вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры - суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, - ней-рокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

Министерство образования и науки украины

Донецкий Университет Экономики и Права

Реферат

По дисциплине

Информатика и компьютерная техника

По теме: история создания и развития средств вычислительной техники

Подготовила

Студентка I курса

Группа ПО1

Шинкарюк Н. А.

Донецк 2008 г.

referatwork.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.