Сочинение: История развития начертательной геометрии. Реферат история развития начертательной геометрии


ИЗ ИСТОРИИ РАЗВИТИЯ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

ИЗИСТОРИИРАЗВИТИЯНАЧЕРТАТЕЛЬНОЙГЕОМЕТРИИ Н.С. Николаенко

"Приобретениелюбогопознания всегдаполезнодляума,ибоонсможет отвергнутьбесполезноеисохранить хорошее.Ведьниоднувещьнельзя,ни любить,ниненавидеть,еслисначалаее непознать".

ЛеонардодаВинчи

Средства машинной графики, прежде доступные лишь крупным самолетостроительным объединениям (закрытые предприятия министерства авиационной промышленности), в настоящее время используются во многих областях проектированияипроизводства.

Независимо от способа выполнения чертежа - ручного, механизированного или автоматизированного - знание инженерной графики является фундаментом, на котором базируется инженерное образование, инженерное творчество и система создания техническойдокументации.

Теоретические предпосылки инженерной графики основаны на положениях начертательнойгеометрии.

Вашему вниманию предлагается краткий очерк развития начертательной геометрии, как одной из ветвей геометрии, науки о пространстве и пространственных объектах.

С момента возникновения геометрия развивалась, тесно переплетаясь с другими науками: математикой, механикой, физикой, а также оказывала влияние на разработку теоретическихосноввтехникеиизобразительномискусстве.

Времяиместовозникновениягеометриинеустановлено.

Потребность в построении изображений по законам геометрии (проекционных чертежей, "projecere"- бросать вперед) возникла из практических задач строительства сооружений, укреплений, пирамид и т.д., а на позднем этапе - из запросов машиностроенияитехники.

Относительно точные сведения об уровне геометрических знаний в Древнем ЕгиптесообщаетпапирусАхмеса(измерениеземельныхучастков,вычислениепирамид). Основателем геометрии в Греции считают финикиянина Фалеса Милетского, получившего образование в Египте (ок. 624-547гг.до н.э.). Он основал школу геометров, которая положила начало научной геометрии. Ученику Фалеса Пифагору Самосскому (ок.580-500гг.до н.э.) принадлежат первые открытия в геометрии: теория несоизмеримости некоторых отрезков, например, диагонали квадрата с его стороной, теория правильных тел, теорема о квадрате гипотенузы прямоугольного треугольника. Преемник Пифагора Платон(427-347гг.до н.э.) ввел в геометрию аналитический метод, учение о геометрических местах и конические сечения. Существовавшая до сих порэлементарнаягеометриябыларасширена,иееназвалитрансцендентной.

Систематизировал основы геометрии, восполнил ее пробелы великий александрийский ученый Евклид (III в. до н.э.) в своем замечательном труде. "Начала" Евклида - первый серьезный учебник, по нему в течение двух тысячелетий учились геометрии. Современные учебники элементарной геометрии представляют собой переработку"Начал".

"Золотым веком" греческой геометрии называют эпоху, когда жили и творили математики Архимед (287-195гг. до н.э.), Эрастофен(275-195гг.до н.э.), Аполлоний

Пергский (250-190гг.до н.э.). Измерение криволинейных образов связано с именем Архимеда. Он указал методы измерения длины окружности, площади круга, сегмента параболы и спирали, объемов и поверхностей шара, других тел вращения и др. Это были главные дополнения к "Началам" Евклида. Трактатом о конических сечениях обессмертил свое имя Аполлоний. Трудами последнего, можно сказать, завершается

классическаягеометрия.

Расцвет классической культуры в средние века сменился застоем. В изобразительном искусстве не используются применявшиеся в древности сведения о перспективе.ГлубокийкризисзатянулсядоэпохиВозрождения.

И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии начинается новый период развития. В связи с развернувшимся строительством различных сооружений возродилось и расширилось применение употреблявшихся в античном мире элементов проекционных изображений. Наиболее бурно в это время развивались архитектура, скульптура и живопись в Италии, Нидерландах, Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе. Появились новые понятия: центр проецирования, картинная плоскость, линия горизонта, главные точки и т.д. Наблюдательная перспектива уже достигла своего высшего развития. Весомый вклад в развитие методов перспективных изображений внесли: итальянский зодчий Лоренцо Гиберти (1378-1455гг.)- он перенес принципы живописной перспективы на пластическое изображение в виде рельефа (в церковных сооружениях), итальянский теоретик искусств Леон БаттистаАльберти (14041472гг.) обогатилхудожественно-техническийопытмастеров-профессионаловтеоретической разработкой основ перспективы, впервые упоминает о построении теней,Пиетра-делла-Франческа(1406-1492гг.)- рассматривал вопросы линейной перспективы, гениальный итальянскийхудожник,ученый иинженерЛеонардодаВинчи(1452-1519гг.),обладая в совершенстве знаниями линейной перспективы, дополнил построением ее на цилиндрическихсводах,положивначалопанорамнойперспективе.

В развитие перспективы большой вклад внеснемецкий ученый и гравер Альбрехт Дюрер (1471-1528гг.).В своей книге "Наставление" он разработал основы рисования, предложил графические способы построения большого числа плоских и некоторых пространственных кривых, оригинальные способы построения перспективы и тени предмета. Основателем теоретической перспективы по праву может считаться итальянский ученый Гвидо Убальди(1545-1607гг.).Работа Убальди "Шесть книг по перспективе"содержитрешениепочтивсехосновныхзадачперспективы.

Французский архитектор и математик Дезарг (1593-1662гг.)в 1636г. в сочинении "Общий метод изображения предметов в перспективе" впервые применил для построения перспективы метод координат Декарта, что послужило появлению нового аксонометрическогометодавначертательнойгеометрии.

Зарождение аналитической геометрии связано с появлением метода координат.ФранцузскиематематикиФерма(1601-1665гг.)иДекарт(1596-1650гг.)далиобщиесхемыфункциональной аналитической зависимости геометрических соотношений и общие схемы изучения этой зависимости средствами алгебры и анализа. Выдающийся труд Исаака Ньютона(1642-1727гг.)в области бесконечно малых создал новую ветвь геометрии -дифференциальную. Методы приложения анализа бесконечно малых к геометрии характеризуются широкой общностью и находят применение в комплексе функций.

Аналитические и дифференциальные методы сложны в применении. "Геометрию надо строить геометрически" ("Geometria geometrice") - была поговорка среди

математиков. Появилась еще одна ветвь геометрии - проективная, в основу которой положен метод проектирования, где нет понятий о числе и величине. Творцами нового направления следует считать французских математиков Понселе, Шаля, Мебиуса. Основу этой науки заложил упомянутый выше Дезарг. Он указал, что изображение предмета в ортогональных проекциях и линейной перспективе родственны с геометрическойточкизрения[1].

Развитию "вольной перспективы" посвятил свои работы английский математик Тейлор (1685-1731гг.),разработавший способы решения основных позиционных задач и определения свойств оригинала по его перспективному изображению. Немецкий геометр Ламберт(1728-1777гг.)применил метод перспективы к графическому решению задач элементарной геометрии, используя свойства афинного соответствия (афинная геометрия). Ламберт решал и обратную задачу - реконструирование объекта по его чертежу,выполненномувцентральнойпроекции.

Французский инженер Фрезье (1682-1773гг.)объединил работы предшественников в труде "Теория и практика разрезки камней и деревянных конструкций"(1738-39гг.),им были решены задачи построения конических сечений по усложненным данным. Однако строгой теории к представленному собранию отдельных приемоврешениязадачФрезьенеподвел.

Творцом ортогональных проекций и основоположником начертательной геометрии является французский геометр Гаспар Монж(1746-1818гг.).Знания, накопленные по теории и практике изображения пространственных предметов на плоскости, он систематизировал и обобщил, поднял начертательную геометрию на уровеньнаучнойдисциплины.

"…Нужно научить пользоваться начертательной геометрией" - говорил Г. Монж. Двеглавныецелиимелановаянаука:

Точное представление на чертеже, имеющем только два измерения, объектов трехмерных.

Выведение из точного описания тел всего, что следует из их формы и взаимного расположения.

С этой точки зрения начертательная геометрия - это язык, необходимый инженеру,создающемучто-тоновое,итем,ктоосуществляетинженерныйпроект.

Влюбленный в свое детище - начертательную геометрию, Монж писал: "Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении своего разума, - что большинству людей представляется утомительным и скучным занятием"[2].

В 1797г. Монж стал директором Политехнической школы. Он создал там ту постановку преподавания геометрии, которая и теперь существует в высших технических заведениях. Сильное впечатление производило то, что практические занятия проводились одновременно для 70 человек, которые работали над своими чертежными досками. "Маленький шедевр" - так Монж называл свою школу, давшую мировой науке много великих имен. Авторами учебников высшей школы стали Ампер, Пуассон, Кориолис, Беккерель и др., окончившие эту школу в разные годы. Когда Политехническая школа набрала силу, стала создаваться другая - Нормальная, которая предназначалась для подготовки уже не инженеров, а преподавателей. Профессорами этой школы были известные ученые Лагранж, Лаплас. Лекции, прочитанные Монжем, были стенографированы и позже опубликованы, сам он не интересовался опубликованиемсвоихработ[3].

Методы Монжа не были противоположны анализу, а были его дополнением, связанным с практическими потребностями инженерного дела. Впервые ученый предложил рассматривать плоский чертеж в двух проекциях, как результат совмещения изображеннойфигурыводнойплоскости-комплексныйчертежилиэпюрМонжа.

Вработе Г. Монжа "Начертательная геометрия"("Geometric Descriptive"), изданнойв1798г.,решались задачи:

Применениетеориигеометрическихпреобразований.

Рассмотрениенекоторыхвопросовтеориипроекцийсчисловымиотметками. Подробное исследование кривых линий и поверхностей, в частности применение

вспомогательныхплоскостейисферприпостроениилиниипересеченияповерхностей. Появление начертательной геометрии было вызвано возраставшими

потребностямивтеорииизображений.

Дальнейшее развитие начертательная геометрия получила в трудах многих ученых. Наиболее полное изложение идей Монжа по ортогональным проекциям дал Г. Шрейбер (1799-1871гг.),написавший "Учебник по начертательной геометрии" (по Монжу). Он обогатил начертательную геометрию изложением ее на проективной основе, применив идеи Шаля, Штаудта, Рейе, Штейнера и др., разработал теорию теней

исечений кривых поверхностей. Заметны труды ученых немецкой школы. Геометр Вильгельм Фидлер в книге "Начертательная геометрия", изданной в 1871г., в органической связи с геометрией проективной представил первый обширный курс дисциплины, стоящий на уровне современных требований. Прогрессивными в преподавании были лекции Эмиля Мюллера, продолжившего научное направление Фидлера. В работах А. Манигейма (1880г.) исследованы вопросы кинематического образования кривых линий и поверхностей в ортогональных проекциях. Обоснование теории аксонометрии дал Вейсбах, технические примеры применения аксонометрии показалибратьяМейер.

Развивая теорию аксонометрии, профессор Академии изобразительных искусств

иСтроительной академии в Берлине Карл Польке (1810-1876гг.)в 1853г. открыл основную теорему аксонометрии. Доказательство этой теоремы в 1864г. вывел немецкий геометр Г.А. Шварц. Обобщенная теорема аксонометрии стала называться теоремой Польке - Шварца. Простое доказательство этой теоремы дал в 1917г. профессор Московского университета А.К. Власов. Московский геометр Н.А. Глаголев продолжил работы этого направления, он доказал, что теорема Польке - Шварца есть предельный случай более общей теоремы опараллельно-перспективномрасположении двух тетраэдров. Привлекают работы австрийского геометра Эрвина Круппа, получившиеразвитиевтрудахрусскихученых Н.А.Глаголева,Н.Ф.Четверухина.

Всередине XIX века зарождается и получает развитие начертательная геометрия многих измерений - многомерная геометрия. Итальянский математик Веронезе и голландский ученый Скаутте дают начало этому новому направлению. В России многомерная начертательная геометрия развивалась в связи с проблемами физикохимического анализа многокомпонентных структур (сплавов, растворов), состоящих из большогочислаэлементов.Вместоточекзаосновныеэлементыпринимаютсяразличные геометрические образы, и строится бесчисленное множество плоских геометрических систем(системыпараллельныхотрезков,векторов,окружностейит.д.).

К началу XX века относится зарождение векторно-моторногометода в начертательной геометрии, применяющегося в строительной механике, машиностроении.ЭтотметодразработанБ.МайоромиР.Мизесом,Б.Н.Горбуновым.

Развитие начертательной геометрии в нашей стране шло самобытными путями, его можно разделить на три периода. I период - до XIX века (Р. Санников, И.П. Кулибин,

Д.В. Ухтомский, М.Ф. Казаков, В.И. Баженов и др.), II период - от начала XIX века до 1917 года. Впервые курс начертательной геометрии в 1810 году прочитан в Петербургском институте корпуса инженеров путей сообщения французским инженером К.И. Потье. Перевел курс на русский язык помощник Потье по институту Я.. А.. Севастьянов (1796- 1849гг.).IIIпериод-советский.

Развитие начертательной геометрии в России и применение ее методов в современныхнаучныхнаправлениях-этотемаужедругогоразговора.

ЛИТЕРАТУРА

1.Начертательная геометрия. //Под ред. Н.Ф. Четверухина.- М.: Высшая школа,- 1963.-с.420.

2.Г. Монж Начертательная геометрия./ Комментарии и редакция Д.И. Каргина.-

М.:Изд-воАНСССР,1974.-с.291.

3.В.П.ДемьяновГеометрияиМарсельеза.М.: Знание,1986.-с.254.

studfiles.net

Реферат - История развития начертательной геометрии

Комсомольск-на-Амуре

KOST

&

AKRED

[email protected]

"Приобретение любого познания всегда полезно для ума, ибо он сможет отвергнуть бесполезное и сохранить хорошее. Ведь ни одну вещь нельзя ни любить, ни ненавидеть, если сначала ее не познать."

Леонардо да Винчи

Средства машинной графики, прежде доступные лишь крупным самолетостроительным объединениям (закрытые предприятия министерства авиационной промышленности), в настоящее время используются во многих областях проектирования и производства.

Независимо от способа выполнения чертежа — ручного, механизированного или автоматизированного — знание инженерной графики является фундаментом, на котором базируется инженерное образование, инженерное творчество и система создания технической документации.

Теоретические предпосылки инженерной графики основаны на положениях начертательной геометрии.

С момента возникновения геометрия развивалась, тесно переплетаясь с другими науками: математикой, механикой, физикой, а также оказывала влияние на разработку теоретических основ в технике и изобразительном искусстве.

Время и место возникновения геометрии не установлено.

Потребность в построении изображений по законам геометрии (проекционных чертежей, «projecere»- бросать вперед) возникла из практических задач строительства сооружений, укреплений, пирамид и т.д.), а на позднем этапе — из запросов машиностроения и техники.

Относительно точные сведения об уровне геометрических знаний в Древнем Египте сообщает папирус Ахмеса (измерение земельных участков, вычисление пирамид). Основателем геометрии в Греции считают финикиянина Фалеса Милетского, получившего образование в Египте (ок. 624-547гг. до н.э.). Он основал школу геометров, которая положила начало научной геометрии. Ученику Фалеса Пифагору Самосскому (ок. 580-500гг. до н.э.)принадлежат первые открытия в геометрии: теория несоизмеримости некоторых отрезков, например, диагонали квадрата с его стороной, теория правильных тел, теорема о квадрате гипотенузы прямоугольного треугольника. Преемник Пифагора Платон (427-347гг. до н.э.) ввел в геометрию аналитический метод, учение о геометрических местах и конические сечения. Существовавшая до сих пор элементарная геометрия была расширена и ее назвали трансцендентной .

Систематизировал основы геометрии, восполнил ее пробелы великий александрийский ученый Евклид (III в. до н.э.) в своем замечательном труде. «Начала» Евклида — первый серьезный учебник, по нему в течение двух тысячелетий учились геометрии. Современные учебники элементарной геометрии представляют собой переработку «Начал».

«Золотым веком» греческой геометрии называют эпоху, когда жили и творили математики Архимед (287-195 гг. до н.э.), Эрастофен (275-195гг. до н.э.), Аполлоний Пергский (250-190гг. до н.э.). Измерение криволинейных образов связано с именем Архимеда. Он указал методы измерения длины окружности, площади круга, сегмента параболы и спирали, объемов и поверхностей шара, других тел вращения и др. Это были главные дополнения к «Началам» Евклида. Трактатом о конических сечениях обессмертил свое имя Аполлоний. Трудами последнего, можно сказать, завершается классическая геометрия.

Расцвет классической культуры в средние века сменился застоем. В изобразительном искусстве не используются применявшиеся в древности сведения о перспективе. Глубокий кризис затянулся до эпохи Возрождения.

И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии начинается новый период развития. В связи с развернувшимся строительством различных сооружений возродилось и расширилось применение употреблявшихся в античном мире элементов проекционных изображений. Наиболее бурно в это время развивались архитектура, скульптура и живопись в Италии, Нидерландах, Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе. Появились новые понятия: центр проецирования, картинная плоскость, линия горизонта, главные точки и т.д. Наблюдательная перспектива уже достигла своего высшего развития. Весомый вклад в развитие методов перспективных изображений внесли: итальянский зодчий Лоренцо Гиберти (1378-1455гг.) — он перенес принципы живописной перспективы на пластическое изображение в виде рельефа (в церковных сооружениях), итальянский теоретик искусств Леон Баттиста Альберти (1404-1472гг.) обогатил художественно-технический опыт мастеров-профессионалов теоретической разработкой основ перспективы, впервые упоминает о построении теней, Пиетра-делла-Франческа (1406-1492гг.) — рассматривал вопросы линейной перспективы, гениальный итальянский художник, ученый и инженер Леонардо да Винчи (1452-1519гг.), обладая в совершенстве знаниями линейной перспективы, дополнил построением ее на цилиндрических сводах, положив начало панорамной перспективе.

В развитие перспективы большой вклад внес немецкий ученый и гравер Альбрехт Дюрер (1471-1528гг.). В своей книге «Наставление» он разработал основы рисования, предложил графические способы построения большого числа плоских и некоторых пространственных кривых, оригинальные способы построения перспективы и тени предмета. Основателем теоретической перспективы по праву может считаться итальянский ученый Гвидо Убальди (1545-1607гг.). Работа Убальди «Шесть книг по перспективе» содержит решение почти всех основных задач перспективы.

Французский архитектор и математик Дезарг (1593-1662гг.) в 1636г. в сочинении «Общий метод изображения предметов в перспективе» впервые применил для построения перспективы метод координат Декарта, что послужило появлению нового аксонометрического метода в начертательной геометрии.

Зарождение аналитической геометрии связано с появлением метода координат. Французские математики Ферма (1601-1665гг.) и Декарт (1596-1650гг.) дали общие схемы аналитической функциональной зависимости геометрических соотношений и общие схемы изучения этой зависимости средствами алгебры и анализа. Выдающийся труд Исаака Ньютона (1642-1727гг.) в области бесконечно малых создал новую ветвь геометрии — дифференциальную . Методы приложения анализа бесконечно малых к геометрии характеризуются широкой общностью и находят применение в комплексе функций.

Аналитические и дифференциальные методы сложны в применении. «Геометрию надо строить геометрически» («Geometria geometrice») — была поговорка среди математиков. Появилась еще одна ветвь геометрии — проективная , в основу которой положен метод проектирования, где нет понятий о числе и величине. Творцами нового направления следует считать французских математиков Понселе, Шаля, Мебиуса. Основу этой науки заложил упомянутый выше Дезарг. Он указал, что изображение предмета в ортогональных проекциях и линейной перспективе родственны с геометрической точки зрения [1].

Развитию «вольной перспективы» посвятил свои работы английский математик Тейлор (1685-1731гг.), разработавший способы решения основных позиционных задач и определения свойств оригинала по его перспективному изображению. Немецкий геометр Ламберт (1728-1777гг.) применил метод перспективы к графическоиу решению задач элементарной геометрии, используя свойства афинного соответствия (афинная геометрия). Ламберт решал и обратную задачу — реконструирование объекта по его чертежу, выполненному в центральной проекции.

Французский инженер Фрезье (1682-1773гг.) объединил работы предшественников в труде «Теория и практика разрезки камней и деревянных конструкций» (1738-39гг.), им были решены задачи построения конических сечений по усложненным данным. Однако строгой теории к представленному собранию отдельных приемов решения задач Фрезье не подвел.

Творцом ортогональных проекций и основоположником начертательной геометрии является французский геометр Гаспар Монж (1746-1818гг.). Знания, накопленные по теории и практике изображения пространственных предметов на плоскости, он систематизировал и обобщил, поднял начертательную геометрию на уровень научной дисциплины.

"…Нужно научить пользоваться начертательной геометрией" — говорил Г. Монж. Две главные цели имела новая наука:

1. Точное представление на чертеже, имеющем только два измерения, объектов трехмерных.

2. Выведение из точного описания тел всего, что следует из их формы и взаимного расположения.

С этой точки зрения начертательная геометрия — это язык, необходимый инженеру, создающему что-то новое, и тем, кто осуществляет инженерный проект.

Влюбленный в свое детище — начертательную геометрию, Монж писал: «Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении своего разума, — что большинству людей представляется утомительным и скучным занятием» [2].

В 1797г. Монж стал директором Политехнической школы. Он создал там ту постановку преподавания геометрии, которая и теперь существует в высших технических заведениях. Сильное впечатление производило то, что практические занятия проводились одновременно для 70 человек, которые работали над своими чертежными досками. «Маленький шедевр» — так Монж называл свою школу, давшую мировой науке много великих имен. Авторами учебников высшей школы стали Ампер, Пуассон, Кориолис, Беккерель и др., окончившие эту школу в разные годы. Когда Политехническая школа набрала силу, стала создаваться другая — Нормальная, которая предназначалась для подготовки уже не инженеров, а преподавателей. Профессорами этой школы были известные ученые Лагранж, Лаплас. Лекции, прочитанные Монжем, были стенографированы и позже опубликованы, сам он не интересовался опубликованием своих работ [3].

Методы Монжа не были противоположны анализу, а были его дополнением, связанным с практическими потребностями инженерного дела. Впервые ученый предложил рассматривать плоский чертеж в двух проекциях, как результат совмещения изображенной фигуры в одной плоскости — комплексный чертеж или эпюр Монжа.

В работе Г. Монжа «Начертательная геометрия»(«Geometric Descriptive»), изданной в 1798г., решались задачи:

1. Применение теории геометрических преобразований.

2. Рассмотрение некоторых вопросов теории проекций с числовыми отметками.

3. Подробное исследование кривых линий и поверхностей, в частности применение вспомогательных плоскостей и сфер при построении линии пересечения поверхностей.

Появление начертательной геометрии было вызвано возраставшими потребностями в теории изображений.

Дальнейшее развитие начертательная геометрия получила в трудах многих ученых. Наиболее полное изложение идей Монжа по ортогональным проекциям дал Г. Шрейбер (1799-1871гг.), написавший «Учебник по начертательной геометрии» (по Монжу). Он обогатил начертательную геометрию изложением ее на проективной основе, применив идеи Шаля, Штаудта, Рейе, Штейнера и др., разработал теорию теней и сечений кривых поверхностей. Заметны труды ученых немецкой школы. Геометр Вильгельм Фидлер в книге «Начертательная геометрия», изданной в 1871г., в органической связи с геометрией проективной представил первый обширный курс дисциплины, стоящий на уровне современных требований. Прогрессивными в преподавании были лекции Эмиля Мюллера, продолжившего научное направление Фидлера. В работах А. Манигейма (1880г.) исследованы вопросы кинематического образования кривых линий и поверхностей в ортогональных проекциях. Обоснование теории аксонометрии дал Вейсбах, технические примеры применения аксонометрии показали братья Мейер.

Развивая теорию аксонометрии, профессор Академии изобразительных искусств и Строительной академии в Берлине Карл Польке (1810-1876гг.) в 1853г. открыл основную теорему аксонометрии. Доказательство этой теоремы в 1864г. вывел немецкий геометр Г.А. Шварц. Обобщенная теорема аксонометрии стала называться теоремой Польке — Шварца. Простое доказательство этой теоремы дал в 1917г. профессор Московского университета А.К. Власов. Московский геометр Н.А. Глаголев продолжил работы этого направления, он доказал, что теорема Польке — Шварца есть предельный случай более общей теоремы о параллельно-перспективном расположении двух тетраэдров. Привлекают работы австрийского геометра Эрвина Круппа, получившие развитие в трудах русских ученых Н.А. Глаголева, Н.Ф. Четверухина.

В середине XIX века зарождается и получает развитие начертательная геометрия многих измерений — многомерная геометрия. Итальянский математик Веронезе и голландский ученый Скаутте дают начало этому новому направлению. В России многомерная начертательная геометрия развивалась в связи с проблемами физико-химического анализа многокомпонентных структур (сплавов, растворов), состоящих из большого числа элементов. Вместо точек за основные элементы принимаются различные геометрические образы и строится бесчисленное множество плоских геометрических систем (системы параллельных отрезков, векторов, окружностей и т.д.).

К началу XX века относится зарождение векторно — моторного метода в начертательной геометрии, применяющегося в строительной механике, машиностроении. Этот метод разработан Б. Майором и Р. Мизесом, Б.Н. Горбуновым.

Развитие начертательной геометрии в нашей стране шло самобытными путями, его можно разделить на три периода. I период — до XIX века (Р. Санников, И.П. Кулибин, Д.В. Ухтомский, М.Ф. Казаков, В.И. Баженов и др.), II период — от начала XIX века до 1917 года. Впервые курс начертательной геометрии в 1810 году прочитан в Петербургском институте корпуса инженеров путей сообщения французским инженером К.И. Потье. Перевел курс на русский язык помощник Потье по институту Я… А… Севастьянов (1796-1849 гг.). III период — советский.

Развитие начертательной геометрии в России и применение ее методов в современных научных направлениях — это тема уже другого разговора.

ЛИТЕРАТУРА

1. Начертательная геометрия. //Под ред. Н.Ф. Четверухина.- М.: Высшая школа,- 1963.-с.420.

2. Г. Монж Начертательная геометрия./ Комментарии и редакция Д.И. Каргина.- М.: Изд-во АН СССР, 1974.-с.291.

3. В.П. Демьянов Геометрия и Марсельеза. М.: Знание, 1986.- с.254.

www.ronl.ru

Доклад - История развития начертательной геометрии

Комсомольск-на-Амуре

KOST

&

AKRED

[email protected]

"Приобретение любого познания всегда полезно для ума, ибо он сможет отвергнуть бесполезное и сохранить хорошее. Ведь ни одну вещь нельзя ни любить, ни ненавидеть, если сначала ее не познать."

Леонардо да Винчи

Средства машинной графики, прежде доступные лишь крупным самолетостроительным объединениям (закрытые предприятия министерства авиационной промышленности), в настоящее время используются во многих областях проектирования и производства.

Независимо от способа выполнения чертежа — ручного, механизированного или автоматизированного — знание инженерной графики является фундаментом, на котором базируется инженерное образование, инженерное творчество и система создания технической документации.

Теоретические предпосылки инженерной графики основаны на положениях начертательной геометрии.

С момента возникновения геометрия развивалась, тесно переплетаясь с другими науками: математикой, механикой, физикой, а также оказывала влияние на разработку теоретических основ в технике и изобразительном искусстве.

Время и место возникновения геометрии не установлено.

Потребность в построении изображений по законам геометрии (проекционных чертежей, «projecere»- бросать вперед) возникла из практических задач строительства сооружений, укреплений, пирамид и т.д.), а на позднем этапе — из запросов машиностроения и техники.

Относительно точные сведения об уровне геометрических знаний в Древнем Египте сообщает папирус Ахмеса (измерение земельных участков, вычисление пирамид). Основателем геометрии в Греции считают финикиянина Фалеса Милетского, получившего образование в Египте (ок. 624-547гг. до н.э.). Он основал школу геометров, которая положила начало научной геометрии. Ученику Фалеса Пифагору Самосскому (ок. 580-500гг. до н.э.)принадлежат первые открытия в геометрии: теория несоизмеримости некоторых отрезков, например, диагонали квадрата с его стороной, теория правильных тел, теорема о квадрате гипотенузы прямоугольного треугольника. Преемник Пифагора Платон (427-347гг. до н.э.) ввел в геометрию аналитический метод, учение о геометрических местах и конические сечения. Существовавшая до сих пор элементарная геометрия была расширена и ее назвали трансцендентной .

Систематизировал основы геометрии, восполнил ее пробелы великий александрийский ученый Евклид (III в. до н.э.) в своем замечательном труде. «Начала» Евклида — первый серьезный учебник, по нему в течение двух тысячелетий учились геометрии. Современные учебники элементарной геометрии представляют собой переработку «Начал».

«Золотым веком» греческой геометрии называют эпоху, когда жили и творили математики Архимед (287-195 гг. до н.э.), Эрастофен (275-195гг. до н.э.), Аполлоний Пергский (250-190гг. до н.э.). Измерение криволинейных образов связано с именем Архимеда. Он указал методы измерения длины окружности, площади круга, сегмента параболы и спирали, объемов и поверхностей шара, других тел вращения и др. Это были главные дополнения к «Началам» Евклида. Трактатом о конических сечениях обессмертил свое имя Аполлоний. Трудами последнего, можно сказать, завершается классическая геометрия.

Расцвет классической культуры в средние века сменился застоем. В изобразительном искусстве не используются применявшиеся в древности сведения о перспективе. Глубокий кризис затянулся до эпохи Возрождения.

И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии начинается новый период развития. В связи с развернувшимся строительством различных сооружений возродилось и расширилось применение употреблявшихся в античном мире элементов проекционных изображений. Наиболее бурно в это время развивались архитектура, скульптура и живопись в Италии, Нидерландах, Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе. Появились новые понятия: центр проецирования, картинная плоскость, линия горизонта, главные точки и т.д. Наблюдательная перспектива уже достигла своего высшего развития. Весомый вклад в развитие методов перспективных изображений внесли: итальянский зодчий Лоренцо Гиберти (1378-1455гг.) — он перенес принципы живописной перспективы на пластическое изображение в виде рельефа (в церковных сооружениях), итальянский теоретик искусств Леон Баттиста Альберти (1404-1472гг.) обогатил художественно-технический опыт мастеров-профессионалов теоретической разработкой основ перспективы, впервые упоминает о построении теней, Пиетра-делла-Франческа (1406-1492гг.) — рассматривал вопросы линейной перспективы, гениальный итальянский художник, ученый и инженер Леонардо да Винчи (1452-1519гг.), обладая в совершенстве знаниями линейной перспективы, дополнил построением ее на цилиндрических сводах, положив начало панорамной перспективе.

В развитие перспективы большой вклад внес немецкий ученый и гравер Альбрехт Дюрер (1471-1528гг.). В своей книге «Наставление» он разработал основы рисования, предложил графические способы построения большого числа плоских и некоторых пространственных кривых, оригинальные способы построения перспективы и тени предмета. Основателем теоретической перспективы по праву может считаться итальянский ученый Гвидо Убальди (1545-1607гг.). Работа Убальди «Шесть книг по перспективе» содержит решение почти всех основных задач перспективы.

Французский архитектор и математик Дезарг (1593-1662гг.) в 1636г. в сочинении «Общий метод изображения предметов в перспективе» впервые применил для построения перспективы метод координат Декарта, что послужило появлению нового аксонометрического метода в начертательной геометрии.

Зарождение аналитической геометрии связано с появлением метода координат. Французские математики Ферма (1601-1665гг.) и Декарт (1596-1650гг.) дали общие схемы аналитической функциональной зависимости геометрических соотношений и общие схемы изучения этой зависимости средствами алгебры и анализа. Выдающийся труд Исаака Ньютона (1642-1727гг.) в области бесконечно малых создал новую ветвь геометрии — дифференциальную . Методы приложения анализа бесконечно малых к геометрии характеризуются широкой общностью и находят применение в комплексе функций.

Аналитические и дифференциальные методы сложны в применении. «Геометрию надо строить геометрически» («Geometria geometrice») — была поговорка среди математиков. Появилась еще одна ветвь геометрии — проективная , в основу которой положен метод проектирования, где нет понятий о числе и величине. Творцами нового направления следует считать французских математиков Понселе, Шаля, Мебиуса. Основу этой науки заложил упомянутый выше Дезарг. Он указал, что изображение предмета в ортогональных проекциях и линейной перспективе родственны с геометрической точки зрения [1].

Развитию «вольной перспективы» посвятил свои работы английский математик Тейлор (1685-1731гг.), разработавший способы решения основных позиционных задач и определения свойств оригинала по его перспективному изображению. Немецкий геометр Ламберт (1728-1777гг.) применил метод перспективы к графическоиу решению задач элементарной геометрии, используя свойства афинного соответствия (афинная геометрия). Ламберт решал и обратную задачу — реконструирование объекта по его чертежу, выполненному в центральной проекции.

Французский инженер Фрезье (1682-1773гг.) объединил работы предшественников в труде «Теория и практика разрезки камней и деревянных конструкций» (1738-39гг.), им были решены задачи построения конических сечений по усложненным данным. Однако строгой теории к представленному собранию отдельных приемов решения задач Фрезье не подвел.

Творцом ортогональных проекций и основоположником начертательной геометрии является французский геометр Гаспар Монж (1746-1818гг.). Знания, накопленные по теории и практике изображения пространственных предметов на плоскости, он систематизировал и обобщил, поднял начертательную геометрию на уровень научной дисциплины.

"…Нужно научить пользоваться начертательной геометрией" — говорил Г. Монж. Две главные цели имела новая наука:

1. Точное представление на чертеже, имеющем только два измерения, объектов трехмерных.

2. Выведение из точного описания тел всего, что следует из их формы и взаимного расположения.

С этой точки зрения начертательная геометрия — это язык, необходимый инженеру, создающему что-то новое, и тем, кто осуществляет инженерный проект.

Влюбленный в свое детище — начертательную геометрию, Монж писал: «Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении своего разума, — что большинству людей представляется утомительным и скучным занятием» [2].

В 1797г. Монж стал директором Политехнической школы. Он создал там ту постановку преподавания геометрии, которая и теперь существует в высших технических заведениях. Сильное впечатление производило то, что практические занятия проводились одновременно для 70 человек, которые работали над своими чертежными досками. «Маленький шедевр» — так Монж называл свою школу, давшую мировой науке много великих имен. Авторами учебников высшей школы стали Ампер, Пуассон, Кориолис, Беккерель и др., окончившие эту школу в разные годы. Когда Политехническая школа набрала силу, стала создаваться другая — Нормальная, которая предназначалась для подготовки уже не инженеров, а преподавателей. Профессорами этой школы были известные ученые Лагранж, Лаплас. Лекции, прочитанные Монжем, были стенографированы и позже опубликованы, сам он не интересовался опубликованием своих работ [3].

Методы Монжа не были противоположны анализу, а были его дополнением, связанным с практическими потребностями инженерного дела. Впервые ученый предложил рассматривать плоский чертеж в двух проекциях, как результат совмещения изображенной фигуры в одной плоскости — комплексный чертеж или эпюр Монжа.

В работе Г. Монжа «Начертательная геометрия»(«Geometric Descriptive»), изданной в 1798г., решались задачи:

1. Применение теории геометрических преобразований.

2. Рассмотрение некоторых вопросов теории проекций с числовыми отметками.

3. Подробное исследование кривых линий и поверхностей, в частности применение вспомогательных плоскостей и сфер при построении линии пересечения поверхностей.

Появление начертательной геометрии было вызвано возраставшими потребностями в теории изображений.

Дальнейшее развитие начертательная геометрия получила в трудах многих ученых. Наиболее полное изложение идей Монжа по ортогональным проекциям дал Г. Шрейбер (1799-1871гг.), написавший «Учебник по начертательной геометрии» (по Монжу). Он обогатил начертательную геометрию изложением ее на проективной основе, применив идеи Шаля, Штаудта, Рейе, Штейнера и др., разработал теорию теней и сечений кривых поверхностей. Заметны труды ученых немецкой школы. Геометр Вильгельм Фидлер в книге «Начертательная геометрия», изданной в 1871г., в органической связи с геометрией проективной представил первый обширный курс дисциплины, стоящий на уровне современных требований. Прогрессивными в преподавании были лекции Эмиля Мюллера, продолжившего научное направление Фидлера. В работах А. Манигейма (1880г.) исследованы вопросы кинематического образования кривых линий и поверхностей в ортогональных проекциях. Обоснование теории аксонометрии дал Вейсбах, технические примеры применения аксонометрии показали братья Мейер.

Развивая теорию аксонометрии, профессор Академии изобразительных искусств и Строительной академии в Берлине Карл Польке (1810-1876гг.) в 1853г. открыл основную теорему аксонометрии. Доказательство этой теоремы в 1864г. вывел немецкий геометр Г.А. Шварц. Обобщенная теорема аксонометрии стала называться теоремой Польке — Шварца. Простое доказательство этой теоремы дал в 1917г. профессор Московского университета А.К. Власов. Московский геометр Н.А. Глаголев продолжил работы этого направления, он доказал, что теорема Польке — Шварца есть предельный случай более общей теоремы о параллельно-перспективном расположении двух тетраэдров. Привлекают работы австрийского геометра Эрвина Круппа, получившие развитие в трудах русских ученых Н.А. Глаголева, Н.Ф. Четверухина.

В середине XIX века зарождается и получает развитие начертательная геометрия многих измерений — многомерная геометрия. Итальянский математик Веронезе и голландский ученый Скаутте дают начало этому новому направлению. В России многомерная начертательная геометрия развивалась в связи с проблемами физико-химического анализа многокомпонентных структур (сплавов, растворов), состоящих из большого числа элементов. Вместо точек за основные элементы принимаются различные геометрические образы и строится бесчисленное множество плоских геометрических систем (системы параллельных отрезков, векторов, окружностей и т.д.).

К началу XX века относится зарождение векторно — моторного метода в начертательной геометрии, применяющегося в строительной механике, машиностроении. Этот метод разработан Б. Майором и Р. Мизесом, Б.Н. Горбуновым.

Развитие начертательной геометрии в нашей стране шло самобытными путями, его можно разделить на три периода. I период — до XIX века (Р. Санников, И.П. Кулибин, Д.В. Ухтомский, М.Ф. Казаков, В.И. Баженов и др.), II период — от начала XIX века до 1917 года. Впервые курс начертательной геометрии в 1810 году прочитан в Петербургском институте корпуса инженеров путей сообщения французским инженером К.И. Потье. Перевел курс на русский язык помощник Потье по институту Я… А… Севастьянов (1796-1849 гг.). III период — советский.

Развитие начертательной геометрии в России и применение ее методов в современных научных направлениях — это тема уже другого разговора.

ЛИТЕРАТУРА

1. Начертательная геометрия. //Под ред. Н.Ф. Четверухина.- М.: Высшая школа,- 1963.-с.420.

2. Г. Монж Начертательная геометрия./ Комментарии и редакция Д.И. Каргина.- М.: Изд-во АН СССР, 1974.-с.291.

3. В.П. Демьянов Геометрия и Марсельеза. М.: Знание, 1986.- с.254.

www.ronl.ru

История начертательной геометрии

План

1. Развитие начертательной геометрии в зарубежных странах2. Развитие начертательной геометрии в России

Список литературы

1. Развитие начертательной геометрии в зарубежных странах

Метрическая (измерительная) геометрия, созданная трудами Евклида, Архимеда, Аполлония и других математиков древности, выросла, как известно, из потребностей землемерия и мореплавания.Дальнейшее развитие производственной деятельности человечества выдвинуло ряд новых геометрических задач, связанных с необходимостью изображения объемных предметов на плоскости.Действительно, для того чтобы изготовить какой-либо предмет, необходимо предварительно знать его точную форму и размеры, т. е. его геометрические свойства.Словесное описание этих свойств никогда не может быть достаточно полным и достаточно ясным. Поэтому и возникла необходимость в описании предметов другими, более удобными средствами, т. е. путем их изображения.Различные способы построения таких изображений были найдены уже в глубокой древности и развивались трудами множества ремесленников, строителей, художников и ученых.История начертательной геометрии может служить ярким примером того, как научная теория возникает и развивается из производственной практики людей.Еще задолго до того, как она оформилась в виде научной системы, отдельные приемы и правила начертательной геометрии уже применялись практически в различных областях техники и в разных странах мира. Мы находим их и в чертежах русских механиков — Кулибина, Ползунова и др., живших в XVIII веке, и в более ранних трудах некоторых русских и иностранных техников по различным отраслям строительного дела, в частности в кораблестроительных чертежах эпохи Петра I, в которых впервые было применено проектирование на три плоскости.Особенно широкое развитие получили приемы, изучаемые начертательной геометрией, в руководствах по обтесыванию камней для сложных архитектурных сооружений (своды, арки, мосты, купола и т. п.).Однако впервые методы начертательной геометрии были научно обобщены и последовательно изложены французским геометром Гаспаром Мон-жем, опубликовавшим в 1795 г. свой первый труд по начертательной геометрии - «Начертательная геометрия». В этом научном труде изложен метод проецирования предметов на две взаимно перпендикулярные плоскости. Начертательной геометрии Г. Монж придавал большое значение. В предисловии к своей книге он писал, что нужно приучить пользоваться начертательной геометрией всех способных молодых людей, как богатых, так и бедных. По его мнению, начертательная геометрия создает язык техника, учит его изображать трехмерные формы на плоском листе бумаги. Этот язык нужен «...инженеру, создающему какой-либо проект, а также всем тем, кто должен руководить его осуществлением, и, наконец, мастерам, которые должны сами изготовлять различные части».Основная цель начертательной геометрии, считал Г. Монж,— научить оперировать теорией как средством искания истины. Она «...необходима для всех рабочих, цель которых — придавать телам определенные формы. Поэтому необходимо, чтобы народное образование ввело преподавание начертательной геометрии как науки в учебных заведениях».Книга «Начертательная геометрия» вышла в свет в 1799 г., ознаменовав рождение новой науки, значение которой сейчас трудно переоценить.С этого времени начертательная геометрия получила научное обоснование, а ее выводы нашли широкое применение в технике и привели к тому, что чертеж стал «международным языком» инженеров.Подтвердилось, таким образом, предвидение Г. Монжа, который утверждал в предисловии к своему труду по начертательной геометрии, что «она необходима всем тем, кто ставит своей целью придать обрабатываемым предметам определенную форму».Конечно, отдавая должное Г. Монжу как создателю начертательной геометрии, мы не должны забывать, что он свел в стройную систему разрозненный и многообразный материал, который уже отчасти существовал до него.Вспомним историю развития изображений. Древние египтяне умели правильно передавать форму и размеры тех сооружений (пирамиды, храмы и др.), которые они возводили.Очень давно, примерно 3 тыс. лет тому назад, в Иерусалиме был воздвигнут изумительный по архитектуре храм Соломона. По библейскому преданию, при строительстве этого храма не было слышно ни тесла, ни молота. Сложной формы камни, по-видимому, должны были заранее обтесываться в рудниках и доставляться готовыми на строительство, а для этого нужен был чертеж.В области теории изображений работали Леонардо да Винчи (1452—1519), Альбрехт Дюрер (1471—1528), Жирар Дезарг (1593— 1662), Блез Паскаль (1623—1662).Начертательная геометрия, помимо своего приложения в технике, оказала плодотворное влияние и на последующее развитие всей геометрии.К концу XVIII столетия, когда сформировалась начертательная геометрия, уже утвердились и получили преобладающее значение аналитические методы решения геометрических задач, ведущие начало от Декарта. Геометрия оказалась, так сказать, в плену у алгебры.Начертательная геометрия дала толчок к возрождению чисто геометрических, конструктивных методов. Она подготовила почву для более общей науки — проективной геометрии и для всего того блестящего расцвета научных геометрических знаний, которым ознаменовалось XIX столетие.

 

magref.ru

Введение

§ 1. Предмет и метод начертательной геометрии

Начертательная геометрия, являясь одной из ветвей геометрии, имеет ту же цель, что и геометрия «вообще», а именно: изучение форм предметов окружающего нас действительного мира и отношений между ними, установление соответствующих закономерностей и применение их к решению практических задач.

Начертательную геометрию из других ветвей геометрии выделяет то обстоятельство, что она для решения общегеометрических задач использует графический путь, при котором геометрические свойства фигур изучаются непосредственно по чертежу. В то время как в других ветвях геометрии чертеж является вспомогательным средством, так как с его помощью лишь иллюстрируются свойства фигур, в начертательной геометрии он является основным средством изучения свойств фигур.

Разумеется, не всякое изображение может служить таким средством. Для того чтобы чертеж был геометрически равноценным изображаемой фигуре или, как говорят, оригиналу, он должен быть построен по определенным геометрическим законам. В начертательной геометрии каждый чертеж строится при помощи метода проецирования, поэтому чертежи, применя-емые в начертательной геометрии, носят название проекционных. При построении этих чертежей широко используются проекционные свойства фигур, благодаря чему изображение обладает такими геометрическими свойствами, по которым можно судить о свойствах самого оригинала.

Таким образом, содержанием начертательной геометрии является, во-первых, исследование способов построения проекционных чертежей; во-вторых, решение геометрических задач, относящихся к пространственным фигурам, в-третьих, приложение способов начертательной геометрии к исследованию практических и теоретических вопросов науки и техники.

В наше время нелегко указать на такой вид человеческой деятельности, где бы в большей или меньшей степени не приходилось прибегать к помощи чертежей. Чертежи кроме технических, значение которых общеизвестно, встречаются в виде планов строений, географических и топографических карт и пр. Все они строятся по правилам проецирования.

Чертеж, как говорил один из создателей начертательной геометрии – французский ученый и инженер Гаспар Монж (1746–1818), является «языком техника». Дополняя это высказывание Монжа, профессор В.И. Курдюмов (1853–1904) – автор классического русского учебника начертательной геометрии – писал: «Если чертеж является языком техника, то начертательная геометрия служит грамматикой этого языка, так как она учит нас правильно читать чужие и излагать наши собственные мысли, пользуясь в качестве слов одними только линиями и точками как элементами всякого изображения».

§ 2. Краткие сведения по истории развития начертательной геометрии

1. Как и всякая другая наука, начертательная геометрия возникла из практической деятельности человечества. Задачи строительства различных сооружений, крепостных укреплений, жилья, храмов и др. требовали предварительного построения изображений этих конструкций. Зародившись в глубокой древности, различные способы построения изображений по мере развития материальной жизни общества претерпевали глубокие изменения. От примитивных изображений, лишь весьма приближенно передававших геометрические формы изображаемых на них объектов, человечество постепенно перешло к составлению проекционных чертежей, отражающих геометрические свойства воспроизводимых объектов.

Выдающуюся роль в развитии начертательной геометрии как науки сыграл знаменитый французский геометр и инженер времен Великой французской революции Гаспар Монж (1746–1818). Монж систематизировал и обобщил накопленные к этому времени практический опыт и теоретические познания в области изображений пространственных фигур на плоскости. В своем труде «Начертательная геометрия», изданном в 1798 г., Монж дает первое научное изложение общего метода изображения пространственных фигур на плоскости. Монж предложил рассматривать плоский чертеж, состоящий из двух проекций, как результат совмещения двух взаимно перпендикулярных плоскостей проекций.

2. Развитие начертательной геометрии в нашей стране происходило своими путями.

Изучение старинных документов-летописей, планов, карт, чертежей показывает, что проекционные методы построения изображений были известны еще в Древней Руси, об этом свидетельствуют картины Рублева, чертежи И.И. Ползунова (1728–1766), И.П. Кулибина (1735–1818), М.Ф. Казакова (1733–1812).

В 1810 г. в Институте корпуса инженеров путей сообщения (ныне Ленинградский институт инженеров железнодорожного транспорта) впервые стал читаться курс начертательной геометрии. Первым профессором, препо-дававшим этот курс, был ученик Монжа французский инженер К.И. Потье, который издал в 1816 г. свой курс начертательной геометрии на французском языке. Перевел его на русский язык помощник Потье по институту Я.А. Севастьянов (1796–1849). С 1818 г. преподавание начертательной геометрии стал вести Севастьянов, которому вскоре было присвоено звание первого русского профессора начертательной геометрии. В 1821 г. был издан первый в России оригинальный курс начертательной геометрии, написанный Севастьяновым. Он содержал подробное изложение теории начертательной геометрии и находился на уровне лучших европейских курсов. Огромная заслуга Севастьянова состояла также в том, что он ввел русскую терминологию по начертательной геометрии.

В дальнейшем начертательная геометрия как наука получила все условия для своего полного развития. Появилась обширная научная и учебная литература. Большую роль в развитии начертательной геометрии как науки и учебной дисциплины в советский период сыграли проф. Н.Ф. Четверухин, проф. И.И. Котов, проф. А.М. Тевлин и их ученики.

studfiles.net

Сочинение - История развития начертательной геометрии

Комсомольск-на-Амуре

KOST

&

AKRED

[email protected]

"Приобретение любого познания всегда полезно для ума, ибо он сможет отвергнуть бесполезное и сохранить хорошее. Ведь ни одну вещь нельзя ни любить, ни ненавидеть, если сначала ее не познать."

Леонардо да Винчи

Средства машинной графики, прежде доступные лишь крупным самолетостроительным объединениям (закрытые предприятия министерства авиационной промышленности), в настоящее время используются во многих областях проектирования и производства.

Независимо от способа выполнения чертежа — ручного, механизированного или автоматизированного — знание инженерной графики является фундаментом, на котором базируется инженерное образование, инженерное творчество и система создания технической документации.

Теоретические предпосылки инженерной графики основаны на положениях начертательной геометрии.

С момента возникновения геометрия развивалась, тесно переплетаясь с другими науками: математикой, механикой, физикой, а также оказывала влияние на разработку теоретических основ в технике и изобразительном искусстве.

Время и место возникновения геометрии не установлено.

Потребность в построении изображений по законам геометрии (проекционных чертежей, «projecere»- бросать вперед) возникла из практических задач строительства сооружений, укреплений, пирамид и т.д.), а на позднем этапе — из запросов машиностроения и техники.

Относительно точные сведения об уровне геометрических знаний в Древнем Египте сообщает папирус Ахмеса (измерение земельных участков, вычисление пирамид). Основателем геометрии в Греции считают финикиянина Фалеса Милетского, получившего образование в Египте (ок. 624-547гг. до н.э.). Он основал школу геометров, которая положила начало научной геометрии. Ученику Фалеса Пифагору Самосскому (ок. 580-500гг. до н.э.)принадлежат первые открытия в геометрии: теория несоизмеримости некоторых отрезков, например, диагонали квадрата с его стороной, теория правильных тел, теорема о квадрате гипотенузы прямоугольного треугольника. Преемник Пифагора Платон (427-347гг. до н.э.) ввел в геометрию аналитический метод, учение о геометрических местах и конические сечения. Существовавшая до сих пор элементарная геометрия была расширена и ее назвали трансцендентной .

Систематизировал основы геометрии, восполнил ее пробелы великий александрийский ученый Евклид (III в. до н.э.) в своем замечательном труде. «Начала» Евклида — первый серьезный учебник, по нему в течение двух тысячелетий учились геометрии. Современные учебники элементарной геометрии представляют собой переработку «Начал».

«Золотым веком» греческой геометрии называют эпоху, когда жили и творили математики Архимед (287-195 гг. до н.э.), Эрастофен (275-195гг. до н.э.), Аполлоний Пергский (250-190гг. до н.э.). Измерение криволинейных образов связано с именем Архимеда. Он указал методы измерения длины окружности, площади круга, сегмента параболы и спирали, объемов и поверхностей шара, других тел вращения и др. Это были главные дополнения к «Началам» Евклида. Трактатом о конических сечениях обессмертил свое имя Аполлоний. Трудами последнего, можно сказать, завершается классическая геометрия.

Расцвет классической культуры в средние века сменился застоем. В изобразительном искусстве не используются применявшиеся в древности сведения о перспективе. Глубокий кризис затянулся до эпохи Возрождения.

И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии начинается новый период развития. В связи с развернувшимся строительством различных сооружений возродилось и расширилось применение употреблявшихся в античном мире элементов проекционных изображений. Наиболее бурно в это время развивались архитектура, скульптура и живопись в Италии, Нидерландах, Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе. Появились новые понятия: центр проецирования, картинная плоскость, линия горизонта, главные точки и т.д. Наблюдательная перспектива уже достигла своего высшего развития. Весомый вклад в развитие методов перспективных изображений внесли: итальянский зодчий Лоренцо Гиберти (1378-1455гг.) — он перенес принципы живописной перспективы на пластическое изображение в виде рельефа (в церковных сооружениях), итальянский теоретик искусств Леон Баттиста Альберти (1404-1472гг.) обогатил художественно-технический опыт мастеров-профессионалов теоретической разработкой основ перспективы, впервые упоминает о построении теней, Пиетра-делла-Франческа (1406-1492гг.) — рассматривал вопросы линейной перспективы, гениальный итальянский художник, ученый и инженер Леонардо да Винчи (1452-1519гг.), обладая в совершенстве знаниями линейной перспективы, дополнил построением ее на цилиндрических сводах, положив начало панорамной перспективе.

В развитие перспективы большой вклад внес немецкий ученый и гравер Альбрехт Дюрер (1471-1528гг.). В своей книге «Наставление» он разработал основы рисования, предложил графические способы построения большого числа плоских и некоторых пространственных кривых, оригинальные способы построения перспективы и тени предмета. Основателем теоретической перспективы по праву может считаться итальянский ученый Гвидо Убальди (1545-1607гг.). Работа Убальди «Шесть книг по перспективе» содержит решение почти всех основных задач перспективы.

Французский архитектор и математик Дезарг (1593-1662гг.) в 1636г. в сочинении «Общий метод изображения предметов в перспективе» впервые применил для построения перспективы метод координат Декарта, что послужило появлению нового аксонометрического метода в начертательной геометрии.

Зарождение аналитической геометрии связано с появлением метода координат. Французские математики Ферма (1601-1665гг.) и Декарт (1596-1650гг.) дали общие схемы аналитической функциональной зависимости геометрических соотношений и общие схемы изучения этой зависимости средствами алгебры и анализа. Выдающийся труд Исаака Ньютона (1642-1727гг.) в области бесконечно малых создал новую ветвь геометрии — дифференциальную . Методы приложения анализа бесконечно малых к геометрии характеризуются широкой общностью и находят применение в комплексе функций.

Аналитические и дифференциальные методы сложны в применении. «Геометрию надо строить геометрически» («Geometria geometrice») — была поговорка среди математиков. Появилась еще одна ветвь геометрии — проективная , в основу которой положен метод проектирования, где нет понятий о числе и величине. Творцами нового направления следует считать французских математиков Понселе, Шаля, Мебиуса. Основу этой науки заложил упомянутый выше Дезарг. Он указал, что изображение предмета в ортогональных проекциях и линейной перспективе родственны с геометрической точки зрения [1].

Развитию «вольной перспективы» посвятил свои работы английский математик Тейлор (1685-1731гг.), разработавший способы решения основных позиционных задач и определения свойств оригинала по его перспективному изображению. Немецкий геометр Ламберт (1728-1777гг.) применил метод перспективы к графическоиу решению задач элементарной геометрии, используя свойства афинного соответствия (афинная геометрия). Ламберт решал и обратную задачу — реконструирование объекта по его чертежу, выполненному в центральной проекции.

Французский инженер Фрезье (1682-1773гг.) объединил работы предшественников в труде «Теория и практика разрезки камней и деревянных конструкций» (1738-39гг.), им были решены задачи построения конических сечений по усложненным данным. Однако строгой теории к представленному собранию отдельных приемов решения задач Фрезье не подвел.

Творцом ортогональных проекций и основоположником начертательной геометрии является французский геометр Гаспар Монж (1746-1818гг.). Знания, накопленные по теории и практике изображения пространственных предметов на плоскости, он систематизировал и обобщил, поднял начертательную геометрию на уровень научной дисциплины.

"…Нужно научить пользоваться начертательной геометрией" — говорил Г. Монж. Две главные цели имела новая наука:

1. Точное представление на чертеже, имеющем только два измерения, объектов трехмерных.

2. Выведение из точного описания тел всего, что следует из их формы и взаимного расположения.

С этой точки зрения начертательная геометрия — это язык, необходимый инженеру, создающему что-то новое, и тем, кто осуществляет инженерный проект.

Влюбленный в свое детище — начертательную геометрию, Монж писал: «Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении своего разума, — что большинству людей представляется утомительным и скучным занятием» [2].

В 1797г. Монж стал директором Политехнической школы. Он создал там ту постановку преподавания геометрии, которая и теперь существует в высших технических заведениях. Сильное впечатление производило то, что практические занятия проводились одновременно для 70 человек, которые работали над своими чертежными досками. «Маленький шедевр» — так Монж называл свою школу, давшую мировой науке много великих имен. Авторами учебников высшей школы стали Ампер, Пуассон, Кориолис, Беккерель и др., окончившие эту школу в разные годы. Когда Политехническая школа набрала силу, стала создаваться другая — Нормальная, которая предназначалась для подготовки уже не инженеров, а преподавателей. Профессорами этой школы были известные ученые Лагранж, Лаплас. Лекции, прочитанные Монжем, были стенографированы и позже опубликованы, сам он не интересовался опубликованием своих работ [3].

Методы Монжа не были противоположны анализу, а были его дополнением, связанным с практическими потребностями инженерного дела. Впервые ученый предложил рассматривать плоский чертеж в двух проекциях, как результат совмещения изображенной фигуры в одной плоскости — комплексный чертеж или эпюр Монжа.

В работе Г. Монжа «Начертательная геометрия»(«Geometric Descriptive»), изданной в 1798г., решались задачи:

1. Применение теории геометрических преобразований.

2. Рассмотрение некоторых вопросов теории проекций с числовыми отметками.

3. Подробное исследование кривых линий и поверхностей, в частности применение вспомогательных плоскостей и сфер при построении линии пересечения поверхностей.

Появление начертательной геометрии было вызвано возраставшими потребностями в теории изображений.

Дальнейшее развитие начертательная геометрия получила в трудах многих ученых. Наиболее полное изложение идей Монжа по ортогональным проекциям дал Г. Шрейбер (1799-1871гг.), написавший «Учебник по начертательной геометрии» (по Монжу). Он обогатил начертательную геометрию изложением ее на проективной основе, применив идеи Шаля, Штаудта, Рейе, Штейнера и др., разработал теорию теней и сечений кривых поверхностей. Заметны труды ученых немецкой школы. Геометр Вильгельм Фидлер в книге «Начертательная геометрия», изданной в 1871г., в органической связи с геометрией проективной представил первый обширный курс дисциплины, стоящий на уровне современных требований. Прогрессивными в преподавании были лекции Эмиля Мюллера, продолжившего научное направление Фидлера. В работах А. Манигейма (1880г.) исследованы вопросы кинематического образования кривых линий и поверхностей в ортогональных проекциях. Обоснование теории аксонометрии дал Вейсбах, технические примеры применения аксонометрии показали братья Мейер.

Развивая теорию аксонометрии, профессор Академии изобразительных искусств и Строительной академии в Берлине Карл Польке (1810-1876гг.) в 1853г. открыл основную теорему аксонометрии. Доказательство этой теоремы в 1864г. вывел немецкий геометр Г.А. Шварц. Обобщенная теорема аксонометрии стала называться теоремой Польке — Шварца. Простое доказательство этой теоремы дал в 1917г. профессор Московского университета А.К. Власов. Московский геометр Н.А. Глаголев продолжил работы этого направления, он доказал, что теорема Польке — Шварца есть предельный случай более общей теоремы о параллельно-перспективном расположении двух тетраэдров. Привлекают работы австрийского геометра Эрвина Круппа, получившие развитие в трудах русских ученых Н.А. Глаголева, Н.Ф. Четверухина.

В середине XIX века зарождается и получает развитие начертательная геометрия многих измерений — многомерная геометрия. Итальянский математик Веронезе и голландский ученый Скаутте дают начало этому новому направлению. В России многомерная начертательная геометрия развивалась в связи с проблемами физико-химического анализа многокомпонентных структур (сплавов, растворов), состоящих из большого числа элементов. Вместо точек за основные элементы принимаются различные геометрические образы и строится бесчисленное множество плоских геометрических систем (системы параллельных отрезков, векторов, окружностей и т.д.).

К началу XX века относится зарождение векторно — моторного метода в начертательной геометрии, применяющегося в строительной механике, машиностроении. Этот метод разработан Б. Майором и Р. Мизесом, Б.Н. Горбуновым.

Развитие начертательной геометрии в нашей стране шло самобытными путями, его можно разделить на три периода. I период — до XIX века (Р. Санников, И.П. Кулибин, Д.В. Ухтомский, М.Ф. Казаков, В.И. Баженов и др.), II период — от начала XIX века до 1917 года. Впервые курс начертательной геометрии в 1810 году прочитан в Петербургском институте корпуса инженеров путей сообщения французским инженером К.И. Потье. Перевел курс на русский язык помощник Потье по институту Я… А… Севастьянов (1796-1849 гг.). III период — советский.

Развитие начертательной геометрии в России и применение ее методов в современных научных направлениях — это тема уже другого разговора.

ЛИТЕРАТУРА

1. Начертательная геометрия. //Под ред. Н.Ф. Четверухина.- М.: Высшая школа,- 1963.-с.420.

2. Г. Монж Начертательная геометрия./ Комментарии и редакция Д.И. Каргина.- М.: Изд-во АН СССР, 1974.-с.291.

3. В.П. Демьянов Геометрия и Марсельеза. М.: Знание, 1986.- с.254.

www.ronl.ru

Реферат: История развития начертательной геометрии

Комсомольск-на-Амуре

KOST

&

AKRED

[email protected]

"Приобретение любого познания всегда полезно для ума, ибо он сможет отвергнуть бесполезное и сохранить хорошее. Ведь ни одну вещь нельзя ни любить, ни ненавидеть, если сначала ее не познать."

Леонардо да Винчи

Средства машинной графики, прежде доступные лишь крупным самолетостроительным объединениям (закрытые предприятия министерства авиационной промышленности), в настоящее время используются во многих областях проектирования и производства.

Независимо от способа выполнения чертежа - ручного, механизированного или автоматизированного - знание инженерной графики является фундаментом, на котором базируется инженерное образование, инженерное творчество и система создания технической документации.

Теоретические предпосылки инженерной графики основаны на положениях начертательной геометрии.

С момента возникновения геометрия развивалась, тесно переплетаясь с другими науками: математикой, механикой, физикой, а также оказывала влияние на разработку теоретических основ в технике и изобразительном искусстве.

Время и место возникновения геометрии не установлено.

Потребность в построении изображений по законам геометрии (проекционных чертежей, "projecere"- бросать вперед) возникла из практических задач строительства сооружений, укреплений, пирамид и т.д.), а на позднем этапе - из запросов машиностроения и техники.

Относительно точные сведения об уровне геометрических знаний в Древнем Египте сообщает папирус Ахмеса (измерение земельных участков, вычисление пирамид). Основателем геометрии в Греции считают финикиянина Фалеса Милетского, получившего образование в Египте (ок. 624-547гг. до н.э.). Он основал школу геометров, которая положила начало научной геометрии. Ученику Фалеса Пифагору Самосскому (ок. 580-500гг. до н.э.)принадлежат первые открытия в геометрии: теория несоизмеримости некоторых отрезков, например, диагонали квадрата с его стороной, теория правильных тел, теорема о квадрате гипотенузы прямоугольного треугольника. Преемник Пифагора Платон (427-347гг. до н.э.) ввел в геометрию аналитический метод, учение о геометрических местах и конические сечения. Существовавшая до сих порэлементарнаягеометрия была расширена и ее назвалитрансцендентной.

Систематизировал основы геометрии, восполнил ее пробелы великий александрийский ученый Евклид (III в. до н.э.) в своем замечательном труде. "Начала" Евклида - первый серьезный учебник, по нему в течение двух тысячелетий учились геометрии. Современные учебники элементарной геометрии представляют собой переработку "Начал".

"Золотым веком" греческой геометрии называют эпоху, когда жили и творили математики Архимед (287-195 гг. до н.э.), Эрастофен (275-195гг. до н.э.), Аполлоний Пергский (250-190гг. до н.э.). Измерение криволинейных образов связано с именем Архимеда. Он указал методы измерения длины окружности, площади круга, сегмента параболы и спирали, объемов и поверхностей шара, других тел вращения и др. Это были главные дополнения к "Началам" Евклида. Трактатом о конических сечениях обессмертил свое имя Аполлоний. Трудами последнего, можно сказать, завершаетсяклассическаягеометрия.

Расцвет классической культуры в средние века сменился застоем. В изобразительном искусстве не используются применявшиеся в древности сведения о перспективе. Глубокий кризис затянулся до эпохи Возрождения.

И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии начинается новый период развития. В связи с развернувшимся строительством различных сооружений возродилось и расширилось применение употреблявшихся в античном мире элементов проекционных изображений. Наиболее бурно в это время развивались архитектура, скульптура и живопись в Италии, Нидерландах, Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе. Появились новые понятия: центр проецирования, картинная плоскость, линия горизонта, главные точки и т.д. Наблюдательная перспектива уже достигла своего высшего развития. Весомый вклад в развитие методов перспективных изображений внесли: итальянский зодчий Лоренцо Гиберти (1378-1455гг.) - он перенес принципы живописной перспективы на пластическое изображение в виде рельефа (в церковных сооружениях), итальянский теоретик искусств Леон Баттиста Альберти (1404-1472гг.) обогатил художественно-технический опыт мастеров-профессионалов теоретической разработкой основ перспективы, впервые упоминает о построении теней, Пиетра-делла-Франческа (1406-1492гг.) - рассматривал вопросы линейной перспективы, гениальный итальянский художник, ученый и инженер Леонардо да Винчи (1452-1519гг.), обладая в совершенстве знаниями линейной перспективы, дополнил построением ее на цилиндрических сводах, положив начало панорамной перспективе.

В развитие перспективы большой вклад внес немецкий ученый и гравер Альбрехт Дюрер (1471-1528гг.). В своей книге "Наставление" он разработал основы рисования, предложил графические способы построения большого числа плоских и некоторых пространственных кривых, оригинальные способы построения перспективы и тени предмета. Основателем теоретической перспективы по праву может считаться итальянский ученый Гвидо Убальди (1545-1607гг.). Работа Убальди "Шесть книг по перспективе" содержит решение почти всех основных задач перспективы.

Французский архитектор и математик Дезарг (1593-1662гг.) в 1636г. в сочинении "Общий метод изображения предметов в перспективе" впервые применил для построения перспективы метод координат Декарта, что послужило появлению нового аксонометрического метода в начертательной геометрии.

Зарождениеаналитическойгеометрии связано с появлением метода координат. Французские математики Ферма (1601-1665гг.) и Декарт (1596-1650гг.) дали общие схемы аналитической функциональной зависимости геометрических соотношений и общие схемы изучения этой зависимости средствами алгебры и анализа. Выдающийся труд Исаака Ньютона (1642-1727гг.) в области бесконечно малых создал новую ветвь геометрии -дифференциальную. Методы приложения анализа бесконечно малых к геометрии характеризуются широкой общностью и находят применение в комплексе функций.

Аналитические и дифференциальные методы сложны в применении. "Геометрию надо строить геометрически" ("Geometria geometrice") - была поговорка среди математиков. Появилась еще одна ветвь геометрии -проективная, в основу которой положен метод проектирования, где нет понятий о числе и величине. Творцами нового направления следует считать французских математиков Понселе, Шаля, Мебиуса. Основу этой науки заложил упомянутый выше Дезарг. Он указал, что изображение предмета в ортогональных проекциях и линейной перспективе родственны с геометрической точки зрения [1].

Развитию "вольной перспективы" посвятил свои работы английский математик Тейлор (1685-1731гг.), разработавший способы решения основных позиционных задач и определения свойств оригинала по его перспективному изображению. Немецкий геометр Ламберт (1728-1777гг.) применил метод перспективы к графическоиу решению задач элементарной геометрии, используя свойства афинного соответствия (афиннаягеометрия). Ламберт решал и обратную задачу - реконструирование объекта по его чертежу, выполненному в центральной проекции.

Французский инженер Фрезье (1682-1773гг.) объединил работы предшественников в труде "Теория и практика разрезки камней и деревянных конструкций" (1738-39гг.), им были решены задачи построения конических сечений по усложненным данным. Однако строгой теории к представленному собранию отдельных приемов решения задач Фрезье не подвел.

Творцом ортогональных проекций и основоположникомначертательнойгеометрии является французский геометр Гаспар Монж (1746-1818гг.). Знания, накопленные по теории и практике изображения пространственных предметов на плоскости, он систематизировал и обобщил, поднял начертательную геометрию на уровень научной дисциплины.

"…Нужно научить пользоваться начертательной геометрией" - говорил Г. Монж. Две главные цели имела новая наука:

1. Точное представление на чертеже, имеющем только два измерения, объектов трехмерных.

2. Выведение из точного описания тел всего, что следует из их формы и взаимного расположения.

С этой точки зрения начертательная геометрия - это язык, необходимый инженеру, создающему что-то новое, и тем, кто осуществляет инженерный проект.

Влюбленный в свое детище - начертательную геометрию, Монж писал: "Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении своего разума, - что большинству людей представляется утомительным и скучным занятием" [2].

В 1797г. Монж стал директором Политехнической школы. Он создал там ту постановку преподавания геометрии, которая и теперь существует в высших технических заведениях. Сильное впечатление производило то, что практические занятия проводились одновременно для 70 человек, которые работали над своими чертежными досками. "Маленький шедевр" - так Монж называл свою школу, давшую мировой науке много великих имен. Авторами учебников высшей школы стали Ампер, Пуассон, Кориолис, Беккерель и др., окончившие эту школу в разные годы. Когда Политехническая школа набрала силу, стала создаваться другая - Нормальная, которая предназначалась для подготовки уже не инженеров, а преподавателей. Профессорами этой школы были известные ученые Лагранж, Лаплас. Лекции, прочитанные Монжем, были стенографированы и позже опубликованы, сам он не интересовался опубликованием своих работ [3].

Методы Монжа не были противоположны анализу, а были его дополнением, связанным с практическими потребностями инженерного дела. Впервые ученый предложил рассматривать плоский чертеж в двух проекциях, как результат совмещения изображенной фигуры в одной плоскости - комплексный чертеж или эпюр Монжа.

В работе Г. Монжа "Начертательная геометрия"("Geometric Descriptive"), изданной в 1798г., решались задачи:

1. Применение теории геометрических преобразований.

2. Рассмотрение некоторых вопросов теории проекций с числовыми отметками.

3. Подробное исследование кривых линий и поверхностей, в частности применение вспомогательных плоскостей и сфер при построении линии пересечения поверхностей.

Появление начертательной геометрии было вызвано возраставшими потребностями в теории изображений.

Дальнейшее развитие начертательная геометрия получила в трудах многих ученых. Наиболее полное изложение идей Монжа по ортогональным проекциям дал Г. Шрейбер (1799-1871гг.), написавший "Учебник по начертательной геометрии" (по Монжу). Он обогатил начертательную геометрию изложением ее на проективной основе, применив идеи Шаля, Штаудта, Рейе, Штейнера и др., разработал теорию теней и сечений кривых поверхностей. Заметны труды ученых немецкой школы. Геометр Вильгельм Фидлер в книге "Начертательная геометрия", изданной в 1871г., в органической связи с геометрией проективной представил первый обширный курс дисциплины, стоящий на уровне современных требований. Прогрессивными в преподавании были лекции Эмиля Мюллера, продолжившего научное направление Фидлера. В работах А. Манигейма (1880г.) исследованы вопросы кинематического образования кривых линий и поверхностей в ортогональных проекциях. Обоснование теории аксонометрии дал Вейсбах, технические примеры применения аксонометрии показали братья Мейер.

Развивая теорию аксонометрии, профессор Академии изобразительных искусств и Строительной академии в Берлине Карл Польке (1810-1876гг.) в 1853г. открыл основную теорему аксонометрии. Доказательство этой теоремы в 1864г. вывел немецкий геометр Г.А. Шварц. Обобщенная теорема аксонометрии стала называться теоремой Польке - Шварца. Простое доказательство этой теоремы дал в 1917г. профессор Московского университета А.К. Власов. Московский геометр Н.А. Глаголев продолжил работы этого направления, он доказал, что теорема Польке - Шварца есть предельный случай более общей теоремы о параллельно-перспективном расположении двух тетраэдров. Привлекают работы австрийского геометра Эрвина Круппа, получившие развитие в трудах русских ученых Н.А. Глаголева, Н.Ф. Четверухина.

В середине XIX века зарождается и получает развитие начертательная геометрия многих измерений -многомернаягеометрия. Итальянский математик Веронезе и голландский ученый Скаутте дают начало этому новому направлению. В России многомерная начертательная геометрия развивалась в связи с проблемами физико-химического анализа многокомпонентных структур (сплавов, растворов), состоящих из большого числа элементов. Вместо точек за основные элементы принимаются различные геометрические образы и строится бесчисленное множество плоских геометрических систем (системы параллельных отрезков, векторов, окружностей и т.д.).

К началу XX века относится зарождение векторно - моторного метода в начертательной геометрии, применяющегося в строительной механике, машиностроении. Этот метод разработан Б. Майором и Р. Мизесом, Б.Н. Горбуновым.

Развитие начертательной геометрии в нашей стране шло самобытными путями, его можно разделить на три периода. I период - до XIX века (Р. Санников, И.П. Кулибин, Д.В. Ухтомский, М.Ф. Казаков, В.И. Баженов и др.), II период - от начала XIX века до 1917 года. Впервые курс начертательной геометрии в 1810 году прочитан в Петербургском институте корпуса инженеров путей сообщения французским инженером К.И. Потье. Перевел курс на русский язык помощник Потье по институту Я.. А.. Севастьянов (1796-1849 гг.). III период - советский.

Развитие начертательной геометрии в России и применение ее методов в современных научных направлениях - это тема уже другого разговора.

ЛИТЕРАТУРА

1. Начертательная геометрия. //Под ред. Н.Ф. Четверухина.- М.: Высшая школа,- 1963.-с.420.

2. Г. Монж Начертательная геометрия./ Комментарии и редакция Д.И. Каргина.- М.: Изд-во АН СССР, 1974.-с.291.

3. В.П. Демьянов Геометрия и Марсельеза. М.: Знание, 1986.- с.254.

superbotanik.net


Смотрите также